S15454-01WT

更新时间:2025-03-21 11:17:35
品牌:HAMAMATSU
描述:NIR 增强型通过 TOF(飞行时间)方法测量到物体的距离有效像素数:96×72

S15454-01WT 概述

NIR 增强型通过 TOF(飞行时间)方法测量到物体的距离有效像素数:96×72

S15454-01WT 数据手册

通过下载S15454-01WT数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
Distance area image sensor  
S15454-01WT  
NIR-enhanced type,  
measures the distance to an object by TOF method  
The distance image sensor is designed to measure the distance to an object by TOF (time-of-flight) method. When used in  
combination with a pulse modulated light source, this sensor outputs phase difference information on the timing that the light  
is emitted and received. Distance data can be obtained by performing calculation on the output signal with an external signal  
processing circuit or on a PC. We provide an evaluation kit for this product. Contact us for detailed information.  
Features  
Applications  
High sensitivity in the near infrared region  
Improved tolerance to background light  
Number of effective pixels: 96 (H) × 72 (V)  
Compact chip size package (CSP) type  
Obstacle detection (self-driving, robots, etc.)  
Security (intrusion detection, etc.)  
Shape recognition (logistics, robots, etc.)  
Motion capture  
Touchless operation  
Structure  
Parameter  
Image size  
Pixel size  
Specification  
4.8 × 3.6  
50 × 50  
50  
Unit  
mm  
µm  
Pixel pitch  
µm  
Number of pixels  
Number of effective pixels  
Package  
104 × 80  
96 × 72  
CSP  
pixels  
pixels  
-
Note: This product is not hermetically sealed.  
Absolute maximum ratings  
Parameter  
Analog supply voltage  
Digital supply voltage  
Symbol  
Vdd(A)  
Vdd(D)  
Vr  
Condition  
Ta=25 °C  
Ta=25 °C  
Value  
-0.3 to +4.2  
-0.3 to +4.2  
Unit  
V
V
Pixel reset  
Analog input  
VTX power supply  
Photosensitive area  
Frame reset pulse  
Frame sync trigger pulse  
Line sync trigger pulse  
Pixel reset pulse  
Vdd(VTX) Ta=25 °C  
-0.3 to Vdd(A) + 0.3  
-0.3 to Vdd(D) + 0.3  
V
V
terminal voltage  
Vpg  
Reset  
Vst  
Hst  
Ext_reset  
MCLK  
Digital input  
terminal voltage  
Ta=25 °C  
Master clock pulse  
Charge transfer clock pulse voltage  
Operating temperature  
Storage temperature  
Soldering temperature*2  
VTX1, VTX2, VTX3 Ta=25 °C  
-0.3 to Vdd(A) + 0.3  
-25 to +85  
V
Topr  
Tstg  
Tsol  
No dew condensation*1  
No dew condensation*1  
°C  
°C  
°C  
-40 to +85  
260 (twice)  
*1: When there is a temperature difference between a product and the surrounding area in high humidity environment, dew condensation  
may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability.  
*2: Reflow soldering, IPC/JEDEC J-STD-020 MSL 2, see P.11  
Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product  
within the absolute maximum ratings.  
1
www.hamamatsu.com  
Distance area image sensor  
S15454-01WT  
Recommended terminal voltage (Ta=25 °C)  
Parameter  
Analog supply voltage  
Digital supply voltage  
Symbol  
Vdd(A)  
Vdd(D)  
Vr  
Min.  
3.2  
3.2  
2.5  
1.6  
0.6  
Typ.  
3.3  
3.3  
2.6  
1.8  
0.8  
-
-
-
-
-
-
-
-
-
-
-
Max.  
