MCP1416R

更新时间:2024-12-05 05:42:11
品牌:MICROCHIP
描述:The MCP1415R/16R (different pin configuration of MCP1415/16) devices are small(Tiny) footprint Low

MCP1416R 概述

The MCP1415R/16R (different pin configuration of MCP1415/16) devices are small(Tiny) footprint Low

MCP1416R 数据手册

通过下载MCP1416R数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
MCP1415/16  
Tiny 1.5A, High-Speed Power MOSFET Driver  
General Description  
Features  
• High Peak Output Current: 1.5A (typical)  
• Wide Input Supply Voltage Operating Range:  
- 4.5V to 18V  
MCP1415/16 devices are high-speed MOSFET drivers  
that are capable of providing 1.5A of peak current. The  
inverting or non-inverting single channel output is  
directly controlled from either TTL or CMOS (3V to  
18V) logic. These devices also feature low shoot-  
through current, matched rise and fall time, and short  
propagation delays which make them ideal for high  
switching frequency applications.  
• Low Shoot-Through/Cross-Conduction Current in  
Output Stage  
• High Capacitive Load Drive Capability:  
- 470 pF in 13 ns (typical)  
- 1000 pF in 20 ns (typical)  
MCP1415/16 devices operate from a single 4.5V to  
18V power supply and can easily charge and discharge  
1000 pF gate capacitance in under 20 ns (typical).  
They provide low enough impedances in both the on  
and off states to ensure that the intended state of the  
MOSFET will not be affected, even by large transients.  
• Short Delay Times: 41 ns (tD1), 48 ns (tD2  
(typical)  
)
• Low Supply Current:  
- With Logic ‘1’ Input - 0.65 mA (typical)  
- With Logic ‘0’ Input - 0.1 mA (typical)  
These devices are highly latch-up resistant under any  
condition within their power and voltage ratings. They  
are not subject to damage when noise spiking (up to  
5V, of either polarity) occurs on the ground pin. They  
can accept, without damage or logic upset, up to  
500 mA of reverse current being forced back into their  
outputs. All terminals are fully protected against  
Electrostatic Discharge (ESD) up to 2.0 kV (HBM) and  
400V (MM).  
• Latch-Up Protected: Will Withstand 500 mA  
Reverse Current  
• Logic Input Will Withstand Negative Swing Up to  
5V  
• Space-saving 5L SOT-23 Package  
Applications  
• Switch Mode Power Supplies  
• Pulse Transformer Drive  
• Line Drivers  
Package Types:  
SOT-23-5  
• Level Translator  
MCP1416  
MCP1415  
• Motor and Solenoid Drive  
NC  
OUT  
OUT  
1
2
3
5
VDD  
IN  
4
GND  
GND  
MCP1416R  
VDD  
MCP1415R  
NC  
GND  
IN  
VDD  
1
2
3
5
OUT  
4
OUT  
2010 Microchip Technology Inc.  
DS22092D-page 1  
MCP1415/16  
Functional Block Diagram  
VDD  
Inverting  
650 µA  
300 mV  
Output  
Non-inverting  
Input  
Effective  
Input C = 25 pF  
(Each Input)  
4.7V  
MCP1415 Inverting  
MCP1416 Non-inverting  
GND  
Note:  
Unused inputs should be grounded.  
DS22092D-page 2  
2010 Microchip Technology Inc.  
MCP1415/16  
Notice: Stresses above those listed under "Maximum  
Ratings" may cause permanent damage to the device.  
