AK4641EN

更新时间:2024-12-03 06:19:05
品牌:AKM
描述:16-Bit ツヒ CODEC with Bluetooth Interface

AK4641EN 概述

16-Bit ツヒ CODEC with Bluetooth Interface 16位ツヒ编解码器与蓝牙接口 其他商用集成电路

AK4641EN 规格参数

生命周期:Obsolete零件包装代码:QFN
包装说明:HVQCCN,针数:36
Reach Compliance Code:unknownHTS代码:8542.39.00.01
风险等级:5.83Is Samacsys:N
商用集成电路类型:CONSUMER CIRCUITJESD-30 代码:S-XQCC-N36
长度:6 mm功能数量:1
端子数量:36最高工作温度:85 °C
最低工作温度:-20 °C封装主体材料:UNSPECIFIED
封装代码:HVQCCN封装形状:SQUARE
封装形式:CHIP CARRIER, HEAT SINK/SLUG, VERY THIN PROFILE认证状态:Not Qualified
座面最大高度:0.9 mm最大供电电压 (Vsup):3.6 V
最小供电电压 (Vsup):2.6 V表面贴装:YES
温度等级:COMMERCIAL EXTENDED端子形式:NO LEAD
端子节距:0.5 mm端子位置:QUAD
宽度:6 mmBase Number Matches:1

AK4641EN 数据手册

通过下载AK4641EN数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
ASAHI KASEI  
[AK4641EN]  
AK4641EN  
CODEC with Bluetooth Interface  
∆Σ  
16-Bit  
GENERAL DESCRIPTION  
The AK4641EN is targeted at PDA and other low-power, small size applications. It features a 16bit Stereo  
CODEC with a built-in Microphone-Amplifier and 16bit Mono CODEC for Bluetooth Interface. Input  
circuits include Microphone-Amplifier and ALC (Auto Level Control) circuit. The AK4641EN is available in  
a 36pin QFN, utilizing less board space than competitive offerings.  
FEATURES  
1. Recording Function of 16bit Stereo CODEC  
Mono Input  
2 to 1 Selector (Internal and External MIC)  
1st MIC Amplifier: +20dB or 0dB  
2nd Amplifier with ALC: +27.5dB ∼ −8dB, 0.5dB Step  
ADC Performance: S/(N+D): 81dB, S/N: 86dB  
Sampling Rate: 7kHz 48kHz  
Audio Interface Format: I2S, 16bit MSB justified  
2. Playback Function of 16bit Stereo CODEC  
Digital De-emphasis Filter (tc=50/15µs, fs=32kHz, 44.1kHz, 48kHz)  
Digital Volume (0dB ∼ −127dB, 0.5dB Step, Mute)  
5 Band Equalizer  
Stereo Line Output  
- Performance: S/(N+D): 86dB, S/N: 90dB  
Mono Line Output  
- Differential Output  
- Performance: S/(N+D): 86dB, S/N: 93dB  
AUX Input  
- Differential Input  
- +24dB ∼ −21dB, 3dB step  
Sampling Rate: 7kHz 48kHz  
Audio Interface Format: I2S, 16bit MSB justified, 16bit LSB justified  
3. 16bit Mono CODEC  
Analog Mix Path for Bluetooth Interface  
Sample Rate: 8kHz 16kHz  
Audio Interface Format: Short/Long Frame, I2S, 16bit MSB justified  
4. Power Management  
5. Master Clock: 1.792MHz 12.288MHz  
6. Control mode: I2C Bus  
7. Ta = 20 85°C  
8. Power Supply: 2.6V3.6V (typ. 3.3V)  
9. Power Supply Current: 17mA  
10. Package: 36pin QFN (0.5mm pitch)  
MS0467-E-00  
2006/02  
- 1 -  
ASAHI KASEI  
[AK4641EN]  
„ Block Diagram  
AVSS AVDD  
DVSS DVDD  
MICOUT  
AIN  
PMMIC  
MPE  
MPI  
INT  
MIC Power  
Supply  
TST2  
TST1  
MIC Power  
Supply  
PMADC  
ALC1  
(IPGA)  
HPF  
ADC  
MCLK  
PDN  
MIC-AMP  
0dB or 20dB  
EXT  
MDT  
Stereo  
CODEC  
Audio  
LRCK  
BICK  
SDTO  
SDTI  
0.075 x AVDD  
ATT  
ATT  
PMMO  
Interface  
MOUT+  
MOUT-  
ATT  
DSP  
and  
uP  
PMDAC  
PMLO  
LOUT  
ROUT  
5Band DATT  
DAC  
EQ  
SMUTE  
PMMIX  
SCL  
SDA  
PMMO2  
Control  
Register  
MOUT2  
PMAD2  
BBICK  
BSYNC  
BSDTO  
BSDTI  
VCOC  
PMAUX  
ADC HPF  
AUXIN+  
Mono  
Bluetooth  
Module  
Volume  
CODEC  
Audio  
I/F  
PMDA2  
AUXIN-  
DAC  
VCOM  
PLL  
BVDD BVSS  
Figure 1. Block Diagram  
MS0467-E-00  
2006/02  
- 2 -  
ASAHI KASEI  
[AK4641EN]  
„ Ordering Guide  
AK4641EN  
20 +85°C  
36pin QFN (0.5mm pitch)  
AKD4641EN  
Evaluation board for AK4641EN  
„ Pin Layout (36pin QFN)  
MPE  
ROUT  
MOUT2  
TST2  
1
2
3
4
5
6
7
8
9
27  
26  
25  
24  
23  
22  
21  
20  
19  
MPI  
INT  
VCOM  
AVSS  
AVDD  
BVDD  
BVSS  
VCOC  
BBICK  
BSYNC  
BSDTO  
BSDTI  
DVSS  
Top View  
DVDD  
MS0467-E-00  
2006/02  
- 3 -  
ASAHI KASEI  
No. Pin Name  
[AK4641EN]  
PIN/FUNCTION  
I/O  
O
O
I
Function  
1
2
3
MPE  
MPI  
INT  
MIC Power Supply Pin for External Microphone  
MIC Power Supply Pin for Internal Microphone  
Internal Microphone Input Pin (Mono Input)  
Common Voltage Output Pin, 0.45*AVDD  
Bias voltage of ADC inputs and DAC outputs.  
Analog Ground Pin  
4
VCOM  
O
5
6
7
8
9
AVSS  
AVDD  
BVDD  
BVSS  
VCOC  
-
-
-
-
O
Analog Power Supply Pin  
Power Supply Pin for 16bit Mono CODEC of Bluetooth I/F  
Ground Pin for 16bit Mono CODEC of Bluetooth I/F  
PLL Loop Filter Pin for 16bit Mono CODEC of Bluetooth I/F  
Power-Down Mode Pin  
10 PDN  
I
“H”: Power up, “L”: Power down reset and initializes the control register.  
Test Pin. Connect to DVSS.  
11 TST1  
12 SCL  
I
I
Control Data Clock Pin  
13 SDA  
I/O Control Data Input Pin  
14 SDTI  
15 SDTO  
16 LRCK  
17 BICK  
18 MCLK  
19 DVDD  
20 DVSS  
21 BSDTI  
22 BSDTO  
23 BSYNC  
24 BBICK  
25 TST2  
26 MOUT2  
27 ROUT  
28 LOUT  
I
O
I
I
I
-
-
I
O
I
Audio Serial Data Input Pin  
Audio Serial Data Output Pin  
Input/Output Channel Clock Pin  
Audio Serial Data Clock Pin  
External Master Clock Input Pin  
Digital Power Supply Pin  
Digital Ground Pin  
Serial Data Input Pin for 16bit Mono CODEC of Bluetooth I/F  
Serial Data Output Pin for 16bit Mono CODEC of Bluetooth I/F  
Sync Signal Pin for 16bit Mono CODEC of Bluetooth I/F  
Serial Data Clock Pin for 16bit Mono CODEC of Bluetooth I/F  
Test Pin. Connect to AVSS.  
Mono Line Output 2 Pin  
Rch Stereo Line Output Pin  
Lch Stereo Line Output Pin  
Mono Line Negative Output Pin  
I
I
O
O
O
O
O
I
29  
30 MOUT+  
31  
MOUT−  
Mono Line Positive Output Pin  
Mono AUX Negative Input Pin  
AUX IN−  
32 AUX IN+  
I
Mono AUX Positive Input Pin  
33 AIN  
I
Analog Input Pin  
34 MICOUT  
35 MDT  
36 EXT  
O
I
I
Microphone Analog Output Pin  
Microphone Detect Pin (Internal pull down by 500k)  
External Microphone Input Pin (Mono Input)  
Note: All input pins except analog input pins (INT, EXT, AIN, AUXIN+, AUXIN, MDT) should not be left floating.  
„ Handling of Unused Pin  
The unused I/O pins should be processed appropriately as below.  
Classification  
Analog Input  
Pin Name  
Setting  
These pins should be open.  
These pins should be open.  
INT, AUXIN+, AUXIN, AIN, MDT, EXT  
MPE, MPI, MOUT2, ROUT, LOUT, MOUT, MOUT+,  
MICOUT  
Analog Output  
Digital Input  
BSDTI, BSYNC, BBICK  
These pins should be connected to DVSS.  
These pins should be open.  
Digital Output BSDTO  
MS0467-E-00  
2006/02  
- 4 -  
ASAHI KASEI  
[AK4641EN]  
ABSOLUTE MAXIMUM RATINGS  
(AVSS, DVSS, BVSS =0V; Note 1)  
Parameter  
Power Supplies:  
Symbol  
AVDD  
DVDD  
BVDD  
GND1  
GND2  
IIN  
VINA  
VIND  
Ta  
min  
max  
4.6  
4.6  
4.6  
0.3  
Units  
V
V
V
V
V
mA  
V
V
°C  
°C  
Analog  
Digital  
16bit Mono CODEC  
|AVSS – DVSS|  
|AVSS – BVSS|  
0.3  
0.3  
0.3  
-
-
-
0.3  
0.3  
20  
65  
(Note 2)  
(Note 2)  
0.3  
±10  
AVDD+0.3  
DVDD+0.3  
85  
Input Current, Any Pin Except Supplies  
Analog Input Voltage  
Digital Input Voltage  
Ambient Temperature (powered applied)  
Storage Temperature  
Tstg  
150  
Note 1. All voltages with respect to ground.  
Note 2. AVSS, DVSS and BVSS must be connected to the same analog ground plane.  
WARNING: Operation at or beyond these limits may result in permanent damage to the device.  
Normal operation is not guaranteed at these extremes.  
RECOMMENDED OPERATING CONDITIONS  
(AVSS, DVSS, BVSS=0V; Note 1)  
Parameter  
Power Supplies  
(Note 3)  
Symbol  
AVDD  
DVDD  
min  
2.6  
2.6  
typ  
3.3  
3.3  
3.3  
0
max  
3.6  
3.6  
Units  
V
V
V
V
Analog  
Digital  
16bit Mono CODEC  
Differences  
BVDD  
2.6  
3.6  
+0.1  
+0.3  
+0.3  
AVDDBVDD  
AVDDDVDD  
BVDDDVDD  
0.1  
0.3  
0.3  
0
0
V
V
Note 1. All voltages with respect to ground.  
Note 3. The power up sequence between AVDD, DVDD and BVDD is not critical.  
* AKM assumes no responsibility for the usage beyond the conditions in this datasheet.  
