LE75183CFSCT [ZARLINK]

Telecom Circuit, 1-Func, PDSO28, GREEN, PLASTIC, SOIC-28;
LE75183CFSCT
型号: LE75183CFSCT
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

Telecom Circuit, 1-Func, PDSO28, GREEN, PLASTIC, SOIC-28

电信 光电二极管 电信集成电路
文件: 总30页 (文件大小:679K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Le75183  
Line Card Access Switch  
VE750 Series  
Data Sheet  
Document ID#:081126  
Version  
5
July 2010  
Features  
Small size/surface-mount packaging  
Ordering Information  
Monolithic IC reliability  
Device  
Package Type  
Packing2  
Low impulse noise  
Le75183ADSC  
Le75183BDSC  
Le75183CDSC  
Le75183AFQC  
Le75183BFQC  
LE75183CFQC  
LE75183AFSC  
Le75183BFSC  
Le75183CFSC  
Le75183CZFSC  
Make-before-break, break-before-make operation  
Clean, bounce-free switching  
Low, matched ON-resistance  
20 Pin SOIC (GULL)  
32 Pin QFN  
Tube  
Built-in current limiting, thermal shutdown and  
SLIC protection  
Tray  
5 V only operation, very low power consumption  
Battery monitor, all OFF state upon loss of battery  
No EMI  
28 Pin SOIC (GULL)  
Tube  
Latched logic level inputs, no drive circuitry  
Only one external protector required  
TTL logic control compatible  
1. The green package meets RoHS Directive 2002/95/EC of the  
European Council to minimize the environmental impact of electrical  
equipment.  
2. For delivery using a tape and reel packing system, add a "T" suffix to  
the OPN (Ordering Part Number) when placing an order.  
Default power up state  
Description  
Applications  
The VoiceEdge™ family VE750 series of Line Card  
Access Switches (LCAS), which includes the Le75181,  
Le75282 and Le75183 devices, is a family of  
monolithic solid-state switches that is designed to  
provide both power ringing access and test access on  
the analog line card. These devices, while not a pin-  
Central office  
DLC  
PBX  
DAML  
for-pin  
replacement  
for  
the  
traditional  
HFC/FITL  
electromechanical relay (EMR) solution, provide the  
equivalent switching functionality. The VE750 series of  
LCAS is meant as a solid-state alternative to the  
EMRs.  
Related Literature  
081123 Le75282 Dual Intelligent Line Card  
Access Switch Data Sheet  
The Le75183A/B/C devices are pin-for-pin compatible  
with Zarlink’s L7583A/B/C devices.  
081105 Le75181 Ringing Access Switch Data  
Sheet  
Zarlink also offers a range of compatible SLIC devices  
and codec/filters that can be used with the VE750  
series LCAS for complete line card solutions that can  
be used worldwide in analog line card applications.  
080754 Le58QL061/063 QLSLAC Data Sheet  
080676 Le5711 Dual SLIC Data Sheet  
081047 Le5712 Dual SLIC Data Sheet  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2007-2010, Zarlink Semiconductor Inc. All Rights Reserved.  
Le75183  
Data Sheet  
Table of Contents  
1.0 Product Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2.0 Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.0 Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.0 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
5.0 Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
5.1 Environmental Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
5.2 Electrical Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
5.3 Handling Precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
6.0 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6.1 Summary of Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6.2 Supply Currents and Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
7.0 Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
7.1 Device Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
8.0 Zero Cross Current Turn Off. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
9.0 Switching Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
10.0 Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
11.0 Loss of Battery Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
12.0 Impulse Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
13.0 Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
13.1 Integrated SLIC Device Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
13.1.1 Diode Bridge/SCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
13.1.2 Current Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
13.1.3 Temperature Shutdown Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
13.1.4 External Secondary Protector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
14.0 Typical Performance Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
15.0 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
16.0 Physical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
16.1 28-Pin, Plastic SOIC (GULL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
16.2 20-Pin, Plastic SOIC (GULL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
16.3 32-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
17.0 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
17.1 Revision A1 to B1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
17.2 Revision B1 to C1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
17.3 Revision C1 to C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
17.4 Revision C2 to Ver 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
2
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
List of Figures  
Figure 1 - Le75183A/C Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 2 - Le75183B Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 3 - Protection Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 4 - Switches 3, 7, 9, and 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 5 - Switch 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 6 - Switches 1, 2, and 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 7 - Switches 6, 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 8 - Typical LCAS Application, A/C Versions, Idle or Talk State Shown . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
1.0 Product Description  
The Le75183A/B/C Line Card Access Switch is a monolithic solid-state device providing the equivalent switching  
functionality of three 2 form C switches. The Le75183 is designed to provide power ringing access, line test access  
(test out), and SLIC test access (test in) to tip and ring in central office, digital loop carrier, private branch exchange,  
digitally added main line, and hybrid fiber coax/fiber-in-the-loop analog line card applications. An additional pair of  
solid-state contacts are also available to provide access for testing of the ringing generator.  
The Le75183A/B has seven states: the idle talk state (line break switches closed, all other switches open), the  
power ringing state (ringing access switches closed, all other switches open), loop access (test out) state (loop  
access (test out) switches closed, all other switches open), SLIC test state (test in switches closed, all other  
switches open), simultaneous loop and SLIC access state (loop and test in switches closed, all others open),  
ringing generator test state (ring test switches closed, all others open), and an all OFF state. The seven states in  
the Le75183A/B are also in the Le75183C, with an additional simultaneous test-out and ring-test state, making the  
Le75183C appropriate for digital loop carrier and other Telcordia TR-57 applications.  
The Le75183 offers break-before-make or make-before-break switching, with simple logic level input control.  
Because of the solid-state construction, voltage transients generated when switching into an inductive ringing lead  
during ring cadence or ring trip are minimized, possibly eliminating the need for external zero cross switching  
circuitry. State control is via logic level inputs, so no additional driver circuitry is required.  
The line break switch is a linear switch that has exceptionally low ON-resistance and an excellent ON-resistance  
matching characteristic. The ringing access switch has a breakdown voltage rating >480 V which is sufficiently high,  
with proper protection, to prevent breakdown in the presence of a transient fault condition (i.e., passing the  
transient on to the ringing generator).  
Incorporated into the Le75183A and Le75183C is a diode bridge/SCR clamping circuit, current-limiting circuitry, and  
a thermal shutdown mechanism to provide protection to the SLIC device and subsequent circuitry during fault  
conditions. This is shown in block diagram as version A/C. Positive and negative lightning is reduced by the  
current-limiting circuitry and steered to ground via diodes and the integrated SCR. Power cross is also reduced by  
the current-limiting and thermal shutdown circuits.  
The Le75183B version provides only an integrated diode bridge along with current limiting and thermal shutdown  
(see block diagram for version B). This will cause positive faults to be directed to ground and negative faults to  
battery. In either polarity, faults are reduced by the current-limit and/or thermal shutdown mechanisms.  
