ZL40121/DCA [ZARLINK]

Video Amplifier, 1 Channel(s), 2 Func, PDSO8, 0.150 INCH, MS-012AA, SOIC-8;
ZL40121/DCA
型号: ZL40121/DCA
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

Video Amplifier, 1 Channel(s), 2 Func, PDSO8, 0.150 INCH, MS-012AA, SOIC-8

光电二极管
文件: 总16页 (文件大小:286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZL40121  
Low Power, Current Feedback  
Dual Operational Amplifier  
Data Sheet  
April 2003  
Features  
280MHz small signal bandwidth  
Ordering Information  
1100V/µs slew rate  
3.3mA/channel static supply current  
60Mhz gain flatness to +/- 0.1dB  
8 pin SOIC  
ZL40121/DCA (tubes) 8 lead SOIC  
ZL40121/DCB (tape and reel) 8 lead SOIC  
-40°C to +85°C  
Applications  
The 280MHz Av=+1V/V small signal bandwidth and  
1100V/µs slew rate make the device an excellent  
solution for component video applications such as  
driving RGB signals down significant cable lengths.  
Video switchers/routers  
Video line drivers  
Twisted pair driver/receiver  
Active filters  
Other applications which may take advantage of the  
ZL40121 dynamic performance features and matched  
amplifiers include low cost high order active filters and  
twisted pair driver/receivers.  
Cable drivers  
Description  
The ZL40121 is a low power, dual, current feedback  
operational amplifier offering high performance at a  
low cost. The device provides a very high output  
current drive capability of 65mA while requiring only  
3.3mA of static supply current per channel. This  
feature makes the ZL40121 the ideal choice where a  
high density of high speed devices is required.  
8
7
6
5
Out_1  
V+  
1
In_n_1  
In_p_1  
V -  
Out_2  
In_n_2  
In_p_2  
2
3
4
1
2
ZL40121  
Figure 1 - Functional Block Diagram and Pin Connection  
1
ZL40121  
Data Sheet  
Application Notes  
Current Feedback Op Amps  
Current feedback op amps offer several advantages over voltage feedback amplifiers:  
AC bandwidth not dependent on closed loop gain  
High Slew Rate  
Fast settling time  
The architecture of the current feedback opamp consists of a high impedance non-inverting input and a low  
impedance inverting input which is always feedback connected. The error current is amplified by a transimpedance  
amplifier which can be considered to have gain  
Zo  
Z( f ) =  
f
fo  
1+ j  
where Zo is the DC gain.  
It can be shown that the closed loop non-inverting gain is given by  
Vout  
Vin  
Av  
=
fRf  
1+ j  
foZo  
where Av is the DC closed loop gain, Rf is the feedback resistor. The closed loop bandwidth is therefore given by  
foZo GBOL  
BWCL  
=
=
Rf  
Rf  
and for low values of closed loop gain Av depends only on the feedback resistor Rf and not the closed loop gain.  
This can readily be seen from the performance characteristic frequency response graph with varying Rf  
It can be shown that increasing the value of Rf  
Increases closed loop stability  
Decreases loop gain  
Decreases bandwidth  
Reduces gain peaking  
Reduces overshoot  
Using a resistor value of Rf=510for Av=+2 V/V gives good stability and bandwidth. However since requirements  
for stability and bandwidth vary it may be worth some experimentation to find the optimal Rf for a given application.  
Layout Considerations  
Correct high frequency operation requires a considered PCB layout as stray capacitances have a strong influence  
over high frequency operation for this device. This is particularly important for high performance current feedback  
opamps. The Zarlink evaluation board serves as a good example layout that should be copied. The following  
guidelines should be followed:  
Include 6.8uF tantalum and 0.1uF ceramic capacitors on both positive and negative supplies  
Remove the ground plane under and around the part, especially near the input and output pins to reduce  
parasitic capacitances  
Minimize all trace lengths to reduce series inductance  
2
Zarlink Semiconductor Inc.  
Data Sheet  
ZL40121  
Application Diagrams  
Vcc  
6.8uF  
0.1uF  
Vin  
Vout  
½ ZL40121  
Rf  
Rin  
Ra  
0.1uF  
Vout  
Vin  
Rf  
Ra  
= Av = 1+  
6.8uF  
Vee  
Figure 2 - Non-inverting Gain  
Vcc  
6.8uF  
Rb  
0.1uF  
Vout  
½ ZL40121  
Rf  
Vin  
Rin  
Ra  
0.1uF  
Vout  
Vin  
Rf  
Ra  
= Av = −  
6.8uF  
Vee  
Figure 3 - Inverting Gain  
Zarlink Semiconductor Inc.  
3
ZL40121  
Data Sheet  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
Max  
Units  
1
2
Vin Differential  
VIN  
±1.2  
V
Output Short Circuit Protection  
VOS/C  
See Apps  
Note in this  
data sheet  
3
4
5
6
Supply voltage  
V+, V-  
(+IN), V(-IN)  
VO  
±6.5  
V+  
V
V
Voltage at Input Pins  
Voltage at Output Pins  
V
V-  
V-  
2
V+  
V
EDS Protection  
(see Note 3)  
kV  
(HBM Human Body Model)  
(see Note 2)  
7
8
Storage Temperature  
Latch-up test  
-55  
+150  
°C  
100mA  
for 100ms  
(see Note 4)  
9
Supply transient test  
20%pulse  
for 100ms  
(see Note 5)  
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate  
conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed  
specifications and the test conditions, see the Electrical Characteristics.  
Note 2: Human body model, 1.5kin series with 100pF. Machine model, 20in series with 100pF.  
Note 3: 0.8kV between the pairs of +INA, -INA and +INB pins only. 2kV between supply pins, OUTA or OUTB pins and any input pin.  
Note 4: ±100mA applied to input and output pins to force the device to go into "latch-up". The device passes this test to JEDEC spec  
17.  
Note 5: Positive and Negative supply transient testing increases the supplies by 20% for 100ms.  
Operating Range  
Characteristic  
Supply Voltage (Vcc)  
Min  
Typ  
Max  
Units  
Comments  
±4.0  
-40  
6.0  
V
Operating Temperature (Ambient)  
Junction to Ambient resistance  
+85  
°C  
Rth(j-a)  
150  
60  
°C  
4 layer  
FR4 board  
Junction to Case resistance  
Rth(j-c)  
°C  
4 layer  
FR4 board  
4
Zarlink Semiconductor Inc.  
Data Sheet  
ZL40121  
Electrical Characteristics - Vcc=±5V, Tamb=25C(typ.),Tamb=-40C to +85C(min-max), Av=+2V/V,  
Rf=510, Rload=100unless specified  
Min  
Min/  
Max  
25C  
Typ  
25C  
/Max  
–40 to  
+85C  
Test  
Characteristic  
Conditions  
Units  
1
Type  
Frequency Domain Response  
280  
230  
130  
60  
-
-
-
-
-
-
-
-
MHz  
C
C
C
C
-3dB Bandwidth  
Av=+1; Vo < 0.5Vp-p;  
Rf=1.5kΩ  
MHz  
MHz  
MHz  
Av=+2; Vo < 0.5Vp-p;  
Rf=510Ω  
Av=+2; Vo < 5Vp-p;  
Rf=510Ω  
+/- 0.1dB Flatness  
Av=+2; Vo < 0.5Vp-p;  
Rf=510Ω  
0.02  
0.06  
-
-
-
-
%
C
C
Differential Gain (NTSC)  
Differential Phase (NTSC)  
Time Domain Response  
Rise and Fall Time  
Rload=150Ω  
Rload=150Ω  
deg.  
1.4  
3.6  
6
-
-
-
-
-
-
-
-
-
-
ns  
C
C
C
C
C
Vout=0.5V Step  
Vout=5V Step  
Vout=2V Step  
Vout=0.5V Step  
Vout=5V Step  
ns  
ns  
Settling Time to 0.1%  
Overshoot  
6
%
1100  
V/µs  
Slew Rate  
Noise and Distortion  
nd  
2
3
Harmonic Distortion  
Harmonic Distortion  
Vout=2Vp-p, 1MHz  
Vout=2Vp-p, 1MHz  
-78  
-88  
-
-
-
-
C
C
dBc  
dBc  
nd  
Equivalent Input Noise  
Voltage  
>1MHz  
>1MHz  
>1MHz  
6.4  
1.0  
9.3  
-
-
-
-
-
-
C
C
C
nV Hz  
Non-Inverting Current  
Inverting Current  
pV  
pA  
Hz  
Hz  
Static, DC Performance  
Input Offset Voltage  
Average Drift  
1.4  
-
± 6.0  
± 7.5  
15  
A
C
A
C
mV  
-
±2.6  
-
uV/deg. C  
uA  
1.3  
-
±2.8  
2.6  
Input Bias Current – Non-inverting  
Average Drift  
nA/deg. C  
Zarlink Semiconductor Inc.  
5
ZL40121  
Data Sheet  
Min  
/Max  
–40 to  
+85C  
Min/  
Max  
25C  
Typ  
25C  
Test  
Characteristic  
Conditions  
Units  
1
Type  
4.4  
-
±14  
-
±15  
16  
A
C
A
A
A
A
Input Bias Current – Inverting  
Average Drift  
uA  
nA/deg. C  
65  
62  
57  
3.3  
63  
58  
54  
4.5  
62  
Power Supply Rejection Ratio (+ve)  
Power Supply Rejection Ratio (-ve)  
Common Mode Rejection Ratio  
Supply Current (per Channel)  
DC  
DC  
DC  
dB  
dB  
dB  
mA  
56  
53  
4.7  
Quiescent  
Miscellaneous Performance  
19.0  
1
-
-
C
C
A
A
C
C
Input Resistance (Non-inverting)  