MS0467-E-00  
2006/02  
- 5 -  
ASAHI KASEI  
[AK4641EN]  
ANALOG CHARACTERISTICS  
(Ta=25°C; AVDD=DVDD=BVDD=3.3V; AVSS=DVSS=BVSS=0V; Signal Frequency=1kHz; 16bit Data;  
Stereo CODEC: fs=44.1kHz, BICK=64fs; Measurement frequency=20Hz 20kHz;  
Mono CODEC: Bfs=8kHz; BBICK=32Bfs; Measurement frequency=20Hz 3.4kHz; unless otherwise specified)  
Min  
typ  
max  
Units  
Parameter  
MIC Amplifier  
Input Resistance  
20  
-
-
30  
0
+20  
40  
-
-
kΩ  
dB  
dB  
MGAIN bit = “0”  
MGAIN bit = “1”  
Gain  
MIC Power Supply  
Output Voltage  
Load Resistance  
Load Capacitance  
MIC Detection  
(Note 4)  
2.22  
2
-
2.47  
-
-
2.72  
-
30  
V
kΩ  
pF  
Comparator Voltage Level  
Internal pull down Resistance  
Input PGA Characteristics:  
(Note 5)  
0.165  
250  
-
0.257  
750  
V
kΩ  
500  
Input Resistance  
Step Size  
(Note 6)  
5
0.1  
-
10  
0.5  
+27.5  
8  
15  
0.9  
-
kΩ  
dB  
dB  
dB  
Max (IPGA6-0 bits = “47H”)  
Min (IPGA6-0 bits = “00H”)  
Gain Control Range  
-
-
ADC Analog Input Characteristics of Stereo CODEC: MIC Gain=+20dB, IPGA=0dB, ALC1=OFF, MIC IPGA  
ADC of Stereo CODEC  
Resolution  
-
0.168  
71  
78  
78  
-
0.198  
81  
86  
86  
16  
0.228  
-
-
-
-
Bits  
Vpp  
dB  
dB  
dB  
Input Voltage (MIC Gain=+20dB, Note 7)  
S/(N+D)  
D-Range  
(1dBFS)  
(60dBFS, A-weighted)  
MIC Gain=+20dB, A-weighted  
MIC Gain=0dB, A-weighted  
S/N  
-
92  
dB  
DAC Characteristics of Stereo CODEC:  
Resolution  
-
-
16  
Bits  
Stereo Line Output Characteristics: RL=10k, DAC of Stereo CODEC LOUT/ROUT pins  
Output Voltage  
S/(N+D)  
S/N  
Interchannel Isolation  
Interchannel Gain Mismatch  
Load Resistance  
(Note 8)  
(0dBFS)  
(A-weighted)  
1.78  
76  
82  
-
-
10  
-
1.98  
86  
90  
100  
0.1  
-
2.18  
-
-
-
0.5  
-
Vpp  
dBFS  
dB  
dB  
dB  
kΩ  
pF  
Load Capacitance  
-
30  
Note 4. Output voltage is proportional to AVDD voltage. Vout = 0.75 x AVDD (typ).  
Note 5. Comparator Voltage Level is proportional to AVDD voltage. Vout = 0.05 x AVDD (min), 0.078 x AVDD (max).  
Note 6. When IPGA Gain is changed, this typical value changes between 8kand 11k.  
Note 7. Input voltage is proportional to AVDD voltage. Vin = 0.06 x AVDD (typ).  
Note 8. Output voltage is proportional to AVDD voltage. Vout = 0.6 x AVDD (typ).  
MS0467-E-00  
2006/02  
- 6 -  
ASAHI KASEI  
[AK4641EN]  
Units  
Min  
Typ  
max  
Parameter  
Mono Line Output Characteristics: RL=20k, DAC of Stereo CODEC MOUT+/MOUTpins  
Output Voltage  
(Note 9)  
-
3.56  
-
76  
-
83  
2
20  
-
0.305  
3.96  
74  
86  
77  
93  
-
-
Vpp  
Vpp  
dBFS  
dBFS  
dB  
dB  
kΩ  
MOGN bit = “1”, 17dB  
MOGN bit = “0”, +6dB  
MOGN bit = “1”, 17dB  
MOGN bit = “0”, +6dB  
MOGN bit = “1”, 17dB  
MOGN bit = “0”, +6dB  
MOGN bit = “1”, 17dB  
MOGN bit = “0”, +6dB  
4.36  
-
-
-
-
-
-
30  
S/(N+D) (0dBFS)  
S/N (A-weighted)  
Load Resistance  
Load Capacitance  
-
-
kΩ  
pF  
AUX Input: AUXIN+, AUXINpins: AUXSI bit = “0”  
Maximum Input Voltage  
Input Resistance  
Step Size  
(Note 10)  
-
25  
1
1.98  
40  
3
-
55  
5
Vpp  
kΩ  
dB  
Max (GN3-0 bits = “FH”)  
Min (GN3-0 bits = “0H”)  
-
-
+24  
21  
-
-
dB  
dB  
Gain Control Range  
Mono Output: RL=10k, DAC of Stereo CODEC MIX MOUT2 pin  
Output Voltage  
S/(N+D)  
S/N  
Load Resistance  
Load Capacitance (Note 12)  
(Note 11)  
(0dBFS)  
(A-weighted)  
1.78  
76  
83  
10  
-
1.98  
86  
93  
-
2.18  
-
-
-
30  
Vpp  
dB  
dB  
kΩ  
pF  
-
16bit Mono ADC Analog Input Characteristics: AUXIN pin MIX ADC of Mono CODEC: AUX Volume = 0dB  
Resolution  
Input Voltage (Note 13)  
S/(N+D)  
S/N  
-
-
16  
2.28  
-
-
Bits  
Vpp  
dB  
1.68  
65  
79  
1.98  
75  
89  
(1dBFS)  
dB  
16bit Mono DAC Analog Output Characteristics: DAC of Mono CODEC MOUT+/pins: MOGN = +6dB  
Resolution  
Output Voltage (Note 14)  
S/(N+D)  
-
-
16  
4.36  
-
-
Bits  
Vpp  
dB  
3.56  
68  
82  
3.96  
78  
92  
S/N  
dB  
Power Supplies  
Power Up (PDN pin = “H”)  
AVDD+DVDD+ BVDD  
Power Down (PDN pin = “L”) (Note 15)  
AVDD+DVDD+BVDD  
-
-
17  
-
27  
mA  
100  
µA  
Note 9. Output voltage is proportional to AVDD voltage.  
Vout = 1.2 x AVDD (typ) @MOGN bit = “0”, 0.092 x AVDD (typ) @MOGN bit = “1” at differential Output.  
Note 10. Maximum Input Voltage is proportional to AVDD voltage.  
Vin = (AUXIN+) (AUXIN) = 0.6 x AVDD (typ) at AUXSI bit = “0”,  
Vin = AUXIN+ = 0.6 x AVDD (typ) at AUXSI bit = “1”.  
Note 11. Output Voltage is proportional to AVDD voltage. Vout = 0.6 x AVDD (typ).  
Note 12. When the output pin drives a capacitive load, a resistor should be added in series between the output pin and  
capacitive load.  
Note 13. Input voltage is proportional to AVDD voltage. Vin = 0.6 x AVDD (typ).  
Note 14. Output Voltage is proportional to AVDD voltage. Vout = 0.6 x AVDD (typ).  
Note 15. All digital input pins are fixed to DVSS. When the voltage difference among DVDD, BVDD and AVDD is  
larger than 0.3V, the power supply current at power down mode increases.  
MS0467-E-00  
2006/02  
- 7 -  
ASAHI KASEI  
[AK4641EN]  
FILTER CHARACTERISTICS (Stereo CODEC)  
(Ta=20 85°C; AVDD, DVDD, BVDD=2.6 3.6V; fs=44.1kHz; DEM=OFF)  
Parameter  
Symbol  
min  
typ  
max  
Units  
ADC Digital Filter (Decimation LPF):  
Passband  
(Note 16)  
PB  
0
-
-
-
17.4  
-
-
-
kHz  
kHz  
kHz  
kHz  
dB  
dB  
1/fs  
µs  
±0.1dB  
1.0dB  
3.0dB  
20.0  
21.1  
-
-
-
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay  
Group Delay Distortion  
ADC Digital Filter (HPF):  
Frequency Response  
(Note 16)  
SB  
PR  
SA  
GD  
GD  
25.7  
-
68  
-
±0.1  
-
-
-
(Note 17)  
17.0  
0
-
FR  
PB  
-
-
-
3.4  
10  
22  
-
-
-
Hz  
Hz  
Hz  
3.0dB  
0.5dB  
0.1dB  
DAC Digital Filter:  
Passband  
(Note 16)  
0
-
-
19.6  
-
-
-
±0.01  
-
-
kHz  
kHz  
±0.1dB  
0.7dB  
6.0dB  
20.0  
22.05  
-
-
-
-
25.2  
-
59  
-
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay  
SB  
PR  
SA  
GD  
kHz  
dB  
dB  
(Note 17)  
17.9  
1/fs  
DAC Digital Filter + SCF:  
FR  
-
-
dB  
Frequency Response: 0 20.0kHz  
±1.0  
Note 16. The passband and stopband frequencies scale with fs (system sampling rate).  
For example, ADC is PB=0.454*fs (@-1.0dB), DAC is PB=0.454*fs (@-0.01dB).  
Note 17. The calculated delay time caused by digital filtering. This time is from the input of analog signal to setting of the  
16bit data of both channels from the input register to the output register of the ADC. This time includes the group  
delay of the HPF. For the DAC, this time is from setting the 16bit data of both channels from the input register to  
the output of analog signal.  
MS0467-E-00  
2006/02  
- 8 -  
ASAHI KASEI  
[AK4641EN]  
FILTER CHARACTERISTICS (16bit Mono CODEC)  
(Ta=20 85°C; AVDD, DVDD, BVDD=2.6 3.6V; Bfs=8kHz)  
Parameter  
Symbol  
min  
typ  
max  
Units  
ADC Digital Filter (Decimation LPF):  
Passband  
(Note 16)  
PB  
0
-
-
4.7  
-
-
3.6  
3.8  
-
3.1  
-
-
-
kHz  
kHz  
kHz  
kHz  
dB  
±0.1dB  
1.0dB  
3.0dB  
Stopband  
Passband Ripple  
SB  
PR  
-
±0.1  
Stopband Attenuation  
SA  
GD  
GD  
68  
-
-
-
-
-
-
dB  
1/Bfs  
µs  
Group Delay  
(Note 17)  
17.0  
0
Group Delay Distortion  
ADC Digital Filter (HPF):  
Frequency Response  
(Note 16)  
FR  
PB  
-
-
-
0.62  
1.81  
3.99  
-
-
-
Hz  
Hz  
Hz  
3.0dB  
0.5dB  
0.1dB  
DAC Digital Filter:  
Passband  
(Note 16)  
0
-
-
4.6  
-
59  
-
-
3.6  
4.0  
-
-
-
3.6  
-
-
-
±0.01  
-
-
kHz  
kHz  
±0.1dB  
0.7dB  
6.0dB  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay  
SB  
PR  
SA  
GD  
kHz  
dB  
dB  
(Note 17)  
15.8  
1/Bfs  
DAC Digital Filter + SCF:  
FR  
-
-
dB  
Frequency Response: 0 20.0kHz  
±1.0  
Note 16. The passband and stopband frequencies scale with fs (system sampling rate).  
For example, ADC is PB=0.454*Bfs (@-1.0dB), DAC is PB=0.454*Bfs (@-0.01dB).  
Note 17. The calculated delay time caused by digital filtering. This time is from the input of analog signal to setting of the  
16bit data of both channels from the input register to the output register of the ADC. This time includes the group  
delay of the HPF. For the DAC, this time is from setting the 16bit data of both channels from the input register to  
the output of analog signal.  
MS0467-E-00  
2006/02  
- 9 -  
ASAHI KASEI  
[AK4641EN]  
DC CHARACTERISTICS  
(Ta=20 85°C; AVDD, DVDD, BVDD=2.6 3.6V)  
Parameter  
Symbol  
min  
typ  
Max  
Units  
High-Level Input Voltage  
Low-Level Input Voltage  
Input Voltage at AC Coupling  
High-Level Output Voltage  
Low-Level Output Voltage  
VIH  
VIL  
VAC  
70%DVDD  
-
50%DVDD  
-
-
-
-
-
V
30%DVDD  
V
V
V
(Note 18)  
(Iout=200µA)  
-
-
VOH  
DVDD0.2  
VOL  
VOL  
Iin  
-
-
-
-
-
-
0.2  
0.4  
±10  
V
V
µA  
(Except SDA pin: Iout=200µA)  
(SDA pin: Iout=3mA)  
Input Leakage Current  
Note 18. The external clock is input to MCLK pin via AC coupled capacitor.  
SWITCHING CHARACTERISTICS  
(Ta=20 85°C; AVDD, DVDD, BVDD=2.6 3.6V; CL=20pF)  
Parameter  
Symbol  
min  
typ  
max  
Units  
16bit Stereo CODEC Interface Timing:  
Master Clock Timing (MCLK pin)  
Frequency  
fCLK  
tCLKL  
tCLKH  
tACW  
1.792  
-
-
-
-
12.288  
MHz  
ns  
ns  
Pulse Width Low  
Pulse Width High  
AC Pulse Width (Note 19)  
0.3/fCLK  
0.3/fCLK  
0.4/fCLK  
-
-
-
ns  
LRCK Timing  
Frequency  
Duty Cycle  
fs  
Duty  
7
45  
-
-
48  
55  
kHz  
%
Audio Interface Timing  
BICK Period  
BICK Pulse Width Low  
Pulse Width High  
LRCK Edge to BICK “” (Note 20)  
BICK “” to LRCK Edge (Note 20)  
LRCK to SDTO (MSB) (Except I2S mode)  
BICK “” to SDTO  
tBCK  
tBCKL  
tBCKH  
tLRB  
tBLR  
tLRS  
tBSD  
tSDH  
tSDS  
312.5  
130  
130  
50  
50  
-
-
50  
50  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
80  
80  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SDTI Hold Time  
SDTI Setup Time  
-
Note 19. Refer to Figure 3.  