3.4  
3.4  
2.7  
2.0  
1.0  
-
Unit  
V
V
V
V
Pixel reset  
Bias voltage  
VTX power supply Vdd(VTX)  
Photosensitive area  
High level  
Low level  
High level  
Low level  
High level  
Low level  
High level  
Low level  
High level  
Low level  
High level  
Low level  
Vpg  
V
Vdd(D) × 0.8  
Frame reset pulse voltage  
Reset  
V
V
V
V
V
V
-
Vdd(D) 0.2  
×
Vdd(D) × 0.8  
-
Frame sync trigger pulse  
voltage  
Vst  
Hst  
-
Vdd(D) 0.2  
×
Vdd(D) × 0.8  
-
Line sync trigger pulse  
voltage  
-
Vdd(D) 0.2  
×
Vdd(D) × 0.8  
-
Master clock pulse voltage  
Pixel reset pulse voltage  
MCLK  
Ext_reset  
DCLK  
-
Vdd(D) 0.2  
×
Vdd(D) × 0.8  
-
-
Vdd(D) 0.2  
×
Vdd(D) 0.8  
×
-
Output signal sync pulse  
voltage  
-
-
Vdd(D) 0.2  
×
Electric characteristics [Ta=25 °C, Vdd(A)=Vdd(D)=3.3 V]  
Parameter  
Clock pulse frequency  
Data rate  
Symbol  
f(MCLK)  
DR  
Condition  
Min.  
1 M  
-
-
Typ.  
Max.  
10 M  
-
-
Unit  
Hz  
Hz  
-
f(MCLK)  
6
Current consumption  
Ic  
Dark state  
mA  
Electrical and optical characteristics [Ta=25 °C, Vdd(A)=Vdd(D)=3.3 V, Vr=2.6 V, MCLK=10 MHz]  
Parameter  
Spectral response range  
Symbol  
λ
Min.  
Typ.  
500 to 1100  
Max.  
Unit  
nm  
800  
Peak sensitivity wavelength  
λp  
S
Vd  
RN  
Vor  
SR  
PRNU  
-
-
-
-
-
-
-
-
-
-
nm  
V/(W⸱s)  
V/s  
mV rms  
V
Photosensitivity*3  
1 × 1012  
Dark output  
Random noise  
2.8  
0.5  
2.35  
-
Dark output voltage*4  
Sensitivity ratio*5  
0.7  
-
1.43  
±10  
-
%
Photoresponse nonuniformity*6  
-
*3: Monochromatic wavelength light source (λ=805 nm)  
*4: Output value right after reset in dark state  
*5: Output ratio of Vout1 (VTX1=1.8 V, VTX2=VTX3=0 V) to Vout2 (VTX2=1.8 V, VTX1=VTX3=0 V)  
*6: Photoresponse nonuniformity (PRNU) is the output nonuniformity that occurs when the entire photosensitive area is uniformly  
illuminated by light which is 50% of the saturation exposure level. PRNU is measured using 64 pixels excluding 8 pixels each at  
both ends, and is defined as follows.  