This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational sections of this specifica-  
tion is not intended. Exposure to maximum rating con-  
ditions for extended periods may affect device  
reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD, Supply Voltage.............................................+20V  
VIN, Input Voltage..............(VDD + 0.3V) to (GND - 5V)  
Package Power Dissipation (TA = 50°C)  
5L SOT23......................................................0.39W  
ESD Protection on all Pins......................2.0 kV (HBM)  
....................................................................400V (MM)  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, TA = +25°C, with 4.5V VDD 18V  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input  
Logic ‘1’ High Input Voltage  
Logic ‘0’ Low Input Voltage  
Input Current  
VIH  
VIL  
IIN  
2.4  
-1  
1.9  
1.6  
0.8  
V
V
+1  
µA 0V VIN VDD  
Input Voltage  
VIN  
-5  
VDD+0.3  
V
Output  
High Output Voltage  
Low Output Voltage  
Output Resistance, High  
VOH  
VOL  
ROH  
VDD - 0.025  
6
0.025  
7.5  
V
V
DC Test  
DC Test  
IOUT = 10 mA, VDD = 18V  
(Note 2)  
Output Resistance, Low  
Peak Output Current  
ROL  
4
5.5  
IOUT = 10 mA, VDD = 18V  
(Note 2)  
IPK  
1.5  
A
A
VDD = 18V (Note 2)  
Latch-Up Protection Withstand  
Reverse Current  
IREV  
0.5  
Duty cycle 2%, t 300 µs  
(Note 2)  
Switching Time (Note 1)  
Rise Time  
tR  
tF  
20  
20  
25  
25  
ns  
ns  
Figure 4-1, Figure 4-2  
CL = 1000 pF (Note 2)  
Fall Time  
Figure 4-1, Figure 4-2  
CL = 1000 pF (Note 2)  
Delay Time  
tD1  
tD2  
41  
48  
50  
55  
ns  
ns  
Figure 4-1, Figure 4-2 (Note 2)  
Figure 4-1, Figure 4-2 (Note 2)  
Delay Time  
Power Supply  
Supply Voltage  
VDD  
IS  
4.5  
0.65  
0.1  
18  
1.1  
V
mA VIN = 3V  
mA VIN = 0V  
Power Supply Current  
IS  
0.15  
Note 1: Switching times ensured by design.  
2: Tested during characterization, not production tested.  
2010 Microchip Technology Inc.  
DS22092D-page 3  
MCP1415/16  
DC CHARACTERISTICS (OVER OPERATING TEMPERATURE RANGE)  
Electrical Specifications: Unless otherwise indicated, over operating range with 4.5V VDD 18V.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input  
Logic ‘1’, High Input Voltage  
Logic ‘0’, Low Input Voltage  
Input Current  
VIH  
VIL  
IIN  
2.4  
0.8  
V
V
-10  
-5  
+10  
µA 0V VIN VDD  
Input Voltage  
VIN  
VDD+0.3  
V
Output  
High Output Voltage  
Low Output Voltage  
Output Resistance, High  
VOH  
VOL  
ROH  
VDD - 0.025  
0.025  
9.5  
V
V
DC Test  
DC Test  
8.5  
IOUT = 10 mA, VDD = 18V  
(Note 2)  
Output Resistance, Low  
ROL  
6
7
IOUT = 10 mA, VDD = 18V  
(Note 2)  
Switching Time (Note 1)  
Rise Time  
tR  
tF  
30  
30  
40  
40  
ns  
ns  
ns  
Figure 4-1, Figure 4-2  
CL = 1000 pF (Note 2)  
Fall Time  
Figure 4-1, Figure 4-2  
CL = 1000 pF (Note 2)  
Delay Time  
tD1  
tD2  
45  
50  
55  
60  
Figure 4-1, Figure 4-2 (Note 2)  
Figure 4-1, Figure 4-2 (Note 2)  
Delay Time  
Power Supply  
Supply Voltage  
VDD  
IS  
4.5  
18  
1.5  
V
0.75  
0.15  
mA VIN = 3.0V  
mA VIN = 0V  
Power Supply Current  
IS  
0.25  
Note 1: Switching times ensured by design.  
2: Tested during characterization, not production tested.  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, all parameters apply with 4.5V VDD 18V  
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Comments  
Temperature Ranges  
Specified Temperature Range  
Maximum Junction Temperature  
Storage Temperature Range  
Package Thermal Resistances  
Thermal Resistance, 5LD SOT23  
TA  
TJ  
TA  
-40  
+125  
+150  
+150  
°C  
°C  
°C  
-65  
JA  
256  
°C/W  
DS22092D-page 4  
2010 Microchip Technology Inc.  
MCP1415/16  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C with 4.5V VDD = 18V.  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
10,000 pF  
10,000 pF  
6,800 pF  
6,800 pF  
470 pF  
470 pF  
3,300 pF  
3,300 pF  
1,000 pF  
1,000 pF  
6
0
0
4
8
10  
12  
14  
16  
18  
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-1:  
Rise Time vs. Supply  
FIGURE 2-4:  
Fall Time vs. Supply  
Voltage.  
Voltage.  
225  
200  
175  
150  
125  
100  
75  
200  
175  
150  
125  
100  
75  
12V  
12V  
18V  
18V  
50  
50  
5V  
5V  
25  
0
25  
0
100  
1000  
Capacitive Load (pF)  
10000  
100  
1000  
10000  
Capacitive Load (pF)  
FIGURE 2-5:  
Load.  
Fall Time vs. Capacitive  
FIGURE 2-2:  
Load.  
Rise Time vs. Capacitive  
54  
35  
VDD = 12V  
CLOAD = 1000 pF  
DD = 18V  
52  
50  
48  
46  
44  
42  
40  
V
30  
25  
20  
15  
10  
tD2  
tRISE  
tD1  
tFALL  
4
5
6
7
8
9
10  
11  
12  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Input Amplitude (V)  
FIGURE 2-6:  
Input Amplitude.  
Propagation Delay Time vs.  
FIGURE 2-3:  
Temperature.  
Rise and Fall Times vs.  
2010 Microchip Technology Inc.  
DS22092D-page 5  
MCP1415/16  
Note: Unless otherwise indicated, TA = +25°C with 4.5V VDD = 18V.  
115  
105  
95  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VDD = 18V  
Input = 1  
tD1  
85  
75  
65  
tD2  
55  
Input = 0  
45  
35  
4
6
8
10  
12  
14  
16  
18  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Supply Voltage (V)  
FIGURE 2-7:  
Propagation Delay Time vs.  
FIGURE 2-10:  
Quiescent Current vs.  
Supply Voltage.  
Temperature.  
60  
55  
50  
3.0  
2.5  
VDD = 18V  
2.0  
VHI  
45  
tD2  
1.5  
1.0  
0.5  
40  
VLO  
35  
30  
tD1  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
FIGURE 2-11:  
Voltage.  
Input Threshold vs. Supply  
FIGURE 2-8:  
Temperature.  
Propagation Delay Time vs.  
2.0  
0.8  
0.7  
0.6  
0.5  
VDD = 12V  
VHI  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
Input = 1  
0.4  
0.3  
0.2  
0.1  
0
VLO  
Input = 0  
6
1.3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
4
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
FIGURE 2-12:  
Temperature.  
Input Threshold vs.  
FIGURE 2-9:  
Supply Voltage.  
Quiescent Current vs.  
DS22092D-page 6  
2010 Microchip Technology Inc.  
MCP1415/16  
Note: Unless otherwise indicated, TA = +25°C with 4.5V VDD = 18V.  
160  
140  
120  
100  
80  
140  
VDD = 18V  
VDD = 18V  
10,000 pF  
120  
100  
80  
60  
40  
20  
0
1 MHz  
470 pF  
50 kHz  
100 kHz  
1,000 pF  
3,300 pF  
60  
200 kHz  
6,800 pF  
40  
500 kHz  
20  
0
100  
1000  
Capacitive Load (pF)  
10000  
10  
100  
1000  
Frequency (kHz)  
FIGURE 2-13:  
Supply Current vs.  
FIGURE 2-16:  
Supply Current vs.  
Capacitive Load.  
Frequency.  
120  
90  
VDD = 12V  
VDD = 12V  
80  
10,000 pF  
1 MHz  
100  
80  
60  
40  
20  
0
70  
60  
50  
40  
30  
6,800 pF  
470 pF  
50 kHz  
100 kHz  
3,300 pF  
1,000 pF  
200 kHz  
20  
10  
0
500 kHz  
100  
1000  
10000  
100  
1000  
10000  
Capacitive Load (pF)  
Frequency (kHz)  
FIGURE 2-14:  
Supply Current vs.  
FIGURE 2-17:  
Supply Current vs.  
Capacitive Load.  
Frequency.  
40  
60  
VDD = 6V  
VDD = 6V  
1 MHz  
10,000 pF  
6,800 pF  
35  
30  
25  
20  
15  
50  
40  
50 kHz  
470 pF  
30  
20  
10  
0
100 kHz  
200 kHz  
3,300 pF  
10  
500 kHz  
5
1,000 pF  
0
100  
1000  
10000  
100  
1000  
10000  
Capacitive Load (pF)  
Frequency (kHz)  
FIGURE 2-15:  
Supply Current vs.  
FIGURE 2-18:  
Supply Current vs.  
Capacitive Load.  
Frequency.  
2010 Microchip Technology Inc.  
DS22092D-page 7  
MCP1415/16  
Note: Unless otherwise indicated, TA = +25°C with 4.5V VDD = 18V.  
30  
25  
20  
15  
10  
5
1E-07  
VIN = 0V (MCP1415)  
VIN = 5V (MCP1416)  
TA = +125°C  
1E-08  
1E-09  
1E-10  
TA = +25°C  
0
4
6
8
10  
12  
14  
16  
18  
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-19:  
High) vs. Supply Voltage.  
Output Resistance (Output  
FIGURE 2-21:  
Supply Voltage.  
Crossover Energy vs.  
25  
20  
VIN = 5V (MCP1415)  
IN = 0V (MCP1416)  
V
15  
TA = +125°C  
10  
TA = +25°C  
5
0
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
FIGURE 2-20:  
Output Resistance (Output  
Low) vs. Supply Voltage.  
DS22092D-page 8  
2010 Microchip Technology Inc.  
MCP1415/16  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
SOT-23-5  
PIN FUNCTION TABLE  
Symbol  
Description  
Pin  
MCP1415/6  
MCP1415R/6R  
1
2
3
4
5
NC  
VDD  
IN  
NC  
GND  
IN  
No Connection  
Supply Input  
Control Input  
Ground  
GND  
OUT  
OUT  
VDD  
Output  
3.1  
Supply Input (V  
)
3.3  
Ground (GND)  
DD  
VDD is the bias supply input for the MOSFET driver and  
has a voltage range of 4.5V to 18V. This input must be  
decoupled to ground with a local capacitor. This bypass  
capacitor provides a localized low impedance path for  
the peak currents that are to be provided to the load.  
Ground is the device return pin. The ground pin should  
have a low impedance connection to the bias supply  
source return. High peak currents will flow out the  
ground pin when the capacitive load is being  
discharged.  
3.2  
Control Input (IN)  
3.4  
Output (OUT)  
The MOSFET driver input is a high impedance, TTL/  
CMOS compatible input. The input also has hysteresis  
between the high and low input levels, allowing them to  
be driven from a slow rising and falling signals, and to  
provide noise immunity.  
The output is a CMOS push-pull output that is capable  
of sourcing and sinking 1.5A of peak current  
(VDD = 18V). The low output impedance ensures the  
gate of the external MOSFET will stay in the intended  
state even during large transients. This output also has  
a reverse current latch-up rating of 500 mA.  
2010 Microchip Technology Inc.  
DS22092D-page 9  
MCP1415/16  
NOTES:  
DS22092D-page 10  
2010 Microchip Technology Inc.  
MCP1415/16  
4.0  
4.1  
APPLICATION INFORMATION  
General Information  
V
DD = 18V  
0.1 µF  
Ceramic  
1 µF  
MOSFET drivers are high-speed, high current devices  
which are intended to source/sink high peak currents to  
charge/discharge the gate capacitance of external  
MOSFETs or IGBTs. In high frequency switching power  
supplies, the PWM controller may not have the drive  
capability to directly drive the power MOSFET. A  
MOSFET driver like the MCP1415/16 family can be  
used to provide additional source/sink current  
capability.  
Input  
Output  
C = 1000 pF  
L
MCP1416  
4.2  
MOSFET Driver Timing  
+5V  
90%  
The ability of a MOSFET driver to transition from a fully-  
off state to a fully-on state are characterized by the  
drivers rise time (tR), fall time (tF), and propagation  
delays (tD1 and tD2). The MCP1415/16 family of drivers  
can typically charge and discharge a 1000 pF load  
Input  
10%  
0V  
18V  
90%  
90%  
t
t
D2  
D1  
capacitance in 20 ns along with a typical turn on (tD1  
)
t
t
F
R
Output  
0V  
propagation delay of 41 ns. Figure 4-1 and Figure 4-2  
show the test circuit and timing waveform used to verify  
the MCP1415/16 timing.  
10%  
10%  
FIGURE 4-2:  
Non-Inverting Driver Timing  
Waveform.  
VDD = 18V  
4.3  
Decoupling Capacitors  
0.1 µF  
1 µF  
Ceramic  
Careful layout and decoupling capacitors are required  
when using power MOSFET drivers. Large current are  
required to charge and discharge capacitive loads  
quickly. For example, approximately 720 mA are  
needed to charge a 1000 pF load with 18V in 25 ns.  
Input  
Output  
C = 1000 pF  
L
To operate the MOSFET driver over a wide frequency  
range with low supply impedance, a ceramic and low  
ESR film capacitor is recommended to be placed in  
parallel between the driver VDD and GND. A 1.0 µF low  
ESR film capacitor and a 0.1 µF ceramic capacitor  
placed between pins 2 and 4 is required for reliable  
operation. These capacitors should be placed close to  
the driver to minimize circuit board parasitics and  
provide a local source for the required current.  
MCP1415  
+5V  
90%  
Input  
0V  
10%  
t
t
D2  
D1  
t
t
R
F
18V  
90%  
90%  
10%  
Output  
10%  
0V  
FIGURE 4-1:  
Inverting Driver Timing  
Waveform.  
2010 Microchip Technology Inc.  
DS22092D-page 11  
MCP1415/16  
4.4.3  
OPERATING POWER DISSIPATION  
4.4  
Power Dissipation  
The operating power dissipation occurs each time the  
MOSFET driver output transitions because for a very  
short period of time both MOSFETs in the output stage  
are on simultaneously. This cross-conduction current  
leads to a power dissipation describe in Equation 4-4.  
The total internal power dissipation in a MOSFET driver  
is the summation of three separate power dissipation  
elements.  
EQUATION 4-1:  
P
= P + P + P  
EQUATION 4-4:  
T
L
Q
CC  
Where:  
PT  
P
= CC f V  
CC  
DD  
=
=
=
=
Total power dissipation  
Where:  
CC  
PL  
PQ  
Load power dissipation  
=
Cross-conduction constant  
(A*sec)  
Quiescent power dissipation  
Operating power dissipation  
PCC  
f
=
=
Switching frequency  
VDD  
MOSFET driver supply voltage  
4.4.1  
CAPACITIVE LOAD DISSIPATION  
The power dissipation caused by a capacitive load is a  
direct function of the frequency, total capacitive load,  
and supply voltage. The power lost in the MOSFET  
driver for a complete charging and discharging cycle of  
a MOSFET is shown in Equation 4-2.  
4.5  
PCB Layout Considerations  
Proper PCB layout is important in high current, fast  
switching circuits to provide proper device operation  
and robustness of design. Improper component  
placement may cause errant switching, excessive  
voltage ringing, or circuit latch-up. PCB trace loop area  
and inductance must be minimized. This is  
accomplished by placing the MOSFET driver directly at  
the load and placing the bypass capacitor directly at the  
MOSFET driver (Figure 4-3). Locating ground planes  
or ground return traces directly beneath the driver  
output signal also reduces trace inductance. A ground  
plane will also help as a radiated noise shield as well as  
providing some heat sinking for power dissipated within  
the device (Figure 4-4).  