Note 20. BICK rising edge must not occur at the same time as LRCK edge.  
MS0467-E-00  
2006/02  
- 10 -  
ASAHI KASEI  
[AK4641EN]  
Parameter  
Symbol  
min  
typ  
max  
Units  
16bit Mono CODEC Interface Timing:  
SYNC Timing  
Frequency (PLL Lock Range)  
Serial Interface Timing at Short/long Frame Sync  
BBICK Frequency  
BBICK Period  
BBICK duty cycle  
BBICK Pulse Width Low  
Pulse Width High  
BSYNC Edge to BBICK “”  
BBICK “” to BSYNC Edge  
BSYNC to BSDTO (MSB) (Except Short Frame)  
BBICK “” to BSDTO  
BSDTI Hold Time  
Bfs  
8
-
16  
kHz  
fBBCK  
tBBCK  
tBDUT  
tBBCKL  
tBBCKH  
tBSYB  
tBBSY  
tBSYD  
tBBSD  
tBSDH  
tBSDS  
tBBSL  
tBBSH  
128  
488  
2048  
kHz  
ns  
%
50  
200  
200  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
50  
80  
80  
50  
50  
3300  
440  
BSDTI Setup Time  
BSYNC Pulse Width Low  
Pulse Width High  
Serial Interface Timing at MSB justified and I2S  
BBICK Frequency  
fBBCK  
tBBCK  
tBDUT  
256  
488  
2048  
kHz  
ns  
%
BBICK Period  
BBICK duty cycle  
BBICK Pulse Width Low  
50  
50  
tBBCKL  
tBBCKH  
tBSYB2  
tBBSY2  
tBSYD2  
tBBSD2  
tBSDH2  
tBSDH2  
BDuty2  
200  
200  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
%
Pulse Width High  
BSYNC Edge to BBICK “”  
BBICK “” to BSYNC Edge  
BSYNC to BSDTO (MSB) (Except I2S mode)  
BBICK “” to BSDTO  
BSDTI Hold Time  
50  
80  
80  
50  
50  
45  
BSDTI Setup Time  
BSYNC Duty Cycle  
55  
Control Interface Timing (I2C Bus mode):  
SCL Clock Frequency  
fSCL  
tBUF  
-
400  
-
-
-
-
-
-
-
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
Bus Free Time Between Transmissions  
Start Condition Hold Time (prior to first clock pulse)  
Clock Low Time  
1.3  
0.6  
1.3  
0.6  
0.6  
0
0.1  
-
-
tHD:STA  
tLOW  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tR  
Clock High Time  
Setup Time for Repeated Start Condition  
SDA Hold Time from SCL Falling (Note 21)  
SDA Setup Time from SCL Rising  
Rise Time of Both SDA and SCL Lines  
Fall Time of Both SDA and SCL Lines  
Setup Time for Stop Condition  
0.3  
0.3  
-
tF  
TSU:STO  
0.6  
0
Pulse Width of Spike Noise Suppressed by Input Filter  
tSP  
50  
Reset Timing  
PDN Pulse Width  
PMADC “” to SDTO valid  
PMAD2 “” to BSDTO valid  
(Note 22)  
(Note 23)  
(Note 24)  
tPD  
tPDV  
tBPDV  
150  
ns  
1/fs  
1/Bfs  
2081  
1057  
Note 21. Data must be held long enough to bridge the 300ns-transition time of SCL.  
Note 22. The AK4641EN can be reset by the PDN pin = “L”.  
Note 23. This is the count of LRCK “” from the PMADC bit = “1”.  
Note 24. This is the count of BSYNC “” from the PMAD2 bit = “1”.  
Purchase of Asahi Kasei Microsystems Co., Ltd I2C components conveys a license under the Philips  
I2C patent to use the components in the I2C system, provided the system conform to the I2C  
specifications defined by Philips.  
MS0467-E-00  
2006/02  
- 11 -  
ASAHI KASEI  
[AK4641EN]  
„ Timing Diagram  
1/fCLK  
VIH  
VIL  
MCLK  
tCLKH  
tCLKL  
1/fs  
VIH  
LRCK  
BICK  
VIL  
tBCK  
VIH  
VIL  
tBCKH  
tBCKL  
Figure 2. Clock Timing of Stereo CODEC  
1/fCLK  
tACW  
tACW  
1000pF  
MCLK Input  
Monitoring Point  
100kΩ  
VAC  
DVSS  
DVSS  
Note. This circuit shows how to monitor MCLK AC Coupling Timing. This circuit is not used in actual system.  
Figure 3. MCLK AC Coupling Timing  
MS0467-E-00  
2006/02  
- 12 -  
ASAHI KASEI  
[AK4641EN]  
VIH  
VIL  
LRCK  
tBLR  
tLRB  
VIH  
VIL  
BICK  
SDTO  
SDTI  
tLRS  
tBSD  
tSDH  
50%DVDD  
tSDS  
VIH  
VIL  
Figure 4. Audio Interface Timing of Stereo CODEC  
1/Bfs  
VIH  
VIL  
BSYNC  
tBBSL  
tBBSH  
tBBCK  
VIH  
VIL  
BBICK  
tBBCKH  
tBBCKL  
Figure 5. Clock Timing of 16bit Mono CODEC  
MS0467-E-00  
2006/02  
- 13 -  
ASAHI KASEI  
[AK4641EN]  
VIH  
VIL  
BSYNC  
BBICK  
tBSYB  
tBBSY  
VIH  
VIL  
tBSYD  
tBBSD  
BSDTO  
50%DVDD  
tBSDS  
tBSDH  
VIH  
VIL  
BSDTI  
Figure 6. 16bit Mono CODEC Interface Timing at short and long frame sync  
VIH  
BSYNC  
BBICK  
VIL  
tBBSY2  
tBSYD2  
tBSYB2  
VIH  
VIL  
tBBSD2  
BSDTO  
50%DVDD  
tBSDS2  
tBSDH2  
VIH  
VIL  
BSDTI  
Figure 7. 16bit Mono CODEC Interface Timing at MSB justified and I2S  
MS0467-E-00  
2006/02  
- 14 -  
ASAHI KASEI  
[AK4641EN]  
VIH  
SDA  
VIL  
tBUF  
tLOW  
tHIGH  
tR  
tF  
tSP  
VIH  
VIL  
SCL  
tHD:STA  
Start  
tHD:DAT  
tSU:DAT  
tSU:STA  
Start  
tSU:STO  
Stop  
Stop  
Figure 8. I2C Bus Mode Timing  
PMADC bit  
SDTO  
tPDV  
50%DVDD  
Figure 9. Power Down & Reset Timing 1  
PMAD2 bit  
BSDTO  
tBPDV  
50%DVDD  
Figure 10. Power Down & Reset Timing 2  
tPD  
PDN  
VIL  
Figure 11. Power Down & Reset Timing 3  
MS0467-E-00  
2006/02  
- 15 -  
ASAHI KASEI  
[AK4641EN]  
OPERATION OVERVIEW  
„ System Clock Input  
The AK4641EN requires a master clock (MCLK). This master clock is input to the AK4641EN by inputting an external  
CMOS-level clock to the MCLK pin or by inputting an external clock that is greater than 50% of the DVDD level to the  
MCLK pin through a capacitor. MCKPD and MCKAC bits should be set as shown in Table 1. ADC and DAC of 16bit  
Stereo CODEC are powered-down at MCKPD bit = “1”.  
Master Clock  
Status  
MCKAC bit  
MCKPD bit  
External Clock Direct Input (Figure 12)  
Clock is input to MCLK pin.  
Clock is not input to MCLK pin.  
Clock is input to MCLK pin.  
Clock is not input to MCLK pin.  
0
0
1
1
0
1
0
1
AC Coupling Input  
(Figure 13)  
Table 1. MCKPD and MCKAC bits Setting for Master Clock Status  
(1) External Clock Direct Input  
MCLK  
MCKAC bit = "0"  
MCKPD bit = "0"  
External  
Clock  
AK4641  
Figure 12. External Master Clock Input Block  
(2) AC Coupling Input  
0.1uF  
MCLK  
MCKAC bit = "1"  
MCKPD bit = "0"  
External  
Clock  
AK4641  
Figure 13. External Clock mode (Input: 50%DVDD)  
MS0467-E-00  
2006/02  
- 16 -  
ASAHI KASEI  
[AK4641EN]  
The clock required to operate are MCLK, LRCK (fs) and BICK (32fs). Then the master clock (MCLK) should be  
synchronized with LRCK. The phase between these clocks does not matter.  
The S/N of the DAC of Stereo CODEC at low sampling frequencies is worse than at high sampling frequencies due to  
out-of-band noise. The out-of-band noise can be improved by using higher frequency of the master clock. The S/N of the  
DAC output of Stereo CODEC through Headphone amp at fs=8kHz is shown in Table 3.  
Sampling Frequency  
(fs)  
MCLK  
MCK1  
MCK0  
0
0
1
1
0
1
0
1
256fs  
512fs  
1024fs  
N/A  
Default  
7kHz48kHz  
7kHz24kHz  
7kHz12kHz  
-
Table 2. Select Master Clock Frequency  
MCLK  
256fs  
512fs  
S/N (fs=8kHz, A-weighted)  
82dB  
90dB  
90dB  
1024fs  
Table 3. Relationship between MCLK and S/N of Line Out  
When the synchronization is out of phase by changing the clock frequencies during normal operation, the AK4641EN  
may occur pop noise.  
All external clocks (MCLK, BICK and LRCK) should always be present when either ADC or DAC of Stereo CODEC is  
power-up. If these clocks are not provided, the AK4641EN may draw excess current and it is not possible to operate  
properly because utilizes dynamic refreshed logic internally. If the external clocks are not present, the AK4641EN should  
be in the power-down mode.  
Power up  
Input  
Input  
Power down  
Fixed to “L” or “H” externally  
Fixed to “L” or “H” externally  
BICK pin  
LRCK pin  
Table 4. Clock Operation  
„ System Reset  
Upon power-up, reset the AK4641EN by bringing the PDN pin = “L”. This ensures that all internal registers are reset to  
their initial values.  
The ADC of Stereo CODEC enters an initialization cycle that starts when the PMADC bit is changed from “0” to “1”. The  
initialization cycle time is 2081/fs, or 47.2ms@fs=44.1kHz. During the initialization cycle, the ADC digital data output of  
Stereo CODEC is forced to a 2's compliment, “0”. The ADC output of Stereo CODEC reflects the analog input signal  
after the initialization cycle is complete. The DAC of Stereo CODEC does not require an initialization cycle.  
The ADC of Mono CODEC enters an initialization cycle that starts when the PMAD2 bit is changed from “0” to “1”. The  
initialization cycle time is 1057/Bfs, or 132ms@Bfs=8kHz. During the initialization cycle, the ADC digital data output of  
Mono CODEC is forced to a 2's compliment, “0”. The ADC output of Mono CODEC reflects the analog input signal after  
the initialization cycle is complete. The DAC of Mono CODEC does not require an initialization cycle.  
MS0467-E-00  
2006/02  
- 17 -  
ASAHI KASEI  
[AK4641EN]  
„ Audio Interface Format of Stereo CODEC  
Three types of data formats are available and are selected by setting the DIF1-0 bits. In all modes, the serial data is MSB  
first, 2’s complement format. The SDTO is clocked out on the falling edge of BICK and the SDTI is latched on the rising  
edge. LRCK and BICK must be input to the AK4641EN in slave mode. If 16bit data that ADC of Stereo CODEC outputs  
is converted to 8bit data by removing LSB 8bit, “1” at 16bit data is converted to “1” at 8bit data. And when the DAC of  
Stereo CODEC playbacks this 8bit data, “1” at 8bit data will be converted to “256” at 16bit data and this is a large  
offset. This offset can be removed by adding the offset of “128” to 16bit data before converting to 8bit data.  