To protect the Le75183 from an overvoltage fault condition, use of a secondary protector is required. The  
secondary protector must limit the voltage seen at the tip/ring terminals to prevent the breakdown voltage of the  
switches from being exceeded. To minimize stress on the solid-state contacts, use of a foldback- or crowbar- type  
secondary protector is recommended. With proper choice of secondary protection, a line card using the Le75183  
will meet all relevant ITU-T, LSSGR, FCC, or UL* protection requirements.  
The Le75183 operates off of a 5 V supply only. This gives the device extremely low idle and active power  
dissipation and allows use with virtually any range of battery voltage. This makes the Le75183 especially  
appropriate for remote power applications such as DAML or FOC/FITL or other Telcordia TA 909 applications  
where power dissipation is particularly critical.  
A battery voltage is also used by the Le75183, only as a reference for the integrated protection circuit. The Le75183  
will enter an all OFF state upon loss of battery.  
During power ringing, to turn on and maintain the ON state, the ring access switch and ring test switch will draw a  
nominal 2 mA from the ring generator.  
The default power up state of Le75183 is in all OFF state, unless otherwise being overwritten by external controls.  
The Le75183 device is packaged in a 20-pin, plastic SOIC (GULL) (Le75183ASC/BSC/CSC), a 32-pin QFN  
(Le75183AQC/BQC/CQC), and a 28-pin, plastic SOIC (GULL) (Le75183AESC/BESC/CESC/CZESC). The 28-pin  
package is available to support existing designs. For new designs, it may be advantageous to use the other two  
packages for smaller in size.  
4
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
2.0 Block Diagrams  
Le75183A/C  
VBAT  
FGND  
SCR  
& Trip  
Circuit  
SW1  
SW2  
SW6  
RTESTin  
RBAT  
TTESTin  
TBAT  
SW3  
SW4  
RLINE  
TLINE  
SW5  
TRINGING  
RRINGING  
SW7  
SW8  
RTESTout  
LATCH  
TTESTout  
SW10  
SW9  
INTESTin  
INRING  
VDD  
TSD  
Control  
Logic  
INTESTout  
DGND  
Figure 1 - Le75183A/C Block Diagram  
Le75183B  
VBAT  
FGND  
SW1  
SW2  
SW6  
RTESTin  
RBAT  
TTESTin  
TBAT  
SW3  
SW5  
SW4  
RLINE  
TLINE  
RRINGING  
TRINGING  
SW7  
SW8  
RTESTout  
LATCH  
TTESTout  
SW9  
SW10  
INTESTin  
INRING  
VDD  
TSD  
Control  
Logic  
INTESTout  
DGND  
Figure 2 - Le75183B Block Diagram  
5
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
3.0 Connection Diagrams  
Top View  
32 31 30 29 28 27 26 25  
1
24  
NC  
RBAT  
NC  
2
23  
TBAT  
NC  
3
4
22  
21  
RLINE  
NC  
TLINE  
32-pin QFN  
5
6
20  
19  
NC  
RRINGING  
NC  
TRINGING  
NC  
EXPOSED PAD  
18  
17  
RTESTout  
NC  
7
8
TTESTout  
9
10 11 12 13 14 15 16  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
FGND  
VBAT  
NC  
1
2
20  
FGND  
TTESTin  
TBAT  
VBAT  
NC  
NC  
19  
18  
17  
16  
15  
14  
13  
12  
11  
RTESTin  
3
NC  
3
RBAT  
4
NC  
NC  
4
TLINE  
RLINE  
5
5
TTESTin  
TBAT  
RTESTin  
RBAT  
RLINE  
NC  
TRINGING  
TTESTout  
NC  
RRINGING  
RTESTout  
LATCH  
20-Pin SOIC  
6
6
7
7
TLINE  
TRINGING  
NC  
28-Pin SOIC  
8
VDD  
INTESTin  
INRING  
8
9
TSD  
9
RRINGING  
10  
DGND  
INTESTout  
10  
11  
12  
13  
14  
TTESTout  
NC  
RTESTout  
LATCH  
VDD  
INTESTin  
INRING  
TSD  
DGND  
INTESTout  
6
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
3.1 Pin Descriptions  
Pin Name  
Type  
Ground  
Description  
DGND  
Digital ground.  
Fault ground.  
FGND  
Ground  
Input  
Input  
Input  
Input  
INRING  
INTESTIN  
INTESTOUT  
LATCH  
Logic level switch input control. Internally 75 ktypical pull up.  
Logic level switch input control. Internally 75 ktypical pull down.  
Logic level switch input control. Internally 75 ktypical pull up.  
Data input control, active-high, transparent low. Internally 75 ktypical pull  
down.  
NC  
No connection.  
RBAT  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Connect to RING on SLIC side.  
Connect to RING on line side.  
Connect to ringing generator.  
Test (in) access on RING.  
RLINE  
RRINGING  
RTESTin  
RTESTout  
TBAT  
Test (out) access on RING.  
Connect to TIP on SLIC side.  
Connect to TIP on line side.  
Connect to return ground for ringing generator.  
Test (in) access on TIP.  
TLINE  
TRINGING  
TTESTin  
TTESTout  
TSD  
Test (out) access on TIP.  
Temperature shutdown pin. Can be used as a logic level input or an output. See  
Tables 12 and 13, Truth Tables, and the Switching Behavior section of this data  
sheet for input pin description. As an output flag, will read HIGH when the  
device is in its operational mode and LOW in the thermal shutdown mode. To  
disable the thermal shutdown mechanism, tie this pin to HIGH (not  
recommended)  
VBAT  
VDD  
Battery  
Power  
Battery voltage. Used as a reference for protection circuit.  
5 V supply.  
EPAD  
Exposed pad in QFN package. No internal electrical connection. Not  
recommended to make any external electrical connection (such as VBAT or  
ground) to the EPAD.  
D: Internally 75 ktypical pull down.  
U: Internally 75 ktypical pull up.  
7
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
4.0 Absolute Maximum Ratings  
Stresses above those listed under Absolute Maximum Ratings can cause permanent device failure. Functionality at  
or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device  
reliability.  
Parameter  
Operating Temperature Range  
Min.  
Max.  
Unit  
–40  
–40  
5
110  
150  
°C  
°C  
%
°C  
V
Storage Temperature Range  
Relative Humidity Range  
95  
Pin Soldering Temperature (t=10s max)  
5 V Power Supply  
260  
-0.3  
7
Battery Supply  
–85  
V
Logic Input Voltage  
-0.3  
VDD+0.3  
330  
V
Input-to-output Isolation  
V
Pole-to-pole Isolation (All except SW6, SW8)  
Pole-to-pole Isolation (Ringing Access Switch, SW8)  
Pole-to-pole Isolation (Ringing Test Switch, SW6)  
ESD Immunity (Human Body Model)  
330  
V
480  
V
260  
V
JESD22 Class 1C compliant  
Note:  
For LCAS in the QFN package, it is desirable that the exposed pad be soldered to an equally sized exposed copper surface (with no  
further electrical connection such as VBAT or ground) for mechanical stability.  