PRNU=(∆X/X) × 100 [%]  
X: average of the output of all pixel, ∆X: difference between the maximum or minimum output and X  
2
Distance area image sensor  
S15454-01WT  
Spectral response (typical example)  
Basic connection example  
Buffer amp  
Vout1  
(Ta=25 °C)  
1.0  
0.8  
0.6  
0.4  
Vout2  
Buffer amp  
KMPDC0486EA  
0.2  
0
500  
600  
700  
800  
900 1000 1100 1200  
Wavelength (nm)  
KMPDB0564EA  
Block diagram  
GND(A) Vdd(A) Vdd(VTX)  
VTX1 VTX2 VTX3  
GND(VTX) GND(VTX) Vdd(VTX)  
C2  
D2  
A3  
B6  
A6  
A5  
B4  
A4  
B5  
CLTX  
CLTX  
CLTX  
Bias  
generator  
Vdd(A)  
Vpg  
A2  
B2  
B1  
Photodiode array  
104 × 80ġpixels  
(
Number of effective pixelsĻ 96 × 72)  
Vr  
Ext_reset  
Reset  
Vst  
C5  
C6  
C4  
Sample-and-hold circuit  
Horizontal shift register  
C1 Vout1  
Timing  
Vout2  
D1  
generator  
Hst D6  
MCLK D5  
Buffer amp  
GND(A)  
A1  
E2  
Vdd(D)  
E5  
GND(D)  
E6  
DCLK  
E4  
Vdd(D)  
KMPDC0744EC  
3
Distance area image sensor  
S15454-01WT  
Timing chart (subframe*7)  
Subframe  
MCLK (10 MHz)  
ȆȆȆ  
ȆȆȆ  
t1  
t3  
Ext_reset  
thp(Ext_reset)  
t2  
Integration period  
Integration period  
t17  
tph(Reset)  
t16  
ȆȆȆ  
ȆȆȆ  
Reset  
t4  
t7  
t5t6  
thp(vsNt)data(0)  
Ndata(1)  
Ndata(N-2)  
1
Ndata(N-1)  
1
Vst  
Hst  
t8  
t11  
t9t10  
thp(vst)  
t12  
t15  
t13 t14  
1
2
79  
79(1ġųŰŸ)  
80  
80(1ġųŰŸ)  
81  
1
80  
81  
80  
81  
80  
81  
ȆȆȆ  
ȆȆȆ  
1(1ġųŰŸ)80(1ġųŰŸ)  
1(1ġųŰŸ)80(1ġųŰŸ)  
1(1ġųŰŸ)  
2(1ġųŰŸ)  
1(1ġųŰŸ)80(1ġųŰŸ)  
Tdata(1)  
VTX enable  
Tdata(2)  
VTX enable  
Tdata(N-1)  
VTX enable  
t18  
t19  
VTX1, 2, 3  
Output light  
KMPDC0745EB  
*7: Data with different phase timing. One frame consists of four subframes (F1, F2, F3, F4).  
∙ ∙ ∙  
F4  
F1  
F2  
F3  
F4  
F1  
∙ ∙ ∙  
Subframe  
1 frame  
KMPDC1046EA  
4
Distance area image sensor  
S15454-01WT  
Phase timing of VTX enable  
F1  
F2  
Nlight  
Output light  
Output light  
thp(VTX1) tpi(VTX) tlp(VTX1)  
VTX1  
VTX1  
VTX2  
thp(VTX2)  
VTX2  
tlp(VTX2)  
thp(VTX3)  
tlp(VTX3)  
VTX3  
VTX3  
F3  
F4  
Output light  
Output light  
VTX1  
VTX2  
VTX3  
VTX1  
VTX2  
VTX3  
KMPDC1045EA  
Specifications of I/O signals  
tr(Reset)  
tf(Reset)  
tr(Hst)  
Hst  
tf(Hst)  
MCLK  
tf(DCLK)  
tr(DCLK)  
Reset  
DCLK  
td(DCLK)  
tr(Vst)  
Vst  
tf(Vst)  
tr(MCLK)  
MCLK  
tf(MCLK)  
tf(Vout)  
tr(Vout)  
Vout1  
Vout2  
0.1 V  
td(Vout)  
MCLK  
tr(Ext_reset)  
tf(Ext_reset)  
Ext_reset  
KMPDC0746EB  
5
Distance area image sensor  
S15454-01WT  
Parameter  
Master clock pulse duty ratio  
Master clock pulse rise and fall times  
Frame reset pulse rise and fall times  
Frame sync trigger pulse rise and fall times  
Symbol  
-
Min.  
45  
0
0
0
Typ.  
50  
-
-
-
Max.  
55  
20  
20  
20  
20  
-
Unit  
%
ns  
ns  
ns  
8
*
*
tr(MCLK), tf(MCLK)  
tr(Reset), tf(Reset)  
tr(Vst), tf(Vst)  
tr(Hst), tf(Hst)  
thp(Ext_reset)  
8
8
*
8
Line sync trigger pulse rise and fall times  
Pixel reset pulse high period  
*
0
10  
-
-
ns  
µs  
tr(Ext_reset),  
tf(Ext_reset)  
Pixel reset pulse rise and fall times  
0
-
-
20  
ns  
s
Time from falling edge of master clock pulse to rising  
edge of pixel reset pulse  
Time from falling edge of pixel reset pulse to rising edge  
t1  
t2  
1/4 × 1/f(MCLK)  
0
-
-
-
s
of frame reset pulse  
Time from falling edge of pixel reset pulse to falling edge  
of master clock pulse  
Time from falling edge of master clock pulse to rising  
edge of frame reset pulse  
Time from rising edge of frame reset pulse to falling  
edge of master clock pulse  
Time from falling edge of master clock pulse to falling  
edge of frame reset pulse  
Time from falling edge of frame reset pulse to falling  
edge of master clock pulse  
Time from falling edge of master clock pulse to rising  
edge of frame sync trigger pulse  
Time from rising edge of frame sync trigger pulse to  
falling edge of master clock pulse  
Time from falling edge of master clock pulse to falling  
edge of frame sync trigger pulse  
Time from falling edge of frame sync trigger pulse to  
falling edge of master clock pulse  
Time from rising edge of master clock pulse to rising  
edge of line sync trigger pulse  
Time from rising edge of line sync trigger pulse to rising  
edge of master clock pulse  
Time from rising edge of master clock pulse to falling  
edge of line sync trigger pulse  
Time from falling edge of line sync trigger pulse to rising  
t3  
1/4 × 1/f(MCLK)  
1/4 × 1/f(MCLK)  
1/4 × 1/f(MCLK)  
1/4 × 1/f(MCLK)  
1/4 × 1/f(MCLK)  
1/4 × 1/f(MCLK)  
1/4 × 1/f(MCLK)  
1/4 × 1/f(MCLK)  
1/4 × 1/f(MCLK)  
1/4 × 1/f(MCLK)  
1/4 × 1/f(MCLK)  
1/4 × 1/f(MCLK)  
1/4 × 1/f(MCLK)  
-
-
s
t4  
-
1/2 × 1/f(MCLK)  
1/2 × 1/f(MCLK)  
1/2 × 1/f(MCLK)  
1/2 × 1/f(MCLK)  
1/2 × 1/f(MCLK)  
1/2 × 1/f(MCLK)  
1/2 × 1/f(MCLK)  
1/2 × 1/f(MCLK)  
1/2 × 1/f(MCLK)  
1/2 × 1/f(MCLK)  
1/2 × 1/f(MCLK)  
1/2 × 1/f(MCLK)  
-
s
t5  
-
s
t6  
-
s
t7  
-
s
t8  
-
s
t9  
-
s
t10  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
td(DCLK)  
-
s
-
s
-
s
-
s
-
s
-
s
edge of master clock pulse  
{141/f(MCLK) + t20} ×  
80 + thp(ext_res) + t3  
{141/f(MCLK) + t20} ×  
80 + {1/2 × 1/f(MCLK)}  
Readout time for reset level  
-
s
Readout time for integration signals  
-
-
s
Time from line sync trigger pulse (last pulse in a frame)  
to VTX drive period ON  
Time from VTX drive period OFF to falling edge of frame  
reset pulse  
Time from falling edge of master clock pulse (after reading signals  
from all pixels) to rising edge of master clock puse (Hst: high period)  
0
-
-
s
0
-
-
s
10/f(MCLK)  
-
-
s
Time from falling edge of master clock pulse to rising edge  
-
12  
-
ns  
of output signal sync pulse*9  
Output signal sync pulse rise time*8 *9  
Output signal sync pulse fall time*8 *9  
tr(DCLK)  
tf(DCLK)  
tr(Vout)  
tf(Vout)  
-
-
-
-
12  
9
15  
15  
-
-
27  
27  
ns  
ns  
ns  
ns  
Settling rise time of output signal 1, 2*8 *9 *10  
Settling fall time of output signal 1, 2*8 *9 *10  
Time from rising edge of master clock pulse to output  
td(Vout)  
-
20  
26  
ns  
signal 1, 2 (output 50%)*9  
*8: 10 to 90%  
*9: Load capacitance CL=3 pF  
*10: Output voltage=0.1 V  
6
Distance area image sensor  
S15454-01WT  
Parameter  
Charge transfer clock pulse cycle  
Symbol  
tpi(VTX)  
thp(VTX1)  
Min.  
60  
30  
Typ.  
-
-
Max.  
-
-
Unit  
ns  
High period  
Low period  
High period  
Low period  
High period  
Low period  
tpi(VTX)  
thp(VTX2)  
thp(VTX3)  
Charge transfer clock pulse (VTX1)  
Charge transfer clock pulse (VTX2)  
Charge transfer clock pulse (VTX3)  
ns  
ns  
ns  
tlp(VTX1)  
thp(VTX2)  
tlp(VTX2)  
thp(VTX3)  
tlp(VTX3)  
-
30  
-
-
-
-
-
-
-
tpi(VTX)  
thp(VTX1)  
thp(VTX3)  
0
-
tpi(VTX)  
thp(VTX1)  
thp(VTX2)  
-
Charge transfer clock pulse voltage rise and fall times*8  
High level  
Charge transfer clock pulse voltage  
Low level  
tr(VTX), tf(VTX)  
-
1.6  
-
3
1.8  
0
-
2.0  
-
ns  
V
VTX1, VTX2, VTX3  
Calculation method of frame rate  
Frame rate=1/4 of subframe time  
=1/{(Integration time + Readout time) × 4}  
When operating in non-destructive readout mode  
Time per subframe=Integration time + (Readout time × Non-destructive readout count)  
Note: The integration time setting needs to be changed depending on the required distance accuracy and usage environment factors  
such as background light.  
Integration signal can be read out without reading out the reset level. But this may increase random noise and degrade sensitivity  
uniformity of the photosensitive area.  
[Readout time calculation]  
1
Readout time=  
× Number of horizontal timing clock × Number of vertical pixels  
Clock pulse frequency  
=Time per clock (Readout time per pixel) × Number of horizontal timing clock × Number of vertical pixels  
Calculation example [clock pulse frequency=10 MHz, number of horizontal timing clock=141 (=37 + 104), number of vertical pixels=80]  
1
Readout time=  
× 141 × 80  
5
106 [Hz]  
×
=100 [ns] 141 80  
×
×
=1.128 [ms]  
Horizontal timing  
141 (=37 + 104) × mclk  
37 mclk  
t20  
Hst  
MCLK  
oe  
DCLK  
1
2
3
4
104  
Vout1  
Vout2  
KMPDC0747EC  
7
Distance area image sensor  
S15454-01WT  
Input terminal capacitance (Ta=25 °C, Vdd=3.3 V)  
Parameter  
Charge transfer clock pulse internal load  
Symbol  
CLTX  
Min.  
Typ.  
Max.  
Unit  
pF  
-
10  
-
capacitance  
Dimensional outline (unit: mm)  
Recommended land pattern (unit: mm)  
6.8  
P1.0 × 5=5.0  
(28 ×) ɸ0.26  
0.06*  
1st pixel  
Horizontal direction of scan  
Photosensitive surface  
KMPDC0771EA  
P1.0 × 5=5.0  
E
D
C
C3  
B3  
B
A
1
2
3
4
5
6
Index mark  
0.25 × 1.15  
0.5  
Electrode  
ɸ0.25  
Tolerance unless otherwise noted: 0.1  
ġ
Au electrode  
* Distance from package center to photosensitive  
area center  
KMPDA0610EB  
8
Distance area image sensor  
S15454-01WT  
Pin connections  
Pin no.  
A1  
B1  
C1  
D1  
E1  
Symbol  
GND(A)  
Vr  
Vout1  
Vout2  
NC  
I/O  
I
I
O
O
-
I
I
I
I
I
I
-
-
-
-
I
I
I
-
I
I
I
I
I
I
I
I
I
I
Description  
Ground  
Pixel reset voltage  
Output signal 1  
Output signal 2  
No connection  
Analog supply voltage  
Photosensitive area bias voltage  
Analog supply voltage  
Ground  
Digital supply voltage  
Power supply for VTX  
No connection  
No connection  
No connection  
No connection  
Ground  
Ground  
Vertical shift register start signal  
No connection  
Digital supply voltage  
Charge transfer clock 3 (for OFD)  
Power supply for VTX  
Vertical shift register reset pulse  
Master clock input signal  
Ground  
Charge transfer clock 2  
Charge transfer clock 1  
Reset pulse  
A2  
B2  
C2  
D2  
E2  
A3  
B3  
C3  
D3  
E3  
A4  
B4  
C4  
D4  
E4  
A5  
B5  
C5  
D5  
E5  
A6  
B6  
C6  
D6  
E6  
Vdd(A)  
Vpg  
Vdd(A)  
GND(A)  
Vdd(D)  
Vdd(VTX)  
NC  
NC  
NC  
NC  
GND(VTX)  
GND(VTX)  
Vst  
NC  
Vdd(D)  
VTX3  
VDD(VTX)  
Ext_reset  
MCLK  
GND(D)  
VTX2  
VTX1  
Reset  
Hst  
DCLK  
Horizontal shift register start signal  
Output data sample clock  
O
Note: Leave the NC terminals open.  
Connect an impedance converting buffer amplifier to Vout1 and Vout2 terminals so as to minimize the current flow.  
9
Distance area image sensor  
S15454-01WT  
Reel packing specifications  
Reel (conforms to JEITA ET-7200)  
Outer diameter  
Hub diameter  
ϕ60 mm  
Tape width  
16 mm  
Material  
PS  
Electrostatic characteristics  
Conductive  
ϕ180 mm  
Embossed tape (unit: mm, material: PS, conductive)  
8.0 0.ꢀ  
ɸꢀ.5+-00.ꢀ  
2.0 0.ꢀ  
4.0 0.ꢀ  
0.3  
ꢀst pixel  
ɸ2  
5.5 0.ꢀ  
KMPDC0828EB  
Packing quantity  
500 pcs/reel  
Packing state  
Reel and desiccant in moisture-proof packaging (vacuum-sealed)  
10  
Distance area image sensor  
S15454-01WT  
Recommended soldering conditions  
Peak temperature  
260 °C max.  
Temperature increase  
3 °C/s max.  
Peak temperature - 5 °C  
30 s max.  
Cooling  
6 °C/s max.  
217 °C  
200 °C  
150 °C  
Preheat  
Soldering  
60 to 150 s  
60 to 120 s  
25 °C to peak temperature  
480 s max.  
Time  
KSPDB0419EA  
⸱ This product supports lead-free soldering. After unpacking, store it in an environment at a temperature of 30 °C or less and a humidity  
of 60% or less, and perform soldering within 1 year.  
⸱ The effect that the product receives during reflow soldering varies depending on the circuit board and reflow oven that are used.  
When you set reflow soldering conditions, check that problems do not occur in the product by testing out the conditions in advance.  
⸱ In order to improve reliability, we recommend that you use underfill resin to fill the gap between the element and the board, after  
reflow soldering.  
Related information  
www.hamamatsu.com/sp/ssd/doc_en.html  
Precautions  
⸱ Disclaimer  
⸱ Surface mount type products  
Technical note  
∙ Distance image sensors S15452/S15453/S15454-01WT, S16443/S16444-01WT  
11  
Distance area image sensor  
S15454-01WT  
Evaluation kit for distance area image sensor C15359  
The evaluation kit [55 mm (H) × 50 mm (V)] is available for the S15454-01WT distance area image sensor (with the S15454-01WT).  
Contact us for detailed information.  