Mode  
DIF1  
DIF0  
SDTO (ADC)  
MSB justified  
MSB justified  
I2S  
SDTI (DAC)  
LSB justified  
MSB justified  
I2S  
BICK  
Figure  
0
1
2
3
0
0
1
1
0
1
0
1
Figure 14  
Figure 15  
Figure 16 Default  
-
32fs  
32fs  
32fs  
N/A  
N/A  
N/A  
Table 5. Audio Interface Format of Stereo CODEC  
LRCK  
0
1
2
3
9 10 11 12 13 14 15 0  
1
2
3
9 10 11 12 13 14 15 0 1  
BICK(32fs)  
SDTO(o)  
15 14 13  
15 14 13  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
15  
0 15 14 13  
7
6
5
4
3
2
1
0 15  
SDTI(i)  
0
1
2
3
15 16 17 18  
31 0  
1
2
3
15 16 17 18  
31 0  
1
BICK(64fs)  
SDTO(o)  
15 14 13  
1
0
15  
Don't Care  
15:MSB, 0:LSB  
15 14  
1
0
Don't Care  
15 14  
2 1 0  
SDTI(i)  
Lch Data  
Rch Data  
Figure 14. Mode 0 Timing  
MS0467-E-00  
2006/02  
- 18 -  
ASAHI KASEI  
[AK4641EN]  
LRCK  
0
1
2
3
9 10 11 12 13 14 15 0  
1
2
3
9 10 11 12 13 14 15 0  
1
BICK(32fs)  
15 14 13  
15 14 13  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
15  
SDTO(o)  
SDTI(i)  
0 15 14 13  
7
6
5
4
3
2
1
0 15  
0
1
2
3
15 16 17 18  
31 0  
1
2
3
15 16 17 18  
31 0  
1
BICK(64fs)  
SDTO(o)  
15 14 13  
1
0
0
15  
15 14 13  
1
Don't Care  
15 14 13  
1
0
Don't Care 15  
SDTI(i)  
15:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 15. Mode 1 Timing  
LRCK  
0
1
2
3
9 10 11 12 13 14 15 0  
1
2
3
9 10 11 12 13 14 15 0 1  
BICK(32fs)  
SDTO(o)  
15 14  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0 15 14  
0 15 14  
8 7 6 5 4 3 2 1 0  
SDTI(i)  
0
1
2
3
15 16 17 18  
31 0  
1
2
3
15 16 17 18  
31 0 1  
BICK(64fs)  
SDTO(o)  
15 14  
15 14  
2
2
1
1
0
0
Don't Care  
15 14  
2
1
0
Don't Care  
SDTI(i)  
15:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 16. Mode 2 Timing  
MS0467-E-00  
2006/02  
- 19 -  
ASAHI KASEI  
[AK4641EN]  
„ Audio Interface Format of Mono CODEC  
Four types of data formats are available for 16bit Mono CODEC and are selected by setting the BTFMT1-0 bits. In all  
modes, the serial data is MSB first, 2’s complement format. In short frame sync and long frame sync modes, the BSDTO  
is clocked out on the rising edge of BBICK and the BSDTI is latched on the falling edge. In MSB justified and I2S modes,  
the BSDTO is clocked out on the falling edge of BBICK and the BSDTI is latched on the rising edge. BSYNC and  
BBICK must be input to the AK4641EN.  
Mode  
Short Frame Sync  
Long Frame Sync  
MSB justified  
I2S  
BTFMT1-0  
BBICK  
16Bfs  
16Bfs  
32Bfs  
32Bfs  
Figure  
Figure 17 Default  
Figure 18  
Figure 19  
Figure 20  
00  
01  
10  
11  
Table 6. Audio Interface Format for 16bit Mono CODEC  
(1) Short Frame Sync  
1/Bfs  
BSYNC  
BBICK  
BSDTO  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14  
D15 D14  
BSDTI  
Don’t Care  
Don’t Care  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Figure 17. Timing of Short Frame Sync  
(2) Long Frame Sync  
1/Bfs  
BSYNC  
BBICK  
BSDTO  
BSDTI  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
D15 D14 D13  
D15 D14 D13  
Don’t Care  
Don’t Care  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Figure 18. Timing of Long Frame Sync  
MS0467-E-00  
2006/02  
- 20 -  
ASAHI KASEI  
[AK4641EN]  
(3) MSB justified  
BSYNC  
0
1
2
3
9 10 11 12 13 14 15 0  
1
2
3
9 10 11 12 13 14 15 0  
1
BBICK  
(32Bfs)  
15 14 13  
15 14 13  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
15  
15  
BSDTO(o)  
Don't Care  
Don't Care  
15 16 17 18  
BSDTI(i)  
0
1
2
3
15 16 17 18  
31 0  
1
2
3
31 0 1  
BBICK  
(64Bfs)  
15 14 13  
1
0
0
15  
BSDTO(o)  
15 14 13  
1
Don't Care  
Don't Care  
15  
BSDTI(i)  
15:MSB, 0:LSB  
Figure 19. Timing of MSB justified  
(4) I2S  
BSYNC  
0
1
2
3
9 10 11 12 13 14 15 0  
1
2
3
9 10 11 12 13 14 15 0 1  
BBICK  
(32Bfs)  
15 14  
15 14  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
BSDTO(o)  
BSDTI(i)  
Don't Care  
15 16 17 18 31 0 1  
0
1
2
3
15 16 17 18  
31 0  
1
2
3
BBICK  
(64Bfs)  
15 14  
15 14  
2
2
1
1
0
0
BSDTO(o)  
BSDTI(i)  
Don't Care  
Don't Care  
15:MSB, 0:LSB  
Figure 20. Timing of I2S  
„ Digital High Pass Filter  
The ADC of Stereo CODEC has a digital high pass filter for DC offset cancellation. The cut-off frequency of the HPF is  
3.4Hz (@fs=44.1kHz) and scales with sampling rate (fs).  
The ADC of Mono CODEC also has a digital high pass filter for DC offset cancellation. The cut-off frequency of the HPF  
is 0.62Hz (@Bfs=8kHz) and scales with sampling rate (Bfs).  
MS0467-E-00  
2006/02  
- 21 -  
ASAHI KASEI  
[AK4641EN]  
„ MIC Input  
MICL bit  
MICM bit  
Stereo Mixer  
Mono Mixer  
ATT  
DAC of  
Mono CODEC  
ATT  
MICAD bit  
IPGA with ALC  
ADC of Stereo  
CODEC  
µP  
Mic In  
0dB/+20dB  
AUXAD bit  
DAC2 bit = “0”: Mic Input Signal  
“1”: DAC Signal  
AUX IN  
Figure 21. Microphone Input  
The AK4641EN has the following functions for Mic Input.  
(1) 1st MIC Amplifier of 20dB gain that can be selected ON/OFF by “MGAIN” bit.  
(2) 2nd Amplifier that has PGA with ALC. This volume is controlled by “IPGA6-0” bit as Table 7.  
While ALC is working, Master Clock must be present.  
When Master Clock is not provided or PMMIC bit = “0”, it is invalid to write to “IPGA6-0”.  
(3) Attenuator for stereo mixer. This volume is controlled by “ATTS2-0” bit as Table 8.  
(4) Attenuator for mono mixer. This attenuator level is 4dB and this ON/OFF is controlled by “ATTM” bit.  
IPGA6-0  
47H  
46H  
45H  
:
GAIN (dB)  
+27.5  
+27.0  
+26.5  
:
STEP  
36H  
:
+19.0  
:
10H  
:
+0.0  
:
Default  
0.5dB  
06H  
05H  
04H  
03H  
02H  
01H  
00H  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
Table 7. Microphone Input Gain Setting  
ATTS2-0  
Attenuation  
6dB  
7H  
6H  
5H  
4H  
3H  
2H  
1H  
0H  
9dB  
Default  
12dB  
15dB  
18dB  
21dB  
24dB  
27dB  
Table 8. Attenuator Table  
MS0467-E-00  
2006/02  
- 22 -  
ASAHI KASEI  
[AK4641EN]  
„ MIC Gain Amplifier  
The AK4641EN has a Gain Amplifier for Microphone input. This gain is 0dB or +20dB, selected by the MGAIN bit. The  
typical input impedance is 30k.  
MGAIN bit  
Input Gain  
0dB  
+20dB  
0
1
Default  
Table 9. Input Gain  
„ MIC Power  
The MPI and MPE pins supply power for the Microphone. These output voltages are 0.75 x AVDD (typ) and the load  
resistance is 2k(min). No capacitor must be connected directly to MPI and MPE pins. MPWRI/MPWRE bit can control  
output from MPI and MPE pin.  
MPWRE bit  
AK4641  
MPE  
MPI  
INT  
MPWRI bit  
EXT  
MDT  
G
M
R
R
L
L
Headset  
DTMIC bit  
or  
500k  
0.075 x AVDD  
G
Headphone  
Figure 22. Microphone Power Supply and Mic Detection  
„ MIC Detection Function  
The AK4641EN includes the detection function of microphone. The external circuit is showed in Figure 22.  
The followings show the example of external microphone detection sequence:  
(1) MPWRE bit = “1”.  
(2) MPE drives external microphone.  
(3) DTMIC bit is set as Table 10. In case of Headset, the input voltage of MDT pin is higher than 0.078 x AVDD because  
of the relationship between the bias resistance at MPE pin (typ. 2.2k) and the microphone impedance. In case of  
Headphone, the input voltage of MDT pin is 0V because the pin of headphone jack connected to MDT pin is assigned  
as ground.  
Input Level of DTM  
DTMIC  
Result  
1
0
Mic (Headset)  
No Mic (Headphone)  
0.078 x AVDD  
< 0.050 x AVDD  
Table 10. Microphone Detection Result  
MS0467-E-00  
2006/02  
- 23 -  
ASAHI KASEI  
[AK4641EN]  
„ Manual Mode  
The AK4641EN becomes a manual mode at ALC1 bit = “0”. This mode is used in the case shown below.  
1. After exiting reset state, set up the registers for the ALC1 operation (ZTM1-0, LMTH and etc)  
2. When the registers for the ALC1 operation (Limiter period, Recovery period and etc) are changed.  
For example; When the change of the sampling frequency.  
3. When IPGA is used as a manual volume.  
„ MIC-ALC Operation  
The ALC (Automatic Level Control) of MIC input is done by ALC1 block when ALC1 bit is “1”.  
[1] ALC1 Limiter Operation  
When the ALC1 limiter is enabled, and IPGA output exceeds the ALC1 limiter detection level (LMTH), the IPGA value  
is attenuated by the amount defined in the ALC1 limiter ATT step (LMAT1-0 bits) automatically.  
When the ZELM bit = “1”, the timeout period is set by the LTM1-0 bits. The operation for attenuation is done  
continuously until the input signal level becomes LMTH or less. If the ALC1 bit does not change into “0” after  
completing the attenuation, the attenuation operation repeats while the input signal level equals or exceeds LMTH.  
When the ZELM bit = “0”, the timeout period is set by the ZTM1-0 bits. This enables the zero-crossing attenuation  
function so that the IPGA value is attenuated at the zero-detect points of the waveform.  
[2] ALC1 Recovery Operation  
The ALC1 recovery refers to the amount of time that the AK4641EN will allow a signal to exceed a predetermined  
limiting value prior to enabling the limiting function. The ALC1 recovery operation uses the WTM1-0 bits to define the  
wait period used after completing an ALC1 limiter operation. If the input signal does not exceed the “ALC1 Recovery  
Waiting Counter Reset Level”, the ALC1 recovery operation starts. The IPGA value increases automatically during this  
operation up to the reference level (REF6-0 bits). The ALC1 recovery operation is done at a period set by the WTM1-0  
bits. Zero crossing is detected during WTM1-0 period, the ALC1 recovery operation waits WTM1-0 period and the next  
recovery operation starts.  
During the ALC1 recovery operation, when input signal level exceeds the ALC1 limiter detection level (LMTH), the  
ALC1 recovery operation changes immediately into an ALC1 limiter operation.  
In the case of “(Recovery waiting counter reset level) IPGA Output Level < Limiter detection level” during the ALC1  
recovery operation, the wait timer for the ALC1 recovery operation is reset. Therefore, in the case of “(Recovery waiting  
counter reset level) > IPGA Output Level”, the wait timer for the ALC1 recovery operation starts.  
The ALC1 operation corresponds to the impulse noise. When the impulse noise is input, the ALC1 recovery operation  
becomes faster than a normal recovery operation.  
MS0467-E-00  
2006/02  
- 24 -  
ASAHI KASEI  
[AK4641EN]  
[3] Example of ALC1 Operation  
Table 11 shows the examples of the ALC1 setting. In case of this examples, ALC1 operation starts from 0dB.  
fs=8kHz  
fs=16kHz  
fs=44.1kHz  
Register Name Comment  
Data Operation Data Operation Data Operation  
LMTH  
LTM1-0  
ZELM  
Limiter detection Level  
1
00  
0
1
00  
0
1
00  
0
4dBFS  
Don’t use  
Enable  
4dBFS  
Don’t use  
Enable  
4dBFS  
Don’t use  
Enable  
Limiter operation period at ZELM = 1  
Limiter zero crossing detection  
Zero crossing timeout period  
Recovery waiting period  
ZTM1-0  
00  
16ms  
01  
16ms  
10  
11.6ms  
WTM1-0  
*WTM1-0 bits should be the same data 00  
as ZTM1-0 bits  
16ms  
01  
16ms  
10  
11.6ms  
REF6-0  
IPGA6-0  
LMAT1-0  
RATT  
Maximum gain at recovery operation  
Gain of IPGA at ALC1 operation Start 10H  
Limiter ATT Step  
Recovery GAIN Step  
ALC1 Enable bit  
47H  
+27.5dB  
0dB  
1 step  
1 step  
Enable  
47H  
10H  
00  
0
+27.5dB  
0dB  
1 step  
1 step  
Enable  
47H  
10H  
00  
0
+27.5dB  
0dB  
1 step  
1 step  
Enable  
00  
0
1
ALC1  
1
1
Table 11. Example of the ALC1 setting  
The following registers should not be changed during the ALC1 operation. These bits should be changed, after the ALC1  
operation is finished by ALC1 bit = “0” or PMMIC bit = “0”.  