8
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
5.0 Operating Ranges  
Package Assembly  
Green package devices are assembled with enhanced, environmental compatible lead-free, halogen-free, and  
antimony-free materials. The leads possess a matte-tin plating which is compatible with conventional board  
assembly processes or newer lead-free board assembly processes. The peak soldering temperature should not  
exceed 245°C during printed circuit board assembly.  
Refer to IPC/JEDEC J-Std-020B Table 5-2 for the recommended solder reflow temperature profile.  
5.1 Environmental Ranges  
Zarlink guarantees the performance of this device over commercial (0 to 70º C) and industrial (-40 to 85ºC)  
temperature ranges by conducting electrical characterization over each range and by conducting a production test  
with single insertion coupled to periodic sampling. These characterization and test procedures comply with section  
4.6.2 of Bellcore GR-357-CORE Component Reliability Assurance Requirements for Telecommunications  
Equipment.  
Ambient Temperature  
40° to 85°C  
5.2 Electrical Ranges  
Supply  
Min.  
Typ.  
Max.  
Unit  
VDD  
4.5  
5
5.5  
V
V
VBAT  
*
–19  
–72  
*VBAT is used only as a reference for internal protection circuitry. If VBAT rises above typically –10 V, the device will enter an all OFF state and  
remain in this state until the battery voltage drops below typically –15 V.  
*Applied voltage is 100 Vp-p square wave at 100 Hz.  
5.3 Handling Precautions  
Although protection circuitry has been designed into this device, proper precautions should be taken to avoid  
exposure to electrostatic discharge (ESD) during handling and mounting. Zarlink employs a human-body model  
(HBM) and a charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD  
voltage thresholds are dependent on the circuit parameters used to define the model. No industry-wide standard  
has been adopted for CDM. However, a standard HBM (resistance = 1500, capacitance = 100 pF) is widely used  
and therefore can be used for comparison purposes. The HBM ESD threshold presented here was obtained by  
using these circuit parameters.  
9
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
6.0 Electrical Characteristics  
6.1 Summary of Assumptions  
Unless otherwise noted, the test conditions are defined by the Le75183 device application circuit shown in Figure 8  
on page 23 with:  
V
= 48 V, V = 5.0 V.  
DD  
BAT  
6.2 Supply Currents and Power Dissipation  
LCAS Device Power  
mW  
IDD mA  
I
BAT µA  
Operational  
State  
Condition  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
All OFF  
VDD=5V, VBAT=-48V  
VDD=5V, VBAT=-48V  
0.760  
0.850  
1.1  
2.1  
4
4
10  
10  
3.8  
4.4  
6
Power Ringing  
or Access  
11  
Idle/Talk  
VDD=5V, VBAT=-48V  
0.860  
1.3  
4
10  
4.5  
7
7.0 Specifications  
7.1 Device Specifications  
Parameter  
Test Condition  
Measure  
Min.  
Typ. Max. Unit  
Off-state Leakage Current:  
ISWITCH  
1
Vswitch (differential) = –320 V to Gnd  
Vswitch (differential) = –60 V to +260 V  
+25°C  
Vswitch (differential) = –330 V to Gnd  
Vswitch (differential) = –60 V to +270 V  
ISWITCH  
ISWITCH  
1
1
+85°C  
–40°C  
µA  
Vswitch (differential) = –310 V to Gnd  
Vswitch (differential) = –60 V to +250 V  
ON-resistance (SW1, SW2):  
+25 °C  
+85 °C  
–40 °C  
ISWITCH (on) = ±5 mA, ±10 mA  
ISWITCH (on) = ±5 mA, ±10 mA  
ISWITCH (on) = ±5 mA, ±10 mA  
VON  
VON  
VON  
49  
37  
77  
Isolation:  
+25 °C  
+85 °C  
–40 °C  
1
1
1
Vswitch (both poles) = ±320 V, Logic inputs = Gnd  
Vswitch (both poles) = ±330 V, Logic inputs = Gnd  
Vswitch (both poles) = ±310 V, Logic inputs = Gnd  
Iswitch  
Iswitch  
Iswitch  
µA  
dV/dt Sensitivity*  
200  
V/µs  
*Applied voltage is 100 Vp-p square wave at 100 Hz. Not tested in production.  
Table 1 - Test-In Switches, 1 and 2  
10  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
Parameter  
Test Condition  
Measure  
Min.  
Typ. Max.  
Unit  
OFF-state Leakage Current:  
+25°C  
ISWITCH  
Vswitch (differential) = –320 V to Gnd  
Vswitch (differential) = –60 V to +260 V  
Vswitch (differential) = –330 V to Gnd  
Vswitch (differential) = –60 V to +270 V  
Vswitch (differential) = –310 V to Gnd  
Vswitch (differential) = –60 V to +250 V  
1
µA  
ISWITCH  
ISWITCH  
+85°C  
–40°C  
1
1
ON-resistance (SW3, SW4):  
+25 °C  
+85 °C  
–40 °C  
TLINE = ±10 mA, ±40 mA, TBAT = –2 V  
TLINE = ±10 mA, ±40 mA, TBAT = –2 V  
TLINE = ±10 mA, ±40 mA, TBAT = –2 V  
VON  
VON  
VON  
21.5  
31  
16  
Magnitude  
RON_SW3  
ON-resistance Match  
Per ON-resistance test condition of SW3,  
SW4  
0.2  
1.0  
All except Le75183CZESC  
RON_SW4  
Magnitude  
RON_SW3 –  
RON_SW4  
ON-resistance Match  
Le75183CZESC  
Per ON-resistance test condition of SW3,  
SW4  
0.2  
0.55  
220  
ON-state Voltage*  
(Figure 2, Switch 3)  
Iswitch = ILIMIT @ 50 Hz/60 Hz  
VON  
V
Maximum Differential Voltage (Vmax)  
Foldback Voltage Breakpoint 1 (V1)  
Foldback Voltage Breakpoint 2 (V2)  
VON  
VON  
VON  
320  
ON-state Voltage*  
(Figure 3, Switch 4)  
100  
V
V1+0.5  
DC Current Limit  
(Figure 2, Switch 3):  
+85 °C  
mA  
80  
Vswitch (on) = ±10 V  
Vswitch (on) = ±10 V  
Iswitch  
Iswitch  
–40 °C  
250  
ILIMIT1  
ILIMIT2  
DC Current Limit  
Iswitch  
Iswitch  
80  
2
250  
mA  
A
(Figure 3, Switch 4):  
Break switches in ON state; ringing access  
switches off; apply ±1000 V at 10/1000 µs  
pulse; appropriate secondary protection in  
place  
Dynamic Current Limit  
(t = <0.5 µs)  
Iswitch  
2.5  
Vswitch (both poles) = ±320 V, Logic inputs  
= Gnd  
Isolation:  
+25 °C  
+85 °C  
–40 °C  
Iswitch  
Iswitch  
Iswitch  
1
1
1
Vswitch (both poles) = ±330 V, Logic inputs  
= Gnd  
µA  
Vswitch (both poles) = ±310 V, Logic inputs  
= Gnd  
dV/dt Sensitivity†  
200  
V/µs  
*This parameter is not tested in production. Choice of secondary protector should ensure this rating is not exceeded.  
