25AA1024-I/PG
更新时间:2024-12-03 12:59:53
品牌:MICROCHIP
描述:128K X 8 SPI BUS SERIAL EEPROM, PDIP8, 0.300 INCH, PLASTIC, DIP-8
25AA1024-I/PG 概述
128K X 8 SPI BUS SERIAL EEPROM, PDIP8, 0.300 INCH, PLASTIC, DIP-8 闪存
25AA1024-I/PG 规格参数
是否无铅: | 不含铅 | 是否Rohs认证: | 符合 |
生命周期: | Active | 零件包装代码: | DIP |
包装说明: | DIP, DIP8,.3 | 针数: | 8 |
Reach Compliance Code: | compliant | ECCN代码: | EAR99 |
HTS代码: | 8542.32.00.51 | 风险等级: | 5.57 |
最大时钟频率 (fCLK): | 20 MHz | 耐久性: | 100000 Write/Erase Cycles |
JESD-30 代码: | R-PDIP-T8 | JESD-609代码: | e3 |
长度: | 9.46 mm | 内存密度: | 1048576 bit |
内存集成电路类型: | FLASH | 内存宽度: | 8 |
功能数量: | 1 | 端子数量: | 8 |
字数: | 131072 words | 字数代码: | 128000 |
工作模式: | SYNCHRONOUS | 最高工作温度: | 85 °C |
最低工作温度: | -40 °C | 组织: | 128KX8 |
封装主体材料: | PLASTIC/EPOXY | 封装代码: | DIP |
封装等效代码: | DIP8,.3 | 封装形状: | RECTANGULAR |
封装形式: | IN-LINE | 并行/串行: | SERIAL |
峰值回流温度(摄氏度): | NOT SPECIFIED | 电源: | 2/5 V |
编程电压: | 1.8 V | 认证状态: | Not Qualified |
座面最大高度: | 4.32 mm | 串行总线类型: | SPI |
最大待机电流: | 0.000001 A | 子类别: | Flash Memories |
最大压摆率: | 0.01 mA | 最大供电电压 (Vsup): | 5.5 V |
最小供电电压 (Vsup): | 1.8 V | 标称供电电压 (Vsup): | 2.5 V |
表面贴装: | NO | 技术: | CMOS |
温度等级: | INDUSTRIAL | 端子面层: | Matte Tin (Sn) |
端子形式: | THROUGH-HOLE | 端子节距: | 2.54 mm |
端子位置: | DUAL | 处于峰值回流温度下的最长时间: | NOT SPECIFIED |
类型: | NOR TYPE | 宽度: | 7.62 mm |
最长写入周期时间 (tWC): | 5 ms | 写保护: | HARDWARE/SOFTWARE |
Base Number Matches: | 1 |
25AA1024-I/PG 数据手册
通过下载25AA1024-I/PG数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。
PDF下载25AA1024
1 Mbit SPI Bus Serial EEPROM
Device Selection Table
Part Number
VCC Range
Page Size
Temp. Ranges
Packages
25AA1024
1.8-5.5V
256 Byte
I
P, SM, MF
Features:
Description:
• 20 MHz max. Clock Speed
• Byte and Page-level Write Operations:
- 256 byte page
The Microchip Technology Inc. 25AA1024 is a 1024
Kbit serial EEPROM memory with byte-level and page-
level serial EEPROM functions. It also features Page,
Sector and Chip erase functions typically associated
with Flash-based products. These functions are not
required for byte or page write operations. The memory
is accessed via a simple Serial Peripheral Interface
(SPI) compatible serial bus. The bus signals required
are a clock input (SCK) plus separate data in (SI) and
data out (SO) lines. Access to the device is controlled
by a Chip Select (CS) input.
- 6 ms max. write cycle time
- No page or sector erase required
• Low-Power CMOS Technology:
- Max. Write current: 5 mA at 5.5V, 20 MHz
- Read current: 7 mA at 5.5V, 20 MHz
- Standby current: 1A at 2.5V
(Deep power-down)
• Electronic Signature for Device ID
• Self-Timed Erase and Write Cycles:
- Page Erase (6 ms max.)
Communication to the device can be paused via the
hold pin (HOLD). While the device is paused, transi-
tions on its inputs will be ignored, with the exception of
Chip Select, allowing the host to service higher priority
interrupts.
- Sector Erase (10 ms max.)
- Chip Erase (10 ms max.)
• Sector Write Protection (32K byte/sector):
- Protect none, 1/4, 1/2 or all of array
The 25AA1024 is available in standard packages
including 8-lead PDIP and SOIJ, and advanced 8-lead
DFN package. All devices are Pb-free.
• Built-In Write Protection:
- Power-on/off data protection circuitry
- Write enable latch
- Write-protect pin
• High Reliability:
Package Types (not to scale)
- Endurance: 1M erase/write cycles
- Data Retention: >200 years
- ESD Protection: 4000V
DFN
PDIP/SOIJ
(P, SM)
(MF)
1
2
3
4
CS
SO
8
7
6
5
VCC
HOLD
SCK
SI
• Temperature Ranges Supported:
- Industrial (I): -40°C to +85°C
• Pb-Free and RoHS Compliant
CS
SO
WP
VCC
1
2
3
4
8
7
6
5
HOLD
SCK
SI
WP
VSS
VSS
Pin Function Table
Name
Function
CS
SO
Chip Select Input
Serial Data Output
Write-Protect
Ground
WP
VSS
SI
Serial Data Input
Serial Clock Input
Hold Input
SCK
HOLD
VCC
Supply Voltage
2010 Microchip Technology Inc.
DS21836G-page 1
25AA1024
1.0
ELECTRICAL CHARACTERISTICS
(†)
Absolute Maximum Ratings
VCC.............................................................................................................................................................................6.5V
All inputs and outputs w.r.t. VSS ......................................................................................................... -0.6V to VCC +1.0V
Storage temperature .................................................................................................................................-65°C to 150°C
Ambient temperature under bias...............................................................................................................-40°C to 125°C
ESD protection on all pins..........................................................................................................................................4 kV
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for an
extended period of time may affect device reliability.
TABLE 1-1:
DC CHARACTERISTICS
Industrial (I)*:
Industrial (I):
* Limited industrial temp range.
TA = 0°C to +85°C
TA = -40°C to +85°C
VCC = 1.8V to 5.5V
VCC = 2.0V to 5.5V
DC CHARACTERISTICS
Param.
Sym.
Characteristic
Min.
Max.
Units
Test Conditions
No.
D001
VIH1
High-level input
voltage
.7 VCC
VCC +1
V
D002
D003
D004
D005
D006
VIL1
VIL2
VOL
VOL
VOH
Low-level input
voltage
-0.3
-0.3
0.3 VCC
0.2 VCC
0.4
V
V
V
V
V
VCC2.7V
VCC < 2.7V
Low-level output
voltage
—
IOL = 2.1 mA
—
0.2
IOL = 1.0 mA, VCC < 2.5V
IOH = -400 A
High-level output
voltage
VCC -0.2
—
D007
D008
ILI
Input leakage current
—
—
±1
±1
A
A
CS = VCC, VIN = VSS TO VCC
CS = VCC, VOUT = VSS TO VCC
ILO
Output leakage
current
D009
D010
CINT
Internal capacitance
(all inputs and
outputs)
—
7
pF
TA = 25°C, CLK = 1.0 MHz,
VCC = 5.0V (Note)
ICC Read
—
—
10
5
mA
mA
VCC = 5.5V; FCLK = 20.0 MHz;
SO = Open
VCC = 2.5V; FCLK = 10.0 MHz;
SO = Open
Operating current
D011
D012
D13
ICC Write
ICCS
—
—
7
5
mA
mA
VCC = 5.5V
VCC = 2.5V
Standby current
—
12
A
CS = VCC = 5.5V, Inputs tied to VCC or
VSS, 85°C
ICCSPD
Deep power-down
current
—
1
A
CS = VCC = 2.5V, Inputs tied to VCC or
VSS, 85°C
Note:
This parameter is periodically sampled and not 100% tested.