LTM1-0, LMTH, LMAT1-0, WTM1-0, ZTM1-0, RATT, REF6-0, ZELM bits  
IPGA gain at ALC1 operation start can be changed from the default value of IPGA6-0 bits while PMMIC bit is “1” and  
ALC1 bit is “0”. When ALC1 bit is changed from “1” to “0”, IPGA holds the last gain value set by ALC1 operation.  
Example:  
Limiter = Zero crossing Enable  
Recovery Cycle = 16ms @ fs= 8kHz  
Limiter and Recovery Step = 1  
Maximum Gain = +27.5dB  
Manual Mode  
Limiter Detection Level = 4dBFS  
WR (ZTM1-0, WTM1-0, LTM1-0)  
WR (REF6-0)  
(1) Addr=08H, Data=00H  
(2) Addr=0AH, Data=47H  
(3) Addr=0BH, Data=10H  
(4) Addr=09H, Data=21H  
* The value of IPGA should be  
the same or smaller than REF’s  
WR (IPGA6-0)  
WR (ALC1= “1”, LMAT1-0, RATT, LMTH, ZELM)  
* ALC1 bit must be set to “1” at more than zero cross time out period  
after the value of IPGA is set (see figure 22).  
ALC1 Operation  
Note : WR : Write  
Figure 23. Registers set-up sequence at ALC1 operation  
MS0467-E-00  
2006/02  
- 25 -  
ASAHI KASEI  
[AK4641EN]  
[Setting timing of IPGA and ALC1 bits]  
t > zero cross time out period  
ZTM1-0 bits  
XXH  
00H  
XXH  
BH  
IPGA6-0 bits  
AH  
BH  
IPGA  
AH  
ALC1 bit  
(1) (2)  
(3) (4)  
(5)  
Figure 24. Setting timing of IPGA and ALC1 bits  
(1) Set the zero cross time out period of IPGA as 128/fs: ZTM1-0 bits = “00”. (Note)  
(2) Set the IPGA value of ALC1 operation start by IPGA6-0 bits.  
(3) The value of IPGA6-0 bits is reflected to actual gain at zero crossing or zero cross time out.  
(4) Set the zero cross time out period of ALC1 operation by ZTM1-0 bits after the zero cross time out period set by (1).  
(5) Set ALC1 bit to “1”.  
(Note) If ZTM1-0 bits are set to the value except for “00”, ALC1 bit must be set to “1” after this zero cross time out  
period.  
MS0467-E-00  
2006/02  
- 26 -  
ASAHI KASEI  
[AK4641EN]  
„ DAC of Stereo CODEC  
DACL bit  
DACM bit  
Stereo Mixer  
5 Band  
DAC of Stereo  
CODEC  
DEM  
SMUTE  
DATT  
Mono Mixer  
Equalizer  
Figure 25. DAC block diagram of Stereo CODEC  
The AK4641EN has the following functions for DAC of Stereo CODEC.  
(1) 5 Band Equalizer  
(2) Soft mute  
(3) Digital Attenuator  
(4) De-emphasis Filter (32kHz, 44.1kHz and 48kHz)  
„ De-emphasis Filter  
The AK4641EN includes the digital de-emphasis filter (tc = 50/15µs) by IIR filter. Setting the DEM1-0 bits enables the  
de-emphasis filter.  
DEM1  
DEM0  
Mode  
44.1kHz  
OFF  
48kHz  
32kHz  
0
0
1
1
0
1
0
1
Default  
Table 12. De-emphasis Control  
„ Digital Attenuator  
The AK4641EN has a channel-independent digital attenuator (256levels, 0.5dB step, Mute). The ATTL/R7-0 bits set the  
attenuation level of each channel (Table 13). When the DATTC bit = “1”, the ATTL7-0 bits control both Lch and Rch  
attenuation levels. When the DATTC bit = “0”, the ATTL7-0 bits control Lch level and ATTR7-0 bits control Rch level.  
This attenuator has a soft transition function. It takes around 1061/fs (24ms@44.1kHz) at TM bit = “0” and 256/fs  
(5.8ms@44.1kHz) at TM bit = “1” from 00H to FFH.  
ATTL/R7-0  
Attenuation  
0dB  
0.5dB  
1.0dB  
1.5dB  
:
00H  
01H  
02H  
03H  
:
Default  
:
:
FDH  
FEH  
FFH  
126.5dB  
127.0dB  
MUTE (−∞)  
Table 13. DATT Code Table  
MS0467-E-00  
2006/02  
- 27 -  
ASAHI KASEI  
[AK4641EN]  
„ 5 Band Equalizer  
The AK4641EN has 5 Band Equalizer before DAC of Stereo CODEC as shown in Figure 25.  
The center frequencies and cut/boost amount are the followings.  
Center frequency: 100Hz, 250Hz, 1kHz, 3.5kHz, 10kHz (Note 25, Note 26)  
Cut/Boost amount: Minimum –10.5dB, Maximum +12dB, Step 1.5dB  
Note 25: These are the frequencies when the sampling frequency is 44.1kHz. These frequencies are proportional to the  
sampling frequency.  
Note 26: 100Hz is not center frequency but the frequency component lower than 100Hz is controlled.  
Note 27: 10kHz is not center frequency but the frequency component higher than 10kHz is controlled.  
EQ5 bit controls ON/OFF of this Equalizer and these Boost amount are set by EQx3-0 bit as shown in Table 14.  
EQA3-0: Select the boost level of 100Hz  
EQB3-0: Select the boost level of 250Hz  
EQC3-0: Select the boost level of 1kHz  
EQD3-0: Select the boost level of 3.5kHz  
EQE3-0: Select the boost level of 10kHz  
EQx3-0  
0H  
1H  
2H  
3H  
:
Boost amount  
+12.0dB  
+10.5dB  
+9.0dB  
+7.5dB  
:
8H  
:
0dB  
:
Default  
DH  
EH  
FH  
7.5dB  
9.0dB  
10.5dB  
Table 14. Boost amount of 5 Band Equalizer  
MS0467-E-00  
2006/02  
- 28 -  
ASAHI KASEI  
[AK4641EN]  
„ Soft Mute  
Soft mute operation is performed in the digital domain. When the SMUTE bit goes to “1”, the output signal is attenuated  
by −∞ (“0”) during the cycle set by the TM bit. When the SMUTE bit is returned to “0”, the mute is cancelled and the  
output attenuation gradually changes to the digital attenuator level of ATTL/R7-0 bits during the cycle set by the TM bit.  
If the soft mute is cancelled within the cycle set by the TM bit after starting the operation, the attenuation is discontinued  
and returned to the digital attenuator level. The soft mute is effective for changing the signal source without stopping the  
signal transmission.  
Table 15 shows the Soft Mute Time when the digital attenuator level is 0dB (ATTL/R7-0 bits = “0”). As the digital  
attenuator level is less than 0dB, the Soft Mute Time becomes shorter.  
TM  
0
1
Cycle  
1061/fs  
256/fs  
Default  
Table 15. Soft Mute Time Setting  
SMUTE bit  
ATTL/R7-0 bits  
Attenuation  
TM bit  
(1)  
TM bit  
(3)  
−∞  
GD  
GD  
(2)  
Analog Output  
Figure 26. Soft Mute Function  
NOTE:  
(1) The output signal is attenuated until −∞ (“0”) by the cycle set by the TM bit.  
(2) Analog output corresponding to digital input has the group delay (GD).  
(3) If the soft mute is cancelled within the cycle of setting the TM bit, the attenuation is discounted and returned to  
0dB(the set value).  
MS0467-E-00  
2006/02  
- 29 -  
ASAHI KASEI  
[AK4641EN]  
„ AUX Input  
GN3-0 bits  
Volume  
AUXL bit  
AUXIN+  
Stereo Mixer  
AUXIN−  
Mixer for ADC  
of Stereo CODEC  
AUXAD bit  
Figure 27. AUX Input  
AUX input is differential input at AUXSI bit = “0” and single end input at AUXSI bit = “1”. AUXIN+ pin should be used  
at single end input (AUXSI bit = “1”). The AK4641EN has a volume for AUX Input. This Volume is controlled by  
GN3-0 bits as shown in Table 16. The switching noise occurs when GN3-0 bits are changed.  
GN3-0  
FH  
EH  
DH  
:
GAIN (dB)  
+24.0  
+21.0  
+18.0  
:
7H  
:
+0.0  
:
Default  
2H  
1H  
0H  
15.0  
18.0  
21.0  
Table 16. AUX Input Gain Setting  
MS0467-E-00  
2006/02  
- 30 -  
ASAHI KASEI  
[AK4641EN]  
„ STEREO LINE OUTPUT (LOUT and ROUT pins) and MONO LINE OUTPUT (MOUT2 pin)  
DAC of  
Mono CODEC  
DAC2 bit  
ATT  
Mic In  
IPGA  
0dB/+20dB  
MICL bit  
Stereo Line Out  
DACL bit  
AUXL bit  
ATT +  
DAC of Stereo CODEC  
External Headphone Amp  
External Speaker Amp  
AUX In  
Mono Line Out(MOUT2)  
Volume  
Figure 28. Stereo Line Output and Mono Line Out2  
Line out path does not have volume but the attenuator of DAC of Stereo CODEC, volume of Mic In and AUX In control  
the output signal level. The AK4641EN does not have mute circuits to remove pop noise at power up and down for Line  
Output. The signal of the stereo mixer is converted to a mono signal [(L+R)/2] and this signal is output via MOUT2 pin.  
„ MONO LINE OUTPUT (MOUT+/MOUTpin)  
DAC of  
Mono CODEC  
DAC2 bit  
ATT  
MIC In  
0dB/+20dB  
IPGA  
MICM bit  
MOGN bit  
DACM bit  
1/2  
1/2  
MOUT+  
ATT +  
DAC of Stereo CODEC  
MOUT−  
17dB/+6dB  
Figure 29. Mono Output  
Mono mixer mixes signal from MIC In, Lch signal and Rch signal from DAC of Stereo CODEC. This mixed signal is  
output from the MOUT+ and MOUTpins by differential output. Amp for mono output has 6dB gain and 17dB gain  
that are set by the MOGN bit.  
MS0467-E-00  
2006/02  
- 31 -  
ASAHI KASEI  
[AK4641EN]  
„ 16bit Mono CODEC for Bluetooth I/F  
The AK4641EN has the 16bit Mono CODEC to connect with Bluetooth Module that supports 8kHz to 16kHz sample  
rate. The AK4641EN includes PLL that generate the master clock for Mono CODEC from input BSYNC signal. The PLL  
should be powered-up after BSYNC signal is inputted. The PLL needs 90ms (max) lock time, when the PLL is  
powered-up (PMBIF bit = “0” “1”) and BSYNC is input. PMDA2 bit should be set to “0” or “0” data should be input  
to DAC of Mono CODEC during 90ms after PMBIF bit is set to “1”.  
BBICK and BSYNC should always be present when either ADC or DAC of Mono CODEC is power-up. If these clocks  
are not provided, the AK4641EN may draw excess current and it is not possible to operate properly because utilizes  
dynamic refreshed logic internally. If BBICK or BSYNC is not present, ADC and DAC of Mono CODEC should be in  
the power-down mode.  
ADC  
The ADC of Mono CODEC outputs the signal from DAC of Stereo CODEC, Mic In and AUX In. The ADC of Mono  
CODEC enters an initialization cycle that starts when the PMAD2 bit is changed from “0” to “1”. The initialization cycle  
time is 1057/Bfs, or 132ms@Bfs=8kHz. During the initialization cycle, the ADC digital data output of Mono CODEC are  
forced to a 2's compliment, “0”. The ADC output of Mono CODEC reflects the analog input signal after the initialization  
cycle is complete.  
ADC full Scale Level: 0.6*AVDD [Vpp](1.98Vpp@3.3V)  
Full Scale level of ADC of Mono CODEC is the same as that of DAC of Stereo CODEC.  