†Applied voltage is 100 Vp-p square wave at 100 Hz. Not tested in production.  
Table 2 - Break Switches, 3 and 4  
11  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
Parameter  
Test Condition  
Measure Min. Typ. Max.  
Unit  
OFF-state Leakage  
Current:  
ISWITCH  
Vswitch (differential) = –320 V to Gnd  
Vswitch (differential) = –60 V to +260 V  
Vswitch (differential) = –330 V to Gnd  
Vswitch (differential) = –60 V to +270 V  
Vswitch (differential) = –310 V to Gnd  
Vswitch (differential) = –60 V to +250 V  
Iswitch (on) = ±0 mA, ±10 mA  
1
1
+25°C  
+85°C  
–40°C  
µA  
ISWITCH  
ISWITCH  
1
ON-resistance  
Isolation:  
VON  
50  
100  
+25 °C  
Vswitch (both poles) = ±320 V, Logic inputs = Gnd  
Vswitch (both poles) = ±330 V, Logic inputs = Gnd  
Vswitch (both poles) = ±310 V, Logic inputs = Gnd  
1
1
Iswitch  
µA  
+85 °C  
–40 °C  
1
dV/dt Sensitivity*  
200  
V/µs  
*Applied voltage is 100 Vp-p square wave at 100 Hz. Not tested in production.  
Table 3 - Ring Test Return Switch, 5  
Parameter  
Test Condition  
Measure  
Min. Typ. Max. Unit  
OFF-state Leakage Current:  
+25°C  
ISWITCH  
Vswitch (differential) = –60 to +190 V  
Vswitch (differential) = +60 to –190 V  
Vswitch (differential) = –60 to +200 V  
Vswitch (differential) = +60 to –200 V  
Vswitch (differential) = –60 to +180 V  
Vswitch (differential) = +60 to –180 V  
Iswitch (on) = ±70 mA, ±80 mA  
Iswitch (on) = ±1 mA  
1
µA  
ISWITCH  
ISWITCH  
+85°C  
–40°C  
1
1
ON-resistance  
ON Voltage  
Steady-state Current*  
Release Current  
Isolation:  
VON  
20  
1.5  
100  
V
mA  
µA  
500  
+25 °C  
Vswitch (both poles) = ±320 V, Logic inputs = Gnd  
Vswitch (both poles) = ±330 V, Logic inputs = Gnd  
Vswitch (both poles) = ±310 V, Logic inputs = Gnd  
Iswitch  
Iswitch  
Iswitch  
1
1
1
µA  
+85 °C  
–40 °C  
dV/dt Sensitivity†  
200  
V/µs  
*Choice of secondary protector and series current-limit resistor should ensure these ratings are not exceeded.  
†Applied voltage is 100 Vp-p square wave at 100 Hz. Not tested in production.  
Table 4 - Ringing Test Switch, 6  
12  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
Parameter  
Test Condition  
Measure Min. Typ. Max. Unit  
OFF-state Leakage Current:  
+25°C  
ISWITCH  
Vswitch (differential) = –320 V to Gnd  
Vswitch (differential) = –60 to +260 V  
Vswitch (differential) = –330 V to Gnd  
Vswitch (differential) = –60 to +270 V  
Vswitch (differential) = –310 V to Gnd  
Vswitch (differential) = –60 to +250 V  
Vswitch (on) = ±20 V  
1
µA  
ISWITCH  
ISWITCH  
+85°C  
–40°C  
1
1
DC Current Limit  
ON-resistance  
ON-state Voltage*  
Isolation:  
Iswitch  
VON  
VON  
200  
mA  
Iswitch (on) = ±0 mA, ±10 mA  
100  
130  
Iswitch = ILIMIT @ 50 Hz/60 Hz  
V
+25 °C  
Vswitch (both poles) = ±320 V, Logic inputs = Gnd  
Vswitch (both poles) = ±330 V, Logic inputs = Gnd  
Vswitch (both poles) = ±310 V, Logic inputs = Gnd  
Iswitch  
Iswitch  
Iswitch  
1
1
1
µA  
+85 °C  
–40 °C  
dV/dt Sensitivity†  
200  
V/µs  
*This parameter is not tested in production. Choice of secondary protector should ensure this rating is not exceeded.  
†Applied voltage is 100 Vp-p square wave at 100 Hz. Not tested in production.  
Table 5 - Ring Return Switch, 7  
Parameter  
Test Condition  
Measure  
Min. Typ. Max. Unit  
OFF-state Leakage Current:  
+25°C  
ISWITCH  
Vswitch (differential) = –255 to +210 V  
Vswitch (differential) =+255 to –210 V  
Vswitch (differential) = –270 to +210 V  
Vswitch (differential) = +270 to –210 V  
Vswitch (differential) = –245 to +210 V  
Vswitch (differential) = +245 to –210 V  
Iswitch (on) = ±1 mA  
1
1
µA  
ISWITCH  
+85°C  
ISWITCH  
–40°C  
1
3
ON Voltage  
V
VCC = 5 V  
INRING = 1  
Ring Generator Current During  
Ring  
IRINGSOURCE  
2
mA  
INTESTin = 0  
INTESTout = 0  
Steady-state Current*  
150  
mA  
Surge Current*  
Release Current  
ON-resistance  
500  
2
A
µA  
12  
Iswitch (on) = ±70 mA, ±80 mA  
VON  
Table 6 - Ringing Access Switch, 8  
13  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
Parameter  
Test Condition  
Measure  
Min. Typ. Max. Unit  
Isolation:  
+25 °C  
+85 °C  
–40 °C  
Vswitch (both poles) = ±320 V, Logic inputs = Gnd  
Vswitch (both poles) = ±330 V, Logic inputs = Gnd  
Vswitch (both poles) = ±310 V, Logic inputs = Gnd  
Iswitch  
Iswitch  
Iswitch  
1
1
1
µA  
dV/dt Sensitivity†  
200  
V/µs  
*Choice of secondary protector and series current-limit resistor should ensure these ratings are not exceeded.  
†Applied voltage is 100 Vp-p square wave at 100 Hz. Not tested in production.  