Input Capacitance (Non-inverting)  
Common Mode Input Range  
Output Voltage Range  
MΩ  
pF  
V
-
±2.2  
±2.7  
-
-
±1.9  
±2.6  
-
±2.3  
±2.8  
65  
V
Rload=100Ω  
Output Current (max)  
mA  
mΩ  
110  
-
-
Output Resistance, Closed Loop  
DC  
NOTE 1: Test Types:  
(A) 100% tested at 25°C. Over temperature limits are set by characterization and simulation.  
(B) Limits set by characterization or simulation.  
(C) Typical value only for information.  
6
Zarlink Semiconductor Inc.  
Data Sheet  
ZL40121  
Typical Performance Characteristics - Tamb=25degC, Vsupply=± 5V, Rload=100, Av=+2V/V,  
Rf=510, unless otherwise specified  
Non-Inverting Frequency Response  
2
0
200  
150  
100  
50  
Gain  
Av =+2  
Rf = 510  
-2  
Av =+1  
Rf = 1.1k  
Av =+8  
Rf = 200  
-4  
Phase  
-6  
0
-8  
-50  
-100  
-150  
-200  
-10  
-12  
-14  
Av =+4  
Rf = 150  
Vo = 0.5Vp-p  
1
10  
100  
1000  
Frequency (MHz)  
Zarlink Semiconductor Inc.  
7
ZL40121  
Data Sheet  
Non-Inverting Frequency Response varying Rf  
2
0
Rf=390  
Rf=250  
-2  
-4  
-6  
-8  
Rf=700  
Rf=510  
-10  
-12  
-14  
-16  
-18  
Vo=0.5Vp-p  
10  
100  
1000  
Frequency (MHz)  
Frequency Response for Varying Rload  
2
0
RL = 1k  
-2  
RL = 100  
RL = 25  
-4  
-6  
Vo = 0.5V p-p  
-8  
-10  
10  
100  
1000  
Frequency (MHz)  
8
Zarlink Semiconductor Inc.  
Data Sheet  
ZL40121  
Large Signal Gain  
0
-2  
-4  
Vo = 2V p-p  
Vo = 1V p-p  
Vo = 5V p-p  
Vo = 4V p-p  
-6  
-8  
-10  
-12  
-14  
-16  
10  
100  
1000  
Frequency (MHz)  
Harmonic Distortion vs Frequency  
-40  
-50  
Vo = 2V p-p  
-60  
2nd Harmonic  
-70  
-80  
-90  
3rd Harmonic  
-100  
1
10  
100  
Frequency (MHz)  
Zarlink Semiconductor Inc.  
9
ZL40121  
Data Sheet  
Open Loop Transimpedance Gain and Phase  
120  
110  
100  
90  
0
-30  
Transimpedance Gain  
Transimpedance Phase  
-60  
-90  
80  
-120  
-150  
-180  
-210  
-240  
70  
60  
50  
40  
1.0E+03  
1.0E+04  
1.0E+05  
1.0E+06  
1.0E+07  
1.0E+08  
1.0E+09  
Frequency (Hz)  
CMRR  
70  
60  
50  
40  
30  
20  
10  
T = - 40 degC  
T = + 25 degC  
T = + 85 degC  
0
1.0E+03  
1.0E+04  
1.0E+05  
1.0E+06  
1.0E+07  
1.0E+08  
Frequency (Hz)  
10  
Zarlink Semiconductor Inc.  
Data Sheet  
ZL40121  
PSRR +ve  
80  
70  
60  
50  
40  
30  
20  
10  
0
T = - 40 degC  
T = + 25 degC  
T = + 85 degC  
1.0E+03  
1.0E+04  
1.0E+05  
1.0E+06  
1.0E+07  
1.0E+08  
Frequency (Hz)  
PSRR -ve  
70  
60  
50  
40  
30  
20  
10  
0
T = - 40 degC  
T = + 25 degC  
T = + 85 degC  
1.0E+03  
1.0E+04  
1.0E+05  
1.0E+06  
1.0E+07  
1.0E+08  
Frequency (Hz)  
T
Zarlink Semiconductor Inc.  
11  
ZL40121  
Data Sheet  
Input Voltage and Current Noise  
100  
10  
1
Inverting Input Current Noise  
Input Voltage Noise  
Non-Inverting Input Current  
0.1  
1.0E+01  
1.0E+02  
1.0E+03  
1.0E+04  
1.0E+05  
1.0E+06  
1.0E+07  
Frequency (Hz)  
Supply Current vs Temperature  
3.55  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Die Temp (deg. C)  
12  
Zarlink Semiconductor Inc.  
Data Sheet  
ZL40121  
DC Drift Over Temperature  
5.00  
4.50  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
Input Bias Inv  
Input Offset Voltage  
Input Bias Non-Inv  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Die Temp (deg. C)  
Large and Small Signal Pulse Response  
3
0.6  
0.4  
0.2  
0
Vout = 5V Step  
2
1
Vout = 0.5V Step  
0
-1  
-2  
-3  
-0.2  
-0.4  
-0.6  
0
10  
20  
30  
40  
50  
60  
70  
80  
Time (ns)  
Zarlink Semiconductor Inc.  
13  
ZL40121  
Data Sheet  
Closed Loop Output Impedance  
10  
1
0.1  
0.01  
0.01  
0.1  
1
10  
100  
Frequency (MHz)  
Differential Gain & Phase ZL40120 / ZL40121  
Best fit Gain  
NTSC  
RL=150?  
Best fit Phase  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-0.07  
-0.7  
-0.6  
-0.5  
-0.4  
-0.3  
-0.2  
-0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
bias voltage  
14  
Zarlink Semiconductor Inc.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