DS21836G-page 2
2010 Microchip Technology Inc.
25AA1024
TABLE 1-2:
AC CHARACTERISTICS
Industrial (I)*:
Industrial (I):
TA = 0°C to +85°C
TA = -40°C to +85°C
VCC = 1.8V to 5.5V
VCC = 2.0V to 5.5V
AC CHARACTERISTICS
*Limited industrial temp range.
Param.
Sym.
No.
Characteristic
Clock frequency
Min.
Max.
Units
Conditions
1
2
3
FCLK
TCSS
TCSH
—
—
—
20
10
2
MHz 4.5 VCC 5.5
MHz 2.5 VCC 5.5
MHz 1.8 VCC <2.5 at 0°C to +85°C
2.0 VCC <2.5 at -40°C to +85°C
CS setup time
CS hold time
25
50
250
—
—
—
ns
ns
ns
4.5 VCC 5.5
2.5 VCC 5.5
1.8 VCC <2.5 at 0°C to +85°C
2.0 VCC <2.5 at -40°C to +85°C
50
100
500
—
—
—
ns
ns
ns
4.5 VCC 5.5
2.5 VCC 5.5
1.8 VCC <2.5 at 0°C to +85°C
2.0 VCC <2.5 at -40°C to +85°C
(Note 3)
4
5
TCSD
Tsu
CS disable time
Data setup time
50
—
ns
—
5
10
50
—
—
—
ns
ns
ns
4.5 VCC 5.5
2.5 VCC 5.5
1.8 VCC <2.5 at 0°C to +85°C
2.0 VCC <2.5 at -40°C to +85°C
6
THD
Data hold time
10
20
100
—
—
—
ns
ns
ns
4.5 VCC 5.5
2.5 VCC 5.5
1.8 VCC <2.5 at 0°C to +85°C
2.0 VCC <2.5 at -40°C to +85°C
7
8
9
TR
TF
CLK rise time
CLK fall time
Clock high time
—
—
20
20
ns
ns
(Note 1)
(Note 1)
THI
25
50
250
—
—
—
ns
ns
ns
4.5 VCC 5.5
2.5 VCC 5.5
1.8 VCC <2.5 at 0°C to +85°C
2.0 VCC <2.5 at -40°C to +85°C
10
TLO
Clock low time
25
50
250
—
—
ns
ns
ns
4.5 VCC 5.5
2.5 VCC 5.5
1.8 VCC <2.5 at 0°C to +85°C
2.0 VCC <2.5 at -40°C to +85°C
11
12
13
TCLD
TCLE
TV
Clock delay time
Clock enable time
50
50
—
—
ns
ns
—
—
Output valid from clock
low
—
—
—
25
50
250
ns
ns
ns
4.5 VCC 5.5
2.8 VCC 5.5
1.8 VCC <2.5 at 0°C to +85°C
2.0 VCC <2.5 at -40°C to +85°C
14
THO
Output hold time
0
—
ns
(Note 1)
Note 1: This parameter is periodically sampled and not 100% tested.
2: This parameter is not tested but established by characterization and qualification. For endurance
estimates in a specific application, please consult the Total Endurance™ Model which can be obtained
from Microchip’s web site at www.microchip.com.
3: Includes THI time.
2010 Microchip Technology Inc.
DS21836G-page 3
25AA1024
TABLE 1-2:
AC CHARACTERISTICS (CONTINUED)
Industrial (I)*:
Industrial (I):
TA = 0°C to +85°C
TA = -40°C to +85°C
VCC = 1.8V to 5.5V
VCC = 2.0V to 5.5V
AC CHARACTERISTICS
*Limited industrial temp range.
Param.
Sym.
No.
Characteristic
Min.
Max.
Units
Conditions
15
TDIS
Output disable time
—
—
—
25
50
250
ns
ns
ns
4.5 VCC 5.5
2.5 VCC 5.5
1.8 VCC <2.5 at 0°C to +85°C
2.0 VCC <2.5 at -40°C to +85°C
(Note 1)
16
17
18
THS
THH
THZ
HOLD setup time
HOLD hold time
10
20
100
—
—
—
ns
ns
ns
4.5 VCC 5.5
2.5 VCC 5.5
1.8 VCC <2.5 at 0°C to +85°C
2.0 VCC <2.5 at -40°C to +85°C
10
20
100
—
—
—
ns
ns
ns
4.5 VCC 5.5
2.5 VCC 5.5
1.8 VCC <2.5 at 0°C to +85°C
2.0 VCC <2.5 at -40°C to +85°C
HOLD low to output
High-Z
15
30
150
—
—
—
ns
ns
ns
4.5 VCC 5.5
2.5 VCC 4.5
1.8 VCC <2.5 at 0°C to +85°C
2.0 VCC <2.5 at -40°C to +85°C
(Note 1)
19
THV
HOLD high to output valid
CS High to Standby mode
15
30
150
—
—
—
ns
ns
ns
4.5 VCC 5.5
2.5 VCC 4.5
1.8 VCC <2.5 at 0°C to +85°C
2.0 VCC <2.5 at -40°C to +85°C
20
21
TREL
TPD
—
—
100
100
s
s
VCC = 1.8V to 5.5V
VCC = 1.8V to 5.5V
CS High to Deep power-
down
22
23
24
TCE
TSE
TWC
Chip erase cycle time
Sector erase cycle time
Internal write cycle time
—
—
—
10
10
6
ms
ms
ms
VCC = 1.8V to 5.5V
VCC = 1.8V to 5.5V
Byte or Page mode and Page
Erase
25
—
Endurance
1M
—
E/W (Note 2) Per Page
Cycles
Note 1: This parameter is periodically sampled and not 100% tested.
2: This parameter is not tested but established by characterization and qualification. For endurance
estimates in a specific application, please consult the Total Endurance™ Model which can be obtained
from Microchip’s web site at www.microchip.com.
3: Includes THI time.
DS21836G-page 4
2010 Microchip Technology Inc.
25AA1024
TABLE 1-3:
AC Waveform:
VLO = 0.2V
AC TEST CONDITIONS
—
VHI = VCC - 0.2V
(Note 1)
(Note 2)
—
VHI = 4.0V
CL = 30 pF
Timing Measurement Reference Level
Input
0.5 VCC
0.5 VCC
Output
Note 1: For VCC 4.0V
2: For VCC > 4.0V
FIGURE 1-1: HOLD TIMING
CS
17
18
17
16
16
SCK
19
High-Impedance
Don’t Care
n
SO
n + 2
n + 2
n + 1
n
n - 1
5
n
n + 1
n
n - 1
SI
HOLD
FIGURE 1-2: SERIAL INPUT TIMING
4
CS
12
11
2
7
3
8
Mode 1,1
Mode 0,0
SCK
SI
5
6
MSB in
LSB in
High-Impedance
SO
2010 Microchip Technology Inc.
DS21836G-page 5
25AA1024
FIGURE 1-3: SERIAL OUTPUT TIMING
CS
3
9
10
Mode 1,1
Mode 0,0
SCK
13
15
14
MSB out
LSB out
SO
SI
Don’t Care
DS21836G-page 6
2010 Microchip Technology Inc.
25AA1024
2.0
2.1
FUNCTIONAL DESCRIPTION
Principles of Operation
BLOCK DIAGRAM
STATUS
Register
HV Generator
The 25AA1024 is a 131,072 byte Serial EEPROM
designed to interface directly with the Serial Peripheral
Interface (SPI) port of many of today’s popular
microcontroller families, including Microchip’s PIC®
microcontrollers. It may also interface with microcon-
trollers that do not have a built-in SPI port by using
discrete I/O lines programmed properly in firmware to
match the SPI protocol.
EEPROM
Array
Memory
Control
Logic
X
I/O Control
Logic
Dec
Page Latches
The 25AA1024 contains an 8-bit instruction register.
The device is accessed via the SI pin, with data being
clocked in on the rising edge of SCK. The CS pin must
be low and the HOLD pin must be high for the entire
operation.
SI
SO
Y Decoder
CS
SCK
Table 2-1 contains a list of the possible instruction
bytes and format for device operation. All instructions,
addresses and data are transferred MSB first, LSB last.
Sense Amp.
R/W Control
HOLD
WP
VCC
VSS
Data (SI) is sampled on the first rising edge of SCK
after CS goes low. If the clock line is shared with other
peripheral devices on the SPI bus, the user can assert
the HOLD input and place the 25AA1024 in ‘HOLD’
mode. After releasing the HOLD pin, operation will
resume from the point when the HOLD was asserted.
TABLE 2-1:
INSTRUCTION SET
Instruction Name
Instruction Format
Description
READ
WRITE
WREN
WRDI
RDSR
WRSR
PE
0000 0011
0000 0010
0000 0110
0000 0100
0000 0101
0000 0001
0100 0010
1101 1000
1100 0111
1010 1011
1011 1001
Read data from memory array beginning at selected address
Write data to memory array beginning at selected address
Set the write enable latch (enable write operations)
Reset the write enable latch (disable write operations)
Read STATUS register
Write STATUS register
Page Erase – erase one page in memory array
Sector Erase – erase one sector in memory array
Chip Erase – erase all sectors in memory array
Release from Deep power-down and read electronic signature
Deep Power-Down mode
SE
CE
RDID
DPD
2010 Microchip Technology Inc.
DS21836G-page 7
25AA1024
The data stored in the memory at the next address can
be read sequentially by continuing to provide clock
pulses. The internal Address Pointer is automatically
incremented to the next higher address after each byte
of data is shifted out. When the highest address is
reached (1FFFFh), the address counter rolls over to
address, 00000h, allowing the read cycle to be contin-
ued indefinitely. The read operation is terminated by
raising the CS pin (Figure 2-1).
Read Sequence
The device is selected by pulling CS low. The 8-bit
READ instruction is transmitted to the 25AA1024
followed by the 24-bit address, with seven MSBs of the
address being “don’t care” bits. After the correct READ
instruction and address are sent, the data stored in the
memory at the selected address is shifted out on the
SO pin.
FIGURE 2-1:
READ SEQUENCE
CS
0
1
2
3
4
5
6
7
8
9 10 11
29 30 31 32 33 34 35 36 37 38 39
SCK
Instruction
24-bit Address
23 22 21 20
0
0
0
0
0
0
1
1
2
1
0
SI
Data Out
High-Impedance
7
6
5
4
3
2
1
0
SO
DS21836G-page 8
2010 Microchip Technology Inc.
25AA1024
the data in the rest of the page is refreshed along with
the data bytes being written. For this reason,
endurance is specified per page.
2.2
Write Sequence
Prior to any attempt to write data to the 25AA1024, the
write enable latch must be set by issuing the WREN
instruction (Figure 2-4). This is done by setting CS low
and then clocking out the proper instruction into the
25AA1024. After all eight bits of the instruction are
transmitted, the CS must be brought high to set the
write enable latch. If the write operation is initiated
immediately after the WREN instruction without CS
being brought high, the data will not be written to the
array because the write enable latch will not have been
properly set.
Note:
Page write operations are limited to writing
bytes within a single physical page,
regardless of the number of bytes
actually being written. Physical page
boundaries start at addresses that are
integer multiples of the page buffer size (or
‘page size’), and end at addresses that are
integer multiples of page size – 1. If a
Page Write command attempts to write
across a physical page boundary, the
result is that the data wraps around to the
beginning of the current page (overwriting
data previously stored there), instead of
being written to the next page as might be
expected. It is therefore necessary for the
application software to prevent page write
operations that would attempt to cross a
page boundary.
A write sequence includes an automatic, self timed
erase cycle. It is not required to erase any portion of the
memory prior to issuing a Write command.
Once the write enable latch is set, the user may
proceed by setting the CS low, issuing a WRITEinstruc-
tion, followed by the 24-bit address, with seven MSBs
of the address being “don’t care” bits, and then the data
to be written. Up to 256 bytes of data can be sent to the
device before a write cycle is necessary. The only
restriction is that all of the bytes must reside in the
same page. When doing a write of less than 256 bytes
For the data to be actually written to the array, the CS
must be brought high after the Least Significant bit (D0)
of the nth data byte has been clocked in. If CS is
brought high at any other time, the write operation will
not be completed. Refer to Figure 2-2 and Figure 2-3
for more detailed illustrations on the byte write
sequence and the page write sequence, respectively.
While the write is in progress, the STATUS register may
be read to check the status of the WPEN, WIP, WEL,
BP1 and BP0 bits (Figure 2-6). A read attempt of a
memory array location will not be possible during a
write cycle. When the write cycle is completed, the
write enable latch is reset.
FIGURE 2-2:
BYTE WRITE SEQUENCE
CS
Twc
0
1
2
3
4
5
6
7
8
9 10 11
29 30 31 32 33 34 35 36 37 38 39
SCK
SI
Instruction
24-bit Address
23 22 21 20
Data Byte
0
0
0
0
0
0
1
0
2
1
0
7
6
5
4
3
2
1
0
High-Impedance
SO
2010 Microchip Technology Inc.
DS21836G-page 9
25AA1024
FIGURE 2-3:
PAGE WRITE SEQUENCE
CS
0
1
2
3
4
5
6
7
8
9
10 11
29 30 31 32 33 34 35 36 37 38 39
Data Byte 1
SCK
Instruction
24-bit Address
0
0
0
0
0
0
1
0 23 22 21 20
2
1
0
7
6
5
4
3
2
1
0
SI
CS
40 41 42 43 44 45 46 47
Data Byte 2
49 50 51 52 53 54 55
Data Byte 3
48
7
SCK
SI
Data Byte n (256 max)
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
DS21836G-page 10
2010 Microchip Technology Inc.
25AA1024
The following is a list of conditions under which the
write enable latch will be reset:
2.3
Write Enable (WREN) and Write
Disable (WRDI)
• Power-up
The 25AA1024 contains a write enable latch. See
Table 2-4 for the Write-Protect Functionality Matrix.
This latch must be set before any write operation will be
completed internally. The WRENinstruction will set the
latch, and the WRDIwill reset the latch.
• WRDIinstruction successfully executed
• WRSRinstruction successfully executed
• WRITEinstruction successfully executed
• PEinstruction successfully executed
• SEinstruction successfully executed
• CEinstruction successfully executed
FIGURE 2-4:
WRITE ENABLE SEQUENCE (WREN)
CS
0
1
2
3
4
5
6
7
SCK
SI
0
0
0
0
0
1
1
0
High-Impedance
SO
FIGURE 2-5:
WRITE DISABLE SEQUENCE (WRDI)
CS
0
1
2
3
4
5
6
7
SCK
0
0
0
0
0
0
1
0
SI
High-Impedance
SO
2010 Microchip Technology Inc.
DS21836G-page 11
25AA1024
The Write Enable Latch (WEL) bit indicates the status
of the write enable latch and is read-only. When set to
a ‘1’, the latch allows writes to the array, when set to a
‘0’, the latch prohibits writes to the array. The state of
this bit can always be updated via the WREN or WRDI
commands regardless of the state of write protection
on the STATUS register. These commands are shown
in Figure 2-4 and Figure 2-5.
2.4
Read Status Register Instruction
(RDSR)
The Read Status Register instruction (RDSR) provides
access to the STATUS register. The STATUS register
may be read at any time, even during a write cycle. The
STATUS register is formatted as follows:
TABLE 2-2:
STATUS REGISTER
The Block Protection (BP0 and BP1) bits indicate
which blocks are currently write-protected. These bits
are set by the user issuing the WRSRinstruction. These
bits are nonvolatile and are shown in Table 2-3.
7
6
–
X
5
–
X
4
–
X
3
2
1
0
W/R
W/R W/R
R
R
WPEN
BP1 BP0 WEL WIP
See Figure 2-6 for the RDSRtiming sequence.
W/R = writable/readable. R = read-only.
The Write-In-Process (WIP) bit indicates whether the
25AA1024 is busy with a write operation. When set to
a ‘1’, a write is in progress, when set to a ‘0’, no write
is in progress. This bit is read-only.
FIGURE 2-6:
READ STATUS REGISTER TIMING SEQUENCE (RDSR)
CS
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
SCK
SI
Instruction
0
0
0
0
0
1
0
1
Data from STATUS register
High-Impedance
7
6
5
4
3
2
1
0
SO
DS21836G-page 12
2010 Microchip Technology Inc.
25AA1024
The Write-Protect Enable (WPEN) bit is a nonvolatile
bit that is available as an enable bit for the WP pin. The
Write-Protect (WP) pin and the Write-Protect Enable
(WPEN) bit in the STATUS register control the
programmable hardware write-protect feature. Hard-
ware write protection is enabled when WP pin is low
and the WPEN bit is high. Hardware write protection is
disabled when either the WP pin is high or the WPEN
bit is low. When the chip is hardware write-protected,
only writes to nonvolatile bits in the STATUS register
are disabled. See Table 2-4 for a matrix of functionality
on the WPEN bit.
2.5
Write Status Register Instruction
(WRSR)
The Write Status Register instruction (WRSR) allows the
user to write to the nonvolatile bits in the STATUS
register as shown in Table 2-2. The user is able to
select one of four levels of protection for the array by
writing to the appropriate bits in the STATUS register.
The array is divided up into four segments. The user
has the ability to write-protect none, one, two, or all four
of the segments of the array. The partitioning is
controlled as shown in Table 2-3.
See Figure 2-7 for the WRSR timing sequence.
TABLE 2-3:
ARRAY PROTECTION
Array Addresses
Write-Protected
Array Addresses
Unprotected
BP1
BP0
none
All (Sectors 0, 1, 2 & 3)
(00000h-1FFFFh)
0
0
Upper 1/4 (Sector 3)
(18000h-1FFFFh)
Lower 3/4 (Sectors 0, 1 & 2)
(00000h-17FFFh)
0
1
1
1
Upper 1/2 (Sectors 2 & 3)
(10000h-1FFFFh)
Lower 1/2 (Sectors 0 & 1)
(00000h-0FFFFh)
0
1
All (Sectors 0, 1, 2 & 3)
(00000h-1FFFFh)
none
FIGURE 2-7:
WRITE STATUS REGISTER TIMING SEQUENCE (WRSR)
CS
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
1
15
0
SCK
SI
Instruction
Data to STATUS register
7
6
5
4
3
2
0
0
0
0
0
0
0
1
High-Impedance
SO
2010 Microchip Technology Inc.
DS21836G-page 13
25AA1024
2.6
Data Protection
2.7
Power-On State
The following protection has been implemented to
prevent inadvertent writes to the array:
The 25AA1024 powers on in the following state:
• The device is in low-power Standby mode
(CS= 1)
• The write enable latch is reset
• SO is in high-impedance state
• A high-to-low-level transition on CS is required to
enter active state
• The write enable latch is reset on power-up
• A write enable instruction must be issued to set
the write enable latch
• After a byte write, page write or STATUS register
write, the write enable latch is reset
• CS must be set high after the proper number of
clock cycles to start an internal write cycle
• Access to the array during an internal write cycle
is ignored and programming is continued
TABLE 2-4:
WRITE-PROTECT FUNCTIONALITY MATRIX
WEL
(SR bit 1)
WPEN
(SR bit 7)
WP
(pin 3)
Protected Blocks
Unprotected Blocks
STATUS Register
Protected
Protected
Protected
Protected
Protected
Writable
Writable
Writable
Protected
Writable
Protected
Writable
0
x
0
1
1
x
1
x
1
0 (low)
1 (high)
1
x = don’t care
DS21836G-page 14
2010 Microchip Technology Inc.
25AA1024
2.8
PAGE ERASE
The Page Erase function will erase all bits (FFh) inside
the given page. A Write Enable (WREN) instruction
must be given prior to attempting a Page Erase. This
is done by setting CS low and then clocking out the
proper instruction into the 25AA1024. After all eight
bits of the instruction are transmitted, the CS must be
brought high to set the write enable latch.
CS must then be driven high after the last bit if the
address or the Page Erase will not execute. Once the
CS is driven high, the self-timed Page Erase cycle is
started. The WIP bit in the STATUS register can be
read to determine when the Page Erase cycle is
complete.
If a Page Erase function is given to an address that
has been protected by the Block Protect bits (BP0,
BP1) then the sequence will be aborted and no erase
will occur.
The Page Erase function is entered by driving CS low,
followed by the instruction code (Figure 2-8), and
three address bytes. Any address inside the page to
be erased is a valid address.
FIGURE 2-8:
PAGE ERASE SEQUENCE
CS
SCK
SI
0
1
2
3
4
5
6
7
8
9 10 11
29 30 31
Instruction
24-bit Address
23 22 21 20
0
1
0
0
0
0
1
0
2
1
0
High-Impedance
SO
2010 Microchip Technology Inc.
DS21836G-page 15
25AA1024
2.9
SECTOR ERASE
The Sector Erase function will erase all bits (FFh)
inside the given sector. A Write Enable (WREN) instruc-
tion must be given prior to attempting a Sector Erase.
This is done by setting CS low and then clocking out
the proper instruction into the 25AA1024. After all
eight bits of the instruction are transmitted, the CS
must be brought high to set the write enable latch.
CS must then be driven high after the last bit if the
address or the Sector Erase will not execute. Once the
CS is driven high, the self-timed Sector Erase cycle is
started. The WIP bit in the STATUS register can be
read to determine when the Sector Erase cycle is
complete.
If a SECTOR ERASEinstruction is given to an address
that has been protected by the Block Protect bits (BP0,
BP1) then the sequence will be aborted and no erase
will occur.
The Sector Erase function is entered by driving CS
low, followed by the instruction code (Figure 2-9), and
three address bytes. Any address inside the sector to
be erased is a valid address.
See Table 2-3 for Sector Addressing.
FIGURE 2-9:
SECTOR ERASE SEQUENCE
CS
SCK
SI
0
1
2
3
4
5
6
7
8
9 10 11
29 30 31
Instruction
24-bit Address
23 22 21 20
1
1
0
1
1
0
0
0
2
1
0
High-Impedance
SO
DS21836G-page 16
2010 Microchip Technology Inc.
25AA1024
2.10 CHIP ERASE
The Chip Erase function will erase all bits (FFh) in the
array. A Write Enable (WREN) instruction must be given
prior to executing a Chip Erase. This is done by setting
CS low and then clocking out the proper instruction
into the 25AA1024. After all eight bits of the instruction
are transmitted, the CS must be brought high to set
the write enable latch.
The CS pin must be driven high after the eighth bit of
the instruction code has been given or the Chip Erase
function will not be executed. Once the CS pin is
driven high, the self-timed Chip Erase function begins.
While the device is executing the Chip Erase function
the WIP bit in the STATUS register can be read to
determine when the Chip Erase function is complete.
The Chip Erase function is entered by driving the CS
low, followed by the instruction code (Figure 2-10)
onto the SI line.
The Chip Erase function is ignored if either of the
Block Protect bits (BP0, BP1) are not 0, meaning ¼,
½, or all of the array is protected.
FIGURE 2-10:
CHIP ERASE SEQUENCE
CS
0
1
2
3
4
5
6
7
SCK
1
1
0
0
0
1
1
1
SI
High-Impedance
SO
2010 Microchip Technology Inc.
DS21836G-page 17
25AA1024
2.11 DEEP POWER-DOWN MODE
Deep Power-Down mode of the 25AA1024 is its
lowest power consumption state. The device will not
respond to any of the Read or Write commands while
in Deep Power-Down mode, and therefore it can be
used as an additional software write protection feature.
All instructions given during Deep Power-Down mode
are ignored except the Read Electronic Signature
Command (RDID). The RDID command will release
the device from Deep power-down and outputs the
electronic signature on the SO pin, and then returns
the device to Standby mode after delay (TREL
)
The Deep Power-Down mode is entered by driving CS
low, followed by the instruction code (Figure 2-11) onto
the SI line, followed by driving CS high.
Deep Power-Down mode automatically releases at
device power-down. Once power is restored to the
device, it will power-up in the Standby mode.
If the CS pin is not driven high after the eighth bit of the
instruction code has been given, the device will not
execute Deep power-down. Once the CS line is driven
high, there is a delay (TDP) before the current settles
to its lowest consumption.
FIGURE 2-11:
DEEP POWER-DOWN SEQUENCE
CS
0
1
2
3
4
5
6
7
SCK
1
0
1
1
1
0
0
1
SI
High-Impedance
SO
DS21836G-page 18
2010 Microchip Technology Inc.
25AA1024
Release from Deep Power-Down mode and Read
Electronic Signature is entered by driving CS low,
followed by the RDID instruction code (Figure 2-12)
and then a dummy address of 24 bits (A23-A0). After
the last bit of the dummy address is clocked in, the
8-bit Electronic signature is clocked out on the SO
pin.
2.12 RELEASE FROM DEEP POWER-
DOWN AND READ ELECTRONIC
SIGNATURE
Once the device has entered Deep Power-Down
mode all instructions are ignored except the release
from Deep Power-down and Read Electronic Signa-
ture command. This command can also be used when
the device is not in Deep Power-down, to read the
electronic signature out on the SO pin unless another
command is being executed such as Erase, Program
or Write STATUS register.
After the signature has been read out at least once,
the sequence can be terminated by driving CS high.
The device will then return to Standby mode and will
wait to be selected so it can be given new instructions.
If additional clock cycles are sent after the electronic
signature has been read once, it will continue to output
the signature on the SO line until the sequence is
terminated.
FIGURE 2-12:
RELEASE FROM DEEP POWER-DOWN AND READ ELECTRONIC SIGNATURE
CS
0
1
2
3
4
5
6
7
8
9 10 11
29 30 31 32 33 34 35 36 37 38 39
SCK
Instruction
24-bit Address
23 22 21 20
1
0
1
0
1
0
1
1
2
1
0
SI
Electronic Signature Out
High-Impedance
7
6
5
4
3
2
1
0
SO
0
0
1
0
1
0
0
1
Manufacturers ID 0x29
Driving CS high after the 8-bit RDID command, but before the Electronic Signature has been transmitted, will still
ensure the device will be taken out of Deep Power-Down mode. However, there is a delay TREL that occurs before the
device returns to Standby mode (ICCS), as shown in Figure 2-13.
FIGURE 2-13:
RELEASE FROM DEEP POWER-DOWN AND READ ELECTRONIC SIGNATURE
CS
TREL
0
1
2
3
4
5
6
7
SCK
SI
Instruction
1
0
1
0
1
0
1
1
High-Impedance
SO
2010 Microchip Technology Inc.
DS21836G-page 19
25AA1024
The WP pin function is blocked when the WPEN bit in
the STATUS register is low. This allows the user to
install the 25AA1024 in a system with WP pin grounded
and still be able to write to the STATUS register. The
WP pin functions will be enabled when the WPEN bit is
set high.
3.0
PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 3-1.
TABLE 3-1:
Name
PIN FUNCTION TABLE
Pin Number
Function
3.4
Serial Input (SI)
CS
SO
1
2
3
4
5
6
7
8
Chip Select Input
Serial Data Output
Write-Protect Pin
Ground
The SI pin is used to transfer data into the device. It
receives instructions, addresses and data. Data is
latched on the rising edge of the serial clock.
WP
VSS
SI
3.5
Serial Clock (SCK)
Serial Data Input
Serial Clock Input
Hold Input
The SCK is used to synchronize the communication
between a master and the 25AA1024. Instructions,
addresses or data present on the SI pin are latched on
the rising edge of the clock input, while data on the SO
pin is updated after the falling edge of the clock input.
SCK
HOLD
VCC
Supply Voltage
3.1
Chip Select (CS)
3.6
Hold (HOLD)
A low level on this pin selects the device. A high level
deselects the device and forces it into Standby mode.
However, a programming cycle which is already
initiated or in progress will be completed, regardless of
the CS input signal. If CS is brought high during a
program cycle, the device will go into Standby mode as
soon as the programming cycle is complete. When the
device is deselected, SO goes to the high-impedance
state, allowing multiple parts to share the same SPI
bus. A low-to-high transition on CS after a valid write
sequence initiates an internal write cycle. After power-
up, a low level on CS is required prior to any sequence
being initiated.
The HOLD pin is used to suspend transmission to the
25AA1024 while in the middle of a serial sequence
without having to retransmit the entire sequence again.
It must be held high any time this function is not being
used. Once the device is selected and a serial
sequence is underway, the HOLD pin may be pulled
low to pause further serial communication without
resetting the serial sequence. The HOLD pin must be
brought low while SCK is low, otherwise the HOLD
function will not be invoked until the next SCK high-to-
low transition. The 25AA1024 must remain selected
during this sequence. The SI, SCK and SO pins are in
a high-impedance state during the time the device is
paused and transitions on these pins will be ignored. To
resume serial communication, HOLD must be brought
high while the SCK pin is low, otherwise serial
communication will not resume. Pulling the HOLD line
low at any time will tri-state the SO line.
3.2
Serial Output (SO)
The SO pin is used to transfer data out of the
25AA1024. During a read cycle, data is shifted out on
this pin after the falling edge of the serial clock.
3.3
Write-Protect (WP)
This pin is used in conjunction with the WPEN bit in the
STATUS register to prohibit writes to the nonvolatile
bits in the STATUS register. When WP is low and
WPEN is high, writing to the nonvolatile bits in the
STATUS register is disabled. All other operations
function normally. When WP is high, all functions,
including writes to the nonvolatile bits in the STATUS
register, operate normally. If the WPEN bit is set, WP
low during a STATUS register write sequence will
disable writing to the STATUS register. If an internal
write cycle has already begun, WP going low will have
no effect on the write.
DS21836G-page 20
2010 Microchip Technology Inc.
25AA1024
4.0
4.1
PACKAGING INFORMATION
Package Marking Information
8-Lead DFN
Example:
XXXXXXX
T/XXXXX
YYWW
5AA1024
e
3
I/MF
0328
NNN
1L7
Example:
25AA1024
8-Lead PDIP
XXXXXXXX
T/XXXNNN
I/P
1L7
e
3
0328
YYWW
Example:
8-Lead SOIJ
25AA1024
I/SM
XXXXXXXX
T/XXXXXX
YYWWNNN
e
3
07281L7
Legend: XX...X Part number or part number code
T
Temperature (I)
Y
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code (2 characters for small packages)
Pb-free JEDEC designator for Matte Tin (Sn)
YY
WW
NNN
e
3
Note:
For very small packages with no room for the Pb-free JEDEC designator
, the marking will only appear on the outer carton or reel label.
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
2010 Microchip Technology Inc.
DS21836G-page 21
25AA1024
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆMꢆꢘꢙꢚꢆꢛꢛꢆꢜꢒꢅ ꢆ!ꢍꢏꢑꢁ"#ꢆ
ꢇ$ꢑ%& "'ꢑ($ꢂ)*+ꢍ
ꢑꢒꢊꢃ, 2ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢐꢆꢌ+ꢆꢏꢈꢅ#ꢉꢆ*ꢃꢄꢏ!(ꢅꢐꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢕꢃꢌꢉꢋꢌꢍꢃꢐꢅꢂꢆꢌ+ꢆꢏꢃꢄꢏꢅꢔꢐꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ
ꢍ&&ꢐ133***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢐꢁꢌꢋ'3ꢐꢆꢌ+ꢆꢏꢃꢄꢏ
D
e
L
D1
b
N
N
K
E
E2
E1
EXPOSED
PAD
NOTE 1
1
2
2
1
NOTE 1
D2
TOP VIEW
BOTTOM VIEW
φ
A2
A
A3
A1
NOTE 2
4ꢄꢃ&!
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ5ꢃ'ꢃ&!
ꢕꢙ55ꢙꢕ,ꢗ,ꢘꢔ
67ꢕ
ꢕꢙ6
ꢕꢓ8
6"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!
ꢂꢃ&ꢌꢍ
7 ꢈꢉꢆꢇꢇꢅ:ꢈꢃꢏꢍ&
ꢕꢋꢇ#ꢈ#ꢅꢂꢆꢌ+ꢆꢏꢈꢅꢗꢍꢃꢌ+ꢄꢈ!!
ꢔ&ꢆꢄ#ꢋ%%ꢅ
/ꢆ!ꢈꢅꢗꢍꢃꢌ+ꢄꢈ!!
6
ꢈ
ꢓ
ꢓꢎ
ꢓꢀ
ꢓꢑ
ꢒ
ꢒꢀ
ꢒꢎ
,
,ꢀ
,ꢎ
)
5
>
9
ꢀꢁꢎꢚꢅ/ꢔ0
ꢛꢁ9.
ꢛꢁ<.
M
M
ꢛꢁꢛꢛ
ꢀꢁꢛꢛ
ꢛꢁ9ꢛ
ꢛꢁꢛ.
ꢛꢁꢛꢀ
ꢛꢁꢎꢛꢅꢘ,2
ꢖꢁꢜꢎꢅ/ꢔ0
ꢖꢁ<ꢚꢅ/ꢔ0
ꢖꢁꢛꢛ
.ꢁꢜꢜꢅ/ꢔ0
.ꢁꢚꢖꢅ/ꢔ0
ꢎꢁꢑꢀ
ꢛꢁꢖꢛ
ꢛꢁ<ꢛ
M
M
7 ꢈꢉꢆꢇꢇꢅ5ꢈꢄꢏ&ꢍ
ꢕꢋꢇ#ꢈ#ꢅꢂꢆꢌ+ꢆꢏꢈꢅ5ꢈꢄꢏ&ꢍ
,$ꢐꢋ!ꢈ#ꢅꢂꢆ#ꢅ5ꢈꢄꢏ&ꢍ
7 ꢈꢉꢆꢇꢇꢅ=ꢃ#&ꢍ
ꢕꢋꢇ#ꢈ#ꢅꢂꢆꢌ+ꢆꢏꢈꢅ=ꢃ#&ꢍ
,$ꢐꢋ!ꢈ#ꢅꢂꢆ#ꢅ=ꢃ#&ꢍ
0ꢋꢄ&ꢆꢌ&ꢅ=ꢃ#&ꢍ
0ꢋꢄ&ꢆꢌ&ꢅ5ꢈꢄꢏ&ꢍ
0ꢋꢄ&ꢆꢌ&ꢝ&ꢋꢝ,$ꢐꢋ!ꢈ#ꢅꢂꢆ#
ꢕꢋ#ꢈꢇꢅꢒꢉꢆ%&ꢅꢓꢄꢏꢇꢈꢅꢗꢋꢐ
ꢑꢁ9.
ꢖꢁꢀ.
ꢎꢁꢀ<
ꢛꢁꢑ.
ꢛꢁ.ꢛ
ꢛꢁꢎꢛ
M
ꢎꢁꢖ<
ꢛꢁꢖꢚ
ꢛꢁꢚ.
M
ꢀ
ꢀꢎꢞ
ꢑꢒꢊꢃꢉ,
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ
ꢎꢁ ꢂꢆꢌ+ꢆꢏꢈꢅ'ꢆꢊꢅꢍꢆ ꢈꢅꢋꢄꢈꢅꢋꢉꢅ'ꢋꢉꢈꢅꢈ$ꢐꢋ!ꢈ#ꢅ&ꢃꢈꢅ)ꢆꢉ!ꢅꢆ&ꢅꢈꢄ#!ꢁ
ꢑꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢏꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢏꢅꢐꢈꢉꢅꢓꢔꢕ,ꢅ-ꢀꢖꢁ.ꢕꢁ
/ꢔ01 /ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢗꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ
ꢘ,21 ꢘꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢐ"ꢉꢐꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ
ꢕꢃꢌꢉꢋꢌꢍꢃꢐ ꢗꢈꢌꢍꢄꢋꢇꢋꢏꢊ ꢒꢉꢆ*ꢃꢄꢏ 0ꢛꢖꢝꢀꢀꢑ/
DS21836G-page 22
2010 Microchip Technology Inc.
25AA1024
ꢑꢒꢊꢃ, 2ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢐꢆꢌ+ꢆꢏꢈꢅ#ꢉꢆ*ꢃꢄꢏ!(ꢅꢐꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢕꢃꢌꢉꢋꢌꢍꢃꢐꢅꢂꢆꢌ+ꢆꢏꢃꢄꢏꢅꢔꢐꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ
ꢍ&&ꢐ133***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢐꢁꢌꢋ'3ꢐꢆꢌ+ꢆꢏꢃꢄꢏ
2010 Microchip Technology Inc.
DS21836G-page 23
25AA1024
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆ'-ꢁꢂꢋ-ꢃꢆꢕꢇꢗꢆMꢆ.//ꢆꢛꢋꢈꢆꢜꢒꢅ ꢆ!ꢇꢍ'ꢇ#
ꢑꢒꢊꢃ, 2ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢐꢆꢌ+ꢆꢏꢈꢅ#ꢉꢆ*ꢃꢄꢏ!(ꢅꢐꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢕꢃꢌꢉꢋꢌꢍꢃꢐꢅꢂꢆꢌ+ꢆꢏꢃꢄꢏꢅꢔꢐꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ
ꢍ&&ꢐ133***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢐꢁꢌꢋ'3ꢐꢆꢌ+ꢆꢏꢃꢄꢏ
N
NOTE 1
E1
3
1
2
D
E
A2
A
L
A1
c
e
eB
b1
b
4ꢄꢃ&!
ꢙ60:,ꢔ
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ5ꢃ'ꢃ&!
ꢕꢙ6
67ꢕ
9
ꢁꢀꢛꢛꢅ/ꢔ0
M
ꢁꢀꢑꢛ
M
ꢁꢑꢀꢛ
ꢁꢎ.ꢛ
ꢁꢑ<.
ꢁꢀꢑꢛ
ꢁꢛꢀꢛ
ꢁꢛ<ꢛ
ꢁꢛꢀ9
M
ꢕꢓ8
6"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!
ꢂꢃ&ꢌꢍ
ꢗꢋꢐꢅ&ꢋꢅꢔꢈꢆ&ꢃꢄꢏꢅꢂꢇꢆꢄꢈ
ꢕꢋꢇ#ꢈ#ꢅꢂꢆꢌ+ꢆꢏꢈꢅꢗꢍꢃꢌ+ꢄꢈ!!
/ꢆ!ꢈꢅ&ꢋꢅꢔꢈꢆ&ꢃꢄꢏꢅꢂꢇꢆꢄꢈ
ꢔꢍꢋ"ꢇ#ꢈꢉꢅ&ꢋꢅꢔꢍꢋ"ꢇ#ꢈꢉꢅ=ꢃ#&ꢍ
ꢕꢋꢇ#ꢈ#ꢅꢂꢆꢌ+ꢆꢏꢈꢅ=ꢃ#&ꢍ
7 ꢈꢉꢆꢇꢇꢅ5ꢈꢄꢏ&ꢍ
6
ꢈ
ꢓ
ꢓꢎ
ꢓꢀ
,
,ꢀ
ꢒ
5
ꢌ
)ꢀ
)
ꢈ/
M
ꢁꢎꢀꢛ
ꢁꢀꢜ.
M
ꢁꢀꢀ.
ꢁꢛꢀ.
ꢁꢎꢜꢛ
ꢁꢎꢖꢛ
ꢁꢑꢖ9
ꢁꢀꢀ.
ꢁꢛꢛ9
ꢁꢛꢖꢛ
ꢁꢛꢀꢖ
M
ꢁꢑꢎ.
ꢁꢎ9ꢛ
ꢁꢖꢛꢛ
ꢁꢀ.ꢛ
ꢁꢛꢀ.
ꢁꢛꢚꢛ
ꢁꢛꢎꢎ
ꢁꢖꢑꢛ
ꢗꢃꢐꢅ&ꢋꢅꢔꢈꢆ&ꢃꢄꢏꢅꢂꢇꢆꢄꢈ
5ꢈꢆ#ꢅꢗꢍꢃꢌ+ꢄꢈ!!
4ꢐꢐꢈꢉꢅ5ꢈꢆ#ꢅ=ꢃ#&ꢍ
5ꢋ*ꢈꢉꢅ5ꢈꢆ#ꢅ=ꢃ#&ꢍ
7 ꢈꢉꢆꢇꢇꢅꢘꢋ*ꢅꢔꢐꢆꢌꢃꢄꢏꢅꢅꢟ
ꢑꢒꢊꢃꢉ,
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ
ꢎꢁ ꢟꢅꢔꢃꢏꢄꢃ%ꢃꢌꢆꢄ&ꢅ0ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ
ꢑꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ,ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢐꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢕꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢐꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢁꢛꢀꢛAꢅꢐꢈꢉꢅ!ꢃ#ꢈꢁ
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢏꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢏꢅꢐꢈꢉꢅꢓꢔꢕ,ꢅ-ꢀꢖꢁ.ꢕꢁ
/ꢔ01ꢅ/ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢗꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ
ꢕꢃꢌꢉꢋꢌꢍꢃꢐ ꢗꢈꢌꢍꢄꢋꢇꢋꢏꢊ ꢒꢉꢆ*ꢃꢄꢏ 0ꢛꢖꢝꢛꢀ9/
DS21836G-page 24
2010 Microchip Technology Inc.
25AA1024
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ"ꢛꢄꢈꢈꢆ0ꢎꢊꢈꢋ-ꢃꢆꢕ"ꢖꢗꢆMꢆꢖꢃꢅꢋꢎꢛꢐꢆꢚ12ꢀꢆꢛꢛꢆꢜꢒꢅ ꢆ!"0'3#
ꢑꢒꢊꢃ, 2ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢐꢆꢌ+ꢆꢏꢈꢅ#ꢉꢆ*ꢃꢄꢏ!(ꢅꢐꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢕꢃꢌꢉꢋꢌꢍꢃꢐꢅꢂꢆꢌ+ꢆꢏꢃꢄꢏꢅꢔꢐꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ
ꢍ&&ꢐ133***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢐꢁꢌꢋ'3ꢐꢆꢌ+ꢆꢏꢃꢄꢏ
D
N
E
E1
1
2
e
b
α
c
φ
A2
A
β
A1
L
4ꢄꢃ&!
ꢕꢙ55ꢙꢕ,ꢗ,ꢘꢔ
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ5ꢃ'ꢃ&!
ꢕꢙ6
67ꢕ
ꢕꢓ8
6"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!
ꢂꢃ&ꢌꢍ
6
ꢈ
9
ꢀꢁꢎꢚꢅ/ꢔ0
7 ꢈꢉꢆꢇꢇꢅ:ꢈꢃꢏꢍ&
ꢕꢋꢇ#ꢈ#ꢅꢂꢆꢌ+ꢆꢏꢈꢅꢗꢍꢃꢌ+ꢄꢈ!!
ꢔ&ꢆꢄ#ꢋ%%ꢅꢅꢟ
7 ꢈꢉꢆꢇꢇꢅ=ꢃ#&ꢍ
ꢕꢋꢇ#ꢈ#ꢅꢂꢆꢌ+ꢆꢏꢈꢅ=ꢃ#&ꢍ
7 ꢈꢉꢆꢇꢇꢅ5ꢈꢄꢏ&ꢍ
2ꢋꢋ&ꢅ5ꢈꢄꢏ&ꢍ
2ꢋꢋ&ꢅꢓꢄꢏꢇꢈ
5ꢈꢆ#ꢅꢗꢍꢃꢌ+ꢄꢈ!!
5ꢈꢆ#ꢅ=ꢃ#&ꢍ
ꢕꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢓꢄꢏꢇꢈꢅꢗꢋꢐ
ꢕꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢓꢄꢏꢇꢈꢅ/ꢋ&&ꢋ'
ꢓ
ꢀꢁꢚꢚ
ꢀꢁꢚ.
ꢛꢁꢛ.
ꢚꢁ<ꢎ
.ꢁꢀꢀ
.ꢁꢀꢑ
ꢛꢁ.ꢀ
ꢛꢞ
M
M
M
M
M
M
M
M
M
M
M
M
ꢎꢁꢛꢑ
ꢀꢁꢜ9
ꢛꢁꢎ.
9ꢁꢎ<
.ꢁꢑ9
.ꢁꢑꢑ
ꢛꢁꢚ<
9ꢞ
ꢓꢎ
ꢓꢀ
,
,ꢀ
ꢒ
5
ꢀ
ꢌ
)
ꢁ
ꢛꢁꢀ.
ꢛꢁꢑ<
M
ꢛꢁꢎ.