Table 6 - Ringing Access Switch, 8  
Parameter  
Measure  
Min. Typ. Max. Unit  
Test Condition  
OFF-state Leakage Current:  
+25°C  
ISWITCH  
Vswitch (differential) = –320 V to Gnd  
Vswitch (differential) = –60 to +260 V  
Vswitch (differential) = –330 V to Gnd  
Vswitch (differential) = –60 to +270 V  
Vswitch (differential) = –310 V to Gnd  
Vswitch (differential) = –60 V to +250 V  
1
µA  
ISWITCH  
ISWITCH  
+85°C  
–40°C  
1
1
ON-resistance:  
+25 °C  
Iswitch (on) = ±5 mA, ±10 mA  
Iswitch (on) = ±5 mA, ±10 mA  
Iswitch (on) = ±5 mA, ±10 mA  
Von  
Von  
Von  
49  
37  
77  
+85 °C  
–40 °C  
ON-state Voltage*  
DC Current Limit:  
+85 °C  
Iswitch = ILIMIT @ 50 Hz/60 Hz  
VON  
130  
V
Vswitch (on) = ±10 V  
Vswitch (on) = ±10 V  
Iswitch  
Iswitch  
80  
mA  
–40 °C  
250  
Break switches in ON state; ringing access  
switches OFF; apply ±1000 V at 10/1000 µs  
pulse; appropriate secondary protection in place  
Dynamic Current Limit  
(t = <0.5 µs)  
Iswitch  
2.5  
A
Isolation:  
+25 °C  
+85 °C  
–40 °C  
Vswitch (both poles) = ±320 V, Logic inputs = Gnd  
Vswitch (both poles) = ±330 V, Logic inputs = Gnd  
Vswitch (both poles) = ±310 V, Logic inputs = Gnd  
Iswitch  
Iswitch  
Iswitch  
1
1
1
µA  
dV/dt Sensitivity†  
200  
V/µs  
*This parameter is not tested in production. Choice of secondary protector should ensure this rating is not exceeded.  
†Applied voltage is 100 Vp-p square wave at 100 Hz. Not tested in production.  
Table 7 - Loop Access (Test Out) Switches, 9 and 10  
14  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
Parameter  
Test Condition  
Measure  
Min.  
Typ. Max. Unit  
Digital Input Characteristics:  
Input Low Voltage  
Input High Voltage  
0.8  
V
V
2.2  
Input Leakage Current (high)  
Input Leakage Current (low)  
VDD = 5.5 V, VBAT = –75 V,  
Vlogicin = 5 V  
llogicin  
llogicin  
500  
500  
VDD = 5.5 V, VBAT = –75 V,  
Vlogicin = 0 V  
Input Leakage Current (high)  
INTESTOUT, INRING  
VDD = 5.5 V, VBAT = –58 V,  
Vlogicin = 5 V  
llogicin  
llogicin  
llogicin  
llogicin  
0.5  
100  
100  
0.5  
µA  
Input Leakage Current (low)  
INTESTOUT, INRING  
VDD = 5.5 V, VBAT = –58 V,  
Vlogicin = 0 V  
Input Leakage Current (high)  
INTESTIN, LATCH  
VDD = 5.5 V, VBAT = –58 V,  
Vlogicin = 5 V  
Input Leakage Current (low)  
INTESTIN, LATCH  
VDD = 5.5 V, VBAT = –58 V,  
Vlogicin = 0 V  
Temperature Shutdown Requirements*:  
Shutdown Activation Temperature  
Shutdown Circuit Hysteresis  
110  
10  
125  
150  
25  
°C  
°C  
*Temperature shutdown flag (TSD) will be HIGH during normal operation and LOW during temperature shutdown state.  
Table 8 - Additional Electrical Characteristics  
8.0 Zero Cross Current Turn Off  
The ring access switch (SW8) is designed to turn off on the next zero current crossing after application of the  
appropriate logic input control. This switch requires a current zero cross to turn off. Switch 8, once on, will remain in  
the ON state (regardless of logic input) until a current zero cross. Therefore, to ensure proper operation of switch 8,  
this switch should be connected, via proper impedance, to the ringing generator or some other ac source. Do not  
attempt to switch pure DC with switch 8. The ringing test access switch, SW6, also has similar characteristics to  
switch 8 and should also only be used to switch signals with zero current crossings.  
For a detailed explanation of the operation of switches 6 and 8, please refer to the An Introduction to Le758X Series  
of Line Card Access Switches application note.  
15  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
9.0 Switching Behavior  
When switching from the power ringing state to the idle/talk state via simple logic level input control, the Le75183 is  
able to provide control with respect to the timing when the ringing access contacts are released relative to the state  
of the line break contacts.  
Make-before-break operation occurs when the line break switch contacts are closed (or made) before the ringing  
access switch contact is opened (or broken). Break-before-make operation occurs when the ringing access contact  
is opened (broke) before the line break switch contacts are closed (made).  
Using the logic level input pins INRING, INTESTin, and INTESTout, either make-before-break or break-before-make  
operation of the Le75183 is easily achieved. The logic sequences for either mode of operation are given in Table 13  
and Table 14. See the Truth Tables (Table 16 and Table 17) for an explanation of logic states.  
When using an Le75183 in the make-before-break mode, during the ring-to-idle transition, for a period of up to  
one-half the ringing frequency, the ring break switch and the pnpn-type ring access switch can both be in the ON  
state. This is the maximum time after the logic signal at INRING has transitioned that the ring access switch is  
waiting for the next zero current cross, so it can close. During this interval, current that is limited to the dc break  
switch current-limit value will be source from the ring node of the SLIC.  
This current is presented to the internal protection circuit. If the SCR-type protector is used (A or C codes), if by  
random probability the ring-to-idle transition occurs during a portion of the ring cycle when the ringing voltage  
exceeds the protection circuit SCR turn-on voltage, and if current in excess of the SCR’s turn-on current is also  
available, the SCR may turn on. Once the SCR is triggered on, if the SLIC is capable of supplying current in excess  
of the holding current, the SCR may be latched on by the SLIC.  
The probability of this event depends on the characteristics of the given SLIC and of the holding current of the  
Le75183 A or C device. The SCR hold current distribution is designed to be safely away from the test limit of 80  
mA. The higher the distribution, the lower the probability of the latch.  
If this situation is of concern for a given board design, either use the A or C series device in the break-before-make  
mode (eliminates the original 25 ms current pulse) or use a B series device (eliminates the SCR).  
Break  
Switches  
3 & 4  
Ring  
Return  
Switch 7  
Ring  
Access  
Switch 8  
All Other  
Access  
Switches  
INRING  
INTESTin  
INTESTout  
TSD  
State  
Power  
Timing  
1
0
0
1/Float  
Open  
Closed  
Closed  
Closed  
Open  
Open  
Closed  
Closed  
Open  
Open  
Open  
Open  
Ringing  
SW8 waiting for next zero  
current crossing to turn off  
maximum time—one-half  
of ringing. In this transition  
state, current that is limited  
to the dc break switch  
current-limit value will be  
sourced from the ring node  
of the SLIC.  
