Z87001 [ZILOG]

ROMless Spread Spectrum Cordless Phone Controller; 无ROM扩频无绳电话控制器
Z87001
型号: Z87001
厂家: ZILOG, INC.    ZILOG, INC.
描述:

ROMless Spread Spectrum Cordless Phone Controller
无ROM扩频无绳电话控制器

无绳电话集成电路 电信集成电路 电信电路 无绳技术 控制器
文件: 总51页 (文件大小:204K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY CUSTOMER PROCUREMENT SPECIFICATION  
1
Z87001/Z87L01  
1
ROMLESS SPREAD SPECTRUM  
CORDLESS PHONE CONTROLLER  
FEATURES  
Transceiver Circuitry Provides Primary Cordless Phone  
ROM *  
RAM  
I/O  
Package  
Communications Functions  
Device (KWords) (Words) Lines Information  
Digital Downconversion with Automatic Frequency  
Control (AFC) Loop  
Z87001  
Z87L01  
64  
64  
512  
512  
32  
32  
144-Pin QFP  
144-Pin QFP  
FSK Demodulator  
FSK Modulator  
Note: *Maximum accessible external ROM  
Symbol Synchronizer  
Transceiver/Controller Chip Optimized for Implement-  
Time Division Duplex (TDD) Transmit and Receive  
Buffers  
ation of 900 MHz Spread Spectrum Cordless Telephone  
Adaptive Frequency Hopping  
Transmit Power Control  
On-Chip A/D and D/A to Support 10.7 MHz IF Interface  
Error Control Signaling  
Up to 64 Kw of External Program Memory Accessible by  
Handset Power Management  
the DSP Core  
Support of 32 kbps ADPCM Speech Coding for  
High Voice Quality  
Bus Interface to Z87010 ADPCM Processor  
Static CMOS for Low Power Consumption  
DSP Core Acts as Phone Controller  
Zilog-Provided Embedded Transceiver Software to  
Control Transceiver Operation and Base Station-  
Handset Communications Protocol  
3.0V to 3.6V, -20°C to +70°C, Z87L01  
4.5V to 5.5V, -20°C to +70°C, Z87001  
User-Modifiable Software Governs Telephone  
Features  
16.384 MHz Base Clock  
GENERAL DESCRIPTION  
The Z87001 /Z87L01 FHSS Cordless Telephone Trans-  
ceiver/Controller is expressly designed to implement a 900  
MHz frequency hopping spread spectrum cordless tele-  
phone compliant with US FCC regulations for unlicensed  
operation. The Z87001 and Z87L01 are distinct 5V and  
3.3V versions, respectively, of the core device. For the  
sake of brevity, all subsequent references to the Z87001 in  
this document also apply to the Z87L01 unless specifically  
noted.  
The Z87001 supports a specific cordless phone system  
design that uses frequency hopping and digital modulation  
to provide extended range, high voice quality, and low sys-  
tem costs.  
The Z87001 uses a Zilog 16-bit fixed-point two’s comple-  
ment static CMOS Digital Signal Processor core as the  
phone and RF section controller. The Z87001’s DSP core  
processor further supports control of the RF section’s fre-  
quency synthesizer for frequency hopping and the genera-  
tion of the control messages needed to coordinate incorpo-  
ration of the phone’s handset and base station. Additional  
on-chip transceiver circuitry supports Frequency Shift Key-  
ing modulation/demodulation and multiplexing/demulti-  
The Z87001 is the ROMless version of the Z87000 Spread  
Spectrum Controller IC. Specifically intended to facilitate  
user specific software development, the Z87001 can ac-  
cess up to 64 kwords of external program ROM.  
DS96WRL0800  
P R E L I M I N A R Y  
1
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
GENERAL DESCRIPTION (Continued)  
plexing of the 32 kbps voice data and 4 kbps command  
data between handset and base station. The Z87001 pro-  
vides thirty-two I/O pins, including four wake-up inputs and  
two CPU interrupt inputs. These programmable I/O pins al-  
low a variety of user-determined phone features and board  
layout configurations. Additionally, the pins may be used  
so that phone features and interfaces are supported by an  
optional microcontroller rather than by the Z87001’s DSP  
core.  
In combination with an RF section designed according to  
the system specifications, Zilog’s Z87010/Z87L10 ADPCM  
Processor, a standard 8-bit PCM telephone codec and  
minimal additional phone circuity, the Z87001 and its em-  
bedded software provide a total system solution.  
Codec  
Codec  
Z87010  
Z87001  
Z87001  
Z87010  
RF Section  
RF Section  
ADPCM  
Processor  
Spread  
Spectrum  
Controller  
Spread  
Spectrum  
Controller  
ADPCM  
Processor  
Telephone  
Line  
Interface  
Handset  
Base Station  
Figure 1. System Block Diagram of a Z87001/Z87010 Based Phone  
2
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
FSK Demodulator  
Receive  
RX  
VREF  
ADC  
(1-bit)  
(downconverter, limiter discriminator,  
AFC, bit sync, frame sync, SNR  
detector)  
VXDATA[7..0]  
Rate  
1
Buffer  
VXADD[2..0]  
Z87010  
VXSTRB  
VXRWB  
VXRDYB  
Interface  
CLKOUT  
CODCLK  
Transmit  
Rate  
Buffer  
DAC  
(4-bit)  
FSK Modulator  
TX  
RXSW  
TXSW  
PAON  
256 Word  
RAM 0  
256 Word  
RAM 1  
Port 0  
RFEON  
SYLE  
P0[15..0]  
P1[15..0]  
Frame Counter(s),  
Event Trigger,  
T/R Switch Ctrl,  
Power On/Off Ctrl,  
Antenna Select  
ADC  
RSSI  
DSP Core  
(8-bit)  
DAC  
(4-bit)  
PWLV  
Port 1  
ANT0  
ANT1  
Addr[15..0]  
Data[15..0]  
AVDD  
HBSW  
RESETB  
TEST  
Analog  
Power  
AGND  
VDD  
GND  
Digital  
Power  
Figure 2. Z87001 Functional Block Diagram  
DS96WRL0800  
P R E L I M I N A R Y  
3
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
PIN DESCRIPTION  
VXDATA0  
data0  
VXDATA1  
data1  
VXDATA2  
data2  
VDD  
VXDATA3  
data3  
VXDATA4  
data4  
VXDATA5  
data5  
VXDATA6  
VXDATA7  
data6  
TX  
109  
1
AGND  
RX  
AVDD  
VREF  
RFEON  
addr12  
P115  
addr11  
GND  
addr10  
P114  
addr9  
P113  
addr8  
P112  
CLKOUT  
data7  
HBSW  
data8  
GND  
TEST  
Z87001  
addr7  
VDD  
addr6  
P111  
addr5  
P110  
VDD  
data9  
ANT0  
data10  
ANT1  
data11  
P00  
addr4  
P19  
addr3  
GND  
addr2  
P18  
addr1  
P17  
addr0  
P01  
data12  
P16  
idata15  
VDD  
GND  
data13  
P02  
data14  
idata14  
73  
37  
P15  
P03  
Figure 3. 144 Pin QFP Pin Configuration  
4
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
Table 1. 144 Pin QFP Pin Configuration  
Symbol Function  
No  
Direction  
1
TX  
AGND  
RX  
Analog transmit IF signal  
Analog ground  
Output  
1
2,141  
3
Input  
Analog receive IF signal  
Analog power supply  
4,144  
AV  
DD  
5
6
VREF  
RFEON  
Analog reference voltage for RX signal  
RF on/off control  
Output  
Output  
7,9,11,13,15,17,19,  
21,23,25,27,29,31,  
136,138,140  
addr[15..0]  
DSP core program address bus  
8,12,14,16,20,22,24,  
28,30,32,36,37,39,  
41,44,46  
P1[15..0]  
GND  
General-purpose I/O port 1  
Input/Output  
10,26,43,60,77,88,  
109,128  
Digital ground  
18,34,51,68,86,102,  
116,131  
V
Digital power supply  
DSP core internal data bus  
DD  
33,35,38,40,42,45,  
47,49,52,54,56,59,  
61,63,66,69  
idata[15..0]  
P0[15..0]  
Output  
48,50,53,55,57,58,  
62,64,65,67,70,72,  
73,75,79,80  
General-purpose I/O port 0  
DSP core program data bus  
Input/Output  
Input  
71,74,76,78,81,83,  
85,89,91,93,96,98,  
100,103,105,107  
data[15..0]  
82,84  
87  
ANT[1..0]  
TEST  
RF antenna diversity control  
Test mode select  
Output  
Input  
90  
HBSW  
Handset/base mode select  
Clock, ADPCM processor (16.384 MHz)  
ADPCM processor data bus  
Input  
92  
CLKOUT  
VXDATA[7..0]  
Output  
Input  
94,95,97,99,101,  
104,106,108  
110  
111  
112  
VXRDYB  
eib  
ADPCM processor ready  
Output  
Output  
Input  
External register data strobe  
ADPCM processor data strobe  
External register address bus  
VXSTRB  
iaddr[4..0]  
113,117,119,121,  
123  
Output  
114  
VXRWB  
trice  
ADPCM processor read/write control  
ROMless mode select  
Input  
Input  
115  
118,120,122  
124  
VXADD[2..0]  
CODCLK  
irwb  
ADPCM processor address bus  
Clock to codec (2.048 MHz)  
External register read/write control  
Master reset  
Input  
Output  
Output  
Input  
125  
126  
/RESETB  
intenb  
127  
Interrupt enable  
Input  
DS96WRL0800  
P R E L I M I N A R Y  
5
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
PIN DESCRIPTION (Continued)  
Table 1. 144 Pin QFP Pin Configuration  
No  
Symbol  
Function  
Direction  
129  
130  
132  
133  
134  
135  
137  
139  
142  
143  
halt  
Halt/ single step control  
Master clock (16.384 MHz)  
Program address bus enable  
RF transmit enable  
Input  
Input  
MCLK  
triadd  
PAON  
dspclk  
SYLE  
RXSW  
TXSW  
PWLV  
RSSI  
Input  
Output  
Output  
Output  
Output  
Output  
Input  
DSP core clock  
RF synthesizer load enable  
Demodulator “on” indication  
RF receive enable  
RF transmit power level  
RF receive signal strength indicator  
Input  
6
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
ABSOLUTE MAXIMUM RATINGS  
Stresses greater than those listed under Absolute Maxi-  
mum Ratings may cause permanent damage to the de-  
vice. This is a stress rating only; operation of the device at  
any condition above those indicated in the operational sec-  
tions of these specifications is not implied. Exposure to ab-  
solute maximum rating conditions for extended period may  
affect device reliability.  
Symbol Parameter  
, AV DC Supply  
Min  
Max  
Units  
1
V
-0.5  
7.0  
V
DD  
DD  
Voltage(1)  
V
V
Input Voltage(2)  
-0.5 V + 0.5  
V
V
IN  
DD  
Output Voltage(3)  
-0.5 V + 0.5  
DD  
OUT  
T
Operating  
-20  
+70  
°C  
A
Temperature  
T
Storage  
-65  
+150  
°C  
STG  
Temperature  
Notes:  
1. Voltage on all pins with respect to GND.  
2. Voltage on all inputs WRT VDD  
3. Voltage on all outputs WRT VDD  
STANDARD TEST CONDITIONS  
The electrical characteristics listed below apply for the fol-  
lowing standard test conditions, unless otherwise noted.  
All voltages are referenced to GND. Positive current flows  
into the referenced pins. Standard test conditions are as  
follows:  
IoL  
Output  
3.0V < V < 3.6V (Z87L01)  
Threshold  
Under  
DD  
Voltage  
Test  
4.5V < V < 5.5V (Z87001)  
DD  
50pF  
GND = 0V  
T = -20 to +70 °C  
A
IoH  
Figure 5. Test Load Diagram  
DS96WRL0800  
P R E L I M I N A R Y  
7
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
RECOMMENDED OPERATING CONDITIONS  
Table 3. 5V ± 0.5V Operation (Z87001)  
Symbol  
, AV  
Parameter  
Min  
4.5  
Max  
Units  
V
V
V
Supply Voltage  
5.5  
V
DD  
IH  
IL  
DD  
Input High Voltage  
Input Low Voltage  
2.0  
V
+ 0.3  
V
DD  
GND -0.3  
0.8  
-2.0  
-0.5  
4.0  
V
I
I
I
I
I
Output High Current  
mA  
mA  
mA  
mA  
mA  
°C  
OH  
Output High Current, ICE pins (1)  
Output Low Current  
OHICE  
OL1  
Output Low Current, GPIO (limited usage, 2)  
Output Low Current, ICE pins (1)  
Operating Temperature  
12.0  
0.5  
OL2  
OLICE  
T
-20  
+70  
A
Notes:  
1. ICE pins are addr[15..0], iaddr[15..0], idata[15..0], eib and irwb  
2. Maximum 3 pins total from P0[15..0] and P1[15..0]  
Table 4. 3.3V ± 0.3V Operation (Z87L01)  
Symbol  
Parameter  
Min  
Max  
Units  
V
V
V
V
Supply Voltage  
3.0  
3.6  
DD  
IH  
IL  
Input High Voltage  
0.7 V  
V
+0.3  
V
DD  
DD  
Input Low Voltage  
GND -0.3  
0.1 V  
V
DD  
I
I
I
I
I
Output High Current  
-1.0  
-0.5  
2.0  
mA  
mA  
mA  
mA  
mA  
°C  
OH  
Output High Current, ICE pins (1)  
Output Low Current  
OHICE  
OL1  
Output Low Current, Ports (limited usage, 2)  
Output Low Current, ICE pins (1))  
Operating Temperature  
6.0  
OL2  
0.5  
OLICE  
T
-20  
+70  
A
Notes:  
1. ICE pins are addr[15..0], iaddr[15..0], idata[15..0], eib and irwb  
2. Maximum 3 pins total from P0[15..0] and P1[15..0]  
8
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
DC ELECTRICAL CHARACTERISTICS  
Conditions for DC characteristics are corresponding oper-  
ating conditions, and standard test conditions, unless oth-  
erwise specified.  
1
Table 5. 5V ± 0.5V Operation (Z87001)  
Test Condition  
min, I max  
Symbol  
Parameter  
Min  
2.4  
2.4  
Max  
Units  
V
V
Output High Voltage  
V
DD  
OH  
OH  
V
V
V
V
Output High Voltage, ICE pins (1) V min, I max  
OHICE  
V
OHICE  
OL1  
DD  
Output Low Voltage  
V
V
min, I  
min, I  
max  
0.6  
1.2  
0.4  
2
V
DD  
DD  
OL1  
Output Low Voltage, GPIO (2)  
max  
V
OL2  
OL2  
Output Low Voltage, ICE pins (1) V min, I  
max  
V
OLICE  
DD  
OLICE  
I
I
I
Input Leakage  
V
= 0V, V  
DD  
-2  
µA  
mA  
mA  
L
IN  
Supply Current  
80  
4
CC  
Standby Mode Current (3)  
CC2  
Notes:  
1. ICE pins are addr[15..0], iaddr[15..0], idata[15..0], eib and irwb  
2. Maximum 3 pins total from P0[15..0] and P1[15..0]  
3. 2.3 mA typical at 25°C, 5 volts.  
Table 6. 3.3V ± 0.3V Operation (Z87L01)  
Test Condition Min  
min, I max  
Symbol  
Parameter  
Max  
Units  
V
V
V
V
V
V
Output High Voltage  
V
1.6  
1.6  
OH  
DD  
OH  
Output High Voltage, ICE pins (1)V min, I max  
OHICE  
V
OHICE  
OL1  
DD  
Output Low Voltage  
V
V
min, I  
min, I  
max  
0.4  
1.2  
0.4  
2
V
DD  
DD  
OL1  
Output Low Voltage, Ports(2)  
max  
V
OL2  
OL2  
Output Low Voltage, ICE pins (1) V min, I  
max  
V
OLICE  
DD  
OLICE  
I
I
I
Input Leakage  
V
= 0V, V  
DD  
-2  
µA  
mA  
mA  
L
IN  
Supply Current  
55  
CC  
Standby Mode Current(2)  
1.4  
CC2  
Notes:  
1. ICE pins are addr[15..0], iaddr[15..0], idata[15..0], eib and irwb  
2. Maximum 3 pins total from P0[15..0] and P1[15..0]  
3. 1.6 mA typical at 25°C, 3.3 volts.  
DS96WRL0800  
P R E L I M I N A R Y  
9
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
ANALOG CHARACTERISTICS  
Table 7. 1-Bit ADC (Temperature: -20/+70°C)  
Parameter  
Minimum  
Typical  
Maximum  
Units  
Resolution  
-
1
-
bit  
Power dissipation  
0.54  
1.0  
2.75  
mW  
(70°c)  
(40°c)  
(-20°c)  
Power dissipation, Stop mode  
0.06  
0.2  
1.1  
mW  
(70°c)  
(40°c)  
(-20°c)  
Sample frequency  
Sample window(1)  
Bandwidth  
-
29  
-
8.192  
31  
-
33  
-
MHz  
ns  
60  
MHz  
Supply Range(=AV  
)
DD  
3.0  
4.5  
3.6  
5.5  
V
V
Z87L01  
Z87001  
Acquisition time  
Settling time  
2
8
3
10  
6
8
18  
ns  
ns  
Conversion time  
Aperture delay  
4
18  
ns  
2
3
8.5  
0.5  
1200  
ns  
Aperture uncertainty(2)  
Input voltage range (p-p)  
-
-
ns  
800  
1000  
mV  
Reference voltage  
Z87L01  
Z87001  
1.7 (AV = 3V) 1.9 (AV = 3.3V) 2.1 (AV = 3.6V)  
V
V
DD  
DD  
DD  
2.7 (AV =4.5V) 3.0 (AV = 5V) 3.3 (AV = 5.5V)  
DD  
10  
-
DD  
DD  
25  
-
Input resistance  
Input capacitance  
Notes:  
18  
10  
KOhm  
pF  
Window of time while input signal is applied to sampling capacitor; see next figure.  
Uncertainty in sampling time due to random variations such as thermal noise.  
10  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
CLK (16.384MHz)  
1
Aperture  
Delay  
Sampling  
SAMPLING  
WINDOW  
Latched  