ꢛꢁ.ꢀ
ꢀ.ꢞ
ꢂ
M
ꢀ.ꢞ
ꢑꢒꢊꢃꢉ,
ꢀꢁ ꢔ7ꢙB(ꢅB,ꢙꢗꢓ3,ꢙꢓBꢅꢔ&ꢆꢄ#ꢆꢉ#(ꢅ%ꢋꢉ'ꢈꢉꢇꢊꢅꢌꢆꢇꢇꢈ#ꢅꢔ7ꢙ0ꢁ
ꢎꢁ ꢟꢅꢔꢃꢏꢄꢃ%ꢃꢌꢆꢄ&ꢅ0ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ
ꢑꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ,ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢐꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢕꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢐꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢛꢁꢎ.ꢅ''ꢅꢐꢈꢉꢅ!ꢃ#ꢈꢁ
ꢕꢃꢌꢉꢋꢌꢍꢃꢐ ꢗꢈꢌꢍꢄꢋꢇꢋꢏꢊ ꢒꢉꢆ*ꢃꢄꢏ 0ꢛꢖꢝꢛ.</
2010 Microchip Technology Inc.
DS21836G-page 25
25AA1024
Note: For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
DS21836G-page 26
2010 Microchip Technology Inc.
25AA1024
APPENDIX A:
REVISION HISTORY
Revision C (02/2007)
Revised Features Section (Self-timed Erase and Write
Cycles); Revised Table 1-1 (Param. D012 and D13);
Table 1-2 (Param. 20-24); Revised Package Marking
Information; Replaced Package Drawings; Revised
Product ID System Section (SM package). Changed
PICmicro to PIC.
Revision D (07/2007)
Revised Features; Revised Tables 1-1 and 1-2 (added
Industrial temp. and revised parameters 22-23);
Replaced Package Drawings (Rev. AP); Revised
Product ID System; Changed Flash to EEPROM.
Revision E (10/2007)
Removed 25LC1024 part number; New data sheet
created for 25LC1024 (DS22064); Revised Tables;
Updates throughout.
Revision F (5/2008)
Modified parameter D006 in Table 1-1; Revised
Package Marking Information; Replaced Package
Drawings.
Revision G (01/2010)
Added 8-Lead (MF) DFN-S Land Pattern; Replaced
8-Lead (SM) SOIJ Land Pattern.
2010 Microchip Technology Inc.
DS21836G-page 27
25AA1024
NOTES:
DS21836G-page 28
2010 Microchip Technology Inc.
25AA1024
THE MICROCHIP WEB SITE
CUSTOMER SUPPORT
Microchip provides online support via our WWW site at
www.microchip.com. This web site is used as a means
to make files and information easily available to
customers. Accessible by using your favorite Internet
browser, the web site contains the following
information:
Users of Microchip products can receive assistance
through several channels:
• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support
• Product Support – Data sheets and errata,
application notes and sample programs, design
resources, user’s guides and hardware support
documents, latest software releases and archived
software
• Development Systems Information Line
Customers
should
contact
their
distributor,
representative or field application engineer (FAE) for
support. Local sales offices are also available to help
customers. A listing of sales offices and locations is
included in the back of this document.
• General Technical Support – Frequently Asked
Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant
program member listing
Technical support is available through the web site
at: http://support.microchip.com
• Business of Microchip – Product selector and
ordering guides, latest Microchip press releases,
listing of seminars and events, listings of
Microchip sales offices, distributors and factory
representatives
CUSTOMER CHANGE NOTIFICATION
SERVICE
Microchip’s customer notification service helps keep
customers current on Microchip products. Subscribers
will receive e-mail notification whenever there are
changes, updates, revisions or errata related to a
specified product family or development tool of interest.
To register, access the Microchip web site at
www.microchip.com, click on Customer Change
Notification and follow the registration instructions.
2010 Microchip Technology Inc.
DS21836G-page 29
25AA1024
READER RESPONSE
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.
Please list the following information, and use this outline to provide us with your comments about this document.
To:
Technical Publications Manager
Reader Response
Total Pages Sent ________
RE:
From:
Name
Company
Address
City / State / ZIP / Country
Telephone: (_______) _________ - _________
FAX: (______) _________ - _________
Application (optional):
Would you like a reply?
Y
N
25AA1024
DS21836G
Literature Number:
Device:
Questions:
1. What are the best features of this document?
2. How does this document meet your hardware and software development needs?
3. Do you find the organization of this document easy to follow? If not, why?
4. What additions to the document do you think would enhance the structure and subject?
5. What deletions from the document could be made without affecting the overall usefulness?
6. Is there any incorrect or misleading information (what and where)?
7. How would you improve this document?
DS21836G-page 30
2010 Microchip Technology Inc.
25AA1024
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PART NO.
Device
X
/XX
X
–
Examples:
Tape & Reel
Package
Temp Range
a)
25AA1024T-I/SM = 1 Mbit, 1.8V Serial
EEPROM, Industrial temp., Tape & Reel, SOIJ
package
b)
25AA1024T-I/MF = 1 Mbit, 1.8V Serial
EEPROM, Industrial temp., Tape & Reel, DFN
package
Device:
25AA1024 1 Mbit, 1.8V, 256-Byte Page SPI Serial EEPROM
Tape & Reel:
Blank
T
=
=
Standard packaging (tube)
Tape & Reel
Temperature
Range:
I
=
-40C to+85C
Package:
MF
P
SM
=
=
=
Micro Lead Frame (6 x 5 mm body), 8-lead
Plastic DIP (300 mil body), 8-lead
Plastic SOIJ (5.28 mm), 8-lead
2010 Microchip Technology Inc.
DS21836G-page 31
25AA1024
NOTES:
DS21836G-page 32
2010 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
rfPIC and UNI/O are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
32
PICtail, PIC logo, REAL ICE, rfLAB, Select Mode, Total
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA
are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2010, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
ISBN: 978-1-60932-006-5
Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
2010 Microchip Technology Inc.
DS21836G-page 33
WORLDWIDE SALES AND SERVICE
AMERICAS
ASIA/PACIFIC
ASIA/PACIFIC
EUROPE
Corporate Office
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Boston
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Korea - Seoul
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Cleveland
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Detroit
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Santa Clara
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
01/05/10
DS21836G-page 34
2010 Microchip Technology Inc.
25AA1024-I/PG 相关器件
型号 | 制造商 | 描述 | 价格 | 文档 |
25AA1024-I/S16K | MICROCHIP | 1024k, 128K X 8 , 1.8V SER EE, DIE in WAFFLE PK, -40C to +85C, Die-Waffle, WPAC | 获取价格 | |
25AA1024-I/SM | MICROCHIP | 1 Mbit SPI Bus Serial EEPROM | 获取价格 | |
25AA1024-I/SM16KVAO | MICROCHIP | EEPROM, 1MX1, Serial, CMOS, PDSO8 | 获取价格 | |
25AA1024-I/W16K | MICROCHIP | 1024k, 128K X 8 , 1.8V SER EE, WAFER, -40C to +85C, Uncut Wafer, WJAR | 获取价格 | |
25AA1024I/MF | MICROCHIP | 1M X 8 SPI BUS SERIAL EEPROM, PDSO8, 6 X 5 MM, ROHS COMPLIANT, PLASTIC, DFN-8 | 获取价格 | |
25AA1024I/P | MICROCHIP | 1M X 8 SPI BUS SERIAL EEPROM, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8 | 获取价格 | |
25AA1024I/SM | MICROCHIP | 1M X 8 SPI BUS SERIAL EEPROM, PDSO8, 5.28 MM, ROHS COMPLIANT, PLASTIC, DSM-8 | 获取价格 | |
25AA1024T-E/MF | MICROCHIP | 1 Mbit SPI Bus Serial EEPROM | 获取价格 | |
25AA1024T-E/P | MICROCHIP | 1 Mbit SPI Bus Serial EEPROM | 获取价格 | |
25AA1024T-E/SM | MICROCHIP | 1 Mbit SPI Bus Serial EEPROM | 获取价格 |
25AA1024-I/PG 相关文章
- 2024-12-05
- 12
- 2024-12-05
- 10
- 2024-12-05
- 12
- 2024-12-05
- 11