Make-bef  
ore-break  
0
0
0
0
0
0
1/Float  
1/Float  
Zero cross current has  
occurred.  
Idle/Talk  
Table 9 - Make-Before-Break Operation  
16  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
Break  
Switches  
3 & 4  
Ring  
Return  
Switch 7  
Ring  
Access  
Switch 8  
All Other  
Switches  
INRING  
INTESTin  
INTESTout  
TSD  
State  
Timing  
Power  
Ringing  
1
0
0
1/Float  
Open  
Closed  
Closed  
Closed  
Open  
Hold this state for  
1
0
1
1/Float All Off  
Open  
Open  
Open  
25 ms. SW8 waiting for  
zero current to turn off.  
Zero current has occurred  
and SW8 has opened.  
1
0
0
0
1
0
1/Float All Off  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
1/Float Idle/Talk  
Release break switches.  
Closed  
Table 10 - Break-Before-Make Operation  
Notes:  
Break-before-make operation can be achieved using TSD as an input. In lines two and three of Table 10, instead of using the logic input pins to  
force the all OFF state, force TSD to logic 0. This will override the logic inputs and also force the all OFF state. Hold this state for 25 ms. During  
this 25 ms all OFF state, toggle the inputs from 10 (ringing state) to 00 (idle/talk state). After 25 ms, release TSD to return switch control to the  
input pins which will set the idle talk state.  
When using the Le75183A/B/C in this mode, forcing TSD to logic 0 will override the INPUT pins and force an all OFF state. Setting TSD to logic  
1 will allow switch control via the logic INPUT pins. However, setting TSD to logic 1 will also disable the thermal shutdown mechanism. This is not  
recommended. Therefore, to allow switch control via the logic INPUT pins, allow TSD to float.  
Thus, when using TSD as an input, the two recommended states are 0 (overrides logic input pins and forces all OFF state) and float (allows switch  
control via logic input pins and thermal shutdown mechanism is active). This may require use of an open-collector buffer.  
Also note that TSD operation in Le75183 is different than TSD operation of the L75181, where application of logic 1 does not disable the thermal  
shutdown mechanism.  
10.0 Power Supplies  
Though both the 5 V and battery supplies are brought onto the Le75183 device, only the 5 V supply is required for  
switch operation; that is, state control is powered exclusively off of the 5 V supply. Because of this, the Le75183  
device offers extremely low power dissipation, both in the Idle and Active states.  
The battery voltage is not used for switch state control, but rather as a reference voltage by the integrated  
secondary protection circuit. When the voltage at TBAT or RBAT drops 2 V to 4 V below the battery, the integrated  
SCR will trigger, thus preventing fault-induced overvoltage situations at the TBAT/RBAT nodes.  
11.0 Loss of Battery Voltage  
As an additional protection feature, the Le75183 device monitors the battery voltage. Upon loss of battery voltage,  
the Le75183 will automatically enter an all OFF state and remain in that state until the battery voltage is restored.  
The Le75183 is designed so that the device will enter the all OFF state if the battery rises above typically –10 V and  
will remain off until the battery drops below typically –15 V.  
Monitoring the battery for the automatic shutdown feature will draw a small current from the battery, typically 4 µA.  
This will add slightly to the overall power dissipation of the device.  
17  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
12.0 Impulse Noise  
Using the Le75183 will minimize and possibly eliminate the contribution to the overall system impulse noise that is  
associated with ringing access switches. Because of this characteristic of the Le75183 device, it may not be  
necessary to incorporate a zero cross switching scheme. This ultimately depends upon the characteristics of the  
individual system and is best evaluated at the board level.  
13.0 Protection  
13.1 Integrated SLIC Device Protection  
13.1.1 Diode Bridge/SCR  
In the Le75183A and the Le75183C versions, protection to the SLIC device or other subsequent circuitry is  
provided by a combination of current-limited break switches, a diode bridge/SCR clamping circuit, and a thermal  
shutdown mechanism. In the Le75183B version, protection to the SLIC device or other subsequent circuitry is  
provided by a combination of current-limited break switches, a diode bridge, and a thermal shutdown mechanism.  
In both protection versions, during a positive lightning event, fault current is directed to ground via steering diodes in  
the diode bridge. Voltage is clamped to a diode drop above ground. In the A version, negative lightning causes the  
SCR to conduct when the voltage goes 2 V to 4 V more negative than the battery. Fault currents are then directed  
to ground via the SCR and steering diodes in the diode bridge.  
Note that for the SCR to foldback or crowbar, the ON voltage (see Table 14) of the SCR must be less negative than  
the battery reference voltage. If the battery voltage is less negative than the SCR ON voltage, the SCR will conduct  
fault currents to ground; however, it will not crowbar.  
In the B version, negative lightning is directed to battery via steering diodes in the diode bridge.  
For power cross and power induction faults, in both protection versions, the positive cycle of the fault is clamped a  
diode drop above ground and fault currents steered to ground. In the A/C version, the negative cycle will cause the  
SCR to trigger when the voltage exceeds the battery reference voltage by 2 V to 4 V. When the SCR triggers, fault  
current is steered to ground. In the B version, the negative cycle of the power cross is steered to battery.  
13.1.2 Current Limiting  
During a lightning event, the current that is passed through the break switches and presented to the integrated  
protection circuit and subsequent circuitry is limited by the dynamic current-limit response of the break switches  
(assuming idle/talk state). When the voltage seen at the TLINE/RLINE nodes is properly clamped by an external  
secondary protector, upon application of a 1000 V, 10 x 1000 pulse (LSSGR lightning), the current seen at the  
TBAT/RBAT nodes will typically be a pulse of magnitude 2.5 A and duration less than 0.5 µs.  
During a power cross event, the current that is passed through the break switches and presented to the integrated  
protection circuit and subsequent circuitry is limited by the dc current-limit response of the break switches  
(assuming idle/talk state). The dc current limit is specified over temperature between 100 mA and  
250 mA. Note that the current-limit circuitry has a negative temperature coefficient. Thus, if the device is subjected  
to an extended power cross, the value of current seen at TBAT/RBAT will decrease as the device heats due to the  
fault current. If sufficient heating occurs, the temperature shutdown mechanism will activate and the device will  
enter an all off mode.  
18  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
13.1.3 Temperature Shutdown Mechanism  
When the device temperature reaches a minimum of 110 °C, the thermal shutdown mechanism will activate and  
force the device into an all OFF state, regardless of the logic input pins. Pin TSD, when used as an output, will read  
LOW when  
the device is in the thermal shutdown mode and HIGH during normal operation.  
During a lightning event, due to the relatively short duration, the thermal shutdown will not typically activate.  
