1EDF5673K 概述
GaN EiceDRIVER™IC具有出色的稳健性和效能,非常适合驱动GaN HEMT
1EDF5673K 数据手册
通过下载1EDF5673K数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。
PDF下载GaN EiceDRIVER™ product family
Single-channel functional and reinforced isolated gate-drive ICs for
high-voltage enhancement-mode GaN HEMTs
Features
•
Dedicated gate driver ICs for high-voltage GaN power switches (CoolGaN™, GIT technology based products)
–
–
–
low driving impedance (on-resistance 0.85 Ω source, 0.35 Ω sink)
resistor programmable gate current (typ. 10 mA) in steady “on” state
programmable negative gate voltage to completely avoid spurious turn-on
•
•
•
•
•
•
•
Single output supply voltage (typ. 8 V, floating)
Switching behavior independent of duty-cycle (2 "off" voltage levels)
Differential concept to ensure negative gate drive voltage under any condition
Fast input-to-output propagation (37 ns) with excellent stability (+7/-6 ns)
Galvanic input-to-output isolation based on coreless transformer (CT) technology
Common mode transient immunity (CMTI) > 200 V/ns
3 package versions
–
–
–
1EDF5673K: 13-pin LGA (5 x 5 mm, PG-TFLGA-13-1) for functional isolation (1.5 kV)
1EDF5673F: 16-pin P-DSO (150 mil, PG-DSO-16-11) for functional isolation (1.5 kV)
1EDS5663H: 16-pin P-DSO (300 mil, PG-DSO-16-30) for reinforced isolation
•
Fully qualified according to JEDEC for Industrial Applications
Description
CoolGaN™ and similar GaN switches require a continuous gate current of a few mA in their "on" state. Besides,
due to low threshold voltage and extremely fast switching transients, a negative "off" voltage level may be
needed. The widely used RC-coupled gate driver fulfils these requirements, however it suffers from a duty-cycle
dependence of switching dynamics and the lack of negative gate drive in specific situations.
Infineon's GaN EiceDRIVER™ solves these issues with very low effort. The two output stages shown below enable
a zero “off" level to eliminate any duty-cycle dependence. In addition, the differential topology is able to provide
negative gate drive without the need for a negative supply voltage. However, it requires a floating supply voltage
not compatible with bootstrapping.
GaN EiceDRIVER™
Controller
VDD > 3.5V
RVDDI
VDDS
VDDI
SLDO
PWM
UVLOin
Ishunt
UVLOoutS
VDD
CT
VDD
Rtr
CC
VDDO
CVDDO
SLDO
RX
TX
S1
S2
RSS
OUTS
GNDS
Control
Logic
PWM
Control
Logic
CVDDI
GNDI
CoolGaN™
VDDG
D
UVLOoutG
IGx60Rxx
DISABLE
GPIOx
GND
TX
RX
S3
S4
OUTG
GNDG
G
Control
Logic
TNEG
Rt1
delay
t1
SS
S
GNDI
Final datasheet
www.infineon.com
Please read the Important Notice and Warnings at the end of this document
Rev. 2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Potential applications
•
•
Server, telecom and industrial SMPS
Adapter and charger power supply
Isolation and safety approval
•
1EDS5663H with reinforced isolation: certification by VDE, UL according to
–
–
–
DIN V VDE V 0884-10 (2006-12) with VIOTM = 8 kVpk, VIOSM = 6.25 kVpk (tested at 10 kVpk)
UL 1577 (Ed. 5) with VISO = 5.7 kVRMS
EN 62368-1
•
1EDF5673K and 1EDF5673F with functional isolation: production test with 1.5 kV for 10 ms
Product versions
In accordance with the isolation classification for primary and secondary side control, GaN EiceDRIVER™ is
available in different package versions
Table 1
GaN EiceDRIVER™ product family overview
Part
number
Package
Source/sink
output
resistance
Input-to-output isolation
Isolation class Rating Surge testing Safety
certification
1EDF5673K LGA-13
5 x 5 mm
0.85 Ω / 0.35 Ω functional
0.85 Ω / 0.35 Ω functional
V
IO = 1.5 kVDC
n.a
n.a
n.a
n.a
1EDF5673F DSO-16
150 mil
VIO= 1.5 kVDC
1EDS5663H DSO-16
300 mil
0.85 Ω / 0.35 Ω reinforced
VIOTM = 8 kVpk
(VDE0 884-10)
VIOSM >10 kVpk VDE 0884-10 1)
(safe)
(IEC60065)
UL 1577
V
ISO = 5.7 kVRMS
EN 62368-1
(UL 1577)
1) tested according to VDE0884-10 specifications with certification no longer available due to standard expiration
Final datasheet
2
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Table of Contents
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1
2
Pin configuration and description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Background and system description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
3.1
3.2
3.3
3.3.1
3.3.2
3.3.3
3.4
3.5
3.6
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Input supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Output supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Driver outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
CT communication and data transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Signal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.7
4
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1
4.2
4.3
4.4
5
6
Timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7
7.1
7.1.1
7.1.2
7.2
Isolation specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Functional isolation specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Functional isolation in PG-TFLGA-13-1 package (1EDF5673K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Functional isolation in NB PG-DSO-16-11 package (1EDF5673F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Reinforced isolation in WB PG-DSO-16-30 package (1EDS5663H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Safety-limiting values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.3
8
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.1
Dimensioning guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9
Layout guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10
Package outline dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Package PG-TFLGA-13-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Package PG-DSO-16-11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Package PG-DSO-16-30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
10.1
10.2
10.3
11
12
Device numbers and markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Final datasheet
3
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Pin configuration and description
1
Pin configuration and description
DSO-16
LGA-13 (5 x 5 mm)
1
2
3
4
5
6
7
8
PWM
N.C.
VDDS
OUTS
GNDS
N.C.
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
13
12
11
GNDI
PWM
VDDS
OUTS
GNDS
narrow-body
(150 mil)
1EDF5673F
VDDI
N.C.
GNDI
SLDO
DISABLE
TNEG
VDDI
1EDF5673K
DISABLE
TNEG
N.C.
wide-body
(300 mil)
1EDS5663H
10
VDDG
OUTG
GNDG
VDDG
OUTG
GNDG
9
8
N.C.
SLDO
Figure 1
Table 2
Pin configuration for DSO-16 and LGA-13 packages, top view
Pin description
Pin DSO Pin LGA Symbol Description
1
2
PWM
Input signal (default state Low)
Controls switching sequence at OUTG and OUTS
2
3
4
5
3
7
1
5
N.C.
Do not connect
VDDI
GNDI
Input supply voltage (+3.3 V)
Input GND
DISABLE Input signal (defaut state Low)
Logic High is equivalent to a low state at PWM input
6
6
TNEG
Resistor programmable input to control the duration t1 of negative "off" level
(Figure 4);
t1 = Rt1 * 10.8 pF with Rt1 ranges from 3 kΩ to 45 kΩ, typical value of Rt1 is 18 kΩ
7
8
7
4
N.C.
Not connected
SLDO
N.C. or connected to VDDI: applied voltage (3.3 V) directly used as input supply
voltage
Connected to GNDI: Internal shunt regulator activated (VDD > 3.5 V)
9
8
GNDG
OUTG
VDDG
N.C.
Ground for OUTG
10
11
12
13
14
9
Output connectd to GaN gate
Positive supply voltage for gate connected output stage
Not connected
10
-
-
N.C.
Not connected
11
GNDS
Ground for OUTS (has to be connected with GNDG)
Final datasheet
4
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Pin configuration and description
Table 2
Pin description
Pin DSO Pin LGA Symbol Description
15
16
12
13
OUTS
VDDS
Output connected to GaN source
Positive supply voltage for source connected output stage (has to be connected
with VDDG)
Final datasheet
5
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Background and system description
2
Background and system description
Although gallium nitride high electron mobility transistors (GaN HEMTs) with ohmic pGaN gate like Infineon’s
600 V CoolGaN™ power switches are robust enhancement-mode ("normally-on") devices, they differ significantly
from MOSFETs. The gate module is not isolated from the channel, but behaves like a diode with a forward voltage
VF of 3 to 4 V. Equivalent circuit and typical gate input characteristic are given in Figure 2. In the steady "on" state
a continuous gate current is required to achieve stable operating conditions. The switch is "normally-off", but the
threshold voltage Vth is rather low (~ +1 V). This is why in certain applications a negative gate voltage -VN, typically
in the range of several volts, is required to safely keep the switch "off" (Figure 2b).