Information described in this material is current as of March 2024.  
Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the  
information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always  
contact us for the delivery specification sheet to check the latest specifications.  
The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that  
one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use.  
Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.  
www.hamamatsu.com  
HAMAMATSU PHOTONICS K.K., Solid State Division  
1126-1 Ichino-cho, Chuo-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184  
U.S.A.: HAMAMATSU CORPORATION: 360 Foothill Road, Bridgewater, NJ 08807, U.S.A., Telephone: (1)908-231-0960, Fax: (1)908-231-1218  
Germany: HAMAMATSU PHOTONICS DEUTSCHLAND GMBH: Arzbergerstr. 10, 82211 Herrsching am Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-265-8 E-mail: info@hamamatsu.de  
France: HAMAMATSU PHOTONICS FRANCE S.A.R.L.: 19 Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10 E-mail: infos@hamamatsu.fr  
United Kingdom: HAMAMATSU PHOTONICS UK LIMITED: 2 Howard Court,10 Tewin Road, Welwyn Garden City, Hertfordshire, AL7 1BW, UK, Telephone: (44)1707-294888, Fax: (44)1707-325777 E-mail: info@hamamatsu.co.uk  
North Europe: HAMAMATSU PHOTONICS NORDEN AB: Torshamnsgatan 35, 16440 Kista, Sweden, Telephone: (46)8-509-031-00, Fax: (46)8-509-031-01 E-mail: info@hamamatsu.se  
Italy: HAMAMATSU PHOTONICS ITALIA S.R.L.: Strada della Moia, 1 int. 6 20044 Arese (Milano), Italy, Telephone: (39)02-93 58 17 33, Fax: (39)02-93 58 17 41 E-mail: info@hamamatsu.it  
China: HAMAMATSU PHOTONICS (CHINA) CO., LTD.: 1201, Tower B, Jiaming Center, 27 Dongsanhuan Beilu, Chaoyang District, 100020 Beijing, P.R. China, Telephone: (86)10-6586-6006, Fax: (86)10-6586-2866 E-mail: hpc@hamamatsu.com.cn  
Taiwan: HAMAMATSU PHOTONICS TAIWAN CO., LTD.: 13F-1, No.101, Section 2, Gongdao 5th Road, East Dist., Hsinchu City, 300046, Taiwan(R.O.C) Telephone: (886)3-659-0080, Fax: (886)3-659-0081 E-mail: info@hamamatsu.com.tw  
12  
Cat. No. KMPD1220E12 Mar. 2024 DN  

S15454-01WT 相关器件

型号 制造商 描述 价格 文档
S1549AAB-168.0000 PERICOM Oscillator, 获取价格
S1549BAB-168.0000 PERICOM Oscillator, 获取价格
S1549BAB-168.0000(T) PERICOM Oscillator, 获取价格
S1549BAB-65.0000 PERICOM Oscillator, 获取价格
S1549BAB-65.0000(T) PERICOM Oscillator, 获取价格
S1549BAB-FREQ(T) PERICOM LVPECL Output Clock Oscillator, 65MHz Min, 168MHz Max 获取价格
S1549EAB-168.0000 PERICOM Oscillator, 获取价格
S1549EAB-168.0000(T) PERICOM Oscillator, 获取价格
S1549EAB-65.0000 PERICOM Oscillator, 获取价格
S1549EAB-65.0000(T) PERICOM Oscillator, 获取价格

S15454-01WT 相关文章

  • 探究驱动器、开关与激光二极管对提升激光雷达性能的作用
    2025-02-26
    101
  • 利用数字预失真技术打造超精准信号发生器
    2025-02-26
    109
  • 英伟达挑战欧盟反垄断调查:起诉质疑Run:ai收购案的调查
    2025-02-26
    77
  • 英特尔18A工艺良率仅20%~30%,下半年量产计划面临挑战
    2025-02-26
    78
  • Hi,有什么可以帮您? 在线客服 或 微信扫码咨询