During an extended power cross, the device temperature will rise and cause the device to enter the thermal  
shutdown mode. This forces an all off mode, and the current seen at TBAT/RBAT drops to zero. Once in the thermal  
shutdown mode, the device will cool and exit the thermal shutdown mode, thus reentering the state it was in prior to  
thermal shutdown. Current, limited to the dc current-limit value, will again begin to flow and device heating will begin  
again. This cycle of entering and exiting thermal shutdown will last as long as the power cross fault is present. The  
frequency of entering and exiting thermal shutdown will depend on the magnitude of the power cross. If the  
magnitude of the power cross is great enough, the external secondary protector may trigger shunting all current to  
ground.  
In the Le75183, the thermal shutdown mechanism can be disabled by forcing the TSD pin to HIGH. This  
functionality is different from the Le75181, whose thermal shutdown mechanism cannot be disabled.  
Electrical specifications relating to the integrated overvoltage clamping circuit are outlined in Table 15.  
13.1.4 External Secondary Protector  
With the above integrated protection features, only one overvoltage secondary protection device on the loop side of  
the Le75183 is required. The purpose of this device is to limit fault voltages seen by the Le75183 so as not to  
exceed the breakdown voltage or input-output isolation rating of the device. To minimize stress on the Le75183,  
use of a foldback- or crowbar-type device is recommended. A detailed explanation and design equations on the  
choice of the external secondary protection device are given in the An Introduction to Le758X Series of Line Card  
Access Switches application note. Basic design equations governing the choice of external secondary protector are  
given below.  
|VBATmax| + |Vbreakovermax| < |Vbreakdownmin(break)|  
|Vringingpeakmax| + |VBATmax| + |Vbreakovermax| < |Vbreakdownmin(ring)|  
|Vringingpeakmax| + |VBATmax| < |Vbreakovermin|  
where:  
VBATmax Maximum magnitude of battery voltage.  
Vbreakovermax Maximum magnitude breakover voltage of external secondary protector.  
Vbreakovermin Minimum magnitude breakover voltage of external secondary protector.  
Vbreakdownmin(break) Minimum magnitude breakdown voltage of Le75183 break switch.  
Vbreakdownmin(ring) Minimum magnitude breakdown voltage of Le75183 ring access switch.  
Vringingpeakmax Maximum magnitude peak voltage of ringing signal.  
19  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
Series current-limiting fused resistors or PTC resistors should be chosen so as not to exceed the current rating of  
the external secondary protector. Refer to the manufacturer’s data sheet for specifications.  
Parameters Related to Diodes (in Diode Bridge)  
Parameter  
Test Condition  
Apply ±dc currentlimit of Forward  
break switches Voltage  
Apply ±dynamic current Forward  
limit of break switches Voltage  
Parameters Related to Protection SCR  
Measure  
Min.  
Typ.  
Max.  
Unit  
Voltage Drop at Continuous Current  
(50 Hz/60 Hz)  
3.5  
V
Voltage Drop at Surge Current  
5
Surge Current  
A
Gate Trigger Current*†  
25  
50  
mA  
Gate Trigger CurrentTemperature  
Coefficient  
–0.5  
%/°C  
Hold Current  
70  
mA  
V
VBAT – 4  
VBAT – 2  
Gate Trigger Voltage  
Reverse Leakage Current  
Trigger current  
VBAT  
1.0  
µA  
0.5 A, t = 0.5 µs  
2.0 A, t = 0.5 µs  
VON  
–3  
–5  
ON-State Voltage§  
V
* Trigger Current is defined as the minimum current drawn from tip and ring to turn on the SCR. The specification in this data  
sheet is Gate Trigger Current, which is defined as the maximum current that can flow into the battery before the SCR turns on.  
† Typical at 25 °C  
‡ Twice ± dynamic current limit of break switches.  
§ In some instances, the typical ON-state voltage can range as low as –25 V.  
Table 11 - Electrical Specifications, Protection Circuitry  
20  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
14.0 Typical Performance Characteristics  
Le75183B  
Le75183A/C  
dc CURRENT-LIMIT  
BREAK SWITCHES  
dc CURRENT-LIMIT  
BREAK SWITCHES  
V
BAT – 2  
BAT – 4  
VBAT – 3  
V
VBAT  
VBAT  
VON  
<1 µA  
<1 µA  
3 V  
3 V  
50 mA  
dc CURRENT LIMIT  
(OF BREAK SWITCHES)  
dc CURRENT LIMIT  
(OF BREAK SWITCHES)  
IH  
Figure 3 - Protection Circuits  
CURRENT  
LIMITING  
+I  
ILIMIT  
2/3 RON  
RON  
–1.5 V  
1.5 V  
–V  
+V  
RON  
2/3 RON  
ILIMIT  
CURRENT  
LIMITING  
–I  
Figure 4 - Switches 3, 7, 9, and 10  
21  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
ISW  
ILIM1  
2/3 RON  
ILIM2  
–VMAX –V2 –V1  
–ILIM2  
–1.5  
RON  
VSW  
1.5  
V1  
V2 VMAX  
–ILIM1  
Figure 5 - Switch 4  
+I  
2/3 RON  
RON  
–1.5 V  
1.5 V  
–V  
+V  
RON  
2/3 RON  
–I  
Figure 6 - Switches 1, 2, and 5  
+I  
RON  
–VOS  
–V  
+V  
+VOS  
–I  
Figure 7 - Switches 6, 8  
22  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
15.0 Application  
VBAT  
(Reference)  
Ringing  
Test Return  
SW5  
SW9  
Test Out  
SW7  
Ringing  
SW1  
Test In  
R1  
TIP  
Return  
TIP  
SW3 Break  
SCR  
& Trip  
Circuit  
Crowbar  
Protection  
Battery Feed  
RING  
SW4 Break  
RING  
R2  
SW10  
SW2  
SW8  
Test Out  
Test In  
Ringing  
Access  
SW6  
Ringing Test  
Ring  
Generator  
Battery  
Figure 8 - Typical LCAS Application, A/C Versions, Idle or Talk State Shown  
*Contact a Zarlink Sales/Application representative for recommendations.  
23  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
TESTin  
Switches  
Break  
Switches  
Ring Test  
Switches  
Ring  
TESTout  
INRING  
INTESTin INTESTout  
TSD  
Switches Switches  
1/Float1  
1/Float1  
1/Float1  
1/Float1  
1/Float1  
1/Float1  
1/Float1  
1Float1  
02  
Off3  
Off  
0
0
0
1
1
0
1
1
0
0
1
0
1
1
0
1
0
1
0
0
0
1
1
1
Off  
Off  
On  
Off  
Off  
On  
Off  
Off  
Off  
On  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
On  
Off  
Off  
Off  
Off  
On4  
Off  
Off5  
Off  
Off6  
On  
Off7  
Off  
On8  
Off  
Off9, 10  
Off  
Off9  
Off  
Off9  
Off  
Don’t Care Don’t Care Don’t Care  
Table 12 - Truth Table for the Le75183A/B Devices  
1. If TSD is logic 1, the thermal shutdown mechanism is disabled. If TSD is floating, the thermal shutdown mechanism is active.  