ZL40121DCA

Low Power,Current Feedback Dual Operational Amplifier
ZARLINK

ZL40121DCB

Low Power,Current Feedback Dual Operational Amplifier
ZARLINK

ZL40122

High Speed, Current Feedback Quad Operational Amplifier
ZARLINK

ZL40122/DCA

Video Amplifier, 1 Channel(s), 4 Func, PDSO14, 0.150 INCH, MS-012AB, SOIC-14
ZARLINK

ZL40122/DCA

1 CHANNEL, VIDEO AMPLIFIER, PDSO14, 0.150 INCH, MS-012AB, SOIC-14
ROCHESTER

ZL40122/DCB

Operational Amplifier, 4 Func, 7700uV Offset-Max, BIPolar, PDSO14
MICROSEMI

ZL40122DCA

High Speed, Current Feedback Quad Operational Amplifier
ZARLINK

ZL40122DCA1

Video Amplifier, 1 Channel(s), 4 Func, PDSO14, 0.150 INCH, LEAD FREE, MS-012AB, SOIC-14
ZARLINK

ZL40122DCB

High Speed, Current Feedback Quad Operational Amplifier
ZARLINK

ZL40122DCE1

High Speed, Current Feedback Quad Operational Amplifier
ZARLINK

ZL40122DCF1

High Speed, Current Feedback Quad Operational Amplifier
ZARLINK

ZL40122_06

High Speed, Current Feedback Quad Operational Amplifier
ZARLINK