EQUATION 4-2:  
2
P
= f C V  
L
T
DD  
Where:  
f
=
=
=
Switching frequency  
CT  
Total load capacitance  
MOSFET driver supply voltage  
VDD  
4.4.2  
QUIESCENT POWER DISSIPATION  
The power dissipation associated with the quiescent  
current draw depends upon the state of the input pin.  
The MCP1415/16 devices have a quiescent current  
draw when the input is high of 0.65 mA (typical) and  
0.1 mA (typical) when the input is low. The quiescent  
power dissipation is shown in Equation 4-3.  
EQUATION 4-3:  
P
= I  
D + I  
 1 D  V  
Q
QH  
QL  
DD  
FIGURE 4-3:  
Recommended PCB Layout  
Where:  
(TOP).  
IQH  
=
Quiescent current in the high  
state  
D
=
=
Duty cycle  
IQL  
Quiescent current in the low  
state  
VDD  
=
MOSFET driver supply voltage  
FIGURE 4-4:  
Recommended PCB Layout  
(BOTTOM).  
DS22092D-page 12  
2010 Microchip Technology Inc.  
MCP1415/16  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
5-Lead SOT-23  
Standard Markings for SOT-23  
Part Number  
MCP1415T-E/OT  
Code  
FYNN  
XXNN  
FYNN  
FZNN  
F7NN  
F8NN  
MCP1416T-E/OT  
MCP1415RT-E/OT  
MCP1416RT-E/OT  
1
1
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2010 Microchip Technology Inc.  
DS22092D-page 13  
MCP1415/16  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁꢘꢙꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
5
(
ꢐꢁꢛ(ꢈ)ꢕ*  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢅꢀ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
ꢀꢁꢛꢐꢈ)ꢕ*  
ꢐꢁꢛꢐ  
ꢐꢁ;ꢛ  
ꢐꢁꢐꢐ  
ꢑꢁꢑꢐ  
ꢀꢁꢜꢐ  
ꢑꢁꢒꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢜ(  
ꢐꢝ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢖ(  
ꢀꢁꢜꢐ  
ꢐꢁꢀ(  
ꢜꢁꢑꢐ  
ꢀꢁ;ꢐ  
ꢜꢁꢀꢐ  
ꢐꢁ=ꢐ  
ꢐꢁ;ꢐ  
ꢜꢐꢝ  
4ꢀ  
8
ꢐꢁꢐ;  
ꢐꢁꢑꢐ  
ꢐꢁꢑ=  
ꢐꢁ(ꢀ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢛꢀ)  
DS22092D-page 14  
2010 Microchip Technology Inc.  
MCP1415/16  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010 Microchip Technology Inc.  
DS22092D-page 15  
MCP1415/16  
NOTES:  
DS22092D-page 16  
2010 Microchip Technology Inc.  
MCP1415/16  
APPENDIX A: REVISION HISTORY  
Revision D (December 2010)  
The following is the list of modifications:  
1. Updated Figure 2-19 and Figure 2-20.  
2. Updated the package outline drawings.  
Revision C (December 2008)  
The following is the list of modifications:  
1. Added the MCP1415R/16R devices throughout  
document.  
Revision B (June 2008)  
The following is the list of modifications:  
1. DC Characteristics table, Switching Time, Rise  
Time: changed from 13 to 20.  
2. DC Characteristics table, Switching Time, Fall  
Time: changed from 13 to 20.  
3. DC Characteristics (Over Operating Tempera-  
ture Range) table, Switching Time, Rise Time:  
changed maximum from 35 to 40.  
4. DC Characteristics (Over Operating Tempera-  
ture Range) table, Switching Time, Rise Time:  
changed typical from 25 to 30.  
5. DC Characteristics (Over Operating Tempera-  
ture Range) table, Switching Time, Fall Time:  
changed maximum from 35 to 40.  
6. DC Characteristics (Over Operating Tempera-  
ture Range) table, Switching Time, Fall Time:  
changed typical from 25 to 30.  
Revision A (June 2008)  
• Original Release of this Document.  
2010 Microchip Technology Inc.  
DS22092D-page 17  
MCP1415/16  
NOTES:  
DS22092D-page 18  
2010 Microchip Technology Inc.  
MCP1415/16  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
-X  
/XX  
Examples:  
a)  
MCP1415T-E/OT: 1.5A Inverting,  
Temperature Package  
Range  
MOSFET Driver  
5LD SOT-23 Package  
b)  
MCP1415RT-E/OT: 1.5A Inverting,  
MOSFET Driver  
5LD SOT-23 Package  
Device:  
MCP1415T: 1.5A MOSFET Driver, Inverting  
(Tape and Reel)  
MCP1415RT:1.5A MOSFET Driver, Inverting  
(Tape and Reel)  
MCP1416T: 1.5A MOSFET Driver, Non-Inverting  
(Tape and Reel)  
a)  
b)  
MCP1416T-E/OT: 1.5A Non-Inverting,  
MOSFET Driver  
5LD SOT-23 Package  
MCP1416RT-E/OT: 1.5A Non-Inverting,  
MOSFET Driver  
MCP1416RT:1.5A MOSFET Driver, Non-Inverting  
(Tape and Reel)  
5LD SOT-23 Package  
Temperature Range:  
Package: *  
E = -40C to +125C  
OT = Plastic Thin Small Outline Transistor (OT), 5-Lead  
* All package offerings are Pb Free (Lead Free)  
2010 Microchip Technology Inc.  
DS22092D-page 19  
MCP1415/16  
NOTES:  
DS22092D-page 20  
2010 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-60932-667-8  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
2010 Microchip Technology Inc.  
DS22092D-page 21  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Fax: 886-7-330-9305  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
08/04/10  
DS22092D-page 22  
2010 Microchip Technology Inc.  

MCP1416R 相关器件

型号 制造商 描述 价格 文档
MCP1416RT MICROCHIP Tiny 1.5A, High-Speed Power MOSFET Driver 获取价格
MCP1416RT-E MICROCHIP Tiny 1.5A, High-Speed Power MOSFET Driver 获取价格
MCP1416RT-E/OT MICROCHIP Tiny 1.5A, High-Speed Power MOSFET Driver 获取价格
MCP1416RT-E/OTVAO MICROCHIP Buffer/Inverter Based MOSFET Driver, 1.5A, PDSO5 获取价格
MCP1416RT-OT MICROCHIP Tiny 1.5A, High-Speed Power MOSFET Driver 获取价格
MCP1416T MICROCHIP Tiny 1.5A, High-Speed Power MOSFET Driver 获取价格
MCP1416T-E MICROCHIP Tiny 1.5A, High-Speed Power MOSFET Driver 获取价格
MCP1416T-E/OT MICROCHIP Tiny 1.5A, High-Speed Power MOSFET Driver 获取价格
MCP1416T-E/OT UMW 栅极驱动IC 获取价格
MCP1416T-E/OTVAO MICROCHIP Buffer/Inverter Based MOSFET Driver, 1.5A, PDSO5 获取价格

MCP1416R 相关文章

  • Nidec交付全球首款4U 250kw CDU,助力英伟达GB200 NVL72高效冷却
    2024-12-06
    9
  • 博通推出行业首个3.5D F2F封装技术,将赋能富士通2nm MONAKA处理器
    2024-12-06
    11
  • 东方晶源回应被美国商务部列入实体清单:预计对公司影响可控
    2024-12-06
    9
  • 台积电与英伟达就美国工厂生产AI芯片展开谈判
    2024-12-06
    9