DAC of  
Mono CODEC  
DAC2 bit  
ATT  
AK4641  
Mic In  
ADC2 bit  
0dB/+20dB  
ADC of  
IPGA  
Bluetooth  
Module  
MICL bit  
Mono CODEC  
Bth Headset  
DACL bit  
AUXL bit  
ATT +  
Stereo DAC  
External  
HP-Amp  
Line Out  
AUX In  
Headphone  
Volume  
Figure 30. Path to ADC of Mono CODEC  
DAC  
The signal that is output from DAC of Mono CODEC is sent to Line Out, Mono Out and ADC of Stereo CODEC.  
DAC full Scale Level: 0.6*AVDD [Vpp](1.98Vpp@3.3V)  
Full Scale level of DAC of Mono CODEC is the same as that of ADC of Stereo CODEC.  
MICL bit  
Line Out through stereo mixer  
Mono Out  
ATT  
AK4641  
MICM bit  
Microphone  
ATT  
IPGA with ALC  
MICAD bit  
ADC of Stereo  
CODEC  
µP  
Mic In  
0dB/+20dB  
DAC2 bit  
AUX In  
Bluetooth  
Module  
DAC of  
Bth Headset  
Mono CODEC  
Figure 31. Path from DAC of Mono CODEC  
MS0467-E-00  
2006/02  
- 32 -  
ASAHI KASEI  
[AK4641EN]  
„ I2C-bus Control Interface  
The AK4641EN supports the fast-mode I2C-bus (max: 400kHz).  
1. WRITE Operations  
Figure 32 shows the data transfer sequence for the I2C-bus mode. All commands are preceded by a START condition. A  
HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition (Figure 38). After the  
START condition, a slave address is sent. This address is 7 bits long followed by an eighth bit that is a data direction bit  
(R/W). The most significant seven bits of the slave address are fixed as “0010010”. If the slave address matches that of the  
AK4641EN, the AK4641EN generates an acknowledge and the operation is executed. The master must generate the  
acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock pulse (Figure 39). A  
R/W bit value of “1” indicates that the read operation is to be executed. A “0” indicates that the write operation is to be  
executed.  
The second byte consists of the control register address of the AK4641EN. The format is MSB first, and those most  
significant 3-bits are fixed to zeros (Figure 34). The data after the second byte contains control data. The format is MSB  
first, 8bits (Figure 35). The AK4641EN generates an acknowledge after each byte has been received. A data transfer is  
always terminated by a STOP condition generated by the master. A LOW to HIGH transition on the SDA line while SCL  
is HIGH defines a STOP condition (Figure 38).  
The AK4641EN can perform more than one byte write operation per sequence. After receipt of the third byte the  
AK4641EN generates an acknowledge and awaits the next data. The master can transmit more than one byte instead of  
terminating the write cycle after the first data byte is transferred. After receiving each data packet the internal 5-bit  
address counter is incremented by one, and the next data is automatically taken into the next address. If the address  
exceeds 1FH prior to generating the stop condition, the address counter will “roll over” to 00H and the previous data will  
be overwritten.  
The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW state of the data  
line can only change when the clock signal on the SCL line is LOW (Figure 40) except for the START and STOP  
conditions.  
S
S
T
O
P
T
A
R
T
R/W="0"  
Slave  
Address  
Sub  
Address(n)  
S
Data(n)  
Data(n+1)  
Data(n+x)  
P
SDA  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Figure 32. Data Transfer Sequence at the I2C-Bus Mode  
0
0
0
0
1
0
0
0
1
0
R/W  
A0  
Figure 33. The First Byte  
A4  
A3  
A2  
D2  
A1  
D1  
Figure 34. The Second Byte  
D7  
D6  
D5  
D4  
D3  
D0  
Figure 35. Byte Structure after the second byte  
MS0467-E-00  
2006/02  
- 33 -  
ASAHI KASEI  
[AK4641EN]  
(2)-2. READ Operations  
Set the R/W bit = “1” for the READ operation of the AK4641EN. After transmission of data, the master can read the next  
address’s data by generating an acknowledge instead of generating a stop condition after the receipt of the first data word.  
After receiving each data packet the internal 5-bit address counter is incremented by one, and the next data is  
automatically taken into the next address. If the address exceeds 1FH prior to generating a stop condition, the address  
counter will “roll over” to 00H and the previous data will be overwritten.  
The AK4641EN supports two basic read operations: CURRENT ADDRESS READ and RANDOM ADDRESS READ.  
(2)-2-1. CURRENT ADDRESS READ  
The AK4641EN contains an internal address counter that maintains the address of the last word accessed, incremented by  
one. Therefore, if the last access (either a read or write) were to address n, the next CURRENT READ operation would  
access data from the address n+1. After receipt of the slave address with R/W bit set to “1”, the AK4641EN generates an  
acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal  
address counter by 1. If the master does not generate an acknowledge to the data but instead generates a stop condition,  
the AK4641EN ceases transmission.  
S
S
T
O
P
T
A
R
T
R/W="1"  
Slave  
Address  
S
Data(n)  
Data(n+1)  
Data(n+2)  
Data(n+x)  
P
SDA  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Figure 36. CURRENT ADDRESS READ  
(2)-2-2. RANDOM ADDRESS READ  
The random read operation allows the master to access any memory location at random. Prior to issuing the slave address  
with the R/W bit set to “1”, the master must first perform a “dummy” write operation. The master issues a start request, a  
slave address (R/W bit = “0”) and then the register address to read. After the register address is acknowledged, the master  
immediately reissues the start request and the slave address with the R/W bit set to “1”. The AK4641EN then generates an  
acknowledge, 1 byte of data and increments the internal address counter by 1. If the master does not generate an  
acknowledge to the data but instead generates a stop condition, the AK4641EN ceases transmission.  
S
T
A
R
T
S
T
A
R
T
S
T
O
P
R/W="0"  
R/W="1"  
Slave  
Address  
Sub  
Address(n)  
Slave  
Address  
S
S
Data(n)  
Data(n+1)  
Data(n+x)  
P
SDA  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Figure 37. RANDOM ADDRESS READ  
MS0467-E-00  
2006/02  
- 34 -  
ASAHI KASEI  
[AK4641EN]  
SDA  
SCL  
S
P
start condition  
stop condition  
Figure 38. START and STOP Conditions  
DATA  
OUTPUT BY  
TRANSMITTER  
not acknowledge  
DATA  
OUTPUT BY  
RECEIVER  
acknowledge  
SCL FROM  
MASTER  
2
1
8
9
S
clock pulse for  
acknowledgement  
START  
CONDITION  
Figure 39. Acknowledge on the I2C-Bus  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
Figure 40. Bit Transfer on the I2C-Bus  
MS0467-E-00  
2006/02  
- 35 -  
ASAHI KASEI  
[AK4641EN]  
„ Register Map  
Addr Register Name  
D7  
PMVCM  
MCKPD  
MOGN  
DACL  
0
0
0
D6  
0
0
PSMO  
0
0
MCK1  
TM  
0
0
0
REF6  
IPGA6  
ATTL6  
ATTR6  
ATTS2  
0
EQB2  
EQD2  
0
D5  
0
0
DACM  
AUXL  
0
MCK0  
SMUTE  
D4  
PMLO  
MCKAC PMMO2  
MICM  
MICL  
0
D3  
PMMO  
D2  
D1  
D0  
00H Power Management 1  
01H Power Management 2  
02H Signal Select1  
03H Signal Select2  
04H Mode Control 1  
05H Mode Control 2  
06H DAC Control  
07H MIC Control  
08H Timer Select  
09H ALC Mode Control 1  
0AH ALC Mode Control 2  
0BH Input PGA Control  
0CH Lch Digital ATT Control  
0DH Rch Digital ATT Control  
0EH Volume Control  
0FH Status  
10H EQ Control 250Hz/100Hz  
11H EQ Control 3.5kHz/1kHz  
12H EQ Control 10kHz  
13H BT I/F CODEC Control  
PMAUX PMMIC PMADC  
0
0
0
0
PMDAC  
PSMO2  
PSLOR  
DIF0  
0
0
0
0
0
AUXSI  
0
HPM  
EQ  
MICAD  
WTM0  
LMAT0  
REF2  
IPGA2  
ATTL2  
ATTR2  
GN2  
PSLOL  
DIF1  
0
LOOP  
DEM1  
MSEL  
LTM1  
RATT  
REF1  
IPGA1  
ATTL1  
ATTR1  
GN1  
0
DATTC  
DEM0  
MGAIN  
LTM0  
LMTH  
REF0  
IPGA0  
ATTL0  
ATTR0  
GN0  
DTMIC  
EQA0  
EQC0  
EQE0  
0
0
0
0
0
AUXAD MPWRE MPWRI  
ZTM1  
ALC1  
REF5  
IPGA5  
ATTL5  
ATTR5  
ATTS1  
0
ZTM0  
ZELM  
REF4  
IPGA4  
ATTL4  
ATTR4  
ATTS0  
0
WTM1  
LMAT1  
REF3  
IPGA3  
ATTL3  
ATTR3  
GN3  
ATTL7  
ATTR7  
ATTM  
0
EQB3  
EQD3  
0
0
0
0
EQB1  
EQD1  
0
EQB0  
EQD0  
0
EQA3  
EQC3  
EQE3  
ADC2  
EQA2  
EQC2  
EQE2  
PMBIF  
EQA1  
EQC1  
EQE1  
PMDA2  
BTFMT1  
BTFMT0  
0
DAC2  
PMAD2  
*PDN pin = “L” resets the registers to their default values.  
*Unused bits must contain a “0” value.  
*Only write to address 00H to 13H.  
MS0467-E-00  
2006/02  
- 36 -  
ASAHI KASEI  
[AK4641EN]  
D1 D0  
Addr Register Name  
D7  
PMVCM  
R/W  
0
D6  
0
RD  
0
D5  
0
RD  
0
D4  
PMLO  
R/W  
0
D3  
D2  
00H  
Power Management 1  
PMMO PMAUX PMMIC PMADC  
R/W  
Default  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
PMADC: ADC Block of Stereo CODEC Power Control  
0: Power down (Default)  
1: Power up  
When PMADC bit changes from “0” to “1”, initializing cycle (2081/fs=47.2ms@44.1kHz) starts. After  
initializing cycle, digital data of the ADC of Stereo CODEC is output.  
PMMIC: MIC In Block Power Control  
0: Power down (Default)  
1: Power up  
PMMO: Mono Out Power Control  
0: Power down (Default)  
1: Power up  
PMLO: Line Out Power Control  
0: Power down (Default)  
1: Power up  
PMAUX: AUX In Power Control  
0: Power down (Default)  
1: Power up  
PMVCM: VCOM Block Power Control  
0: Power down (Default)  
1: Power up  
MS0467-E-00  
2006/02  
- 37 -  
ASAHI KASEI  
[AK4641EN]  
D7  
MCKPD  
R/W  
1
Addr Register Name  
D6  
0
RD  
0
D5  
0
RD  
0
D4  
MCKAC  
R/W  
0
D3  
PMMO2  
R/W  
D2  
0
RD  
0
D1  
0
RD  
0
D0  
PMDAC  
R/W  
01H  
Power Management 2  
R/W  
Default  
0
0
PMDAC: DAC Block of Stereo CODEC Power Control  
0: Power down (Default)  
1: Power up  
PMMO2: Mono Out2 Power Control  
0: Power down (Default)  
1: Power up  
MCKAC: Master Clock input Mode Select  
0: C-MOS input (Default)  
1: AC-Coupling input  
MCKPD: MCLK Input Buffer Control  
0: Enable  
1: Disable (Default)  
When MCLK input with AC coupling is stopped, MCKPD bit should be set to “1”.  
ADC and DAC of 16bit Stereo CODEC are powered-down at MCKPD bit = “1”.  
Note) The stereo mixer block (PMMIX) is powered down automatically.  
PMLO=PMMO2=PMAD2 bits = “0”: Power Down  
Others:  
Power Up  
Each block can be powered down respectively by writing “0” in each bit. When the PDN pin is “L”, all blocks are  
powered down.  
When all bits except MCKPD bit are “0” in the 00H and 01H addresses, all blocks are powered down. The register  
values remain unchanged. IPGA gain is reset when PMMIC bit is “0” (refer to the IPGA6-0 bits description).  
When any of the blocks are powered up, the PMVCM bit must be set to “1”.  
MCLK, BICK and LRCK must always be present unless PMMIC=PMADC=PMDAC bits = “0” or PDN pin = “L”.  
BBICK and BSYNC must always be present unless PMAD2=PMDA2=PMBIF bits = “0” or PDN pin = “L”.  