2. Forcing TSD to logic 0 overrides the logic input pins and forces an all OFF state.  
3. Idle/Talk state.  
4. TESTout state.  
5. TESTin state  
6. Power ringing state.  
7. Ringing generator test state.  
8. Simultaneous TESTout and TESTin state.  
9. All OFF state.  
10. Default power up state.  
A parallel in/parallel out data latch is integrated into the Le75183A/B. Operation of the data latch is controlled by the  
logic level input pin LATCH. The data input to the latch is the INPUT pin of the Le75183A/B, and the output of the  
data latch is an internal node used for state control.  
When the LATCH control pin is at logic 0, the data latch is transparent and data control signals flow directly from  
INPUT, through the data latch to state control. Any changes in INPUT will be reflected in the state of the switches.  
When the LATCH control pin is at logic 1, the data latch is active; the Le75183A/B will no longer react to changes at  
the INPUT control pin. The state of the switches is now latched; that is, the state of the switches will remain as they  
were when the LATCH input transitioned from logic 0 to logic 1. The switches will not respond to changes in INPUT  
as long as LATCH is held high.  
Note that the TSD input is not tied to the data latch. TSD is not affected by the LATCH input. TSD input will override  
state control via INPUT and LATCH.  
24  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
TESTin  
Switches  
Break  
Switches  
Ring Test  
Switches  
Ring  
TESTout  
INRING  
INTESTin  
INTESTout  
TSD  
Switches Switches  
1/Float1  
1/Float1  
1/Float1  
1/Float1  
1/Float1  
1/Float1  
1/Float1  
1/Float1  
02  
Off3  
Off  
0
0
0
Off  
Off  
On  
Off  
Off  
On  
Off  
Off  
Off  
On  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
On  
Off  
Off  
On  
Off  
On4  
Off  
0
0
1
Off5  
Off  
0
1
0
Off6  
On  
1
0
0
Off7  
Off  
1
1
0
On8  
Off  
0
1
1
Off9, 11  
Off  
1
1
0
1
1
1
On10  
Off  
Off9  
Off  
Don’t Care  
Don’t Care  
Don’t Care  
Table 13 - Truth Table for the Le75183C Devices  
1. If TSD is logic 1, the thermal shutdown mechanism is disabled. If TSD is floating, the thermal shutdown mechanism is active.  
2. Forcing TSD to logic 0 overrides the logic input pins and forces an all OFF state.  
3. Idle/Talk state.  
4. TESTout state.  
5. TESTin state  
6. Power ringing state.  
7. Ringing generator test state.  
8. Simultaneous TESTout and TESTin state.  
9. All OFF state.  
10. Simultaneous TESTout—Ring Test state.  
11. Default power up state.  
A parallel in/parallel out data latch is integrated into the Le75183C. Operation of the data latch is controlled by the  
logic level input pin LATCH. The data input to the latch is the INPUT pin of the Le75183C and the output of the data  
latch is an internal node used for state control.  
When the LATCH control pin is at logic 0, the data latch is transparent and data control signals flow directly from  
INPUT, through the data latch to state control. Any changes in INPUT will be reflected in the state of the switches.  
When the LATCH control pin is at logic 1, the data latch is active; the Le75183C will no longer react to changes at  
the INPUT control pin. The state of the switches is now latched; that is, the state of the switches will remain as they  
were when the LATCH input transitioned from logic 0 to logic 1. The switches will not respond to changes in INPUT  
as long as LATCH is held high.  
Note that the TSD input is not tied to the data latch. TSD is not affected by the LATCH input. TSD input will override  
state control via INPUT and LATCH.  
25  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
16.0 Physical Dimensions  
16.1 28-Pin, Plastic SOIC (GULL)  
Note:  
Packages may have mold tooling markings on the surface. These markings have no impact on the form, fit or function of the de-  
vice. Markings will vary with the mold tool used in manufacturing.  
26  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
16.2 20-Pin, Plastic SOIC (GULL)  
Note:  
Packages may have mold tooling markings on the surface. These markings have no impact on the form, fit or function of the de-  
vice. Markings will vary with the mold tool used in manufacturing.  
27  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
16.3 32-Pin QFN  
NOTES:  
32 LEAD QFN  
Nom  
Symbol  
1. Dimensioning and tolerancing conform to ASME Y14.5M-1994.  
Min  
Max  
2. All dimensions are in millimeters.  
3. N is the total number of terminals.  
is in degrees.  
A
A2  
b
D
D2  
E
E2  
e
L
N
A1  
A3  
aaa  
bbb  
ccc  
0.80  
0.90  
1.00  
0.57 REF  
0.23  
8.00 BSC  
5.80  
8.00 BSC  
5.80  
0.80 BSC  
0.53  
32  
0.02  
0.20 REF  
0.20  
0.10  
0.10  
4.  
The Terminal #1 identifier and terminal numbering convention  
shall conform to JEP 95-1 and SSP-012. Details of the erminal #1  
0.18  
5.70  
5.70  
0.43  
0.00  
0.28  
5.90  
5.90  
0.63  
0.05  
T
identifier are optional, but must be located within the zone  
indicated. The Terminal #1 identifier may be either a mold or  
marked feature.  
5. Coplanarity applies to the exposed pad as well as the terminals.  
6. Reference Document: JEDEC MO-220.  
7. Lead width deviates from the JEDEC MO-220 standard.  
32-Pin QFN  
Note:  
Packages may have mold tooling markings on the surface. These markings have no impact on the form, fit or function of the de-  
vice. Markings will vary with the mold tool used in manufacturing.  
28  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
17.0 Revision History  
17.1 Revision A1 to B1  
Added new product offering, Le75183CZESC.  
Page 10, Table 5 Ring Return Switch DC Current Limit test condition from Vswitch(on)=+/-10V to +/-20V.  
Page 5, Pin Descriptions about EPAD, from "internally connected to digital ground" to "no internal electrical  
connection".  
17.2 Revision B1 to C1  
Added green package OPNs in Ordering Information on page 1; removed non-green OPNs.  
Added notes to table in Ordering Information on page 1.  
Added “Package Assembly” on page 9  
17.3 Revision C1 to C2  
Enhanced format of package drawings in “Physical Dimensions” on page 26  
Added new headers/footers due to Zarlink purchase of Legerity on August 3, 2007  
17.4 Revision C2 to Ver 5  
Le75183D offering is removed.  
29  
Zarlink Semiconductor Inc.  
Le75183  
Data Sheet  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a license under the Philips I2C Patent rights to use these components in an I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL, the Zarlink Semiconductor logo and the Legerity logo and combinations thereof, VoiceEdge, VoicePort, VeriVoice, SLAC, ISLIC, ISLAC and VoicePath  
are trademarks of Zarlink Semiconductor Inc.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  
30  
Zarlink Semiconductor Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY