UPD168110MA-6A5-A

更新时间:2024-12-04 13:11:26
品牌:NEC
描述:Stepper Motor Controller, 0.7A, PDSO24, 5.72 MM, PLASTIC, TSSOP-24

UPD168110MA-6A5-A 概述

Stepper Motor Controller, 0.7A, PDSO24, 5.72 MM, PLASTIC, TSSOP-24 运动控制电子器件

UPD168110MA-6A5-A 规格参数

是否Rohs认证: 符合生命周期:Transferred
包装说明:5.72 MM, PLASTIC, TSSOP-24Reach Compliance Code:compliant
风险等级:5.7模拟集成电路 - 其他类型:STEPPER MOTOR CONTROLLER
JESD-30 代码:R-PDSO-G24长度:6.65 mm
功能数量:1端子数量:24
最高工作温度:75 °C最低工作温度:-10 °C
最大输出电流:0.7 A封装主体材料:PLASTIC/EPOXY
封装代码:TSSOP封装形状:RECTANGULAR
封装形式:SMALL OUTLINE, THIN PROFILE, SHRINK PITCH峰值回流温度(摄氏度):260
认证状态:Not Qualified座面最大高度:1.2 mm
最大供电电压 (Vsup):3.6 V最小供电电压 (Vsup):2.7 V
标称供电电压 (Vsup):3 V表面贴装:YES
温度等级:COMMERCIAL EXTENDED端子形式:GULL WING
端子节距:0.5 mm端子位置:DUAL
处于峰值回流温度下的最长时间:10宽度:4.4 mm
Base Number Matches:1

UPD168110MA-6A5-A 数据手册

通过下载UPD168110MA-6A5-A数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD168110  
MICROSTEP DRIVER FOR DRIVING CAMERA LENS  
DESCRIPTION  
The µPD168110 is a monolithic 2-channel H bridge driver that consists of a CMOS controller and a MOS output  
stage. It can reduce the current consumption and the voltage loss at the output stage compared with a conventional  
driver using bipolar transistors, thanks to employment of a MOS process. This product employs a P-channel  
MOSFET on the high side of the output stage, eliminating a charge pump. As a result, the circuit current consumption  
can be substantially reduced during operation.  
This product is ideal for driving the motor of a digital still camera as it can switch over between two-phase excitation  
driving and microstep driving, using a stepper motor.  
FEATURES  
O Two H bridge circuits employing power MOSFET  
O Current feedback 64-step microstep driving and two-phase excitation driving selectable  
O Low on-resistance: 2 MAX.  
O 3 V power supply  
Minimum operating power supply voltage VDD = 2.7 V  
O Under voltage lockout circuit  
Shuts down internal circuitry at VDD = 1.7 V TYP.  
O 24-pin TSSOP  
ORDERING INFORMATION  
Part Number  
Package  
µPD168110MA-6A5  
24-pin plastic TSSOP (5.72 mm (225))  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
The mark  
shows major revised points.  
Document No. S15840EJ2V0DS00 (2nd edition)  
Date Published June 2005 NS CP(K)  
Printed in Japan  
2003  
µPD168110  
PIN FUNCTIONS  
Package: 24-pin TSSOP  
MODE  
CLK  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
RESETB  
CW  
LGND  
3
V
DD  
COSC  
4
FIL2  
MOB  
PGND2  
OUT2B  
5
FIL1  
6
FB1  
7
OUT1B  
VM2  
8
VM1  
OUT2A  
FB2  
PS  
9
OUT1A  
PGND1  
MOBSEL  
STOP  
10  
11  
12  
OE  
Pin No.  
1
Pin Name  
Pin Function  
MODE  
CLK  
Microstep/2-phase excitation switch pin  
Pulse input pin  
2
3
LGND  
COSC  
Control block GND pin  
4
Pin connecting capacitor for output oscillator  
Phase detection output pin  
Output block GND pin  
5
MOB  
6
PGND2  
OUT2B  
VM2  
7
Channel 2 output B  
8
Motor power pin  
9
OUT2A  
FB2  
Channel 2 output A  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Channel 2 current detection resistor connecting pin  
Power save mode pin  
PS  
OE  
Output enable pin  
STOP  
MOBSEL  
PGND1  
OUT1A  
VM1  
Stop mode pin  
MOB output select pin  
Output block GND pin  
Channel 1 output A  
Motor power pin  
OUT1B  
FB1  
Channel 1 output B  
Channel 1 current detection resistor connecting pin  
Channel 1 filter capacitor connecting pin  
Channel 2 filter capacitor connecting pin  
Control block power pin  
FIL1  
FIL2  
VDD  
CW  
Revolution direction setting pin  
Reset input pin  
RESETB  
2
Data Sheet S15840EJ2V0DS  
µPD168110  
BLOCK DIAGRAM  
MODE MOBSEL RESET CLK CW  
PS  
STOP  
V
DD  
DECODER  
V
M1  
M2  
PULSE  
GENERATER  
V
EVR1  
CURRENT SET  
EVR2  
C
OSC  
OSC  
+
MOB  
FB2  
+
LGND  
FILTER  
FILTER  
Internal Block  
+
+
V
M
VM  
Current  
Sense1  
Current  
Sense2  
FB1  
H BRIDGE  
ch1  
H BRIDGE  
ch2  
PGND  
OUT1A OUT1B  
FIL1  
OE  
FIL2 OUT2A OUT2B  
PGND  
Truth Table  
RESET  
CLK  
CW  
L
OE  
H
PS  
STOP  
L
MODE  
H
MOBSEL  
L
Operation Mode  
Microstep CW mode  
MOB: 1 pulse/cycle  
H
H
H
H
L
L
L
L
Microstep CCW mode  
MOB: 1 pulse/cycle  
H
L
H
H
H
L
L
L
H
H
H
L
H
H
Microstep CW mode  
MOB: 4 pulses/cycle  
Microstep CCW mode  
MOB: 4 pulses/cycle  
H
H
H
H
L
H
X
H
H
L
L
L
L
L
L
L
X
X
X
2-phase CW mode  
2-phase CCW mode  
Output Hi-Z  
X
X
X
X
X
STOP mode after MOB = L  
(CLK must be input until MOB = L)  
H
H
X
X
H
H
L
H
H
H
H
X
X
PS mode after MOB = L  
(CLK must be input until MOB = L)  
X
H
H
L
X
X
X
X
H
X
H
X
L
H
X
X
X
Setting prohibited  
Reset mode  
X
H: High level, L: Low level, X: High level or low level  
3
Data Sheet S15840EJ2V0DS  
µPD168110  
Command Input Timing Chart  
In microstep mode  
RESET  
1
2
3
4 5 6 7 8 9 10111213141516 17 18 19 20 21 222324252627282930  
CLK  
CW  
OE  
PS  
STOP  
1
2
3
4
5 6 7 8 9 10 111213 1415 161718 17 16  
15 1413  
PULSE  
OUT  
(internal)  
Chopping pulse  
MOB  
Power save mode  
STOP mode  
stopped  
Output when MOBSEL = H  
Output Hi-Z  
CW mode  
CCW mode  
Reset status  
Reset status  
4
Data Sheet S15840EJ2V0DS  
µPD168110  
Standard Connection Diagram  
Microstep/2-phase excitation driving  
CPU  
MODE MOBSEL RESET CLK CW  
PS  
STOP  
VDD  
DECODER  
3.3 V  
V
V
M1  
M2  
PULSE  
GENERATER  
V
DD  
5.0 V  
330 pF  
EVR1  
CURRENT SET  
EVR2  
C
OSC  
MOB  
FB2  
OSC  
+
10 k  
+
LGND  
FILTER  
FILTER  
Internal Block  
– +  
+ –  
V
M
VM  
Current  
Sense1  