Figure 2
Equivalent circuit (a) and gate input characteristics (b) of typical normally-off GaN HEMT
Obviously the transistor in Figure 2 cannot be driven like a conventional MOSFET due to the need for a steady-
state "on" current Iss and a negative "off" voltage -VN. While an Iss of a few mA is sufficient, fast switching transients
require gate charging currents Ion and Ioff in the 1 A range. To avoid a dedicated driver with 2 separate "on" paths
and bipolar supply voltage, the solution depicted in Figure 3 is usually chosen, combining a standard gate driver
with a passive RC circuit to achieve the intended behavior. The high-current paths containing the small gate
resistors Ron and Roff, respectively, are connected to the gate via a coupling capacitance CC. CC is chosen to have
no significant effect on the dynamic gate currents Ion and Ioff. In parallel to the high-current charging path the
much larger resistor Rss forms a direct gate connection to continuously deliver the small steady-state gate
current, Iss. In addition, CC can be used to generate a negative gate voltage. Obviously, in the "on"-state CC is
charged to the difference of driver supply VDDO and diode voltage VF. When switching to the "off" state, this charge
is redistributed between CC and CGS and causes an initial negative VGS of value
(2.1)
ꢂꢂ ∙ (ꢀꢃꢃꢄ − ꢀ ) − ꢆꢇꢈꢉ
ꢅ
−ꢀꢁ = −
ꢂꢂ + ꢂꢇꢊ
with QGeq denoting an equivalent application-specific gate charge, i.e. QGeq ~ QGS for hard-switching and QGeq ~ QGS
+ QGD for soft-switching transitions. VN can thus be controlled by proper choice of VDDO and CC. During the "off"
state the negative VGS decreases, as CC is discharged via Rss. The associated time constant cannot be chosen
independently, but is related to the steady-state current and is typically in the 1 µs range. The negative gate
voltage at the end of the "off" phase (VNf in Figure 3b) thus depends on the "off" duration. It lowers the effective
driver voltage for the following switching "on" event, resulting in a dependence of switching dynamics on
frequency and duty cycle as one drawback of this approach.
Final datasheet
6
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Background and system description
Gatedrive
Iss
GaNswitch
D
Rss
VGS
VDDO
Ion
CGD
G
CDS
VF
CC
S1
Ron
Ioff
on
off
+
Roff
S2
0
-VN
t
CGS
VDDO
-VNf
S
a)
b)
Figure 3
Equivalent circuit of GaN switch with RC gate drive (a) and gate-to-source voltage VGS (b)
A second problem might happen if two switches are used alternately in a half-bridge configuration. In normal
operation always one of the switches is "on", and before switching on the other one, it has to be switched off,
thereby generating the negative gate voltage VN. The usually short period with both switches "off" (dead time td)
does not cause a significant increase of VGS. If, however, there is by any reason a longer period with both switches
in "off" state (e.g. during system start-up, burst mode operation etc.), both coupling capacitors (CC) will be
discharged. Thus, for the first switching pulse after such an extended non-switching period no negative voltage
is available. This could lead to increased transistor stress or even instabilities due to spurious turn-on effects in
half-bridge topologies.
To solve the problems described above, a shape of VGS like the one in Figure 4b) would be required rather than
the one in Figure 4a) which results from the simple RC circuit. As explained, a negative VGS might be needed for
safe "off" states during the switching transients, but it should be as low as possible. Due to the lack of a physical
body diode any negative VGS adds to the voltage drop of a GaN transistor in reverse polarity (diode operation)
thereby increasing the conduction losses during dead time. Thus in the idealized waveform of Figure 4b) VGS is
switched to the minimum required VN for a constant time t1 longer than the system dead time td. After that VGS is
switched back to zero to ensure identical conditions for the next switch "on" event and to minimize losses from
diode operation. If, however, an "off" state lasts for a time t2 significantly longer than a normal switching period
1/fsw (e.g. several µs), VGS should be switched again to -VN to avoid the described "first pulse" problem.
t2 >> 1/fsw
PWM
VGS
a)
-VN
t1 > td
VGS
b)
-VN
VGS
c)
-VN
-VDDO
Figure 4
VGS voltage waveforms with RC circuit (a), improved (b) and proposed shape (c)
Final datasheet
7
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Background and system description
The conceptual goal of the GaN EiceDRIVER™ is to provide the gate voltage of Figure 4b) or a functional
equivalent without significantly increasing driving complexity. This is achieved by slightly modifying the gate
drive waveform as depicted in Figure 4c). The "off" level after a long deadtime need not be the optimized
negative voltage -VN, it could also be the more negative level -VDDO. As these "first pulse" situations happen very
rarely compared with regular switching cycles, the resulting higher reverse voltage drop has negligible effect on
switching losses.
Although going from the 3-level signal of Figure 4b) to the 4 levels of Figure 4c) seems to increase complexity at
first sight, this is finally not true. Waveform c) can be realized in a very convenient way, if VN is generated by the
RC network as described above. Then the differential driver concept of Figure 5a) with switch control signals as
given in Figure 5b) is able to fulfil all discussed requirements with lowest effort: a single supply voltage, 4
switches and 4 connection pins are sufficient.
As mentioned, utilizing -VDDO instead of -VN only during extended "off"-phases has no impact on switching losses.
However, care has to be taken when switching on again, because CC is fully charged to VDDO in this "first pulse"
situation and no current flow is possible via the capacitive path. With the standard switching-on scheme
(open S1 / close S2) the transient current thus would be limited to the small steady-state current. To achieve a
faster turn-on, CGS will be discharged prior to the "on"-transient by switching on S3 for a short time t3 before
initiating the actual "on"-transient via S1 and S2. A t3-duration of typically 20 ns is sufficient.
Rss
Rtr
t2 >> 1/fsw
PWM
on
off
CC
S1
S2
+
S3
S1
t3
VDDO
S3
S4
t1
Roff
S4
S2
VGS
-VN
-VDDO
a)
b)
Figure 5
GaN EiceDRIVER™ concept (a) and switch control signals (b)
In the topology of Figure 5a) a single resistor Rtr is responsible for setting the maximum transient charging and
discharging current. This is often acceptable. If it is not, an additional resistor Roff with series diode in parallel with
Rtr can be used to realize different impedances for "on" and "off" transients, respectively. All relevant driving
parameters are thus easily programmable by choosing VDDO, Rss, Rtr, Roff and CC according to Equation (2.1) and
the relations
(2.2)
ꢀꢃꢃꢄ − ꢀ
ꢀꢃꢃꢄ
ꢀ + ꢀꢁ
ꢅ
ꢓℎ
ꢋꢌꢌ =
,
ꢋꢎꢏ ,ꢐꢑꢒ
=
,
ꢋꢎꢕꢕ ,ꢐꢑꢒ =
ꢍꢌꢌ
ꢍꢓꢔ + ꢍꢎꢕꢕ
ꢍꢎꢕꢕ
Final datasheet
8
Rev.2.4
2021-11-09
GaN EiceDRIVER™ product family
GaN gate driver
Functional description
3
Functional description
3.1
Block diagram
A simplified functional block diagram of the GaN EiceDRIVER™ is given in Figure 6. The 4 output transistors are
placed on 2 separate dies. Isolation between input and outputs is achieved by means of two coreless transformer
structures (CT) situated on the input die.
UVLOin
UVLOoutS
VDDI
SLDO
PWM
VDDS
OUTS
Ishunt
SLDO
RX
TX
S1
S2
Control
Logic
GNDS
VDDG
Control Logic
GNDI
UVLOoutG
DISABLE
TNEG
TX
RX
S3
S4
Control
Logic
GNDI
OUTG
GNDG
Delay t1
GNDI
Figure 6
Block diagram
3.2
Isolation
The GaN EiceDRIVER™ is available in three package versions in accordance with different classes of input-to-
output isolation voltage requirements
•
•
•
1EDF5673K in LGA-13 5 x 5 mm package for functional isolation (1.5 kV)
1EDF5673F in DSO-16 narrow-body (150 mil) package for functional isolation (1.5 kV)
1EDS5663H in DSO-16 wide-body (300 mil) package for reinforced isolation
In SMPS functional isolation is typical for high-voltage systems that are controlled from their primary side,
whereas high-voltage switches controlled from the secondary side require safe isolation.
The safe isolation version 1EDS5663H is tested according to VDE0884-10 standards as specified in Table 15 to
Table 18. As the CT forming this barrier is placed on the input die, a true "fail-safe" isolation is achieved, i.e. even
in case of a destruction of the power switch the driver input remains safely isolated from the output.
Final datasheet
9
Rev.2.4
2021-11-09
GaN EiceDRIVER™ product family
GaN gate driver
Functional description
3.3
Power supply
Due to the isolation between input and output side, two power domains with independent power management
are required. Undervoltage Lockout (UVLO) functions for both input and output supplies ensure a defined start-
up and robust functionality under all operating conditions.
3.3.1
Input supply voltage
The input die is supplied via VDDI with a nominal voltage of 3.3 V. Power consumption to some extent depends
on switching frequency, as the input signal is converted into a train of repetitive current pulses to drive the
coreless transformer. Due to the chosen robust encoding scheme the average repetition rate of these pulses and
thus the average supply current depends on the switching frequency fsw. However, for fsw < 500 kHz this effect is
very small.
The input side can also be operated with supply voltages higher than 3.3 V. Then a shunt LDO voltage regulator
(SLDO) is enabled by connecting pin SLDO to GND. The SLDO regulates the current through an external resistor
RVDDI connected between the external supply voltage VDD and pin VDDI as depicted in the typical application
circuit on Page 1 to generate the required voltage drop. For proper operation it has to be ensured that the current
through RVDDI always exceeds the maximum supply current IVDDI,max of the input chip. RVDDI thus has to fulfil
(3.1)
ꢀꢃꢃ − 3.3ꢀ
ꢍꢀꢃꢃꢋ
<
ꢋꢀꢃꢃꢋ ,ꢐꢑꢒ
Then Ishunt, the excess current through RVDDI, can be controlled by the SLDO to regulate VDDI to a constant 3.3 V. A
typical choice for VDD = 5 V could be RVDDI = 470 Ω, resulting in sufficient margin between resistor current and
maximum average operating current. As usual, the dynamic peak current is provided by a blocking cap (10 to 22
nF) between VDDI and GNDI.
3.3.2
Output supply voltage
Both output dies and the respective output switches are supplied by a common voltage of typically 8 V between
pins VDDS/G and GNDS/G. A ceramic bypass capacitance in the 20 to 100 nF range has to be placed close to the
supply pins. The output supply must be floating with respect to the input supply system. This is not only required
by the Kelvin source connection of the GaN switch (results in inductive voltage peaks between input and output
ground during switching transient), but also by the differential driving concept as explained in Chapter 2.
Again the minimum operating supply voltage is set by an undervoltage lockout function (UVLOout), operating
independently of the input UVLO function.
3.3.3
Power dissipation
The main power components associated with gate drive are the following: as usual, a first small part (< 20 mW) is
due to the internal driver supply currents IVDDI and IVDDO; they slightly depend on switching frequency via the CT
encoding scheme (see Typical characteristics in Chapter 6). The second component results from charging the
gate capacitance and is in the same range due to the low gate charge of GaN switches.
However, there are 2 more GaN-specific power components. The continuous gate current any CoolGaN™ switch
requires in the steady on-state causes some tens of mW to be dissipated. And, as a consequence of the differential
driving concept, additional power is dissipated during longer non-switching periods; this is associated with the
application of VDDO as negative gate-to-source voltage, because VDDO is then loaded directly with Rss (see
Figure 5). In burst-mode operation the power depends on the burst/pause ratio and is typically also only a few
tens of mW. During extended stand-by modes, however, powering down the VDDO supply could save about
Final datasheet
10
Rev.2.4
2021-11-09
GaN EiceDRIVER™ product family
GaN gate driver
Functional description
100 mW. It should also be pointed out that the internal gate/source clamp implemented in CoolGaN™ is
connected in parallel with Rss in this state. To avoid any significant additional current and power dissipation, VDDO
should be strictly limited to a maximum of 12 V.
As a summary, the total gate-drive power always stays in the 50 to 150 mW range and is thus sufficiently small to
not cause any critical on-chip temperature increase.
3.4
Driver outputs
The rail-to-rail driver output stage realized with complementary MOS transistors is able to provide a typical 4 A
sourcing and 8 A sinking current. Although these current levels are neither needed nor reached when driving
GaN HEMTs (due to their low gate charge of only a few nC), the low on-resistance coming together with high
driving current is nevertheless beneficial. With an Ron of 0.85 Ω for the sourcing pMOS and 0.35 Ω for the sinking
nMOS transistor the driver can be considered as a nearly ideal switch. The gate drive parameters can thus be
determined easily and accurately by the external components as described in Chapter 2. The p-channel sourcing
transistor enables real rail-to-rail behavior without suffering from the voltage drop unavoidably associated with
nMOS source follower stages.
3.5
Undervoltage Lockout (UVLO)
The Undervoltage Lockout function ensures that the outputs can be switched only, if both input and output
supply voltages exceed the corresponding UVLO threshold voltages. Thus it can be guaranteed, that the switch
transistors are not operated, if the driving voltage is too low for complete and fast switching on, thereby avoiding
excessive power dissipation.
The UVLO levels for the output supply are set to a typical "on" value of 4.5 and 5.5 V (with 0.3 V hysteresis) for
OUTG and OUTS, respectively, whereas UVLOin for VDDI is set to 2.85 V with 0.15 V hysteresis. The different UVLO
levels for OUTG and OUTS help to safely avoid any erroneous turn-on of the GaN switch despite the low GaN
threshold voltage. Special attention has been paid to cover all possible operating conditions, like start-up or
arbitrary supply voltage situations:
•
if VDDI drops below UVLOin, a "switch-to-low" command is sent to output OUTG, whereas OUTS is switched to
"high"; this corresponds to the final state in extended "off" periods with VGS = -VDDO
•
for VDD lower than the output UVLO levels, an effective clamping concept has been realized by means of 100 kΩ
resistors connecting the outputs OUTS and OUTG to the respective gates of the sourcing pMOS transistors in
the output stage
As a result, safe operation of the GaN switch can be guaranteed under any circumstances.
3.6
CT communication and data transmission
A coreless transformer (CT) based communication module is used for PWM signal transfer between input and
outputs. A proven high-resolution pulse repetition scheme in the transmitter combined with a watchdog time-
out at the receiver side enables recovery from communication fails and ensures safe system shut-down in failure
cases.
Besides, the repetition scheme is also used to signal a "first pulse" situation (Figure 5). If an "off"-state lasts
longer than 32 µs, the repetition rate of the CT pulses is reduced to a value that causes the watchdog on the
output chip to wake up and initiate a change in the "off" state acc. to Figure 5 (switch S3 to "off" and S4 to "on"
state).
3.7
Signal timing
From the above, the extended "off"-phase t2 defining a "first pulse" situation, is fixed at a typical value of 32 µs.
The other important timing parameter t1, i.e. the duration of the negative "off"-voltage, can be programmed by
Final datasheet
11
Rev.2.4
2021-11-09
GaN EiceDRIVER™ product family
GaN gate driver
Functional description
a resistor Rt1 connected from TNEG to GNDI according to t1 = Rt1 * 10.8 pF. As the main idea is to keep the switch
in a safe "off" state during the switching transient, t1 must be longer than the system dead time td, i.e. the
maximum time both switches in a half-bridge are in "off" state. The upper limit for t1 obviously is the minimum
"off"-period; within these limits (td < t1 < toff,min), the actual t1 value is completely uncritical without any effect on
switching dynamics.
The above condition refers to systems with a fixed dead-time (complementary high-side and low-side control
signals). In topologies with non-complementary signals (TCM PFC, active clamp flyback converter, burst mode
operation) it cannot always be fulfilled. Then a limited number of "first pulse" situations may occur. However, as
this typicallly happens in resonant topologies at low current values, the safe operating area of the switch is
usually not exceeded.
Final datasheet
12
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Electrical characteristics
4
Electrical characteristics
4.1
Absolute maximum ratings
The absolute maximum ratings are listed in Table 3. Stresses beyond these values may cause permanent damage
to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Table 3
Absolute maximum ratings
Symbol
Parameter
Values
Unit Note or Test Condition
Min.
-0.3
-0.3
-0.3
-5
Typ.
Max.
1)
Voltage at pin VDDI
VDDI
VDDO
VIN
–
–
–
–
–
4.0
V
Output supply voltage
22
V
V
V
V
–
Voltage at pins PWM and
DISABLE
17
–
–
< 50 ns for transient 2)
Voltage at pins TNEG and SLDO VTNEG
-0.3
VDDI + 0.3
–
VSLDO
Voltage at pins OUTS, OUTG
VOUTS/G
-0.3
-2
–
–
–
–
–
VDDO + 0.3 V
DDO + 1.5 V
–
V
< 200 ns 2)
< 500 ns 2)
Reverse current peak at pins
OUTS, OUTG
ISRC_rev
ISNK_rev
CMTI
-5
–
5
–
Apk
Apk
–
Non-destructive Common
Mode Transient Immunity
400
V/ns outputs with respect to
input
Junction temperature
Storage temperature
Soldering temperature
ESD capability
TJ
-40
-65
–
–
–
–
–
150
150
260
0.5
°C
°C
°C
kV
–
TSTG
–
TSOL
reflow/wave soldering 3)
VESD_CDM
–
Charged Device Model
(CDM) 4)
ESD capability
VESD_HBM
–
–
2
kV
Human Body Model
(HBM) 5)
1) if the SLDO is activated (SLDO pin connected to GNDI), the input-side supply voltage does not correspond to VDDI and can
be higher
2) parameter verified by design, not tested in production
3) according to JESD22A111
4) according to ANSI/ESDA/JEDEC JS-002
5) according to ANSI/ESDA/JEDEC JS-001
Final datasheet
13
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Electrical characteristics
4.2
Thermal characteristics
Table 4
Thermal characteristics at TA= 25°C
Parameter
Symbol
Values
Typ.
Unit Note or
Test Condition
Min.
Max.
PG-TFLGA-13-1 package
Thermal resistance junction-
ambient 1)
RthJA25
RthJC25
–
–
112
44
–
–
K/W
K/W
–
Thermal resistance junction-case
–
(top) 2)
Thermal resistance junction-board 3) RthJB25
–
–
66
–
–
K/W
K/W
–
–
Characterization parameter
junction-top 4)
ΨthJT25
7.7
Characterization parameter
junction-board 4)
ΨthJB25
–
5.6
–
K/W
–
PG-DSO-16-30 package
Thermal resistance junction-
ambient 1)
RthJA25
RthJC25
–
–
59
32
–
–
K/W
K/W
–
–
Thermal resistance junction-case
(top) 2)
Thermal resistance junction-board 3) RthJB25
–
–
33
–
–
K/W
K/W
–
–
Characterization parameter
junction-top 4)
ΨthJT25
8.9
Characterization parameter
junction-board 4)
ΨthJB25
–
7.7
–
K/W
–
PG-DSO-16-11 package
Thermal resistance junction-
ambient 1)
RthJA25
RthJC25
–
–
51
25
–
–
K/W
K/W
–
–
Thermal resistance junction-case
(top) 2)
Thermal resistance junction-board 3) RthJB25
–
–
36
–
–
K/W
K/W
–
–
Characterization parameter
junction-top 4)
ΨthJT25
4.4
Characterization parameter
ΨthJB25
–
5.4
–
K/W
–
junction-board 4)
1) obtained by simulating a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in
JESD51-2a.
2) obtained by simulating a cold plate test on the package top. No specific JEDEC standard test exists, but a close
description can be found in the ANSI SEMI standard G30-88.
3) obtained by simulating an environment with a ring cold plate fixture to control the PCB temperature, as described in
JESD51-8.
4) estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining
Rth, using a procedure described in JESD51-2a (sections 6 and 7).
Final datasheet
14
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Electrical characteristics
4.3
Operating range
Table 5
Operating range
Parameter
Symbol
Values
Unit Note or
Test Condition
Min.
3
Typ.
Max.
3.5
202)
1)
Voltage at pin VDDI
VDDI
–
8
–
V
Output supply voltage
VDDI blocking capacitance
VDDO
CVDDI
6.5
–
V
Min. defined by UVLO
22
nF
SLDO active
(connected to GNDI)
Resistor defining t1
Rt1
VIN
3
0
18
–
45
kΩ
–
–
Logic input voltage at pins
PWM and DISABLE
6.5
V
Voltage at pins SLDO
Junction temperature
Ambient temperature
VSLDO
TJ
0
–
–
–
3.5
1503)
125
V
–
-40
°C
TA
-40
°C
–
1) if the SLDO is activated (SLDO pin connected to GNDI), the input-side supply voltage does not correspond to VDDI and can
be higher
2) for CoolGaN™ HEMTs VDDO < 12 V is recommended
3) continuous operation above 125°C may reduce lifetime
4.4
Electrical characteristics
Unless otherwise noted, min./max. values of characteristics are the lower and upper limits, respectively. They are
valid within the full operating range. Typical values are given at TJ = 25°C with VDDI = 3.3 V and VDDO = 8 V
Table 6
Power supply
Parameter
Symbol
Values
Typ.
1.5
Unit Note or
Test Condition
Min.
Max.
VDDI quiescent current
VDDO quiescent current
IVDDIqu
–
–
–
–
mA
mA
no switching
no switching
IVDDOqu
1.3
Table 7
Static output characteristics
Symbol
Parameter
Values
Typ.
Unit Note or
Test Condition
Min.
Max.
High level (sourcing) output
resistance
Ron_SRC
0.42
0.85
1.6
Ω
ISRC = 50 mA
1)
Peak sourcing output current ISRC_pk
–
4
A
–
Low level (sinking) output
resistance
Ron_SNK
0.18
0.35
0.75
Ω
ISNK = 50 mA
2)
Peak sinking output current
ISNK_pk
-8
–
A
–
1) actively limited to approx. 5.2 Apk, not subject to production test - verified by design / characterization
2) actively limited to approx. -10.2 Apk, not subject to production test - verified by design / characterization
Final datasheet
15
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Electrical characteristics
Table 8
Dynamic characteristics, TJ,max = 125°C (see Figure 7 and Figure 8)
Parameter
Symbol
Values
Typ.
37
Unit Note or Test Condition
Min.
Max.
PWM to OUTS propagation
delay
tPDonS
31
44
ns
load between OUTS and
GNDS
tPDoffS
tPDonG
tPDoffG
–
–
41
tPDoffS + t1
37
–
–
CLS = 1.8 nF
PWM to OUTG propagation
delay
ns
ns
load between OUTG and
GNDG
ZLG = 1.8 nF // 20 Ω
31
44
DISABLE to OUTS propagation tPD_DISon
–
–
–
100
121)
ns
ns
CLS = 1.8 nF
delay
tPD_DISoff
Rise time OUTS / OUTG
trise
6.5
CLS = CLG = 1.8 nF,
10% to 90%
Fall time OUTS
tfall
tPW
–
–
4.5
18
81)
–
ns
ns
CLS = 1.8 nF, 90% to 10%
Minimum input pulse width
that changes output state
–
Duration of negative gate “off” t1
voltage
–
–
–
194
321)
201)
–
–
–
ns
µs
ns
Rt1 = 18 kΩ
Minimum “off” time before
entering “first pulse” mode
t2
t3
–
–
Discharging time in “first
pulse” mode
1) verified by design, not tested in production
Table 9
Undervoltage Lockout
Parameter
Symbol
Values
Typ.
Unit Note or
Test Condition
Min.
Max.
Undervoltage Lockout input
(UVLOin) turn on threshold
UVLOin
2.75
2.85
2.95
V
V
–
Undervoltage Lockout (UVLOin) UVLOin-
turn off threshold
–
2.7
–
–
UVLOin threshold hysteresis
∆UVLOin
0.1
4.7
5.4
–
0.15
5.0
0.2
5.3
6.2
–
V
V
V
V
V
V
V
–
–
–
–
–
–
–
Undervoltage Lockout outputs UVLOoutG
(UVLOoutG/S) turn on threshold
UVLOoutS
5.8
UVLOout turn off thresholds
UVLOout threshold hysteresis
UVLOoutG-
UVLOoutS-
∆UVLOoutG
∆UVLOoutS
4.5
–
5.2
–
0.3
0.4
0.45
0.6
0.6
0.8
Final datasheet
16
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Electrical characteristics
Table 10
Logic inputs PWM and DISABLE
Symbol
Parameter
Values
Typ.
2.0
Unit Note or
Test Condition
Min.
Max.
Input voltage threshold for
transition LH
VINL
VINH
1.7
2.3
V
independent of VDDI
Input voltage threshold for
transition HL
–
1.2
–
V
independent of VDDI
Input voltage hysteresis
Input pull down resistor
∆VIN
0.4
–
0.8
1.2
–
V
–
–
RIN
150
kΩ
Final datasheet
17
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Timing diagrams
5
Timing diagrams
Figure 7 depicts rise, fall and delay times as observed at the capacitively loaded outputs OUTS and OUTG, resp.
As OUTG is not actively switched to low, a resistor in parallel with the load capacitance has to be used for testing.
In addition to the signal propagation delay tPDon, the rising edge of OUTG is delayed by a time t1 defining the
duration of negative VGS
.
PWM
VINH
VINL
90%
10%
90%
tPDoffS
tPDoffG
10%
OUTS
OUTG
tPDonS
tfall
trise
90%
10%
10%
t1
trise
Figure 7
Propagation delay, rise and fall time
Figure 8 illustrates a complete switching sequence of the four switches forming the two output stages of
GaN EiceDRIVER™ (delay, rise and fall times not shown). The sequence in the left part of Figure 8 corresponds to
the normal switching operation, whereas in the right part the "first pulse" situation is depicted. This situation is
assumed to happen whenever there is no switching action for an extended period t2. Clearly t2 must be
significantly longer than a regular switching period. A typical duration of 32 µs has been chosen, as GaN switches
usually operate at switching frequencies significantly above 50 kHz (switching period below 20 µs).
normal operation
“first pulse“
off
on
t2 >> 1/fsw
PWM
on
off
S1
S2
t1
t3
S3
S4
VGS
-VN
-VDDO
Figure 8
Input signal, output switch sequence and resulting VGS for normal operation and
"first pulse" situation
Final datasheet
18
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Typical characteristics
6
Typical characteristics
VDD= 8 V, VDDI = 3.3 V, TA = 25°C, no load (unless otherwise noted)
2.0
1.8
1.6
1.4
1.2
6.0
5.0
4.0
3.0
2.0
1.0
0
50kHz
1MHz
3MHz
-50
0
50
100
150
-50
0
50
100
150
TJ[°C]
TJ[°C]
Typical VDDI current vs.
temperature and frequency
Typical VDDI quiescent current
vs. temperature
Figure 9
Supply current VDDI
2.0
1.6
1.2
0.8
14
50kHz
1MHz
3MHz
12
10
8
6
4
2
0
-50
0
50
100
150
-50
0
50
100
150
TJ [°C]
TJ [°C]
Typical VDDO quiescent current
vs. temperature
Typical VDDO current vs.
temperature and frequency, no load
Figure 10 Supply current VDDO
Final datasheet
19
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Typical characteristics
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0,4
0.2
0
16
Ron_src
Ron_snk
Duty Cycle 50%,
CC = 2nF, VDDO = 8V
14
12
10
8
6
4
2
0
0
200
400
600
800
1000
-50
0
50
TJ [°C]
100
150
switching frequency [kHz]
Typical VDDO current with 70 mΩ
CoolGaN switch vs. switching frequency
Typical output resistance vs.
temperature
Figure 11 Supply current VDDO (with load) and output resistance
2.5
UVLO on
UVLO off
ON threshold
OFF threshold
2.9
2.0
1.5
2.7
1.0
2.5
0.5
-50
0
50
TJ [°C]
100
150
-50
0
50
TJ [°C]
100
150
Typical input voltage thresholds
vs. temperature
Typical undervoltage lockout threshold
DDI vs. temperature
V
Figure 12 Logic input thresholds and VDDI UVLO
Final datasheet
20
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Typical characteristics
6.0
6.0
5.5
5.0
4.5
UVLO OUTG
UVLO OUTG-
5.5
5.0
4.5
UVLO OUTS
UVLO OUTS-
-50
0
50
TJ [°C]
100
150
-50
0
50
100
150
TJ [°C]
Typical Undervoltage Lockout threshold
OUTG vs. temperature
Typical Undervoltage Lockout threshold
OUTS vs. temperature
Figure 13 Output UVLO
8
7
6
5
4
3
50
45
40
35
30
25
trise
tfall
VDD = 8V
Cload = 1.8nF
-50
0
50
TJ [°C]
100
150
-50
0
50
TJ [°C]
100
150
Typical propagation delays
PDonS and tPDoffG vs. temperature
Typical rise and fall time vs. temperature
t
Figure 14 Propagation delay and rise / fall time
Final datasheet
21
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Typical characteristics
500
400
300
200
100
0
0
10
20
30
40
50
Rt1 [kΩ]
Typical negative "off" voltage duration t1 vs Rt1
Figure 15 Typical negative "off" voltage duration t1 vs. Rt1
300
250
200
150
100
50
2500
2000
1500
1000
500
0
0
-50
0
50
100
150
-50
0
50
100
150
TJ [°C]
TJ [°C]
Thermal derating for safety-related
limiting current
Thermal derating for safety-related
limiting power
Figure 16 Thermal derating curves
Final datasheet
22
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Isolation specifications
7
Isolation specifications
The following tables summarize the package-specific isolation characteristics and test methods. For reinforced
isolation, the regulatory tests described in the component and system standards are applied; functional isolation
is guaranteed by the specified in-house test methods.
As soon as the regulatory certificates are available, the reference and / or documents will become available for
public download on the Infineon website.
As finally creepage and clearance distances are influenced by PCB layout, it is the customer's responsibility to
verify the respective requirements on system level.
7.1
Functional isolation specifications
7.1.1
Functional isolation in PG-TFLGA-13-1 package (1EDF5673K)
Table 11
Functional isolation input-to-output (PG-TFLGA-13-1)
Parameter
Symbol
Values
Typ.
–
Unit Note or Test Condition
Min.
Max.
Functional isolation test
voltage
VIO
1500
–
VDC
impulse test >10 ms,
production tested
Maximum isolation working
voltage
VIOWM
CLR
460
–
–
–
–
VRMS
mm
according to IEC 60664-1
(PD 2; MG II)
Package clearance
3.4
shortest distance over
air, from any input pin to
any output pin
Package creepage
CPG
–
3.4
–
–
–
mm
shortest distance over
surface, from any input
pin to any output pin
Common Mode Transient
Immunity
CMTI
200
V/ns
according to VDE V0884-
10, static and dynamic
test
Capacitance input-to-output CIO
–
–
2
–
–
pF
–
–
Resistance input-to-output
RIO
>1000
MΩ
Final datasheet
23
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Isolation specifications
Table 12
Package characteristics (PG-TFLGA-13-1)
Parameter
Symbol
Min.
Values
Typ.
–
Unit Note or Test Condition
Max.
Comparative tracking Index of CTI
package mold
400
600
V
–
according to DIN EN
60112 (VDE 0303-11)
Material group
–
–
II
–
according to IEC 60112
7.1.2
Functional isolation in NB PG-DSO-16-11 package (1EDF5673F)
Table 13
Functional isolation input-to-output (NB PG-DSO-16-11)
Parameter
Symbol
Values
Typ.
–
Unit Note or Test Condition
Min.
Max.
Functional isolation test
voltage
VIO
1500
–
VDC
impulse test > 10 ms,
sample tested
Maximum isolation working
voltage
VIOWM
CLR
510
–
–
–
–
VRMS
mm
according to IEC 60664-1
(PD2; MG II)1)
Package clearance
4.0
shortest distance over air,
from any input pin to any
output pin
Package creepage
CPG
–
4.0
–
–
–
mm
shortest distance over
surface, from any input
pin to any output pin
Common Mode Transient
Immunity
CMTI
200
V/ns according to VDE V0884-
10, static and dynamic
test
Capacitance input-to-output1) CIO
Resistance input-to-output1) RIO
–
–
2
–
–
pF
–
–
>1000
MΩ
1) verified by design, not tested in production
Table 14
Package characteristics (NB PG-DSO-16-11)
Symbol Values
Parameter
Unit Note or Test Condition
Min.
Typ.
Max.
Comparative tracking Index of CTI
package mold
400
–
600
V
–
according to DIN EN 60112
(VDE 0303-11)
Material group
–
–
II
–
according to IEC 60112
Final datasheet
24
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Isolation specifications
7.2
Reinforced isolation in WB PG-DSO-16-30 package (1EDS5663H)
Table 15
Input-to-output isolation specification according to VDE0884-10 (WB PG-DSO-16-30 )
Parameter
Symbol
Values
Typ.
–
Unit Note or Test Condition
Min.
Max.
Maximum transient isolation VIOTM
voltage
8000
–
Vpk
qualification for t = 60 s;
production test with
V
IOTM_test = VIOTM * 1.2 for t =1 s
Maximum repetitive peak
isolation voltage
VIORM
1420
–
–
Vpk
Time Dependent Dielectric
Breakdown test method
Maximum isolation working VIOWM
voltage
1420
1000
4500
–
–
–
–
–
–
VDC
VRMS
Vpk
Partial discharge voltage
VPD
production test for t=1s,
partial discharge QPD < 5 pC
Maximum surge isolation
voltage
VIOSM
CLR
CPG
–
6250
–
–
–
Vpk
VIOSM_test = 1.6 x VIOSM >10 kVpk;
sample tested 1)
Package clearance
–
–
I
8.0
8.0
–
mm
mm
from any input pin to any
output pin
Package creepage
–
from any input pin to any
output pin
Overvoltage category per
IEC 60664-1 table F.1
IV
rated mains voltage
≤ 150 VRMS
I
I
–
III
II
–
≤ 300 VRMS
–
≤ 600 VRMS
Capacitance input-to-output CIO
Resistance input-to-output RIO
–
2
>1000
–
pF
–
–
–
–
MΩ
Common Mode Transient
Immunity
CMTI
200
–
V/ns input to output static and
dynamic; sample test
1) surge pulse tests applied according to IEC60065-10.1 (Ed 8.0 2014), 61000-4-5, 60060-1 waveforms (1.2 µs slope, 50 µs
decay)
Table 16
Reinforced isolation package characteristics (WB PG-DSO-16-30)
Parameter
Symbol
Values
Typ.
–
Unit Note or Test Condition
Min.
Max.
Comparative Tracking Index CTI
of package mold
400
600
V
according to DIN EN 60112
(VDE 0303-11)
Material group
–
–
–
–
–
–
II
2
–
–
–
–
–
–
according to IEC 60112
Pollution degree
Climatic category
–
–
40/125/
21
Final datasheet
25
Rev.2.4
2021-11-09
1EDF5673K, 1EDF5673F, 1EDS5663H
GaN gate driver
Isolation specifications
Table 17
Reinforced input-to-output isolation according to UL1577 Ed 5 (WB PG-DSO-16-30)
Parameter
Symbol
Values
Typ.
–
Unit Note or Test Condition
Min.
Max.
Withstand isolation
voltage
VISO
5700
–
VRMS
VISO= 5700 VRMS for t = 60 s
(qualification);
V
ISO_test > 1.2 x VISO = 6840 V for t = 1 s
7.3
Safety-limiting values
Table 18
Reinforced isolation safety-limiting values as outlined in VDE-0884-10 (WB PG-DSO-16-30)
Parameter
Side
Values
Unit
Note or Test Condition
Min.
Typ.
Max.
Safety supply power Input
–
–
–
–
–
–
20.0
mW
RthJA = 59 K/W1),
TA = 25°C,
TJ = 150°C
Output
Total
2100 mW
2120 mW
Safety supply current Output
–
–
265
mA
R
V
thJA = 59 K/W1),
DDO = 8 V,
TA= 25°C, TJ = 150°C
Safety temperature
Ts
–
–
150
°C
Ts = TJ,max
1) Calculated with the Rth of WB-DSO-16-30 package (see Table 4)
According to VDE0884-10 and UL1577, safety-limiting values define the operating conditions under which the
isolation barrier can be guaranteed to stay unaffected. This corresponds with the maximum allowed junction
temperature, as temperature-induced failures might cause significant overheating and eventually damage the
isolation barrier.
Final datasheet
26
Rev.2.4
2021-11-09
GaN EiceDRIVER™ product family
GaN gate driver
Application circuit
8
Application circuit
Note: The following information is given as a hint for the implementation of the device only and shall not be regarded
as a description or warranty of a certain functionality, condition or quality of the device.
Figure 17 depicts a typical application for CoolGaN™ switches in a so-called "totem-pole" PFC. It consists of a
70 mΩ GaN half-bridge controlled by two GaN EiceDRIVERs; the diode functions indicated in the power path are
usually realized with low-RDSON MOSFETs operating as synchronous rectifiers. 2.5 kW of power can be handled at
very high efficiency (above 99%).
The topology in Figure 17 differs from standard PFCs mainly by the fact that both GaN transistors are used
alternately in switch and diode operation mode, depending on the polarity of the input voltage. This eliminates
the need for rectifying the input voltage and therefore avoids a significant loss contributor. Such a topology
cannot be realized with MOS-switches due to their inherent body diode and the associated large recovery charge.
Further details can be found in application note: www.infineon.com/driving-coolgan
VDDS
VDDI
PWM
+400V
Vout
UVLOin
UVLOoutS
CT
D
S
SD
10
RX
TX
S1
S2
560
G
SLDO
2
Control
Logic
3.3n
OUTS
HS
SS
Control
Logic
GNDS
VDDG
GNDI
IGT60R070
VDD
3.3V
UVLOoutG
22n
VDDOhs
8V
100n
TX
RX
S3
S4
Control
Logic
TNEG
18k
delay
t1
OUTG
GNDG
Vin
AC
GNDI
VDDS
VDDI
PWM
UVLOin
UVLOoutS
CT
D
S
SD
2
10
RX
TX
S1
S2
560
G
SLDO
Control
Logic
OUTS
3.3n
LS
SS
Control
Logic
GNDS
VDDG
GNDI
IGT60R070
UVLOoutG
VDDOls
8V
100n
TX
RX
S3
S4
Control
Logic
TNEG
delay
t1
OUTG
GNDG
18k
GNDI
Figure 17 Typical application circuit for 2.5 kW GaN "totem-pole" PFC
Final datasheet
27
Rev.2.4
2021-11-09
GaN EiceDRIVER™ product family
GaN gate driver
Application circuit
8.1
Dimensioning guidelines
Due to low output impedance, high current limits and fast transients, the driver output stages can be regarded to
behave like ideal switches. Thus half-bridge switching dynamics are exclusively and predictably controlled by the
passive external components in the gate loop, allowing an easy adaptation to different applications and switch
sizes.
As a first step in dimensioning these components the intended initial negative gate voltage -VN has to be defined.
The correlation between VN, VDDO and CC as given in Equation (2.1) is graphically depicted in Figure 18 for a hard-
switched 70 mΩ CoolGaN™ transistor.
0
IGT60R070
QGeq =3 nC
-1
Ciss =0.4 nF
-2
-3
-4
-5
-6
-7
VF = 3 V
VDDO=8
VDDO=9
VDDO=10
0
1
2
3
4
5
CC [nF]
Figure 18 -VN as a function of VDDO and CC for hard-switched 70 mΩ CoolGaN™
A typical choice for -VN could be -4 V for hard-switched and -2 V for soft-switched applications, respectively.
Additionally, due to the low GaN threshold voltage, even under worst-case conditions -VN should never be
allowed to become positive. This requirement defines the minimum coupling capacitance CCmin. Under typical
conditions CCmin then in fact generates a VN of about 2 V, and thus this capacitance value can be recommended to
be used in soft-switching topologies. Beside CCmin, Table 19 also summarizes recommended values for CChs, the
coupling capacitance in hard-switching topologies, and resistor Rss for different CoolGaN™ switches (currently 70
and 190 mΩ ).
Table 19 Recommended values of CCmin, CChs and Rss
IGx60R070x (70 mΩ)
IGx60R190x (190 mΩ)
VDDO [V]
CCmin [nF]
1.8
CChs [nF]
3.3
Rss [kΩ]
0.56
CCmin [nF]
CChs [nF]
Rss [kΩ]
1.2
8
1
1.8
1
10
1.2
1.8
0.82
0.8
1.8
The application circuit of Figure 17 uses different gate resistors for the "on" and "off" gate loops by introducing
resistor Roff and (Schottky-)diode SD. The values of Rtr and Roff define the respective peak gate currents and thus
switching times according to Equation (2.2). Due to the basic trade-off between switching time and inductive
voltage overshoot, parasitic power and gate loop inductances have a strong influence on the optimum values of
the gate resistors. For a 70 mΩ CoolGaN™ switch they are typically in the 5 to 20 Ω range for Rtr, whereas 2 to 5 Ω
are a reasonable choice for Roff.
Final datasheet
28
Rev.2.4
2021-11-09
GaN EiceDRIVER™ product family
GaN gate driver
Layout guidelines
9
Layout guidelines
For any fast-switching power system the PCB layout is crucial to achieve optimum performance. Among the many
existing rules, recommendations, guidelines, tips and tricks, the following are of highest importance:
•
minimize power loop inductance, the most critical limitation of switching speed due to the unavoidable
voltage overshoots generated by fast current commutation
•
use low-ESR decoupling capacitances for the driver supply voltages and place them as close as possible to the
driver (in the layout proposals below the output capacitance has been split and connected to both supply
pins)
•
strictly avoid any additional coupling capacitance between input and output pins due to PCB layout (see
Chapter 3.7)
Respective layout proposals for the immediate driver surroundings are given in Figure 19, Figure 20 and
Figure 21 for the different available package types.
ꢉꢊꢂꢋ
ꢉꢊꢂꢑ&ꢉ
$ꢂꢂꢑ
ꢓ%#ꢑ
ꢉꢊꢂꢑ
ꢉꢊꢂꢋ
ꢌꢍꢎ
ꢑꢘꢙꢚ'"
ꢉꢕꢗ"
ꢌꢍꢎ
ꢉꢊꢂꢋ
ꢑꢒꢂꢓ
ꢊꢏꢐꢏ
ꢑꢒꢂꢓ
ꢂ ꢔꢕ!ꢖ"
#ꢊꢁꢉ
$ꢂꢂꢋ
ꢂ ꢔꢕ!ꢖ"
ꢉꢊꢂꢋ
$ꢂꢂꢉ
ꢓ%#ꢉ
ꢉꢊꢂꢉ
(#ꢀ
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ
(#(
($ꢂꢂꢋ
ꢑꢂ
Figure 19 Layout recommendation for PG-TFLGA-13-1 package
Final datasheet
29
Rev.2.4
2021-11-09
GaN EiceDRIVER™ product family
GaN gate driver
Layout guidelines
ꢀꢁꢂꢂ
ꢀꢁꢂꢈꢔꢀ
ꢇꢒꢂꢂꢈ
ꢃꢄꢅ
ꢒꢂꢂꢈ
ꢃꢄꢅ
ꢁꢆꢇꢆ
ꢊꢓꢑꢈ
ꢈꢖꢗꢘꢙꢐ
ꢚꢒꢂꢂꢂ
ꢒꢂꢂꢂ
ꢒꢂꢂꢂ ꢀꢁꢂꢈ
ꢀꢁꢂꢂ
ꢁꢆꢇꢆ
ꢇꢒꢂꢂꢂ
ꢂꢋꢌꢍꢎꢏꢐ
ꢂꢋꢌꢍꢎꢏꢐ ꢁꢆꢇꢆ
ꢑꢁꢁꢀ ꢒꢂꢂꢀ
ꢇꢒꢂꢂꢀ
ꢀꢍꢕꢐ
ꢚꢑꢀ
ꢁꢆꢇꢆ
ꢊꢓꢑꢀ
ꢈꢉꢂꢊ
ꢈꢉꢂꢊ ꢀꢁꢂꢀ
ꢀꢁꢂꢃꢄꢅꢆꢇꢃ
ꢚꢑꢚ
ꢈꢂ
Figure 20 Layout recommendation for PG-DSO-16-11 package
ꢊꢉꢂꢌ
ꢊꢉꢂꢍꢑꢊ
ꢐꢋꢂꢂꢛ
ꢒꢓꢔ
ꢋꢂꢂꢌ
ꢋꢂꢂꢍ
ꢁꢎꢈꢍ
ꢊꢉꢂꢍ
ꢉꢏꢐꢏ
ꢃꢄꢅ
ꢁꢆꢇꢆ
ꢍꢖꢗꢘꢙꢇ
ꢚꢋꢂꢂꢌ
ꢋꢂꢂꢌ
ꢀꢁꢂꢂ
ꢂꢂꢃꢄꢅꢆꢇ
ꢈꢉꢁꢊ
ꢉꢏꢐꢏ
ꢐꢋꢂꢂꢌ
ꢂꢂꢃꢄꢅꢆꢇ
ꢉꢏꢐꢏ
ꢋꢂꢂꢊ
ꢁꢎꢈꢊ
ꢊꢉꢂꢊ
ꢐꢋꢂꢂꢜ
ꢊꢄꢕꢇ
ꢚꢈꢀ
ꢍꢀꢂꢁ
ꢀꢂꢁ
ꢀꢁꢂ ꢄꢅꢅ!"
ꢚꢈꢚ
ꢂꢀ
Figure 21 Layout recommendation for PG-DSO-16-30 package
Final datasheet
30
Rev.2.4
2021-11-09
GaN EiceDRIVER™ product family
GaN gate driver
Package outline dimensions
10
Package outline dimensions
The following package versions are available.
•
•
•
an area optimized 5 x 5 mm2 PG-TFLGA-13-1
an NB PG-DSO-16-11 package with typ. 4 mm creepage input to output
a WB PG-DSO-16-30 package with typ. 8 mm creepage input to output
Note:
For further information on package types, recommendation for board assembly, please go to
https://www.infineon.com/packages
10.1
Package PG-TFLGA-13-1
Figure 22 PG-TFLGA-13-1 outline
Final datasheet
31
Rev.2.4
2021-11-09
GaN EiceDRIVER™ product family
GaN gate driver
Package outline dimensions
Figure 23 PG-TFLGA-13-1 footprint
Figure 24 PG-TFLGA-13-1 packaging
Final datasheet
32
Rev.2.4
2021-11-09
GaN EiceDRIVER™ product family
GaN gate driver
Package outline dimensions
10.2
Package PG-DSO-16-11
1)
4-00..02
1)
10-00..02
0.33+-00..0187
x 45°
D
0.64 0.25
C
0.1 C 16x
COPLANARITY
SEATING
6
0.2
PLANE
0.41+-00..0068
0.25
D C 16x
BOTTOM VIEW
16
9
9
8
16
1
1
8
1.27
INDEX
MARKING
1) DOES NOT INCLUDE PLASTIC OR METAL PROTRUSION OF 0.25 MAX. PER SIDE
ALL DIMENSIONS ARE IN UNITS MM
THE DRAWING IS IN COMPLIANCE WITH ISO 128 & PROJECTION METHOD 1 [
]
Figure 25 PG-DSO-16-11 outline
Figure 26 PG-DSO-16-11 footprint
Final datasheet
33
Rev.2.4
2021-11-09
GaN EiceDRIVER™ product family
GaN gate driver
Package outline dimensions
ꢂ
ꢄ
3,1 ꢀ
,1'(; 0$5.,1*
ꢅꢆꢇ
ꢁꢆꢇ
ꢀꢆꢂ
ꢈꢆꢉ
$// ',0(16,216 $5( ,1 81,76 00
7+( '5$:,1* ,6 ,1 &203/,$1&( :,7+ ,62 ꢀꢁꢂ ꢃ 352-(&7,21 0(7+2' ꢀ >
@
Figure 27 PG-DSO-16-11 packaging
10.3
Package PG-DSO-16-30
0.35 x 45°
1)
1)
10.3
7.5
D
0.2 A-B C
2x
0.1
2x
0.7 0.2
10.3
C
0.1 C 16x
COPLANARITY
SEATING
0.3 D C 16x
TOP VIEW
0.25
PLANE
2)
0.4 0.08
C A-B D 16x
BOTTOM VIEW
A
16
9
9
16
EJECTOR MARK
(FLAT SHAPE)
1
1
8
8
INDEXMARKING
(BALL SHAPE)
B
1.27
1) DOES NOT INCLUDE PLASTIC OR METAL PROTRUSION OF 0.15 MAX. PER SIDE
2) DOES NOT INCLUDE DAMBAR PROTRUSION OF 0.1 MAX.
ALL DIMENSIONS ARE IN UNITS MM
THE DRAWING IS IN COMPLIANCE WITH ISO 128 & PROJECTION METHOD 1 [
]
Figure 28 PG-DSO-16-30 outline
Final datasheet
34
Rev.2.4
2021-11-09
GaN EiceDRIVER™ product family
GaN gate driver
Package outline dimensions
Figure 29 PG-DSO-16-30 footprint
16
4
0.3
PIN 1
INDEX MARKING
10.8
2.7
3.2
All dimensions are in units mm
The drawing is in compliance with ISO 128-30, Projection Method 1 [
]
Figure 30 PG-DSO-16-30 packaging
Final datasheet
35
Rev.2.4
2021-11-09
GaN EiceDRIVER™ product family
GaN gate driver
Device numbers and markings
11
Device numbers and markings
Table 20
Device numbers and markings
Part number
1EDF5673K
1EDF5673F
1EDS5663H
Package
Orderable part number (OPN)
Device marking
1F5673B
PG-TFLGA-13-1
PG-DSO-16-11
PG-DSO-16-30
1EDF5673KXUMA1
1EDF5673FXUMA1
1EDS5663HXUMA1
1F5673B
1S5663B
Final datasheet
36
Rev.2.4
2021-11-09
GaN EiceDRIVER™ product family
GaN gate driver
Revision History
12
Revision History
Page or Item
Subjects (major changes since previous revision)
Rev. 2.4, 2021-11-09
Front page, Table 1
Front page, Table 1
Table 1
certification received for UL 1577
certification received for EN 62368-1
removed references to CSA and CQC (not anymore planned)
removed reference to EN 60950-1 as it has been replaced by EN 62368-1
Table 1
Table 3, Table 5
“Input supply voltage” → “Voltage at pin VDDI” to highlight that the supply voltage
can be higher if the SLDO is activated
Chapter 8.1
Figure 17
the recommendation of adding a capacitance in parallel with the resistor Rt1 has
been removed as per Figure 17
the recommended position of Roff has been updated for stronger connection
between MOSFET kelvin source and driver OUTS and improved gate noise
clamping in OFF-state
Rev. 2.3, 2020-10-22
Isolation and safety
approval
corrected certificate names
Table 1
safety certification: added footnote and corrected certificate name
Chapter 3.2
Table 20
updated package description
updated
Rev. 2.2, 2020-08-20
Potential applications
Table 1
updated
certification received for VDE0884-10
update equation for Pin 6
t1 change → t1 = Rt1 * 10.8 pF
updated description text
CVDDI max typo repaired
Table 2
Table 2 and Chapter 3.7
Chapter 3.7
Table 5
Table 5
Voltage at pins TNEG and SLDO → Voltage at pins SLDO and removed symbol for
VTNEG
Table 8
t1 parameter condition change → 18 kΩ
Table 8
t1 typ. value change → 194
Figure 7
corrected typo
Figure 15
Figure 17
Figure 18
Table 19
Table 20
Rev. 2.10, 2019-02-11
Page 1
updated
updated
updated
updated
new “B” marking: change in t1 formula
package diagrams update
application diagram update
Page 1
Final datasheet
37
Rev.2.4
2021-11-09
GaN EiceDRIVER™ product family
GaN gate driver
Revision History
Page or Item
Figure 1 & Chapter 1
Equation (2.1)
Figure 5
Subjects (major changes since previous revision)
repaired typo in pin config diagram and chapter
updated equation and relevant text
added optional resistor and diode
updated to include Roff
Equation (2.2)
Chapter 3.3.1
Chapter 3.3.3
Chapter 3.7
Chapter 4.3
Table 3
added description of Ishunt
added chapter to describe power dissipation
added description of possibility to reduce shortening effect
updated footnote (2)) about VDDO recommendation
max. VDDI: 3.7 V → 4.0 V
Table 5
TA max. value 85°C → 125°C
Figure 17
updated components and dimensions
added chapter on dimensioning guidelines
format change
Chapter 8.1
Figure 21
Chapter 10
latest footprints, outlines and packaging
Rev. 2.00, 2018-11-07
Final datasheet created
Initial version available
Rev. 1.00, 2018-10-25
Final datasheet
38
Rev.2.4
2021-11-09
Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
IMPORTANT NOTICE
The information given in this document shall in no For further information on technology, delivery terms
Edition 2021-11-09
Published by
Infineon Technologies AG
81726 Munich, Germany
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest
characteristics ("Beschaffenheitsgarantie").
Infineon Technologies Office (www.infineon.com).
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer's compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer's products and any use of the product of
Infineon Technologies in customer's applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer's technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to
such application.
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
© 2021 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.
Document reference
1EDF5673K, 1EDF5673F, 1EDS5663H
1EDF5673K 相关器件
型号 | 制造商 | 描述 | 价格 | 文档 |
1EDG | GULFSEMI | ULTRAFAST EFFICIENT GLASS PASSIVATED RECTIFIER VOLTAGE: 200 TO 600V CURRENT: 1.0A | 获取价格 | |
1EDI05I12AF | INFINEON | Separate output variant for IGBT | 获取价格 | |
1EDI05I12AH | INFINEON | 1200 V单个高边栅极驱动器IC,具有电气隔离、短路箝位和独立的汇/源输出 | 获取价格 | |
1EDI10I12MF | INFINEON | 1200 V, 2.3 A single-channel isolated gate driver with Miller clamp and short circuit clamping | 获取价格 | |
1EDI10I12MH | INFINEON | 1200V 单通道高边栅极驱动器 IC,带电气隔离、有源米勒箝和短路夹紧 | 获取价格 | |
1EDI2001AS | INFINEON | Single Channel Isolated Driver for Inverter Systems AD Step | 获取价格 | |
1EDI2001AS_15 | INFINEON | Single Channel Isolated Driver for Inverter Systems AD Step | 获取价格 | |
1EDI2002AS | INFINEON | Single Channel Isolated Driver for Inverter Systems AD Step | 获取价格 | |
1EDI2002ASXUMA2 | INFINEON | Buffer/Inverter Based Peripheral Driver, PDSO36, DSO-36 | 获取价格 | |
1EDI2002AS_15 | INFINEON | Single Channel Isolated Driver for Inverter Systems AD Step | 获取价格 |
1EDF5673K 相关文章
- 2025-01-15
- 4
- 2025-01-15
- 3
- 2025-01-15
- 7
- 2025-01-15
- 4