MS0467-E-00  
2006/02  
- 38 -  
ASAHI KASEI  
[AK4641EN]  
Addr Register Name  
D7  
MOGN  
R/W  
0
D6  
PSMO  
R/W  
0
D5  
DACM  
R/W  
0
D4  
MICM  
R/W  
0
D3  
0
RD  
0
D2  
0
RD  
0
D1  
0
RD  
0
D0  
PSMO2  
R/W  
0
02H  
Signal Select1  
R/W  
Default  
PSMO2: Select mono output 2 of MOUT2 pin (Mixing = (L+R)/2)  
0: Power Save Mode. Output VCOM voltage. (Default)  
1: Normal Operation  
(Note) Hi-Z is output at PMMO2 bit = “0”.  
MICM: Switch Control from Mic In to Mono Mixer  
0: OFF (Default)  
1: ON  
DACM: Switch Control from DAC of Stereo CODEC to Mono Mixer (Mixing = (L+R)/2)  
0: OFF (Default)  
1: ON  
PSMO: Select mono output of MOUT+/pins  
0: Power Save Mode. Output VCOM voltage. (Default)  
1: Normal Operation  
(Note) Hi-Z is output at PMMO bit = “0”.  
MOGN: Gain control for mono output  
0: +6dB (Default)  
1: 17dB  
MS0467-E-00  
2006/02  
- 39 -  
ASAHI KASEI  
[AK4641EN]  
D1 D0  
Addr Register Name  
D7  
DACL  
R/W  
1
D6  
0
RD  
0
D5  
AUXL  
R/W  
0
D4  
MICL  
R/W  
0
D3  
0
RD  
0
D2  
AUXSI  
R/W  
0
03H  
Signal Select2  
R/W  
PSLOL  
R/W  
0
PSLOR  
R/W  
0
Default  
PSLOR: Select Rch Line output of ROUT pin  
0: Power Save Mode. Output VCOM voltage. (Default)  
1: Normal Operation  
(Note) Hi-Z is output at PMLO bit = “0”.  
PSLOL: Select Lch Line output of LOUT pin  
0: Power Save Mode. Output VCOM voltage. (Default)  
1: Normal Operation  
(Note) Hi-Z is output at PMLO bit = “0”.  
MICL: Switch Control from Mic In to Stereo Mixer  
0: OFF (Default)  
1: ON  
AUXL:Switch Control from AUX IN to Stereo Mixer  
0: OFF (Default)  
1: ON  
DACL: Switch Control from DAC of Stereo CODEC to Stereo Mixer  
0: OFF  
1: ON (Default)  
AUXSI: Select AUX Input  
0: Differential Input (Default)  
1: Single-ended Input. AUXIN+ pin is used for AUX input and AUXINpin is not available.  
Addr Register Name  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
0
RD  
0
D4  
0
RD  
0
D3  
0
RD  
0
D2  
0
RD  
0
D1  
DIF1  
R/W  
1
D0  
DIF0  
R/W  
0
04H  
Mode Control 1  
R/W  
Default  
DIF1-0: Digital Audio Interface Format Select (See Table 5.)  
Addr Register Name  
D7  
0
RD  
0
D6  
MCK1  
R/W  
0
D5  
MCK0  
R/W  
0
D4  
0
RD  
0
D3  
0
RD  
0
D2  
HPM  
R/W  
0
D1  
LOOP  
R/W  
0
D0  
0
RD  
0
05H  
Mode Control 2  
R/W  
Default  
LOOP: Loopback ON/OFF  
0: OFF (Default)  
1: ON  
ADC output data of Stereo CODEC is inputted to both Lch and Rch of DAC of Stereo CODEC.  
HPM: Mono output select from DAC of Stereo CODEC  
0: Stereo (Default)  
1: Mono. (L+R)/2 signal is output from Lch and Rch of DAC of Stereo CODEC  
MCK1-0: Input Master Clock Select (See Table 2.)  
MS0467-E-00  
2006/02  
- 40 -  
ASAHI KASEI  
[AK4641EN]  
D1 D0  
Addr Register Name  
D7  
0
RD  
0
D6  
TM  
R/W  
0
D5  
SMUTE  
R/W  
0
D4  
DATTC  
R/W  
1
D3  
0
RD  
0
D2  
EQ  
R/W  
0
06H  
DAC Control  
R/W  
DEM1  
R/W  
0
DEM0  
R/W  
1
Default  
DEM1-0: De-emphases response (See Table 12.)  
EQ: Select 5 Band Equalizer.  
0: OFF (Default)  
1: ON  
DATTC: DAC of Stereo CODEC Digital Attenuator Control Mode Select  
0: ATTL6-0 and ATTR6-0 bits control attenuator level of Lch and Rch respectively.  
1: ATTL6-0 bits control both Lch and Rch at same time. (Default)  
When DATTC bit = “1”, the value of ATTR6-0 does not change.  
SMUTE: Soft Mute Control  
0: Normal Operation (Default)  
1: DAC outputs of Stereo CODEC soft-muted  
TM: Soft Mute and DATT Transition Time Select (See Table 15.)  
Addr Register Name  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
AUXAD  
R/W  
0
D4  
MPWRE  
R/W  
0
D3  
MPWRI  
R/W  
0
D2  
MICAD  
R/W  
1
D1  
MSEL  
R/W  
0
D0  
MGAIN  
R/W  
1
07H  
MIC Control  
R/W  
Default  
MGAIN: 1st Mic Amp Gain control  
0: OFF. 0dB  
1: ON. +20dB (Default)  
MSEL: Microphone select  
0: Internal Mic (Default)  
1: External Mic  
MICAD: Switch Control from Mic In to ADC of Stereo CODEC  
0: OFF  
1: ON (Default)  
MPWRI: Power Supply Control for Internal Microphone  
0: OFF (Default)  
1: ON  
MPWRE: Power Supply for External Microphone  
0: OFF (Default)  
1: ON  
MS0467-E-00  
2006/02  
- 41 -  
ASAHI KASEI  
[AK4641EN]  
AUXAD: Switch Control from AUX In to ADC of Stereo CODEC  
0: OFF (default)  
1: ON  
Addr Register Name  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
ZTM1  
R/W  
0
D4  
ZTM0  
R/W  
0
D3  
WTM1  
R/W  
0
D2  
WTM0  
R/W  
0
D1  
D0  
08H  
Timer Select  
R/W  
LTM1  
R/W  
0
LTM0  
R/W  
0
Default  
LTM1-0: ALC1 limiter operation period at zero crossing disable (ZELM bit = “1”)  
The IPGA value is changed immediately. When the IPGA value is changed continuously, the change is done by  
the period specified by LTM1-0 bits.  
ALC1 Limiter Operation Period  
LTM1  
LTM0  
8kHz  
16kHz  
44.1kHz  
11µs  
23µs  
45µs  
91µs  
0
0
1
1
0
1
0
1
0.5/fs  
1/fs  
2/fs  
Default  
63µs  
31µs  
63µs  
125µs  
250µs  
125µs  
250µs  
500µs  
4/fs  
Table 17. ALC1 Limiter Operation Period at zero crossing disable (ZELM bit = “1”)  
WTM1-0: ALC1 Recovery Waiting Period  
WTM1-0 bits set a period of recovery operation when any limiter operation does not occur during ALC1 operation.  
When the output signal level exceeds auto recovery waiting counter reset level set by LMTH bit, the auto recovery  
waiting counter is reset. The waiting timer starts when the output signal level becomes below the auto recovery  
waiting counter reset level.  
ALC1 Recovery Operation Waiting Period  
WTM1  
WTM0  
8kHz  
16ms  
32ms  
64ms  
128ms  
16kHz  
8ms  
16ms  
32ms  
64ms  
44.1kHz  
2.9ms  
5.8ms  
11.6ms  
23.2ms  
0
0
1
1
0
1
0
1
128/fs  
256/fs  
512/fs  
1024/fs  
Default  
Table 18. ALC1 Recovery Operation Waiting Period  
ZTM1-0: Zero crossing timeout at the write operation by µP, ALC1 recovery operation and zero crossing enable  
(ZELM bit = “0”) of the ALC1 operation  
When IPGA of each L/R channels perform zero crossing or timeout independently, the IPGA value is changed by  
µP WRITE operation or ALC1 recovery operation or ALC1 limiter operation (ZELM bit = “0”).  
Zero Crossing Timeout Period  
ZTM1  
ZTM0  
8kHz  
16ms  
32ms  
64ms  
128ms  
16kHz  
8ms  
16ms  
32ms  
64ms  
44.1kHz  
2.9ms  
0
0
1
1
0
1
0
1
128/fs  
256/fs  
512/fs  
1024/fs  
Default  
5.8ms  
11.6ms  
23.2ms  
Table 19. Zero Crossing Timeout Period  
MS0467-E-00  
2006/02  
- 42 -  
ASAHI KASEI  
[AK4641EN]  
D1 D0  
Addr Register Name  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
ALC1  
R/W  
0
D4  
ZELM  
R/W  
0
D3  
D2  
09H  
ALC Mode Control 1  
LMAT1 LMAT0  
R/W  
0
RATT  
R/W  
0
LMTH  
R/W  
0
R/W  
Default  
R/W  
0
LMTH: ALC1 Limiter Detection Level / Recovery Waiting Counter Reset Level  
The ALC1 limiter detection level and the ALC1 recovery counter reset level may be offset by about ±2dB.  
ALC1 Limiter Detection Level  
ADC Input ≥ −6.0dBFS  
ADC Input ≥ −4.0dBFS  
ALC1 Recovery Waiting Counter Reset Level  
6.0dB > ADC Input ≥ −8.0dBFS  
4.0dB > ADC Input ≥ −6.0dBFS  
LMTH  
0
1
Default  
Table 20. ALC1 Limiter Detection Level / Recovery Waiting Counter Reset Level  
RATT: ALC1 Recovery GAIN Step  
During the ALC1 Recovery operation, the number of steps changed from current IPGA value is set. For example,  
when the current IPGA value is “30H” and RATT bit = “1” is set, IPGA changes to “32H” by the ALC1 recovery  
operation, the output signal level is gained up by 1dB (=0.5dB x 2).  
When the IPGA value exceeds the reference level (REF6-0 bits), the IPGA value does not increase.  
RATT  
GAIN STEP  
0
1
1
2
Default  
Table 21. ALC1 Recovery Gain Step Setting  
LMAT1-0: ALC1 Limiter ATT Step  
During the ALC1 limiter operation, when either Lch or Rch exceeds the ALC1 limiter detection level set by  
LMTH, the number of steps attenuated from the current IPGA value is set. For example, when the current IPGA  
value is 47H and the LMAT1-0 bits = “11”, the IPGA transition to “43H” when the ALC1 limiter operation starts,  
resulting in the input signal level being attenuated by 2dB (=0.5dB x 4). When the attenuation value exceeds IPGA  
= “00H” (8dB), it clips to “00H”.  
LMAT1  
LMAT0  
ATT STEP  
0
0
1
1
0
1
0
1
1
2
3
4
Default  
Table 22. ALC1 Limiter ATT Step Setting  
ZELM: Enable zero crossing detection at ALC1 Limiter operation  
0: Enable (Default)  
1: Disable  
When the ZELM bit = “0”, the IPGA of each L/R channel perform a zero crossing or timeout independently and  
the IPGA value is changed by the ALC1 operation. The zero crossing timeout is the same as the ALC1 recovery  
operation. When the ZELM bit = “1”, the IPGA value is changed immediately.  
ALC1: ALC1 Enable  
0: ALC1 Disable (Default)  
1: ALC1 Enable  
MS0467-E-00  
2006/02  
- 43 -  
ASAHI KASEI  
[AK4641EN]  
D1 D0  
Addr Register Name  
0AH ALC Mode Control 2  
R/W  
D7  
0
RD  
0
D6  
REF6  
R/W  
0
D5  
REF5  
R/W  
1
D4  
REF4  
R/W  
1
D3  
REF3  
R/W  
0
D2  
REF2  
R/W  
1
REF1  
R/W  
1
REF0  
R/W  
0
Default  
REF6-0: Set the Reference value at ALC1 Recovery Operation  
During the ALC1 recovery operation, if the IPGA value exceeds the setting reference value by gain operation, then  
the IPGA does not become larger than the reference value. For example, when REF6-0 bits = “30H”, RATT =  
2step, IPGA = “2FH”, even if the input signal does not exceed the “ALC1 Recovery Waiting Counter Reset Level”,  
the IPGA does not change to “2FH” + 2step = “31H”, but keeps “30H”. Default is “36H”.  
REF6-0  
47H  
46H  
45H  
:
GAIN (dB)  
+27.5  
+27.0  
+26.5  
:
STEP  
36H  
:
+19.0  
:
Default  
10H  
:
+0.0  
:
0.5dB  
06H  
05H  
04H  
03H  
02H  
01H  
00H  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
Table 23. Setting Reference Value at ALC1 Recovery Operation  
Addr Register Name  
0BH Input PGA Control  
R/W  
D7  
0
RD  
0
D6  
IPGA6  
R/W  
0
D5  
IPGA5  
R/W  
0
D4  
IPGA4  
R/W  
1
D3  
IPGA3  
R/W  
0
D2  
IPGA2  
R/W  
0
D1  
IPGA1  
R/W  
0
D0  
IPGA0  
R/W  
0
Default  
IPGA6-0: Input Analog PGA (See Table 7.)  