Output  
INPUT  
SIGNAL  
Conversion  
Acquisition  
Time  
Settling  
Time  
+
Time (for  
digital output)  
Figure 6. 1-Bit ADC Definition of Terms  
Table 8. 8-bit ADC (Temperature -20/+70°C)  
Parameter  
Minimum  
Typical  
Maximum  
Units  
Resolution  
-
-
-
6
0.5  
-
-
1
bit  
LSB  
LSB  
mW  
ns  
Integral non-linearity  
Differential non-linearity  
Power Dissipation (peak)  
Sample window  
0.5  
70  
120  
2
35  
-
5
-
Bandwidth  
-
Msps  
Supply Range (=AV  
)
DD  
3.0  
4.5  
3.3  
5.0  
3.6  
5.5  
V
V
Z87L01  
Z87001  
Input voltage range  
0-AV  
V
DD  
Conversion time  
Aperture delay  
0.5  
-
3
-
-
8.5  
1
µs  
ns  
2
-
Aperture uncertainty  
Input resistance  
Input capacitance  
Notes:  
ns  
-
25  
10  
-
Kohm  
pF  
-
-
1. 8-bit ADC only tested for 6-bit resolution.  
DS96WRL0800  
P R E L I M I N A R Y  
11  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
Table 9. 4-bit DAC (Temperature: -20/+70°C)  
Parameter  
Minimum  
Typical  
Maximum  
Units  
Resolution  
-
-
4
0.25  
0.25  
-
-
0.5  
1
bit  
LSB  
LSB  
ns  
Integral non-linearity  
Differential non-linearity  
Settling time (1/2 LSB)  
Zero error at 25°C  
-
-
22.5  
2
-
1
mV  
ns  
Conversion time (input change to output change)  
Power dissipation, 25 pF load  
14  
19  
76  
1.2  
20  
24.1  
mW  
(70°c)  
(40°c)  
(-20°c)  
Power dissipation, 25 pF load, Stop mode  
0.18  
1.0  
1.1  
mW  
(70°c)  
(40°c)  
(-20°c)  
Conversion time (input change to output change)  
Rise time (full swing)  
14.5  
11  
8
19.1  
15  
75.8  
71  
96  
-
ns  
ns  
Output slew rate  
67  
V/µs  
V
Output voltage range  
-
0.2 AV to 0.6AV  
DD  
DD  
Supply Range (=AV  
)
DD  
3.0  
4.5  
3.3  
5.0  
3.6  
5.5  
V
V
Z87L01  
Z87001  
Output load resistance  
Output load capacitance  
330  
25  
Ohm  
pF  
-
-
12  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
INPUT/OUTPUT PIN CHARACTERISTICS  
All digital pins (all pins except V , AV , GND, AGND,  
The RX analog input pin has an input capacitance of 10  
pF.  
DD  
DD  
V
, RX, TX, RSSI and PWLV) have an internal capaci-  
REF  
1
tance of 5 pF.  
The RSSI analog input pin has an input capacitance of 10  
pF.  
AC ELECTRICAL CHARACTERISTICS  
Clocks, Reset and RF Interface  
Table 10. Clocks, Reset and RF Interface  
Parameter  
MCLK input clock period (1)  
No.  
Symbol  
Min  
Max  
Units  
1
TpC  
TwC  
61  
20  
61  
40  
15  
6
ns  
ns  
2
MCLK input clock pulse width  
MCLK input clock rise/fall time  
CLKOUT output clock rise/fall time  
CODCLK output clock rise/fall time  
RESETB input low width  
3
TrC, TfC  
ns  
4
TrCC, TfCC  
TrCO, TfCO  
TwR  
2
2
ns  
5
6
ns  
6
7
18  
2
TpC  
ns  
TrRF, TfRF  
RF output controls rise/fall time (2)  
6
Notes:  
1. MCLK is 16.384 MHz ± 25 ppm  
2. RF Controls are PAON, TXSW, RFEON, SYLE.  
DS96WRL0800  
P R E L I M I N A R Y  
13  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
READ CYCLES refer to data transfers from the Z87001 to  
the ADPCM Processor.  
ADPCM Processor Interface  
The Z87001 is a peripheral device for the ADPCM Proces-  
sor. The interface from the Z87001 perspective is com-  
posed of an input address bus, a bidirectional data bus,  
strobe and read/write input control signals and a  
ready/wait output control signal.  
WRITE CYCLES refer to data transfers from the ADPCM  
Processor to the Z87001.  
Table 11. Read Cycles  
Signal Name  
Function  
Direction  
VXADD[2..0]  
VXDATA[7..0]  
VXSTRB  
Address Bus  
Data Bus  
ADPCM Proc. to Z87001  
Bidirectional  
Strobe Control Signal  
Read/Write Control Signal  
Ready Control Signal  
ADPCM Proc. to Z87001  
ADPCM Proc. to Z87001  
Z87001 to ADPCM Proc.  
VXRWB  
VXRDYB  
Table 12. Write Cycles  
Parameter  
No.  
Symbol  
Min  
Max  
Units  
8
9
TsAS  
ThSA  
Address, Read/Write setup time before Strobe falls  
Address, Read/Write hold time after Strobe rises  
Data read access time after Strobe falls  
Data read hold time after Strobe rises  
Strobe pulse width  
10  
3
ns  
ns  
ns  
ns  
10  
TaDrS  
ThDrS  
TwS  
30 (1)  
40 (2)  
11  
8.5  
20  
10  
3
12  
13  
TsDwS  
ThDwS  
TaDrRY  
TdSRY  
Data write setup time before Strobe rises  
Data write hold time after Strobe rises  
Data read valid before Ready falls  
ns  
ns  
ns  
ns  
14  
15  
22  
0
16  
Strobe high after Ready falls  
Notes:  
1. Requires wait state on ADPCM Processor read cycles  
2. Requires no write cycle directly following read cycle on ADPCM Processor  
14  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
AC TIMING DIAGRAMS  
TwC(2)  
1
MCLK  
TrC(3)  
TfC(3)  
TpC (1)  
CLKOUT  
CODCLK  
TfCC(4)  
TrCC(4)  
TrCO(5)  
TfCO(5)  
4
16  
18  
1
2
3
17  
MCLK  
RESETB  
TwR(6)  
PAON  
TXSW  
RXSW  
RFEON  
SYLE  
TfRF(7)  
TrRF(7)  
Figure 7. Transceiver Output Signal  
DS96WRL0800  
P R E L I M I N A R Y  
15  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
TsAS(8)  
ThSA(9)  
VXADD  
VXRWB  
VXSTRB  
TaDrS(10)  
ThDrS(11)  
VXDATA  
VXRDYB  
VXDATA Read Cycle  
TsAS(8)  
ThSA(9)  
VXADD  
VXRWB  
TwS(12)  
VXSTRB  
VXDATA  
ThDwS(14)  
TsDwS(13)  
VXRDYB  
VXDATA Write Cycle  
Figure 8. Read/Write Cycle TImings  
16  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
TsAS(8)  
ThSA(9)  
1
VXADD  
VXRWB  
VXSTRB  
VXDATA  
ThDrS(11)  
TaDrRY(15)  
TdSRY(16)  
VXRDYB  
VXDATA Read Cycle with Wait State  
TsAS(8)  
ThSA(9)  
VXADD  
VXRWB  
TwS(12)  
VXSTRB  
ThDwS(14)  
TsDwS(13)  
VXDATA  
VXRDYB  
TdSRY(16)  
VXDATA Write Cycle with Wait State  
Figure 9. Read/Write Cycle Timing with Wait StatE  
DS96WRL0800  
P R E L I M I N A R Y  
17  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
PIN FUNCTIONS  
V
Digital power supply.  
CLKOUT (output). Clock output for external ADPCM pro-  
DD.  
cessor.  
GND. Digital ground.  
CODCLK (output). Clock output for external voice codec.  
/RESETB (input, active low). Reset signal.  
AV . Analog power supply.  
DD  
AGND. Analog ground.  
VXADD[2..0] (input). Address bus controlled by external  
ADPCM processor. The Z87001 acts as peripheral of the  
Z87010 ADPCM processor.  
V
(analog reference). This signal is the reference volt-  
REF  
age used by the high speed analog comparator to sample  
the RX input signal.  
VXDATA[7..0](input/output). Read/write data bus con-  
trolled by external Z87010 ADPCM processor.  
RX (analog input). This is the RX IF receive signal from  
the RF module, input to the analog comparator and FSK  
demodulator. It is internally biased to the V  
DC voltage.  
VXSTRB (input). Data strobe signal for the VXDATA bus,  
REF  
The IF signal from the RF module should be AC coupled  
to the RX pin.  
controlled by external Z87010.  
VXRWB (input). Read/write control for the VXDATA bus,  
TX (analog output). This is the IF transmit signal to the RF  
module, output from the FSK modulator and transmit 4-bit  
D/A converter.  
controlled by external Z87010.  
VXRDYB (output, active low). Ready control for the VX-  
DATA bus. This signal is driven high (de-asserted) by the  
Z87001 to insert wait states in the Z87010 ADPCM proces-  
sor accesses.  
RXSW (output; active high or low programmable). This  
pin reflects the programming of the demodulator turn-on  
time.  
TEST (input, active high). Main test mode control. Must be  
TXSW (output; active high or low programmable). Con-  
trol for the receive switch on the RF module. Active during  
receive periods.  
set to GND.  
HBSW (input with internal pull-up). Control for hand-  
set/base configuration. Must be driven high or not connect-  
ed for handset, low for base.  
PAON (output; active high or low programmable). Con-  
trol for the transmit switch on the RF module. Active during  
transmit periods.  
P0[15..0] (input/output). General-purpose I/O port. Direc-  
tion is bit-programmable. Pins P0[3..0],when configured in  
input mode, can also be individually programmed as wake-  
up pins for the Z87001 (wake-up active low; signal internal-  
ly debounced and synchronized to the bit clock).  
RFEON (output; active high or low programmable).  
On/off control for the RF module. Active (on) during wake  
periods. Inactive (off) during sleep periods on the handset.  
RSSI (analog input). Receive signal strength indicator  
from RF module, input to the RSSI 8-bit ADC.  
P0 0  
P0 1  
P0 2  
P0 3  
WAKEUP0  
WAKEUP1  
WAKEUP2  
WAKEUP3  
PWLV (analog output). Power level control for RF module,  
output from the transmit power 4-bit DAC.  
SYLE (output). RF synthesizer load enable: latches new  
frequency hopping control word of external RF synthesiz-  
er. Programmable polarity.  
P1[15..0] (input/output).General-purpose I/O port. Direc-  
tion is bit-programmable. Pins P114 and P115, when con-  
figured in input mode, also behave as individually  
maskable interrupt pins for the core processor (positive  
edge-triggered).  
ANT[1..0] (output). Control for optional antenna diversity  
on the RF module.  
P1 14  
P1 15  
INT0  
INT2  
MCLK (input). Master clock input.  
18  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
FUNCTIONAL DESCRIPTION  
The functional partitioning of the Z87001 is shown in Fig-  
ure 2. The chip consists of a receiver, a transmitter, and  
several additional functional blocks.The receiver consists  
of the following blocks:  
Transmit 4-Bit DAC  
In Addition, there are the following Shared Blocks.  
Event Trigger Block, Controlling:  
Transmit/Receive Switch  
Receive 1-bit ADC  
Power On/Off Switches (Modulator, Demodulator,  
RF Module)  
Demodulator, including:  
Antenna Switch Control (used on Base Station  
only for Antenna Diversity)  
IF Downconverter  
AFC (Automatic Frequency Control)  
Limiter-Discriminator  
Matched Filter  
4-Bit DAC for Setting Transmit Power Level  
8-Bit ADC for Sampling the Received Signal Strength  
Bit Synchronizer  
Indicator (RSSI)  
Bit Inversion  
DSP Core Processor  
Frame Synchronizer (unique word detector)  
SNR Detector  
Two 16-Bit General-Purpose I/O Ports  
Z87010 ADPCM Processor Interface  
Basic Operation  
Receive Frame Timing Counter  
Receive Buffer and Voice Interface  
The Transmitter Consists of the Following Blocks:  
The transmitter and receiver operate in time-division du-  
plex (TDD): handset and base station transmit and receive  
alternately. The TDD duty cycle lasts 4 ms and consists of  
the following events:  
Transmit Buffer and Voice Interface  
Transmit Frame Timing Counter (used on base station  
only)  
At the beginning of the cycle, the frequency is changed  
Modulator, including:  
(hopping)  
NCO  
The base station transmits a frame of 144 bits while the  
Bit Inversion  
handset receives  
The handset then transmits a frame of 148 bits while the  
base receives.  
4ms frame  
HOP  
148 bits  
144 bits  
BASE  
TX  
RX  
Frequency  
TDD switching  
guard time  
Hopping  
guard time  
HANDSET  
RX  
TX  
Figure 1. Basic Time Duplex Timing  
19  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
Receive 1-Bit ADC  
Demodulator  
The incoming receive signal at the RX analog input pin is  
sampled by a 1-bit analog-to-digital converter at 8.192  
MHz.  
The demodulator includes a two-stage IF downconverter  
that brings the sampled receive signal to baseband.  
The narrow-band 10.7 MHz receive signal, sampled at  
8.192 MHz by the 1-bit ADC, provides a 2.508 MHz useful  
image. The first local oscillator used to downconvert this IF  
signal is obtained from a Numerically Controlled Oscillator  
(NCO) internal to the Z87001, at the nominal frequency of  
460 kHz. The resulting signal is thus at 2.048 MHz (= 2.508  
MHz - 460 kHz). A second downconversion by a 2.048  
MHz signal brings the receive signal to baseband.  
The receive signal is FSK-modulated (Frequency Shift  
Keying) with a carrier frequency of 10.7 MHz (Intermediate  
Frequency, or IF). The instantaneous frequency varies be-  
tween 10.7 MHz plus or minus 32.58 kHz. Since the data  
rate is 93.09 kbps, there are 88 samples per data bit. This  
oversampled data is further processed by the demodulator  
to retrieve the baseband information.  
The 1-bit converter is implemented with a fast comparator,  
which determines whether the RX signal is larger or small-  
er than a reference signal (VREF). The Z87001 internally  
generates the DC level of both VREF and RX input pins.  
The received signal at 10.7 MHz should thus be AC cou-  
pled to the RX pin via a coupling capacitor. To ensure ac-  
curate operation of the converter, the user should also at-  
tach to the VREF pin a network whose impedance  
matches the DC impedance seen by the RX pin.  
The exact frequency of the 460 kHz NCO is slightly adjust-  
ed by the Automatic Frequency Control (AFC) loop for ex-  
act downconversion of the end signal to the zero frequen-  
cy. The AFC circuit detects any DC component in the  
output of the limiter-discriminator (see below) when receiv-  
ing a known sequence of data (preamble). This DC com-  
ponent is called the “frequency bias”. The bias estimate  
out of the AFC can be read by the DSP processor on every  
frame and subsequently filtered. The processor then adds  
or subtract this filtered bias to/from the NCO control word  
to correct the NCO frequency output.  
SNR  
SSB  
Rx signal  
1-bit  
Limiter-  
Discriminator  
Bit  
Sync  
Frame  
Sync  
Filter  
ADC  
460 kHz  
+ bias  
2.048 MHz  
Rx  
Buffer  
NCO  
AFC  
Figure 2. Demodulator Block Diagram  
The main element of the demodulator is its limiter-discrim-  
inator. The limiter-discriminator detects the frequency vari-  
ations (ideally up to ± 32.58 kHz) and converts them to “0”  
or “1” information bits. First, the data is processed through  
low-pass filters to eliminate high frequency spurious com-  
ponents introduced by the 1-bit ADC. The resulting signal  
is then differentiated and fed to a matched filter. In the  
matched filter, an integrate-and-dump operation is per-  
formed to extract the digital information from its back-  
ground noise.  
in the incoming data stream in order to synchronize a dig-  
ital phase-lock loop (DPLL). The PLL output is the recov-  
ered bit clock, used to time the receiver on the base sta-  
tion, and both receiver and transmitter on the handset.  
To ensure enough transitions in the voice data stream, a  
pseudo-random bit inversion operation is performed on the  
outgoing voice data. The inversion is then reversed on the  
demodulated data.  
Since the data is packed in frames sent alternately from  
base and handset every 4 ms (TDD), additional synchroni-  
zation means are necessary. This is realized in a frame  
The symbol clock is provided by the bit synchronizer. The  
bit synchronizer circuit detects 0-to-1 and 1-to-0 transitions  
20  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
FUNCTIONAL DESCRIPTION (Continued)  
synchronizer, based on detection of a “unique word” fol-  
lowing the preamble.  
Transmit Rate Buffer and Voice Interface  
The transmit rate buffer stores the data to be modulated.  
The data is sourced from the Z87010 or the Z87001 core  
processor. As for the receive rate buffer, the Z87010 sees  
a unique pipe to write to, while the Z87001 DSP core ac-  
cesses the rate buffer as random-access memory. The  
modulator reads from the rate buffer as from a circular  
buffer.  
The receiver also features a signal-to-noise ratio detector,  
which allows the DSP software to detect noisy channels  
and eliminate them from the frequency hopping cycle. The  
SNR information is also used by the Z87001 software as a  
measure the current range between handset and base sta-  
tion. This information allows the adaptive power control al-  
gorithm to provide sufficient output power to the RF trans-  
mitter.  
Transmit Frame Timing Counter  
On the handset, transmission does not start until the re-  
ceiver has synchronized itself to the signal received from  
the base station. The transmission timing is based on the  
recovered clock. No additional counter is necessary.  
Receive Frame Counter  
The receive frame counter is responsible to keep track of  
time within the frame. It is initialized by the frame synchro-  
nizer logic on detection of the unique word. It is then  
clocked by the recovered bit clock from the bit synchroniz-  
er.  
On the base station, the situation is different. Transmission  
timing is based on a local clock, while the reception’s tim-  
ing is based on the clock recovered from the incoming re-  
ceived signal. Two counters, respectively clocked by local  
and recovered clocks, are necessary to track the transmit  
and receive signals.  
On the base station, the receive frame counter is used as  
time base for the receiver. On the handset, it is used as  
time base for both receiver and transmitter.  
Note that the receive clock on the base station tracks the  
handset’s transmit clock, which is also the handset’s re-  
ceive clock and tracks the transmit clock of the base sta-  
tion. As a result, receive and transmit clocks of the base  
station have exactly the same frequency; only their phases  
differ.  
Receive Rate Buffer and Voice Interface  
The voice signal is generated at the fixed rate of 32 kips by  
the Z87010 processor, and transmitted/received in bursts  
of 93.09 kips across the air. Data buffers in the transmitter  
and receiver are thus necessary to absorb the rate differ-  
ences over time. These buffers are called “rate buffers”.  
They can store up to 144 data bits and are organized as an  
array of 36 4-bit nibbles.  
Modulator  
The modulator consists of a numerically controlled oscilla-  
tor (NCO) which generates an FSK (Frequency Shift Key-  
ing) signal at the carrier frequency of 2.508 MHz. The car-  
rier frequency is shifted plus or minus 32.58 kHz for a “1”  
or a “0” data bit. To facilitate conformance to FCC regula-  
tions, the transitions from “1” to “0” or vice-versa are  
smoothed in order to decrease the amplitude of the side  
lobes of the transmit signal. In practice, the jump from one  
frequency to the next is performed in several smaller  
steps.  
The receive rate buffer stores the received data from the  
demodulator. Incoming bits are arranged in 4-bit nibbles  
and transferred to successive locations of the rate buffer.  
When the last location is reached, transfers resume from  
the beginning (circular buffer). The system design guaran-  
tees that no buffer overrun nor enduring can occur.  
The receive rate buffer can be read by the DSP core pro-  
cessor of the Z87001 or by the Z87010 chip. On the  
Z87001 side, the buffer can be read as a random-access  
memory: the processor writes the nibble address in an ad-  
dress register and reads the 4-bit data from a data register.  
On the Z87010 side, a voice processor interface logic han-  
dles the addressing to automatically present the succes-  
sive voice nibbles to the Z87010 in the order they were re-  
ceived.  
The carrier frequency is adjustable by the DSP core pro-  
cessor in order to provide additional frequency adjustment  
between base and handset. This is provided in case of a  
frequency offset too large for possible correction by the  
AFC.  
The modulator also includes bit inversion logic as dis-  
cussed in the receiver section.  
21  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
Tx signal  
4-bit DAC  
NCO  
Tx Buffer  
Spectral  
Shaping  
Figure 3. Modulator Block Diagram  
rectly controlled by the Z87001 software through an output  
register.  
Transmit 4-Bit DAC  
The transmit DAC clocks one new NCO value out of the  
Z87001 every 8.192 MHz period. Only the 10.7 MHz alias  
frequency component of the transmit signal (2.508 + 8.192  
MHz image) is filtered, amplified and upconverted to the  
900 MHz ISM band by the companion RF module.  
8-Bit ADC for Sampling the Received Signal  
Strength Indicator (RSSI)  
RSSI information is typically generated from the last stage  
of the RF receiver. The RSSI is sampled once per frame  
by the 8-bit ADC and used by the Z87001 software to com-  
pute the necessary Transmit Power Level voltages.  
Event Trigger Block  
The event trigger block is responsible for scheduling the  
different events happening at the bit and frame levels. The  
event trigger block receives input from the frame counters  
as well as the register interface of the DSP core processor.  
DSP Core Processor  
A DSP core processor constitutes the heart of the Z87001.  
The DSP runs the application software which performs the  
following functions:  
The event trigger schedules the following events:  
Start of the 4 ms frame: a synthesizer load enable pulse  
Register initialization  
is issued on the SYLE pin  
Implementation of high-level phone features; control of  
Power-up of the modulator section and transmission of  
phone user interface (keypad, Led, etc.)  
the frame on handset and base station  
Control of the Z87010 ADPCM Processor  
Control of the phone line interface  
Ring detection by DSP processing  
Use of the bit inversion as function of mode  
Power-up of the demodulator section and reception of  
the frame on handset and base station  
Communication protocol between handset and base  
Control of PAON and TXSW output pins, to be used as  
TDD control signals for the T/R switch as well as the  
transmitter and receiver chains on the RF module  
station supporting voice and signalling channels  
Control of the RF synthesizer and adaptive frequency  
hopping algorithm  
Control of RFEON pin, to be used as general on/off  
switch on the RF module  
Control of the RF power and adaptive power algorithm  
Control of the Z87001 sleep mode  
Control of the demodulator (bit synchronizer loop filter,  
AFC bias estimate filtering)  
4-Bit DAC for Setting Transmit Power Level  
In order to save battery life, the Z87001 only transmits the  
amount of RF power needed to reach the remote receiver  
with a sufficient SNR margin. The on-board transmit power  
4-bit DAC provides 4 different voltage levels to the power  
amplifier in the RF module for that purpose. This DAC is di-  
Control of the modulator (carrier frequency) and  
adaptive frequency alignment  
Signalling between base and handset to support above  
features  
22  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
FUNCTIONAL DESCRIPTION (Continued)  
The DSP core is characterized by an efficient hardware ar-  
chitecture that allows fast arithmetic operations such as  
multiplication, addition, subtraction and multiply-accumu-  
late of two 16-bit operands. Most instructions are executed  
in one clock cycle.  
Control of battery charging and detection of low battery  
conditions  
Implementation of additional features for customizing of  
the phone  
Z87010 Interface  
The DSP core is operated at the internal speed of 8.192  
MHz. It has an internal RAM memory of 512 16-bit words  
divided in two banks. Six register pointers provide circular  
buffering capabilities and dual operand fetching. Three  
vectored interrupts are complemented by a six-level stack.  
One interrupt is used by the transceiver, while the two re-  
maining vectors are mapped into port P1. In the phone  
system, one of these interrupts is customarily reserved for  
the Z87010 ADPCM Processor. The other interrupt can be  
used for custom purposes.  
In addition to providing clock signals to the Z87010 proces-  
sor, the Z87001 interfaces to the Z87010 through two dif-  
ferent paths:  
A command/status interface  
A data interface  
The command/status interface consists of two dual-port  
registers accessible by both Z87001 and Z87010 DSP  
core processors. On the Z87001 side, the registers are  
mapped into the DSP core processor’s register interface.  
To allow access by the Z87010, the internal command/sta-  
tus registers can also be decoded on the pinto of the  
Z87001. Arbitration logic resolves access contentions.  
The Z87001 may access up to 64K 16 bit words of external  
ROM including 4 words for interrupt and reset vectors. The  
ROM is mapped at addresses 0000h to 3FFFh, as shown  
in Figure 13.  
The data interface allows the Z87010 processor direct ac-  
cess to the Z87001’s receive and transmit rate buffers. The  
rate buffers are decoded on the pin to of the Z87001, and  
dedicated voice processor interface logic handles the ad-  
dressing within the rate buffers.  
3FFFh  
3FFEh  
3FFDh  
3FFCh  
Int. Vector 0  
Int. Vector 1  
Int. Vector 2  
Reset Vector  
3FFFh  
The physical interface between Z87001 and Z87010 con-  
sists of an 8-bit data bus, a 3-bit address bus and control  
signals, as summarized in the following:  
64K  
USER ROM  
(EXTERNAL)  
VXDATA[7.0]  
VXADD[2.0]  
VXSTRB  
Data bus  
Address bus  
Data Strobe  
VXRWB  
Read/Write Control  
Read Control  
VXRDYB  
This bus is controlled by the Z87010. Although in the sys-  
tem the Z87010 is enslaved to the Z87001 master, at the  
physical level the Z87001 acts as a peripheral of the  
Z87010.  
0000h  
Figure 4. ROM Mapping  
The mapping of the command status and data interfaces  
from the Z87010 side is given below.  
Two 16-Bit General-Purpose I/O Ports  
Address  
Interface (VXADD [2.0])  
Read  
/Write  
Data  
(VXDATA[7.0])  
Two 16-bit general-purpose I/O ports are directly accessi-  
ble by the DSP core. These input and output pins are typ-  
ically used for:  
Transmit  
1
W
----3210  
rate buffer  
Implementation of the phone’s user interface (keypad,  
Receive  
rate buffer  
1
R
----3210  
LED, optional display, etc.)  
Command  
Status  
0
0
R
76543210  
76543210  
Control of phone line interface (on/off hook, ring detect)  
W
23  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
OPERATION  
The accumulated bias, available in BIAS_ERROR_DATA,  
can be used directly to correct the NCO frequency. Alter-  
nately, the estimated bias can be read by the DSP, further  
processed, and written to the CORE_BIAS_DATA field.  
The DSP controls which value is used by setting the  
USE_CORE_BIAS field. The selected value is added to  
the 460 kHz signal which downconverts the receive IF sig-  
nal.  
Automatic Frequency Control Loop  
(Receiver) and Modulator  
AFC Loop  
The AFC loop consists of a bias estimator block, which de-  
termines frequency offsets in the incoming signal, an  
adder, to add this bias to the 460 kHz frequency control  
word driving the NCO, and various interface points to the  
DSP core processor. In particular, the DSP can read the  
bias estimate data and substitute its own calculated bias  
value to the NCO.  
The CORE_BIAS_DATA and BIAS_ERROR_DATA are  
two’s complement numbers in units of 125 Hz.  
In addition to correcting the difference in clock frequencies  
on the receiver using the AFC loop, a Z87001-base system  
can also modify the frequency of the remote transmit IF  
signals. The software has access to this frequency through  
the MOD_FREQ register fields.  
The bias estimator accumulates the discriminator output  
values (image of instantaneous frequency) that exceed a  
programmable threshold (BIAS_THRESHOLD). The pro-  
cessor can freeze the bias calculation any time by reset-  
ting the BIAS_ENABLE control bit.  
Discriminator  
Output  
Rx signal  
Second down-  
convertor,  
Discriminator  
Bias estimator  
460 kHz  
+ bias  
“0”  
BIAS_THRESHOLD  
BIAS_ENABLE  
BIAS_ERROR_DATA  
Downconverter  
NCO and bias  
adder  
DSP Core  
Processor  
CORE_BIAS_DATA  
USE_CORE_BIAS  
Figure 5. AFC Loop and Processor Control  
24  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
OPERATION (Continued)  
Modulator Control  
Bit Synchronizer  
The MOD_FREQ fields specify the carrier center frequen-  
cy (should be programmed to 2.508 MHz) and deviation for  
the FSK signal (should be programmed to ± 32.58 kHz). In  
addition, wave shaping is performed on bit transitions, in  
order to satisfy FCC regulations. Up to four different inter-  
mediate deviation values are programmable for each of  
the two FSK states. The MOD_FREQ fields are program-  
mable in units of 62.5 Hz.  
The bit synchronizer circuit is an implementation of the  
Data-Transition-Tracking Loop (DTTL), best described in  
“Telecommunications Systems Engineering”, by W. Lind-  
sey and M. Simon (Dover 1973; oh. 9 p. 442). Its operation  
is summarized in the following block diagram.  
Table 1. AFC and Modulator Control Fields  
Field  
Register  
CONFIG1  
Bank  
EXT  
BIAS_THRESHOLD  
BIAS_ENABLE  
3
3
2
2
EXT0  
EXT2  
EXT2  
EXT4  
SSPSTATE  
BIAS_ERROR_DATA  
CORE_BIAS_DATA  
BIAS_ERROR  
CORE_BIAS  
Discriminator  
Output  
In-phase  
Matched  
Filter  
Transition  
Detection  
Signed  
Error  
Mid-phase  
Matched  
Filter  
Error  
Magnitude  
Loop Filter  
division  
“by 1”  
“by 64”  
INT_SYM_ERR0  
INT_SYM_ERR1  
Clock  
Generator  
first order  
Recovered  
Bit clock  
SECOND_ORDER  
BSYNC_GAIN  
DSP Core  
Processor  
Figure 6. Bit Synchronizer Loop and Processor Control  
25  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
The loop filter is controlled by the DSP core processor. The  
DSP core can implement a first order loop by setting the  
SECOND_ORDER field to zero. Typically, the  
BSYNC_GAIN would then be set to “divide-by-1” operation  
to provide a wide closed loop bandwidth and thus a quick  
acquisition of the bit clock. When the bit clock is in phase  
with the input data, the loop bandwidth can be narrowed to  
maintain tracking of the receive clock with minimum impact  
from signal noise. To reduce the loop bandwidth, the  
BSYNC_GAIN can be set to “divide-by-64” the first order  
gain, while the integrated tracking error (available to the  
DSP in fields INT_SYM_ERR0 and INT_SYM_ERR1) can  
be used by the DSP software to adjust the  
SECOND_ORDER term.  
Each frame lasts 4 ms, which corresponds to (372 + 8/22)  
bits; the frame counters count from 0 to 371, with the last  
count lasting a bad longer than the other ones; at the end  
of count 371, the counters wrap around to 0.  
The “hop” command pulse is asserted to pin SYLE during  
count “0” of the frame counter (transmit frame counter on  
the base station).  
Frame Synchronizer, Timings and  
RF Interface  
The frame synchronizer tracks the received frames and re-  
sets the receive frame counter. The synchronization is per-  
formed by recognizing certain data patterns present in the  
receive bit stream: a comparison is done on the fly be-  
tween the data pattern and the incoming bit stream; when  
the data match, the frame counter is reset.  
The bit synchronizer relies on transitions in the received bit  
stream to operate. The bit inversion logic guarantees  
enough transitions for all transferred data.  
Two possible 16-bit data patterns are pre-programmed in  
the Z87001. One is named UW (Unique Word) and is used  
in acquisition mode for first-time synchronization to an in-  
coming signal. UW can also be used to track an acquired  
signal. The second pattern is named SYNC_D and is used  
to track the received data frames while voice is being  
transferred. The transition from tracking UW to tracking  
SYNC_D is controlled by the DSP processor through the  
SYNC_SEARCH_WORD field.  
At the handset, the bit synchronizer must track both fre-  
quency and phase of the receive signal’s data clock. At the  
base, only the phase must be tracked. The frequency is in-  
herently correct since the base is the source of the sys-  
tem’s data clock.  
Table 2. Bit Synchronizer Control Fields  
Field  
Register  
SSPSTATE  
Bank  
EXT  
BYSNC_GAIN  
3
1
0
1
EXT2  
EXT2  
EXT6  
EXT2  
UW Synchronization  
INT_SYM_ERR1  
INT_SYM_ERR0  
BIT_SYNC  
When the Z87001 matches the UW, the receive frame  
counter is reset to the value of UW_LOCATION. This value  
is programmable by the DSP processor. On the handset,  
where the receive frame counter is used to derive all tim-  
ings, UW_LOCATION actually defines the guard time be-  
tween the frequency hop command and the beginning of  
data reception, which starts at FRAME_COUNTER =  
(UW_LOCATION - 84) as shown in the next figure.  
INT_SYM-ERR0  
SECOND_ORDER BIT_SYNC  
Frame Counters  
The handset only has one frame counter, which times all  
receive and transmit events. The base station has distinct  
transmit and receive frame counters. When used in this  
document without any explicit reference to either base or  
handset, the terms “receive frame counter” and “transmit  
frame counter” refer to both sides. For the handset, both  
terms refer to the same unique counter.  
On the base station, data reception starts when the receive  
frame counter equals (UW_LOCATION - 84), but this has  
less significance since the hop pulse is synchronized with  
the transmit frame counter and there is no fixed relation-  
ship between transmit and receive frame counters. On the  
base station, the UW_LOCATION should be set to 301.  
The frame counters are clocked at the bit rate, or 93.09  
kHz (2.048 MHz/22). Each count lasts one bit =  
1000/93.09 = 10.74 µs.  
26  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
OPERATION (Continued)  
UW_LOCATION-84  
Handset  
FRAME_COUNTER  
0
1
2
SYLE timing  
Receive data at RX pin  
Figure 7. Frame Counter and UW_LOCATION on Handset  
Two modes of search are programmable through the  
SYNC_SEARCH_MODE field: “full search” and “window  
search”. The full search is used by the handset when first  
acquiring the signal from the base station. In full search,  
the handset is in receive mode and continuously looks for  
a match with the UW. When a match is found and the time  
reference established (UW_LOCATION is set), the DSP  
processor on the handset detects the synchronization (see  
below), switches to Time Division Duplex mode (TDD) and  
starts receiving and transmitting alternately. The search  
mode should also be switched to “window search” by the  
DSP software.  
The transition to voice mode proceeds in two steps,  
through an intermediate mode. The mode is set by the  
DSP  
processor  
by  
programming  
the  
MULTIPLEX_SWITCH field. The three modes are:  
SMUX: initial mode. This mode allows acquisition, AFC  
operation, UW synchronization and signalling; ADPCM  
Processor access disabled; bit inversion disabled.  
STMUX: intermediate mode. This mode allows  
SYNC_D frame synchronization and signalling; ADPCM  
Processor access disabled; bit inversion enabled.  
TMUX: voice mode. This mode allows voice  
transmission, SYNC_D frame synchronization and  
signalling; ADPCM Processor access enabled; bit  
inversion enabled.  
The window search mode only searches for a match in a  
certain time window centered around the expected match  
time. The window size is programmable by the DSP pro-  
cessor in the WINDOW_SIZE field. If the matching does  
not occur at the expected time, due to so-called “bit slips”,  
the receive frame counter timing is adjusted. Note: al-  
though the bit synchronizer is meant to keep track of time  
and prevent bit slips when the phone is operating continu-  
ously in TDD mode, bit slips are still possible when the  
handset is in standby mode, and only receives once in a  
while (see description of sleep mode).  
In order to detect synchronizations, the software has ac-  
cess to the SYNC_ACQ_IND status field. This field is set  
by the Z87001 matching hardware every time a match is  
detected within the right time window. The software must  
reset the “IND” bit by setting the SYNC_ACQ_CLEAR  
field.  
In addition, the software can track the frame timing by  
reading the frame counter value, available in the  
FRAME_COUNTER field. On the base station, where two  
frame counters are in use, this field returns the value of the  
transmit frame counter.  
SYNC_D Synchronization  
When the DSP processor switches the Z87001 operation  
to voice mode, the frame synchronization parameters  
should be modified by the DSP software to:  
Every time the frame counter wraps around to 0, a frame  
start indicator bit is set (FRAME_START_IND status field).  
The software must reset this “IND” bit by setting the  
FRAME_START_CLEAR field. If the FS_INT_ENABLE bit  
is set, frame starts also trigger interrupts to the DSP pro-  
cessor.  
SYNC_SEARCH_MODE = window search  
SYNC_SEARCH_WORD = SYNC_D pattern  
In this mode, the receiver searches for the SYNC_D pat-  
tern in windows of the incoming data stream. The window  
size is determined by the WINDOW_SIZE field.  
27  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
The following table summarizes the fields allowing control  
of frame synchronization and basic frame timing.  
In addition to the SYLE signal, the interface to the most RF  
synthesizers includes two more input lines, “data” and  
“clock”, for serial programming of the data values defining  
the RF channel. In order to allow interfacing to various  
popular synthesizers, the Z87001 does not have dedicated  
clock and data lines with fixed timing. Instead, two general  
I/O pins from ports P0 and P1 can be controlled in software  
by the DSP core to realize any particular interface timing.  
This flexibility is made possible by the high speed, single-  
cycle architecture of the DSP core.  
Table 3. Frame Synchronizer Control Fields  
Field  
Register  
Bank Ext  
SYNC_SEARCH-MODE  
SYNC_SEARCH_WORD  
UW_LOCATION  
SSPSTATE  
3
3
2
3
3
3
3
3
1
3
3
3
EXT2  
EXT2  
EXT1  
EXT0  
EXT2  
EXT3  
EXT2  
EXT3  
EXT6  
EXT3  
EXT2  
EXT2  
SSPSTATE  
RX_CONTROL  
CONFIG1  
WINDOW_SIZE  
MULTIPLEX_SWITCH  
SYNC_ACQ_IND  
SSPSTATE  
SSPSTATUS  
SSPSTATE  
SSPSTATUS  
CONTROL  
SSPSTATUS  
SSPSTATE  
SSPSTATE  
The transmitter control includes a global enable signal for  
all transmit functions: TX_ENABLE. The transmission start  
is controlled by the MOD_PWR_ON field. On the base sta-  
tion, the value programmed in MOD_PWR_ON is refer-  
enced to the transmit frame counter.  
SYNC_ACQ_CLEAR  
FRAME_COUNTER  
FS_INT_ENABLE  
FRAME_START_IND  
FRAME_START_CLEAR  
SYNC_SEARCH-MODE  
Two  
additional  
fields,  
RFTX_PWR_ON  
and  
RFTX_PWR_OFF, define the duty cycle of the PAON out-  
put pin. On the base station, these fields are referenced to  
the transmit frame counter. The RFTX_POLARITY bit de-  
fines the polarity of the PAON pin. This pin can be used to  
control the transmit section and power amplifier of the ex-  
ternal RF module.  
RF Interface  
Several control fields are available in the Z87001 register  
set to control the timing and polarity of the RF module in-  
terface signals.  
On the receive side, two fields define the internal timing of  
the receiver. The start of reception is controlled by the  
DEMOD_PWR_ON field. Stop of reception (and receiver  
power down) is controlled by the DEMOD_PWR_OFF  
field. On the base station, these fields are referenced to  
the receive frame counter. The RXSW output pin follows  
the timing defined by the DEMOD_PWR_ON and OFF  
fields.  
A first field, RFEON_POLARITY, controls the polarity of  
the RFEON pin. This pin should be used to control the  
power of the RF module. It is asserted by the Z87001 when  
the RF module is in use, and de-asserted in sleep mode.  
The sleep mode is used by the handset to save battery life  
when no phone call is in process (See “Sleep mode”, be-  
low).  
Two  
additional  
fields,  
RFRX_PWR_ON  
and  
The SYLE pin (Synthesizer Load Enable), which carries a  
“load enable” pulse that tells an external RF synthesizer to  
generate the next RF channel, is controlled by two fields.  
The HOP_ENABLE field is a global enable signal for the  
SYLE signals. The SYLE_POLARITY field defines the po-  
larity of the SYLE pin. The system designer should ensure  
that the leading edge of the SYLE pulse triggers channel  
hopping.  
RFRX_PWR_OFF, define the duty cycle of the TXSW out-  
put pin. On the base station, these fields are referenced to  
the TRANSMIT (!) frame counter. The RFRX_POLARITY  
bit defines the polarity of the TXSW and RXSW pins. The  
TXSW pin can be used to control the receive section of the  
external RF module.  
The various timing control registers reviewed in this para-  
graph should be programmed differently for handset and  
base station. If the same ROM code is used on base and  
handset, the software can determine which station it runs  
on by reading the HAND_BASE_SEL bit, which reflects  
the state of the HBSW pin.  
28  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
OPERATION (Continued)  
The following figure and table summarize the RF interface  
control fields.  
HBSW  
HAND_BASE_SEL  
Sleep Mode  
Control  
RFEON  
RFEON_POLARITY  
DSP Core  
Processor  
HOP_ENABLE  
SYLE  
PAON  
SYLE_POLARITY  
RFTX_PWR_ON  
RFTX_PWR_OFF  
RFTX_POLARITY  
MOD_PWR_ON  
Modulator  
TX_ENABLE  
TX  
RFRX_PWR_ON  
RFRX_PWR_OFF  
RFRX_POLARITY  
TXSW  
DEMOD_PWR_ON  
DEMOD_PWR_OFF  
RXSW  
Demodulator  
RX,VREF  
Figure 8. RF interface Control  
Table 4. Timing and RF Interface Control Fields  
Register  
Field  
RFEON_POLARITY  
Bank  
Ext  
RX_PWR_CTRL  
SSPSTATE  
2
3
3
3
2
0
2
0
2
2
3
EXT6  
EXT2  
EXT0  
EXT2  
EXT5  
EXT7  
EXT6  
EXT7  
EXT7  
EXT7  
EXT3  
HOP_ENABLE  
SYLE_POLARITY  
TX_ENABLE  
CONFIG1  
SSPSTATE  
MOD_PWR_ON  
MOD_PWR_CTRL  
RFRX_PWR_CTRL  
DEMOD_PWR_CTRL  
RFRX_PWR_CTRL  
RFTX_PWR_CTRL  
RFTX_PWR_CTRL  
SSP_STATUS  
RFRX_PWR_ON/OFF  
DEMOD_PWR_ON/OFF  
RFRX_POLARITY  
RFTX_PWR_ON/OFF  
RFTX_POLARITY  
HAND_BASE_SEL  
29  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
Sleep Mode  
Clock Interface  
To save the phone’s battery life on the handset, the  
Z87001 can be operated in sleep mode while the phone is  
not in use. The sleep mode is entered by software com-  
mand. The sleep mode first needs to be enabled by setting  
the SLEEP_WAKE field. Then a GO_TO_SLEEP com-  
mand puts the processor to sleep by temporarily stopping  
its clock. The sleep period can be set to last between 4 ms  
and 1.02 s by programming the SLEEP_PERIOD field. In  
sleep mode, the RFEON pin is de-asserted.  
The Z87001 generates the Z87010 clock at 16.384 or  
8.192 MHz, as set in VP_CLOCK. In addition, the clock  
can be stopped and restarted with the VP_STOP_CLOCK  
field in order to reduce power consumption (Note: a soft-  
ware handshaking between Z87001 and Z87010 is neces-  
sary before stopping and after restarting the clock).  
In addition to providing the Z87010 main clock, the Z87001  
generates a CODCLK signal which will be used by the co-  
dec and by the Z87010 to synchronize its data transfers  
with the Z87001. On the base station, the CODCLK is sim-  
ply obtained by dividing the 16.384 MHz input clock.  
The processor comes out of sleep mode in one of two  
ways. Either the sleep counter counts down to zero, or one  
of the enabled pins from port P0 is asserted prior to normal  
expiration of the counter. Four port pins (P0[0..4]) can be  
individually enabled to provide the wake-up function by  
setting the appropriate bits in P0_WAKE_ENABLE. Typi-  
cally, these port pins are connected to the telephone key-  
pad.  
On the handset, the CODCLK is synchronized to the base  
station’s CODCLK signal through the receive bit sync log-  
ic. This ensures that production and consumption of voice  
data is happening at identical rates on handset and base,  
eliminating buffer overrun and underrun situations.  
Command/Status Interface  
When the processor core wakes up, the software needs to  
know how much time it was actually asleep, in order to re-  
store synchronization to the base station’s hopping se-  
quence. For that purpose, the current value of the sleep  
The Z87001 sends commands to the Z87010 through the  
VP_COMMAND write-only field. It reads the Z87010 sta-  
tus in the VP_STATUS read-only field. Both fields are lo-  
cated at the same address in the Z87001 register inter-  
face. A communication protocol should be established in  
software to ensure correct reception of all commands.  
Dedicated hardware ensures data integrity when both  
Z87001 and Z87010 simultaneously access the same reg-  
ister.  
counter  
is  
available  
to  
the  
processor  
in  
SLEEP_REMAINING. A value of zero indicates normal ex-  
piration of the sleep counter.  
In order to guarantee a good operation of the wake-up  
pins, the wake-up signals are hardware-denounced by the  
Z87001. Furthermore, these signals are internally syn-  
chronized to the bit clock. This ensures that the processor  
has enough time (one bit time = 10.74 ms) to read a stable  
value of the remaining sleep time and synchronize correct-  
ly to the base station’s hopping sequence.  
Table 6. ADPCM Processor Control Fields  
Field  
VP_CLOCK  
Register  
Bank  
Ext  
CONFIG1  
3
3
2
2
EXT0  
EXT2  
EXT0  
EXT0  
VP_STOP_CLCOCKS SSPSTATE  
Table 5. Sleep Mode Control Fields  
VP_COMMAND  
VP_STATUS  
VP_INOUT  
VP_INOUT  
Field  
Register  
SSPSTATE  
SSPSTATE  
CONFIG2  
Bank  
Ext  
SLEEP_EAKE  
3
3
3
3
1
EXT2  
EXT2  
EXT1  
EXT1  
EXT6  
GO_TO_SLEEP  
Data Interface and Rate Buffers  
SLEEP_PERIOD  
The digitized voice data is communicated between the  
Z87001 and Z87010 through the rate buffers and ADPCM  
Processor data interface. The transmit and receive rate  
buffers each contain 36 4-bit nibbles.  
SLEEP_REMAINING  
P0_WAKEUP_ENABLE  
CONFIG2  
CONTROL  
ADPCM Processor Interface and Rate Buffers  
To write to the transmit rate buffer, the Z87001 core pro-  
cessor must first set the nibble address in the  
TX_BUF_ADDR register field, then write the nibble data  
through TX_BUF_DATA. If the TX_AUTO_INCREMENT  
bit is set, the address is automatically incriminated (modu-  
lo 51 = the number of nibbles in rate buffer + 15 additional  
data words accessible through TX_BUF_DATA; for more  
information, see Register Description) after each data  
write. This allows the DSP core to write successive nibbles  
without resetting the address each time.  
The interface to the ADPCM Processor (Z87010) consists  
of clock control, command/status interface and data inter-  
face. The data interface gives the ADPCM Processor ac-  
cess to the rate buffers.  
30  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
OPERATION (Continued)  
The operation of the receive rate buffer is identical. The  
Z87001 core processor must set the nibble address in  
TX_BUF_VP_ADDR and RX_BUF_VP_ADDR register  
fields. After the Z87010 writes or reads a nibble to or from  
transmit or receive rate buffer, the corresponding  
“VP_ADDR” is automatically incriminated (modulo 36) to  
the next accessible address. The locations of accessible  
addresses are individually controlled by the Z87001 in the  
three TX_RX_NIBBLE_MARKER register fields. A marker  
bit equal to “1” enables the Z87010 to access the corre-  
sponding address; a bit equal to “0” causes the Z87010’s  
read or write access to skip to the next nibble that has a  
marker bit equal to “1”.  
RX_BUF_ADDR,  
then  
read  
the  
nibble  
from  
RX_BUF_DATA. If the RX_AUTO_INCREMENT bit is set,  
the read address is automatically incriminated (modulo 36  
= number of nibbles in rate buffer) after each data read.  
This allows the DSP core to read successive nibbles with-  
out resetting the address each time.  
Through its register interface, the Z87001 also controls  
which rate buffer addresses the Z87010 ADPCM Proces-  
sor can access. The nibble addresses are contained in the  
Z87001  
RX RATE BUFFER  
Demodulator  
RX_BUF_VP_ADDR  
TX_RX_NIBBLE_  
MARKER  
Address  
Decoder  
TX_BUF_VP_ADDR  
TX RATE BUFFER  
Modulator  
Data  
ADPCM Proc.  
Interface  
RX_BUF_ADDR  
RX_AUTO_INCR.  
Addr  
Ctrl  
TX_BUF_ADDR  
TX_AUTO_INCR.  
RX_BUF_DATA  
TX_BUF_DATA  
DSP Core  
Processor  
VP_COMMAND  
VP_STATUS  
Figure 9. Rate Buffers Access and ADPCM Processor Interface  
31  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
Table 7. Data and Control Access to Rate Buffers  
Field  
Register  
Bank  
Next  
EXT0  
RX_AUTO_INCREMENT  
RX_BUF_ADDR  
RATE_BUF_ADDR  
RATE_BUF_ADDR  
RATE_BUF_ADDR  
RATE_BUF_ADDR  
RATE_BUF_DATA  
RATE_BUF_ADDR  
RATE_BUF_DATA  
RATE_BUF_DATA  
RATE_BUF_DATA  
RATE_BUF_DATA  
1
1
1
1
1
1
1
1
1
1
EXT0  
EXT0  
EXT0  
EXT0  
EXT1  
EXT1  
EXT1  
EXT1  
EXT1  
TX_AUTO_INCREMENT  
TX_BUF_ADDR  
RX_BUF_DATA  
TX_BUF_DATA  
TX_BUF_DATA  
RX_BUF_VP_ADDR  
TX_BUF_VP_ADDR  
TX_RX_NIBBLE_MARKER  
ADDITIONAL FEATURES  
Power Control  
General-Purpose I/O Ports  
The Z87001 features several means of measuring and  
controlling power levels. One input pin (RSSI) connects an  
external “receive signal strength indicator” to a half flash 8-  
bit ADC in the Z87001. This ADC is sampled once per  
frame during the receive portion of the TDD cycle. The  
RSSI value can be accessed in software in the  
RSSI_DATA register field. With external multiplexing, the  
8-bit ADC can be used for additional purposes.  
The Z87001 includes two general-purpose input/output  
ports, P0 and P1, of 16 bit each. The direction of each bit  
is independently programmable by setting the register  
fields DIRECTION0 and DIRECTION1. Then, the software  
can access the input and output values by accessing  
DATA0 and DATA1.  
Two pins of port P1 (pins 14 and 15), when configured in  
input mode, also behave as interrupt pins for the core pro-  
cessor. The software can enable or disable each interrupt  
The RSSI data is used by the software to implement adap-  
tive power control. In order to determine whether the RSSI  
information is made of signal or noise, the Z87001 includes  
logic to measure the signal-to-noise ratio (SNR) of the re-  
ceive signal. This SNR value is available at the end of ev-  
ery frame in the SNR_ESTIMATE register field. It is also  
used by the adaptive frequency hopping algorithm to de-  
termine and avoid the noisy channels.  
by  
setting  
the  
INTERRUPT_0_ENABLE  
and  
INTERRUPT_2_ENABLE fields. The interrupts are posi-  
tive edge-triggered.  
Pin  
Number  
Interrupt  
Number  
DSP Interrupt  
Vector  
P1 14  
P1 15  
INT0  
INT2  
3FFFh  
3FFDh  
Finally, a 4-bit DAC (resistive ladder) is provided to control  
RF power output level. The DAC is under software control  
through register field TX_PWR_DAC_DATA.  
Table 8. Power Control  
Table 9. General-Purpose I/O Ports  
Field Register Bank  
Field  
Register  
Bank Ext  
Ext  
RSSI_DATA  
RSSI  
2
2
1
2
2
EXT3  
EXT1  
EXT6  
EXT3  
EXT3  
DIRECTION0  
GPI00DIR  
GPI00DATA  
GPI0IDIR  
3
3
3
3
1
1
EXT4  
EXT5  
EXT6  
EXT7  
EXT6  
EXT6  
SNR_ESTIMATE  
TX_PWR_DAC_DATA  
RSSI_DATA  
RX_CONTROL  
CONTROL  
RSSI  
DATA0  
DIRECTION1  
DATA1  
GPI0IDATA  
SNR_ESTIMATE  
RX_CONTROL  
INTERRUPT_0_ENABLE CONTROL  
INTERRUPT_1_ENABLE CONTROL  
Four pins of port P0 (pins 0 to 3), when configured in input  
mode, can also be individually programmed as wake-up  
pins for the Z87001 (See “Sleep mode”, above).  
32  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
REGISTER DESCRIPTION  
The Z87001 DSP core processor has four banks of eight  
registers mapped in the core processor’s “external regis-  
ter” space, as summarized in the following table.  
1
Table 10. Register Summary  
BANK ADDRESS  
REGISTER  
CONFIG1  
READ DESCRIPTION  
WRITE DESCRIPTION  
TABLE #  
Bank 3  
EXT0  
Clock Dividers, Use Core Bias, Table 25  
SYLE polarity, search window  
size, Bias Threshold  
EXT1  
EXT2  
CONFIG2  
Remaining Sleep time  
ANT0/1 control, Sleep Period Table 26  
SSPSTATE  
Stop VP clock, Absent gain, Bias Enable, Tx Enable, Sync  
Search control, Hop Enable, Frame Start control, Multiplex  
control, Sleep mode control  
Table 27  
EXT3  
SSPSTATUS  
Frame Counter, Handset/Base,  
Sync Search control, Frame  
Start control  
Table 28  
EXT4  
EXT5  
EXT6  
EXT7  
EXT0  
EXT1  
EXT2  
EXT3  
EXT4  
EXT5  
EXT6  
EXT7  
EXT0  
EXT1  
GPIO0DIR  
General-Purpose I/O port 0 direction control  
General-Purpose I/O port 0 data  
Table 29  
Table 30  
Table 31  
Table 32  
GPIO0DATA  
GPIO1DIR  
General-Purpose I/O port 1 direction control  
General-Purpose I/O port 1 data  
GPIO1DATA  
Bank 2  
VP_INOUT  
ADPCM Processor Status  
SNR estimate  
ADPCM Processor Command Table 33  
RX_CONTROL  
BIAS_ERROR  
RSSI  
UW location  
Table 34  
Table 35  
Table 36  
Table 37  
Table 38  
FCW value  
8-bit ADC data (RSSI)  
CORE_BIAS  
Core Bias data  
MOD_PWR_CTRL  
DEMOD_PWR_CTRL  
RFTX_PWR_CTRL  
RATE_BUF_ADDR  
RATE_BUF_DATA  
MOD_PWR control  
RXSW, RFEON pin control Table 39  
PAON pin control  
Table 40  
Table 41  
Bank 1  
Rate Buffer address  
Re Rate Buffer data  
Bit Sync monitoring  
Tx Rate Buffer data, control Table 42  
data  
EXT2  
EXT3  
EXT4  
EXT5  
EXT6  
EXT7  
EXT0  
EXT1  
EXT2  
EXT3  
EXT4  
EXT5  
EXT6  
EXT7  
BIT_SYNC  
Bit Sync control  
Table 43  
Table 44  
Table 44  
Table 44  
Table 45  
Table 46  
Table 47  
Table 47  
Table 47  
Table 47  
Table 47  
Table 47  
Table 47  
Table 49  
RESERVED  
RESERVED  
RESERVED  
CONTROL  
INT, WAKEUP pin control, 4-bit DAC data (PWLV)  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
INT_SYM_ERR0  
RFRX_PWR_CTRL  
Bank 0  
Bit Sync monitoring  
TXSW, RXSW pin control  
DS96WRL0800  
P R E L I M I N A R Y  
33  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
REGISTER DESCRIPTION (Continued)  
The bank is selectable in software by writing to the core’s  
status register (see Table 24). Once a bank is selected,  
each of the eight external registers (EXT0 through EXT7)  
can be accessed by a single-cycle software instruction.  
Table 11. Bank Switching  
Bank  
Status Register  
Bank Function  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
xxxx xxxx x00x xxxx b  
xxxx xxxx x01x xxxx b  
xxxx xxxx x10x xxxx b  
xxxx xxxx x11x xxxx b  
Test point access, TDD switching control  
Rate buffer access, miscellaneous  
ADPCM processor interface, RF interface, etc.  
Configuration, status, general-purpose port data and direction  
Bank 3 Registers  
Table 12. Bank 3 Registers  
EXT0  
Config 1  
Field  
Bank 3  
Bit Position  
R/W  
Data Description  
RESERVED  
f---------------  
R
Returns 0  
W
Must be set to 1  
VP_CLOCK  
-e--------------  
Controls CLKOUT output pin (clock for ADPCM Processor).  
Returns 0  
0
1
CLOCKOUT=16.384 MHz  
CLOCKOUT = 8.192  
USE_CORE_BIAS --d-------------  
SYLE_POLARITY ---c------------  
Controls which bias value is used by the downconverter’s  
NCO as part of the automatic frequency control loop (AFC)  
Returns 0  
R
W
0* Uses BIAS_ERROR_DATA value from AFC hardware  
1
Uses CORE_BIAS_DATA value from DSP core  
Controls the polarity of the SYLE output pin (hop pulse)  
Returns 0  
R
W
0
1
SYLE is a positive pulse  
SYLE is a negative pulse  
WINDOW_SIZE  
----ba98--------  
Defines the search window size (in bits) for windowed search  
mode (for Unique Word or SYNC_D words).  
Returns 0  
R
W
0000 Window size=1  
0001 Window size =3 (1±1)  
•••  
1111 Window size = 31 (1± 15)  
BIAS_THRESHOL -------76543210  
D
Bias estimator threshold value  
Returns 0  
R
W
XXh Sets the bias value  
Notes:  
1. VP_CLOCK. Internally synchronized to avoid glitches. Changes to this bit take effect immediately.  
2. SYLE_POLARITY. Changes to this bit take effect immediately.  
3. BIAS_THRESHOLD. The bias threshold must be coded as a negative value  
(opposite of the threshold value) coded in 2’s complement. The nominal value for the  
threshold is -46 (=D3h). Internally, this value is sign-extended to 13 bits.  
34  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
Table 13. Bank 3 Register EXT1  
Config 2  
Field  
Bank 3  
Bit Position  
EXT1  
R/W Data  
Description  
1
ANTENNA_SW_DEFEAT f---------------  
Controls optional antenna switching  
(ANT0 and ANT1 pins)  
Returns 0  
R
W
0
1
Enables antenna switching  
Disables antenna switching  
ANTENNA_SW_OFFSET -edcba98--------  
Controls antenna switching time advancement  
Returns 0  
R
Offset in number of 2.048 MHz clock cycles  
W
xXh (<108)  
SLEEP_PERIOD  
--------76543210  
--------76543210  
W
00h Programs sleep duration in sleep mode Illegal  
01h Sleep period=1 frame (4 ms)  
•••  
FFh Sleep period = 255 frames (1.020s)  
SLEEP_REMAINING  
Returns value of sleep counter when sleep mode  
is interrupted by a “wake” signal  
R
00h Normal expiration of sleep counter  
01h One frame left before normal expiration  
•••  
FFh 255 frames left before normal expiration  
Notes:  
1. SLEEP_PERIOD. In sleep mode, the RFEON pin is active. Changes to this bit take effect immediately.  
2. SLEEP_REMAINING. A non-zero value indicates that the Z87001 was awakened by a key press activating one of the wake-up  
pins on port 0. In this case, the processor should immediately reset the SLEEP_WAKE field in SSPSTATE to prevent the pro-  
cess from going back to sleep when the user key press ceases.  
DS96WRL0800  
P R E L I M I N A R Y  
35  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
REGISTER DESCRIPTION (Continued)  
Table 14. Bank 3 Register Description  
SSPSTATE  
Field  
Bank 3  
Bit Position  
EXT2  
R/W Data Description  
SW_SYLE  
f---------------  
-e--------------  
--d-------------  
Controls accelerated synthesizer programming after sleep  
Not Active  
Active  
R/W 0*  
1
STOP_CODCLK  
DBP_STOP_CLOCK  
Inhibits toggling of codec clock output during sleep  
CODCLK is free running  
CODCLK is frozen high  
R/W 0*  
1
Controls toggling of CLKOUT output pin (clock for ADPCM  
Processor).  
R/W 0*  
1
CLKOUT is free running  
CLKOUT is frozen high  
BSYNC_GAIN  
BIAS_ENABLE  
TX_ENABLE  
---c------------  
----b-----------  
-----a----------  
Selects gain for first order loop of the bit synchronizer  
Nominal gain  
Gain divided by 64  
R/W 0*  
1
Controls closed-loop AFC circuit  
No new bias estimation is performed (latest estimate used)  
Enables BIAS_ERROR_DATA updates  
R/W 0*  
1
Global enable for all transmit functions  
Transmitter disabled  
Transmitter enabled  
R/W 0*  
1
SYNC_SEARCH_WORD ------9---------  
Controls the word searched for in search mode  
Search for UW pattern (Unique Word)  
Search for SYNC_D pattern  
R/W 0*  
1
SYNC_SEARCH_MODE -------87-------  
Controls the search mode (and frame synchronization)  
No search  
R/W 00*  
01  
10  
11  
Window search (<= UW_LOCATION & WINDOW_SIZE)  
Full search (during whole frame)  
Not used  
HOP_ENABLE  
---------6------  
----------5-----  
Enables transmission of the hop pulse on SYLE pin  
Hop pulse disabled  
Hop pulse enabled  
R/W 0  
1
SYNC_ACQ_CLEAR  
Clears the SYNC_ACQ_IND flag.  
Returns last value written  
R
W
1->0 A transition from 1 to 0 clears the flag  
FRAME_START_CLEAR -----------4----  
Clears the FRAME_START_IND flag  
Returns last value written  
R
W
1->0 A transition from 1 to 0 clears the flag  
SLEEP_WAKE  
------------3---  
Enable bit for entering sleep mode  
R/W 0  
1
Wake mode only  
Sleep mode can be activated by GO_TO_SLEEP  
command  
MULTIPLEX_SWITCH  
-------------21-  
Controls operation of the transceiver  
SMUX (bit inversion and ADPCM Processor access  
disabled)  
STMUX (bit inv. enabled; ADPCM Proc. access disabled)  
Reserved  
R/W 00*  
01  
10  
11  
TMUX (bit inversion and ADPCM Processor access  
enabled)  
36  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
Table 14. Bank 3 Register Description  
SSPSTATE  
Field  
Bank 3  
Bit Position  
EXT2  
R/W Data Description  
1
GO_TO_SLEEP  
--------------0  
Command bit to place the Z87001 in sleep mode  
Returns last value written  
R
W
0->1 A transition from 0 to 1 causes Z87001 sleep mode  
TX_ENABLE  
-----a----------  
------9---------  
-------87-------  
Global enable for all transmit functions  
Transmitter disabled  
Transmitter enabled  
R/W 0*  
1
SYNC_SEARCH_WORD  
SYNC_SEARCH_MODE  
Controls the word searched for in search mode  
Search for UW pattern (Unique Word)  
Search for SYNC_D pattern  
R/W 0*  
1
Controls the search mode (and frame synchronization)  
No search  
R/W 00*  
01  
10  
11  
Window search (<= UW_LOCATION & WINDOW_SIZE)  
Full search (during whole frame)  
Not used  
HOP_ENABLE  
---------6------  
----------5-----  
-----------4----  
------------3---  
-------------21-  
Enables transmission of the hop pulse on SYLE pin  
Hop pulse disabled  
Hop pulse enabled  
R/W  
0
1
SYNC_ACQ_CLEAR  
FRAME_START_CLEAR  
SLEEP_WAKE  
Clears the SYNC_ACQ_IND flag.  
Returns last value written  
A transition from 1 to 0 clears the flag  
R
W
1->0  
1->0  
Clears the FRAME_START_IND flag  
Returns last value written  
A transition from 1 to 0 clears the flag  
R
W
Enable bit for entering sleep mode  
Wake mode only  
Sleep mode can be activated by GO_TO_SLEEP command  
R/W  
0
1
MULTIPLEX_SWITCH  
Controls operation of the transceiver  
R/W 00*  
SMUX (bit inversion and ADPCM Processor access disabled)  
STMUX (bit inv. enabled; ADPCM Proc. access disabled)  
Reserved  
01  
10  
11  
TMUX (bit inversion and ADPCM Processor access enabled)  
GO_TO_SLEEP  
---------------0  
Command bit to place the Z87001 in sleep mode  
Returns last value written  
R
W
0->1  
A transition from 0 to 1 causes Z87001 sleep mode  
Notes:  
1. DBP_STOP_CLOCK. When this bit is set to 1, the ADPCM Processor clock (CLKOUT) is stopped within two clock periods. When  
this bit is set to 0, the ADPCM Processor clock restarts within two clock periods; in every case, the ADPCM Processor clock min-  
imum specifications for high time and low time are respected.  
2. BSYNC_GAIN. Changes to this bit take effect immediately.  
BIAS_ENABLE. This bit is a global enable for the Automatic Frequency Control. When the bit is set, the AFC hardware updates  
the current BIAS_ERROR_DATA during specific time windows, controlled by the event trigger hardware and suitable for a good  
operation of the AFC. When the bit is reset, the AFC operation is suspended. However, the current BIAS_ERROR_DATA, result-  
ing from previous bias estimations, can still be used to bias the downconverter NCO. Changes to the BIAS_ENABLE bit take effect  
at the beginning of the frame following the change.  
3. TX_ENABLE. Global control for all system transmit functions, including PAON pin control (timing set by the RFTX_PWR_ON/OFF  
register fields) and power to the modulator and NCO (timing set by MOD_PWR_ON and the wake/sleep modes).  
4. Changes to this bit take effect immediately.  
5. HOP_ENABLE. Changes to this bit take effect immediately.  
6. SLEEP_WAKE. This bit must be set to enable the core to put itself to sleep via the GO_TO_SLEEP command. The SLEEP_WAKE  
bit must be reset to prevent the core to fall back to sleep after it is awaken by one of the Port 0 Wake-up pins when the sleep period  
has not expired. If the bit is not reset, the core will fall right back to sleep when the wake-up input is de-asserted (note that by  
design, a wake-up input has a minimum of 10 ms duration, to allow the software enough time to safely reset the SLEEP_WAKE  
bit).  
7. SYNC_AQC_CLEAR. This bit must be set to “1” again after every “clear” operation to allow for the next “clear”.  
8. FRAME_START_CLEAR. This bit must be set to “1” again after every “clear” operation to allow for the next ?“clear”.  
DS96WRL0800  
P R E L I M I N A R Y  
37  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
REGISTER DESCRIPTION (Continued)  
Table 15. Bank 3 Register Description  
EXT3  
SSPSTATUS  
Field  
Bank 3  
Bit Position  
R/W  
Data  
Description  
FRAME_COUNTER  
fedcba987------  
Current frame counter value  
R
00h First value at beginning of frame (0)  
...  
173h Last value at end of frame (371)  
...  
Illegal values  
No effect  
W
RESERVED  
---------65----  
-----------4---  
R
W
Returns 0  
No effect  
HAND_BASE_SEL  
Reflects status of Handset/Base select pin (HBSW)  
Base (HBSW = 0)  
Handset (HBSW = 1)  
R
0
1
W
No effect  
SYNC_ACQ_IND  
------------3--  
Indicates detection of a Sync word (UW or SYNC_D  
depending on SYNC_SEARCH_WORD search mode)  
No sync word detected  
Sync word detected  
R
W
0
1
No effect  
FRAME_START_IND ------------2--  
Indicates start of a new frame  
No start of new frame (1 written to  
FRAME_START_CLR)  
New frame started  
R
0
1
W
No effect  
RESERVED  
-------------10  
R
W
Returns 0  
No effect  
Notes:  
FRAME_COUNTER. Read the double-buffered current value of the Frame Counter.  
On the handset, a single frame counter is used to clock transmit and receive events.  
On the base station, the transmit frame counter value is returned  
Table 16. Bank 3 Register Description  
GPIO0DIR  
Field  
Bit 3  
Bit Position  
EXT4  
R/W  
Data Description  
Independent control of Port 0 pin direction  
DIRECTION0  
fedcba9876543210  
R/W  
..0. Sets pin in input mode  
..1. Sets pin in output mode  
38  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
Table 17. Bank 3 Register Description  
GPIO0DATA  
Field  
Bank 3  
Bit Position  
EXT5  
R/W  
Data  
Description  
Access to Port 0 data  
XXXXh Reads pin values  
XXXXh Writes output pin values  
1
DATA0  
fedcba9876543210  
R
W
Notes:  
DATA0. The read value returns the actual pin values and does not depend on the pin directions  
(i.e. for output pins, the output value is returned unless a contention occurs).  
Table 18. Bank 3 Register Description  
GPIO1DIR  
Field  
Bank 3  
Bit Position  
EXT6  
R/W  
Data  
Description  
DIRECTION1  
fedcba9876543210  
Independent control of Port 1 pin direction  
R/W  
..0. Pin in input mode  
..1. Pin in output mode  
Table 19. Bank 3 Register Description  
EXT7  
GPIO1DATA  
Field  
Bank 3  
Bit Position  
R/W  
Data  
Description  
Access to Port 1 data  
XXXXh Reads pin values  
XXXXh Writes output pin values  
DATA1  
fedcba9876543210  
R
W
Notes:  
DATA1. The read value returns the actual pin values and does not depend on the pin directions  
(i.e. for output pins, the output value is returned unless a contention occurs)  
DS96WRL0800  
P R E L I M I N A R Y  
39  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
Bank 2 Registers  
Table 20. Bank 2 Register Description  
EXT0  
VP_INOUT  
Field  
Bank 2  
Bit Position  
R/W  
Data  
Description  
RESERVED  
fedcba98--------  
R
W
Returns 0  
No effect  
VP_STATUS  
--------76543210  
Access to ADPCM Processor’s Command/Status  
mailbox  
R
XXh Reads Status byte from ADPCM Processor  
VP_COMMAND  
--------76543210  
Access to ADPCM Processor’s Command/Status  
mailbox  
W
XXh Writes Command byte to ADPCM Processor  
Table 21. Bank 2 Register Description  
EXT1  
RX_CONTROL  
Field  
Bank 2  
Bit Position  
R/W  
Data  
Description  
SNR_ESTIMATE  
UW_LOCATION  
Notes:  
fedcba9876543210  
Access to channel measurement (SNR) estimate  
Returns the SNR value  
R
XXXXh  
-------876543210  
Location of the Unique Word  
XXXXh Initializes the value that the receive frame counter  
is set to on detection of the Unique Word  
W
SNR_ESTIMATE. This value is updated every frame. It should be read by  
the software during the frequency hopping guard time of the next frame.  
Table 22. Bank 2 Register Description  
BIAS_ERROR  
Field  
Bank 2  
Bit Position  
EXT2  
R/W  
Data  
Description  
BIAS_ERROR_DATA  
fedcba9876543210  
Access to the bias estimate from the AFC loop.  
R
W
XXXXh Current bias estimate value  
No effect  
Notes:  
BIAS_ERROR_DATA. This value is used to bias the downconverter’s NCO if the USE_CORE_BIAS register field is reset. It is en-  
coded as a 2’s complement number. The unit is 125 Hz  
.
40  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
Table 23. Bank 2 Register Description  
RSSI  
Field  
Bank 2  
Bit Position  
EXT3  
R/W  
Data  
Description  
1
RESERVED  
fedcba98--------  
R
W
Returns 0  
No effect  
RSSI_DATA  
-------76543210  
Access to 8-bit ADC (can be used for RSSI data)  
R
W
XXh Returns latest value on 8-bit DAC  
No effect  
Note:  
RSSI_DATA. This value is sampled once per frame (4ms) approximately at bit 72 (middle) of the received data.  
Table 24. Bank 2 Register Description  
CORE_BIAS  
Field  
Bank 2  
Bit Position  
EXT4  
R/W  
Data  
Description  
RESERVED  
fed-------------  
R
W
Returns 0  
No effect  
CORE_BIAS_DATA  
---cba9876543210  
Stores bias value for correction of downconverter’s  
NCO.  
R
Returns 0  
W
xXXXh Updates bias value  
Notes:  
CORE_BIAS_DATA.This value is used if the USE_CORE_BIAS register field is set. It is encoded as a 2’s complement number.  
The unit is 125 Hz.  
Table 25. Bank 2 Register Description  
MOD_PWR_CTRL  
Field  
Bank 2  
Bit Position  
EXT5  
R/W  
Data  
Description  
RESERVED  
f---------------  
R
W
Returns 0  
No effect  
MOD_PWR_ON  
-edcba98--------  
Determines modulator turn-on time referenced to the  
transmit frame counter  
R
Returns 0  
W
xXh Bits 6-0 of turn-on time (=(x modulo 128) -1)  
RESERVED  
--------76543210  
R
W
Returns 0  
No effect  
Notes:  
1. MOD_PWR_ON. Controls the turn-on time for the internal modulator and NCO. Only the 7 LSBits of the 9-bit value necessary  
to encode an event (from frame counter 0 to 371) are programmable. The two MSBits have fixed values which depend on  
whether base station or handset is selected: “00” on the base and “01” on the handset. The modulator’s turn-off time occurs  
a fixed time (number of bits) after the turn-on time: 144 bits on the base station, 148 bits on the handset.  
2. Changes to this value take effect immediately.  
3. To disable the modulator continuously, clear TX_ENABLE  
DS96WRL0800  
P R E L I M I N A R Y  
41  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
REGISTER DESCRIPTION (Continued)  
Table 26. Bank 2 Register Description  
DEMOD_PWR_CTRL Bank 2  
EXT6  
Field  
Bit Position  
R/W  
Data  
Description  
RFEON_POLARITY  
f---------------  
Controls the polarity of the RFEON output pin  
R
W
Returns 0  
Active high  
Active Low  
0
1
DEMOD_PWR_ON  
-edcba98--------  
Determines internal power up of demodulator and turn  
on time of RXSW pin, referenced to the receive frame  
counter  
R
Returns 0  
W
xXh Bits 6-0 of turn-on time (=(x modulo 128) -1)  
RESERVED  
--------7-------  
---------6543210  
R
W
Returns 0  
No effect  
DEMOD_PWR_OFF  
Determine internal power down of demodulator and  
turn off time of RXSW pin, referenced to the receive  
frame counter  
R
Returns 0  
W
XXh Bits 6-0 of turn-off time (=(x modulo 128) -1)  
Notes:  
1. DEMOD_PWR_ON, DEMOD_PWR_OFF. Controls internal receive hardware and the RXSW output pin. The turn-on and off times  
are given in number of received bit periods and are referenced to the Receive Frame Counter. Only the 7 LSBits of the 9-bit value  
are programmable. The two MSBits have fixed values which depend on whether base station or handset is selected. For  
DEMOD_PWR_ON, the two bits are “01” on the base and “00” on the handset. For DEMOD_PWR_OFF, the two bits are “10” on  
the base and “01” on the handset  
2. Changes to these values take effect immediately.  
3. To enable receive power continuously, clear TX_ENABLE and set SYNC_SEARCH_MODE to FULL_SEARCH (this is the case  
in acquisition mode).  
4. The polarity of the RXSW output pin is controlled by the RFRX_POLARITY bit in the RFRX_PWR_CTRL register  
.
42  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
Table 27. Bank 2 Register Description  
RFTX_PWR_CTRL  
Field  
Bank 2  
Bit Position  
EXT7  
R/W  
Data  
Description  
1
RFTX_POLARITY  
f---------------  
-edcba98--------  
Controls the polarity of the PAON output pin  
R
W
Returns 0  
Active high  
Active Low  
0
1
RFTX_PWR_ON  
Determines PAON output pin turn-on time  
referenced to the transmit frame counter  
Returns 0  
R
W
xXh Bits 6-0 of turn-on time (=(x modulo 128) -1)  
RESERVED  
--------7-------  
---------6543210  
R
W
Returns 0  
No effect  
RFTX_PWR_OFF  
Determine PAON output pin turn-off time  
referenced to the transmit frame counter  
Returns 0  
R
W
xXh Bits 6-0 of turn-off time (=(x modulo 128) -1)  
Notes:  
1. RFTX_PWR_ON, RFTX_PWR_OFF. Controls the PAON output pin, and thereby the external RF module’s transmitter.  
The turn-on and off times are given in number of transmitted bit periods and are referenced to the transmit Frame Counter.  
Only the 7 LSBits of the 9-bit value are programmable. The two MSBits have fixed values which depend on whether base  