When IPGA gain is changed, IPGA6-0 bits should be written while PMMIC bit is “1” and ALC1 bit is “0”. IPGA  
gain is reset when PMMIC bit is “0”, and then IPGA operation starts from the default value when PMMIC is  
changed to “1”. When ALC1 bit is changed from “1” to “0”, IPGA holds the last gain value set by ALC1 operation.  
When IPGA6-0 bits are read, the register values written by the last write operation is read out regardless the actual  
gain.  
Addr Register Name  
0CH Lch Digital ATT Control  
0DH Rch Digital ATT Control  
R/W  
D7  
ATTL7  
ATTR7  
R/W  
D6  
ATTL6  
ATTR6  
R/W  
D5  
ATTL5  
ATTR5  
R/W  
D4  
ATTL4  
ATTR4  
R/W  
D3  
ATTL3  
ATTR3  
R/W  
D2  
ATTL2  
ATTR2  
R/W  
D1  
ATTL1  
ATTR1  
R/W  
D0  
ATTL0  
ATTR0  
R/W  
Default  
0
0
0
0
0
0
0
0
ATTL/R7-0: Digital ATT Output Control  
These bits control the attenuation level of DAC output of Stereo CODEC. Step size of ATT is approximately  
0.5dB (See Table 13).  
Note) Even if DATTC bit = “1”, ATTR7-0 bits are not changed when the ATTL7-0 bits are written.  
MS0467-E-00  
2006/02  
- 44 -  
ASAHI KASEI  
[AK4641EN]  
Addr Register Name  
0EH Volume Control  
R/W  
D7  
ATTM  
R/W  
0
D6  
ATTS2  
R/W  
1
D5  
ATTS1  
R/W  
0
D4  
ATTS0  
R/W  
1
D3  
GN3  
R/W  
0
D2  
GN2  
R/W  
1
D1  
GN1  
R/W  
1
D0  
GN0  
R/W  
1
Default  
GN3-0: Volume of AUX In (see Table 16.)  
ATTS2-0: Attenuator select of signal from Mic IN to Stereo Mixer (See Table 8.)  
ATTM: Attenuator control for signal from Mic IN to Mono Mixer  
0: 0dB (Default)  
1: 4dB  
Addr Register Name  
0FH Status  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
0
RD  
0
D4  
0
RD  
0
D3  
0
RD  
0
D2  
0
RD  
0
D1  
0
RD  
0
D0  
DTMIC  
RD  
R/W  
Default  
0
DTMIC: Microphone Detection Result  
0: Microphone is not detected. (Default)  
1: Microphone is detected.  
Addr Register Name  
D7  
EQB3  
EQD3  
R/W  
1
D6  
EQB2  
EQD2  
R/W  
0
D5  
EQB1  
EQD1  
R/W  
0
D4  
EQB0  
EQD0  
R/W  
0
D3  
EQA3  
EQC3  
R/W  
1
D2  
EQA2  
EQC2  
R/W  
0
D1  
D0  
10H  
11H  
EQ Control 250Hz/100Hz  
EQ Control 3.5kHz/1kHz  
EQA1  
EQC1  
R/W  
0
EQA0  
EQC0  
R/W  
0
R/W  
Default  
Addr Register Name  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
0
RD  
0
D4  
0
RD  
0
D3  
EQE3  
R/W  
1
D2  
EQE2  
R/W  
0
D1  
EQE1  
R/W  
0
D0  
EQE0  
R/W  
0
12H  
EQ Control 10kHz  
R/W  
Default  
EQA3-0: Select the boost level of 100Hz  
EQB3-0: Select the boost level of 250Hz  
EQC3-0: Select the boost level of 1kHz  
EQD3-0: Select the boost level of 3.5kHz  
EQE3-0: Select the boost level of 10kHz  
See Table 14.  
MS0467-E-00  
2006/02  
- 45 -  
ASAHI KASEI  
[AK4641EN]  
D1 D0  
Addr Register Name  
D7  
0
RD  
0
D6  
BTFMT1  
R/W  
0
D5  
BTFMT0  
R/W  
0
D4  
DAC2  
R/W  
0
D3  
ADC2  
R/W  
1
D2  
13H  
BT I/F CODEC Control  
PMBIF PMDA2 PMAD2  
R/W  
Default  
R/W  
0
R/W  
0
R/W  
0
PMAD2: ADC Block of Mono CODEC Power Control  
0: Power down (Default)  
1: Power up  
PMDA2: DAC Block of Mono CODEC Power Control  
0: Power down (Default)  
1: Power up  
PMBIF: 16bit Mono Interface and PLL Block Power Control  
0: Power down (Default)  
1: Power up  
ADC and DAC of 16bit Mono CODEC are powered-down at PMBIF bit = “0”.  
AD2: Select Signal that is input to ADC of 16bit Mono CODEC  
0: OFF  
1: ON (Default)  
DAC2: Select DAC of Mono CODEC signal (See Figure 21.)  
0: MIC Input Signal (Default)  
1: DAC signal of Mono CODEC  
BTFMT1-0: Digital Audio Interface Format Select for 16bit Mono CODEC (See Table 6.)  
MS0467-E-00  
2006/02  
- 46 -  
ASAHI KASEI  
[AK4641EN]  
SYSTEM DESIGN  
Figure 41 shows the system connection diagram for t the AK4641EN.  
1µ 1µ  
C
C
C
1µ  
1µ  
2.2k  
C
C
1
2
3
4
5
6
7
8
9
MPE  
ROUT 27  
2.2k  
1µ  
MPI  
MOUT2 26  
TST2 25  
INT  
VCOM  
AVSS  
AVDD  
PVDD  
PVSS  
VCOC  
BBICK 24  
BSYNC 23  
BSDTO 22  
BSDTI 21  
DVSS 20  
DVDD 19  
0.1µ  
0.1µ  
2.2µ  
10µ  
Bluetooth  
Proccesor  
Analog Supply  
2.6~ 3.6V  
Top View  
10µ  
0.1µ  
0.1µ  
5.1kΩ  
470n  
10  
Reset  
DSP and uP  
Notes:  
- AVSS, DVSS and BVSS of the AK4641EN should be distributed separately from the ground of external controllers.  
- Values of R and C in Figure 41 should depend on system.  
- All digital input pins should not be left floating.  
Figure 41. Typical Connection Diagram  
MS0467-E-00  
2006/02  
- 47 -  
ASAHI KASEI  
[AK4641EN]  
1. Grounding and Power Supply Decoupling  
The AK4641EN requires careful attention to power supply and grounding arrangements. AVDD, DVDD and BVDD are  
usually supplied from the system’s analog supply. If AVDD, DVDD and BVDD are supplied separately, the power up  
sequence is not critical. AVSS, DVSS and BVSS of the AK4641EN should be connected to the analog ground plane.  
System analog ground and digital ground should be connected together near to where the supplies are brought onto the  
printed circuit board. Decoupling capacitors should be as near to the AK4641EN as possible, with the small value ceramic  
capacitor being the nearest.  
2. Voltage Reference  
VCOM is a signal ground of this chip. A 2.2µF electrolytic capacitor in parallel with a 0.1µF ceramic capacitor attached  
to the VCOM pin eliminates the effects of high frequency noise. No load current may be drawn from the VCOM pin. All  
signals, especially clocks, should be kept away from the AVDD and VCOM pins in order to avoid unwanted coupling into  
the AK4641EN.  
3. Analog Inputs  
The AK4641EN has the 16bit Mono CODEC to connect with Bluetooth Module that supports 8kHz to 16kHz sample  
rate. The AK4641EN includes PLL that generate the master clock for Mono CODEC from input BSYNC signal. The PLL  
should be powered-up after BSYNC signal is inputted. The PLL needs 90ms (max) lock time, when the PLL is  
powered-up (PMBIF bit = “0” “1”).  
The Mic inputs are single-ended. AUX input is differential. The input signal range scales with nominally at 0.06 x AVDD  
Vpp for the Mic input, 0.6 x AVDD Vpp for AUX input, centered around the internal common voltage (0.45 x AVDD).  
Usually the input signal is AC coupled using a capacitor. The cut-off frequency is fc = (1/2πRC). The AK4641EN can  
accept input voltages from AVSS to AVDD.  
4. Analog Outputs  
The input data format for the DAC of both Stereo and Mono CODEC is 2’s complement. The output voltage is a positive  
full scale for 7FFFH(@16bit) and a negative full scale for 8000H(@16bit). Mono output from the MOUT2 pin, Mono  
Line Output from the MOUT+/MOUTpins and Stereo Line Out from the LOUT/ROUT pins are centered at 0.45 x  
AVDD.  
MS0467-E-00  
2006/02  
- 48 -  
ASAHI KASEI  
[AK4641EN]  
PACKAGE  
36pin QFN (Unit: mm)  
6.00 ± 0.10  
5.75 ± 0.10  
0.55 ± 0.10  
27  
19  
28  
36  
18  
B
Exposed  
Pad  
36  
10  
1
9
C0.40  
1
A
3.7  
+0.07  
0.23 -0.05  
0.50  
AB  
0.10 M  
C
0.08 C  
Note) The exposed pad on the bottom surface of the package must be open or connected to the grournd.  
„ Material & Lead finish  
Package molding compound:  
Lead frame material:  
Epoxy  
Cu  
Lead frame surface treatment:  
Solder (Pb free) plate  
MS0467-E-00  
2006/02  
- 49 -  
ASAHI KASEI  
[AK4641EN]  
MARKING  
AKM  
4641EN  
XXXXXXX  
1
XXXXXXX : Date code identifier (7 digits)  
Revision History  
Date (YY/MM/DD) Revision Reason  
06/02/22 00 First Edition  
Page  
Contents  
IMPORTANT NOTICE  
These products and their specifications are subject to change without notice. Before considering  
any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or  
authorized distributor concerning their current status.  
AKM assumes no liability for infringement of any patent, intellectual property, or other right in the  
application or use of any information contained herein.  
Any export of these products, or devices or systems containing them, may require an export license  
or other official approval under the law and regulations of the country of export pertaining to customs  
and tariffs, currency exchange, or strategic materials.  
AKM products are neither intended nor authorized for use as critical components in any safety, life  
support, or other hazard related device or system, and AKM assumes no responsibility relating to any  
such use, except with the express written consent of the Representative Director of AKM. As used  
here:  
a. A hazard related device or system is one designed or intended for life support or maintenance of  
safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its  
failure to function or perform may reasonably be expected to result in loss of life or in significant  
injury or damage to person or property.  
b. A critical component is one whose failure to function or perform may reasonably be expected to  
result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or  
system containing it, and which must therefore meet very high standards of performance and  
reliability.  
It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or  
otherwise places the product with a third party to notify that party in advance of the above content  
and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability  
for and hold AKM harmless from any and all claims arising from the use of said product in the  
absence of such notification.  
MS0467-E-00  
2006/02  
- 50 -  

AK4641EN 相关器件

型号 制造商 描述 价格 文档
AK4641VN AKM 16 BIT CODEC WITH BLUETOOTH INTERFACE 获取价格
AK4642 AKM 16-Bit ΔΣ Stereo CODEC with MIC/HP/SPK-AMP 获取价格
AK4642EN AKM Stereo CODEC with MIC/HP/SPK-AMP 获取价格
AK4642VN AKM 16-Bit ΔΣ Stereo CODEC with MIC/HP/SPK-AMP 获取价格
AK4643 AKM Stereo CODEC with MIC/HP/RCV/SPK-AMP 获取价格
AK4643EN AKM Stereo CODEC with MIC/HP/RCV/SPK-AMP 获取价格
AK4644 AKM Stereo CODEC with MIC/HP/RCV-AMP 获取价格
AK4644EN AKM Stereo CODEC with MIC/HP/RCV-AMP 获取价格
AK4645 AKM Stereo CODEC with MIC/HP-AMP 获取价格
AK4645AEZ AKM 暂无描述 获取价格

AK4641EN 相关文章

  • 苹果Apple Intelligence适配百度AI模型遇技术挑战
    2024-12-05
    10
  • 苹果携手亚马逊,定制AI芯片助力Apple Intelligence模型训练
    2024-12-05
    9
  • 革命性突破:光衍射极限下微型步行机器人成功面世
    2024-12-05
    11
  • Soitec将为格罗方德9SW平台供应300mm RF-SOI晶圆
    2024-12-05
    9