station or handset is selected. For RFTX_PWR_ON, the two bits are “00” on the base and “01” on the handset. For  
RFTX_PWR_OFF, the two bits are “01” on the base and “10” on the handset.  
2. Changes to these values take effect immediately.  
3. To disable the transmitter continuously, clear TX_ENABLE in SSP_STATE.  
DS96WRL0800  
P R E L I M I N A R Y  
43  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
Bank 1 Registers  
Table 28. Bank 1 Register Description  
EXT0  
RATE_BUF_ADDR  
Field  
Bank 1  
Bit Position  
R/W Data  
Description  
RESERVED  
f--------------  
R
W
Returns 0  
No effect  
RX_AUTO_INCREMENT -e-------------  
Controls the auto-increment feature of the Rx rate  
R
buffer  
W
0
1
Returns 0  
Disables auto-increment  
Enables auto-increment  
RX_BUF_ADDR  
--dcba98--------  
Access to Rx rate buffer address  
Returns 0  
R
W
00h Address 0  
... ...  
23h Address 23h = 35  
... Illegal  
RESERVED  
--------7-------  
R
W
Returns 0  
No effect  
TX_AUTO_INCREMENT ---------6------  
Controls the auto-increment feature of the Tx rate  
R
buffer  
W
0
1
Returns 0  
Disables auto-increment  
Enables auto-increment  
TX_BUF_ADDR  
----------543210  
Access to Tx rate buffer address  
Returns 0  
R
W
00h Address 0  
... ...  
23h Address 23h = 35  
24h Tx/Rx rate buffer address for ADPCM Processor  
25h accesses  
26h Tx/Rx Nibble Marker bits [15..0]  
27h Tx/Rx Nibble Marker bits [31..16]  
28h Tx/Rx Nibble Marker bits [35..32]  
29h MOD_FREQ_DEV 0  
2Ah MOD_FREQ_DEV 1  
2Bh MOD_FREQ_DEV 2  
2Ch MOD_FREQ_DEV 3  
2Dh MOD_FREQ_DEV 4  
2Eh MOD_FREQ_DEV 5  
2Fh MOD_FREQ_DEV 6  
30h MOD_FREQ_DEV 7  
31h MOD_FREQ_DEV 8  
32h MOD_FREQ_DEV 9  
... MOD_CENTER_FREQ  
Illegal  
44  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
REGISTER DESCRIPTION (Continued)  
Table 29. Bank 1 Register Description  
RATE_BUF_DATA  
Field  
Bank 1 EXT1  
Bit Position  
R/W  
Data  
Description  
RX_BUF_DATA  
------------3210  
Access to the Rx rate buffer data  
R
Xh Reads value at current RX_BUF_ADDR  
address (0 to 23h)  
TX_BUF_DATA  
------------3210  
--dcba98--------  
Access to the Tx rate buffer data  
XXXXh Writes value at current TX_BUF_ADDR address  
(0 to 23h)  
W
TX_BUF_VP_ADDR  
Sets the initialization value of the Tx rate buffer  
address used for ADPCM Processor accesses  
XXh Writes initialization value (TX_BUF_ADDR  
address= 24h)  
W
W
RX_BUF_VP_ADDR  
----------543210  
Sets the initialization value of the Rx rate buffer  
address used for ADPCM Processor accesses  
XXh Writes initialization value (TX_BUF_ADDR  
address= 24h)  
TX_RX_NIBBLE_MARKER fedcba9876543210  
Sets the Nibble Marker register for Tx and Rx  
rate buffer accesses by ADPCM Processor  
XXXXh Write nibble marker value (TX_BUF_ADDR=  
25h to 27h)  
W
W
MOD_FREQ  
fedcba9876543210  
Access to modulator settings  
XXXXh Writes modulator setting value  
(TX_BUF_ADDR=28h to 32h)  
Note:  
The meaning and address for any RATE_BUF_DATA is set in the RATE_BUF_ADDR register.  
MOD_FREQ. The unit for center frequency and frequency deviation words is 62.5 Hz.  
These words are encoded as 2’s complement numbers.  
The meaning and address for any RATE_BUF_DATA is set in the RATE_BUF_ADDR register.  
MOD_FREQ. The unit for center frequency and frequency deviation words is 62.5 Hz.  
These words are encoded as 2’s complement numbers.  
Table 30. Bank 1 Register Description  
BIT_SYNC  
Field  
Bank 1  
Bit Position  
EXT2  
R/W  
Data  
Description  
INT_SYM_ERR1  
fedcba9876543210  
Read access to the integrated symbol error from the bit  
synchronizer’s second order loop  
R
XXXXh Reads error data bits [23..8] (bits [7..0] are in bank 0,  
EXT6)  
SECOND_ORDER fedcba9876543210  
Write access to the bit synchronizer’s second-order loop  
XXXXh Writes second order loop’s 16-bit value  
W
45  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
Table 31. Bank 1 Register Description  
EXT3  
RESERVED  
Field  
Bank 1  
Bit Position  
EXT4  
EXT5R/W Data  
Description  
RESERVED  
fedcba9876543210  
R
Returns 0  
W
0000h Must be left alone or written to 0000h (or  
unpredictable results may occur)  
Table 32. Bank 1 Register Description  
Bank 1 EXT6  
CONTROL  
Field  
Bit Position  
R/W  
Data  
Description  
RESERVED  
fedcb-----------  
R
W
Returns 0  
No effect  
FS_INT_ENABLE  
-----a----------  
Controls frame start interrupt (INT1)  
Disables frame start interrupt  
Enables frame start interrupt  
R/W  
R/W  
R/W  
0*  
1
INTERRUPT_0_ENABLE ------9---------  
INTERRUPT_2_ENABLE -------8--------  
Controls interrupt 0 (INT0 on P114)  
Disables interrupt 0  
Enables interrupt 0  
0*  
1
Controls interrupt 2 (INT2 on P115)  
Disables interrupt 2  
Enables interrupt 2  
0*  
1
P0_WAKEUP_ENABLE  
--------7654----  
Controls wake-up pins (P0[3..0])  
R/W 0000* Disables all wake-up pins  
1xxx Enables P03 as wake-up pin (if in input mode)  
x1xx Enables P02 as wake-up pin (if in input mode)  
xx1x Enables P01 as wake-up pin (if in input mode)  
xxx1 Enables P00 as wake-up pin (if in input mode)  
TX_PWR_DAC_DATA  
------------3210  
Access to Tx power 4-bit DAC output data  
R/W  
Xh Sets output value  
Note:  
P0_WAKEUP_ENABLE. When enabled, pins P0[3..0] are active low wake-up pins for the Z87001 sleep mode.  
The input signal is internally debounced and synchronized to the bit clock. It is internally given a minimum duration of one bit to  
allow the software to exit sleep mode safely.  
Table 33. Bank 1 Register Description  
RESERVED  
Field  
Bank 1  
Bit Position  
EXT7  
R/W  
Data  
Description  
RESERVED  
fedcba9876543210  
R
W
Returns 0  
No effect  
46  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
Bank 0 Registers  
Table 34. Bank 0 Register Description  
1
EXT0  
EXT1  
EXT2  
EXT3  
EXT4  
EXT5  
R/W  
RESERVED  
Field  
Bank 0  
Bit Position  
Data  
Description  
RESERVED  
fedcba9876543210  
R
W
Returns 0  
No effect  
Table 35. Bank 0 Register Description  
EXT6  
INT_SYM_ERR0  
Field  
Bank 0  
Bit Position  
R/W  
Data  
Description  
RESERVED  
fedcba98--------  
R
W
Returns 0  
No effect  
INT_SYM_ERR0  
--------76543210  
Read access to the integrated symbol error from the  
bit synchronizer’s second order loop  
R
XXh Reads error data bits [7..0] (bits [23..8] are in bank1,  
EXT2)  
W
No effect  
DS96WRL0800  
P R E L I M I N A R Y  
47  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
Table 36. Bank 0 Register Description  
EXT7  
RFRX_PWR_CTRL  
Field  
Bank 0  
Bit Position  
R/W  
Data  
Description  
RFRX_POLARITY  
f---------------  
Controls the polarity of the TXSW (and RXSW)  
output pins  
R
Returns 0  
W
0
1
TXSW active Low and RXSW active High  
TXSW active High and RXSW active Low  
RFRX_PWR_ON  
-edcba98--------  
Determines TXSW output pin turn-on time  
referenced to the transmit frame counter  
Returns 0  
R
W
xXh Bits 6-0 of turn-on time (=(x modulo 128) -1)  
RESERVED  
--------7-------  
---------6543210  
R
W
Returns 0  
No effect  
RFRX_PWR_OFF  
Determine TXSW output pin turn-off time  
referenced to the transmit frame counter  
Returns 0  
R
W
xXh Bits 6-0 of turn-off time (=(x modulo 128) -1)  
Notes:  
1. RFRX_POLARITY. Caution: notice the inverse polarity of the TXSW pin.  
2. RFRX_PWR_ON, RFRX_PWR_OFF. Controls the TXSW output pin. The turn-on and off times are given in number of trans-  
mitted bit periods and are referenced to the TRANSMIT (!) Frame Counter. Only the 7 LSBits of the 9-bit value are program-  
mable. The two MSBits have fixed values which depend on whether base station or handset is selected. For  
RFRX_PWR_ON, the two bits are “00” on the base and “01” on the handset. For RFRX_PWR_OFF, the two bits are “01”  
on the base and “10” on the handset.  
3. Changes to these values take effect immediately.  
4. To disable transmit power continuously, clear TX_ENABLE.  
48  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
INSTRUCTION SET DESCRIPTION  
Refer to Zilog’s Z89C00 User’s Manual, Chapter 5 (In-  
struction Set Features) and Chapter 6 (Assembly Lan-  
guage Instruction Set), for a complete description of the  
core processor’s instruction set.  
1
Table 37. Instruction Set Summary  
#
#
Instruction Description Opcode  
Synopsis  
Operands  
Words Cycles  
Example  
ABS  
Absolute Value  
ABS[<cc>,]<src>  
1001000  
1001000  
<cc>,A  
A
1
1
1
1
ABS NC,A  
ABS A  
ADD  
Addition  
ADD<dest>,<src>  
AND<dest>,<src>  
CALL  
1001001  
1000001  
1000100  
1000101  
1000011  
1000001  
1000000  
A,<pregs>  
A,<dregs>  
A,<limm>  
A,<memind>  
A,<direct>  
A,<regind>  
A,<hwregs>  
1
1
2
1
1
1
1
1
1
2
3
1
1
1
ADD A,P0:0  
ADD A,D0:0  
ADD A,#%1234  
ADD A,@@P0:0  
ADD A,%F2  
ADD A, @P1:1  
ADD A,X  
AND  
Bitwise AND  
1011001  
1010001  
1010100  
1010101  
1010001  
1010001  
1010000  
A,<pregs>  
A,<dregs>  
A,<limm>  
A,<memind>  
A,<direct>  
A,<regind>  
A,<hwregs>  
1
1
2
1
1
1
1
1
1
2
3
1
1
1
AND A,P2:0  
AND A,D0:1  
AND A,#%1234  
AND A,@@P1:0  
AND A, %2C  
AND A,@P1:2+LOOP  
AND A, EXT3  
CALL  
Subroutine call  
0010100 [<cc>,]<address>  
0010100  
<cc>,<direct>  
<direct>  
2
2
2
2
CALL sub1  
CALL Z,sub2  
CCF  
CIEF  
COPF  
CP  
Clear carry flag  
Clear Carry Flag  
Clear OP flag  
Comparison  
CCF  
1001010  
None  
None  
None  
1
1
1
1
1
1
CCF  
CIEF  
1001010  
CIEF  
COPF  
COPF  
1001010  
CP<src1>,<src2>  
0111001  
A,<pregs>  
A,<dregs>  
A,<memind>  
A,<direct>  
A,<regind>  
A,<hwregs>  
A,<limm>  
1
1
1
1
1
1
2
1
1
3
1
1
1
2
CP A,P0:0  
CP A,D3:1  
0110001  
0110101  
0110011  
0110001  
0110000  
0110100  
CP A,@@P0:0  
CP A,%FF  
CP A,@P2:1+  
CP A,STACK  
CP A,#%FFCF  
DEC  
INC  
JP  
Decrement  
Increment  
Jump  
DEC [<cc>,]<dest>  
1001000  
1001000  
<cc>A,  
A
1
1
1
1
DEC NZ,A  
DEC A  
INC [<cc>,] <dest>  
1001000  
1001000  
<cc>,A  
A
1
1
1
1
INC PL,A  
INC A  
JP [<cc>,]<address>  
0100110  
0100110  
<cc>,<direct>  
<direct>  
2
2
2
2
JP NIE,Label  
JP Label  
DS96WRL0800  
P R E L I M I N A R Y  
49  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
Table 37. Instruction Set Summary  
#
#
Instruction Description Opcode  
Synopsis  
Operands  
Words Cycles  
Example  
LD  
Loaddestination  
with source  
LD<dest>,<src>  
0000000  
0000001  
0001001  
0000001  
0000101  
0000011  
0000111  
0000100  
0001100  
0001010  
0000110  
0000010  
0001001  
0000001  
0000100  
0100101  
0000101  
0000001  
0000000  
A,<hwregs>  
A,<dregs>  
A,<pregs>  
A,<regind>  
A,<memind>  
A,<direct>  
<direct>,A  
<dregs>,<hwregs>  
<pregs>,<simm>  
<pregs>,<hwregs>  
<regind>,<limm>  
<regind>,<hwregs>  
<hwregs>,<pregs>  
<hwregs>,<dregs>  
<hwregs>,<limm>  
<hwregs>,<accind>  
<hwregs>,<memind>  
<hwregs>,<regind>  
<hwregs>,<hwregs>  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
3
1
1
1
1
1
1
1
1
1
2
3
3
1
1
LD A,X  
LD A,D0:0  
LD A,P0:1  
LD A,@P1:1  
LD A,@D0:0  
LD A, 124  
LD 124, A  
LD DO:0, EXT7  
LD P1:1,#%FA  
LD P1:1,EXT1  
LD @P1:1,#%1234  
LD @P1:1+,X  
LD Y,P0:0  
LD SR,D0:0  
LD PC,#%1234  
LD X,@A  
LD Y,@D0:0  
LD A,@P0:0-LOOP  
LD X, EXT6  
MLD  
Multiply  
1010010 MLD<srcl>,<srcl>  
1010010 [,<bank switch>]  
1011011  
<hwregs>,<regind>  
<hwregs>,<regind>,<ban  
k switch>  
<regind>,<regind>  
<regind>,<regind>,<bank  
switch>  
1
1
1
1
1
1
1
1
MLD A,@P0:0+LOOP  
MLD A,@P1:0,OFF  
MLD @P1:1,@P2:0  
MLD@P0:1,@P1:0,O  
N
1011011  
MPYA  
MPYS  
NEG  
Multiply and add  
MPYA <srcl>,<src2>  
1010010 [,<bank switch>]  
1010010  
1011011  
1011011  
<hwregs>,<regind>  
<hwregs>,<regind>,<ban  
k switch>  
<regind>,<regind>  
<regind>,<regind>,<bank  
switch>  
1
1
1
1
1
1
1
1
MPYA A@P0:0  
MPYA A,@P1:0,OFF  
MPYA @P1:1,@P2:0  
MPYA@P0:1,@P1:0,  
ON  
Multiply and  
subtract  
MPYS<src1>,<src2>  
0010010 [,<bank switch>]  
0010010  
0011011  
0011011  
<hwregs>,<regind>  
<hwregs>,<regind>,<ban  
k switch>  
<regind>,<regind>  
<regind>,<regind>,<bank  
switch>  
1
1
1
1
1
1
1
1
MPYS A,@P0:0  
MPYS A,@P1:0,OFF  
MPYS @P1:1,@P2:0  
MPYS@P0:1,@P1:0,  
ON  
Negate  
NEG <cc>,A  
1001000  
1001000  
<cc>, A  
A
1
1
1
1
NEG NZ,A  
NEG A  
NOP  
OR  
No operation  
Bitwise OR  
NOP  
0000000  
None  
1
1
NOP  
OR <dest>,<src>  
1101001  
A, <pregs>  
A, <dregs>  
A, <limm>  
A, <memind>  
A, <direct>  
A, <regind>  
A, <hwregs>  
1
1
2
1
1
1
1
1
1
2
3
1
1
1
OR A, P0:1  
OR A, D0:1  
1100001  
1100100  
1100101  
1100011  
1100001  
1100000  
OR A,#%202  
OR A,@@P2:1+  
OR A, %2C  
OR A, @P1:0-LOOP  
OR A, EXT6  
50  
P R E L I M I N A R Y  
DS96WRL0800  
Z87001/Z87L01  
ROMless Spread Spectrum Cordless Phone Controller  
Zilog  
Table 37. Instruction Set Summary  
#
#
Instruction Description Opcode  
Synopsis  
Operands  
Words Cycles  
Example  
1
POP  
Pop value  
from stack  
POP <dest>  
0001010  
0000100  
0000010  
0000000  
<pregs>  
1
1
1
1
1
1
1
1
POP P0:0  
<regs>  
POP D0:1  
POP @P0:0  
POP A  
<regind>  
<hwregs>  
PUSH  
Push value  
onto stack  
PUSH <src>  
0001001  
0000001  
0000001  
0000000  
0000100  
0100101  
0000101  
<pregs>  
<dregs>  
<regind>  
<hwregs>  
<limm>  
1
1
1
1
2
1
1
1
1
1
1
2
3
3
PUSH P0:0  
PUSH D0:1  
PUSH @P0:0  
PUSH BU5  
PUSH #12345  
PUSH @A  
<accind>  
<memind>  
PUSH @@P0:0  
RET  
RL  
Return from  
subroutine  
RET  
0000000  
None  
1
2
RET  
Rotate Left  
RL <cc>,A  
1001000  
1001000  
<cc>,A  
A
1
1
1
1
RL NZ,A  
RL A  
RR  
Rotate Right  
RR <cc>,A  
1001000  
1001000  
<cc>,A  
A
1
1
1
1
RR C,A  
RR A  
SCF  
SIEF  
SLL  
Set C flag  
SCF  
SIEF  
SLL  
1001010  
1001010  
None  
None  
1
1
1
1
SCF  
Set IE flag  
SIEF  
Shift left logical  
1001000  
1001000  
[<cc>,]A  
A
1
1
1
1
SLL NZ,A  
SLL A  
SOPF  
SRA  
Set OP flag  
SOPF  
1001010  
None  
1
1
SOPF  
Shift right  
arithmetic  
SRA<cc>,A  
1001000  
1001000  
<cc>,A  
A
1
1
1
1
SRA NZ,A  
SRA A  
SUB  
Subtract  
SUB<dest>,<src>  
0011001  
0010011  
0010100  
0010101  
0010011  
0010001  
0010000  
A,<pregs>  
A,<dregs>  
A,<limm>  
A, <memind>  
A, <direct>  
A, <regind>  
A, <hwregs>  
1
1
2
1
1
1
1
1
1
2
3
1
1
1
SUB A,P1:1  
SUB A,D0:1  
SUB A,#%2C2C  
SUB A,@D0:1  
SUB A,%15  
SUB A, @P2:0-LOOP  
SUB A, STACK  
XOR  
Bitwise  
exclusive  
OR  
XOR <dest>,<src>  
1111001  
1110001  
1110100  
1110001  
1110011  
1110001  
1110000  
A, <pregs>  
A, <dregs>  
A, <limm>  
A, <memind>  
A, <direct>  
A, <regind>  
A, <hwregs>  
1
1
2
1
1
1
1
1
1
2
3
1
1
1
XOR A, P2:0  
XOR A,D0:1  
XOR A,#13933  
XOR A,@P2:1+  
XOR A, %2F  
XOR A, @P2:0  
XOR A, BUS  
DS96WRL0800  
P R E L I M I N A R Y  
51  

相关型号:

Z87001-16FSC

RF/BASEBAND CIRCUIT|CMOS|QFP|144PIN|PLASTIC
ETC

Z8700116ASC

Support Circuit, CMOS, PQFP144, VQFP-144
ZILOG

Z87010

Audio Encoder/Decoders
ZILOG

Z87010-16FSC

PCM Encoder/Decoder
ETC

Z87010-16VSC

PCM Encoder/Decoder
ETC

Z8701016FSC

Digital Signal Processor, 16-Ext Bit, 16.384MHz, CMOS, PQFP44, QFP-44
ZILOG

Z8701016VSC

Digital Signal Processor, 16-Ext Bit, 16.384MHz, CMOS, PQCC44, PLASTIC, LCC-44
ZILOG

Z87010F

Digital Signal Processor, 16-Ext Bit, 20MHz, CMOS, PQFP44, QFP-44
ZILOG

Z87010FSC

Digital Signal Processor, 16-Ext Bit, 20MHz, CMOS, PQFP44, QFP-44
ZILOG

Z87010V

暂无描述
ZILOG

Z8702414SSC

Microcontroller, 8-Bit, MROM, 14.564762MHz, CMOS, PDSO28, SOIC-28
ZILOG

Z8702414VSC

Microcontroller, 8-Bit, MROM, 14.564762MHz, CMOS, PQCC44, PLASTIC, LCC-44
ZILOG