Current  
Sense2  
FB1  
H BRIDGE  
ch1  
H BRIDGE  
ch2  
2 kΩ  
2 kΩ  
1000 pF  
1000 pF  
PGND  
OUT1A OUT1B  
FIL1  
1000 pF  
OE  
FIL2 OUT2A OUT2B  
PGND  
1000 pF  
from CPU  
M
Only 2-phase excitation driving  
CPU  
MODE MOBSEL RESET CLK CW  
PS  
STOP  
V
DD  
DECODER  
3.3 V  
V
M1  
M2  
VDD  
PULSE  
GENERATER  
V
10 k  
5.0 V  
EVR1  
CURRENT SET  
EVR2  
C
OSC  
MOB  
OSC  
+
+
LGND  
FILTER  
FILTER  
V
DD  
V
DD  
Internal Block  
– +  
+ –  
V
M
VM  
Current  
Sense1  
Current  
Sense2  
FB1  
FB2  
H BRIDGE  
ch1  
H BRIDGE  
ch2  
PGND  
OUT1A OUT1B  
FIL1  
OE  
FIL2  
OUT2A OUT2B  
PGND  
From CPU  
M
5
Data Sheet S15840EJ2V0DS  
µPD168110  
Output Timing Chart  
Microstep output mode  
position  
Ch 1 current  
100  
98.1  
92.4  
99.5  
95.7  
88.2  
83.1  
77.3  
70.7  
63.4  
55.6  
47.1  
38.3  
29.0  
19.5  
9.8  
0
–9.8  
–19.5  
–29.0  
–38.3  
–47.1  
–55.6  
–63.4  
–70.7  
–77.3  
–83.1  
–88.2  
–92.4  
–98.1  
–100  
–95.7  
–99.5  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
Ch 2 current  
100  
98.1  
92.4  
99.5  
95.7  
88.2  
83.1  
77.3  
70.7  
63.4  
55.6  
47.1  
38.3  
29.0  
19.5  
9.8  
0
9.8  
19.5  
29.0  
38.3  
47.1  
55.6  
63.4  
70.7  
77.3  
83.1  
88.2  
92.4  
98.1  
100  
95.7  
99.5  
0
5
10  
10  
15  
15  
20  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
MOB output (when MOBSEL = “L)  
0
5
25  
30  
35  
40  
45  
50  
55  
60  
65  
MOB output (when MOBSEL = “H”)  
0
5
5
10  
10  
15  
15  
20  
20  
25  
25  
30  
30  
35  
40  
40  
45  
45  
50  
50  
55  
55  
60  
60  
65  
65  
CLK input  
0
35  
The horizontal axis indicates the number of steps. This figure shows an example in the CW mode. The pulse  
advances in synchronization with the rising edge of CLK. The current flows into ch 1 and ch 2 in the positive direction  
when it flows from OUT1A to OUT1B, and in the negative direction when it flows from OUT1B to OUT1A (the values  
shown above are ideal values and do not indicate the actual values).  
6
Data Sheet S15840EJ2V0DS  
µPD168110  
Output Timing Chart  
2-phase excitation output mode  
Ch 1 current  
100  
–100  
0
1
2
3
4
5
6
7
8
Ch 2 current  
100  
–100  
0
1
2
3
4
5
6
7
8
MOB output  
0
1
2
3
4
5
6
7
8
CLK input  
0
1
2
3
4
5
6
7
8
The horizontal axis indicates the number of steps. This figure shows an example in the CW mode. The current  
flows into ch 1 and ch 2 in the positive direction when it flows from OUT1A to OUT1B, and in the negative direction  
when it flows from OUT1B to OUT1A.  
7
Data Sheet S15840EJ2V0DS  
µPD168110  
Relationship Between Revolution Angle, Phase Current, and Vector Amount (64 microsteps)  
Phase A – Phase Current  
Phase B – Phase Current  
Vector Amount  
Revolution  
Angle  
Step  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Typ.  
θ 0  
θ 1  
0
0
3.8  
17.0  
26.5  
36.1  
45.3  
54.1  
62.6  
68.4  
75.7  
82.3  
88.1  
93.4  
97.4  
100.7  
103.0  
104.5  
100  
100  
98.1  
95.7  
92.4  
88.2  
83.1  
77.3  
70.7  
63.4  
55.6  
47.1  
38.3  
29.0  
19.5  
9.8  
100  
100.48  
100  
5.625  
11.250  
16.875  
22.500  
28.125  
33.750  
39.375  
45  
2.5  
9.8  
94.5  
93.2  
90.7  
87.4  
83.2  
78.1  
72.3  
65.7  
58.4  
48.6  
40.1  
31.3  
22.1  
12.4  
2.5  
104.5  
103.0  
100.7  
97.4  
93.2  
88.1  
82.3  
75.7  
68.4  
62.6  
54.1  
45.3  
36.1  
26.5  
17.0  
3.8  
θ 2  
12.4  
22.1  
31.3  
40.1  
48.6  
58.4  
65.7  
72.3  
78.1  
83.2  
87.4  
90.7  
93.2  
94.5  
19.5  
29.0  
38.3  
47.1  
55.6  
63.4  
70.7  
77.3  
83.1  
88.2  
92.4  
95.7  
98.1  
100  
θ 3  
100.02  
100.02  
99.99  
99.98  
99.97  
99.98  
99.97  
99.98  
99.99  
100.02  
100.02  
100  
θ 4  
θ 5  
θ 6  
θ 7  
θ 8  
θ 9  
50.625  
56.250  
61.875  
67.500  
73.125  
78.750  
84.375  
90  
θ 10  
θ 11  
θ 12  
θ 13  
θ 14  
θ 15  
θ 16  
100.48  
100  
100  
0
The above values are ideal values and are not guaranteed values.  
8
Data Sheet S15840EJ2V0DS  
µPD168110  
FUNCTION DESCRIPTION  
2-phase excitation driving mode  
By allowing a current of 100% to flow into output ch1 and ch2 at the same time, a motor can be driven with the  
larger torque.  
The two-phase excitation driving mode and microstep driving mode are switched by the MODE pin. In the two-  
phase excitation driving mode, the chopping pulse circuit does not operate.  
Microstep driving of stepper motor  
To position a stepper motor with high accuracy, the µPD168110 has a function to hold constant the current flowing  
through the H bridge by a vector value and to stop one cycle in 64 steps. To realize the microstep driving mode, the  
driver internally realizes the following functions.  
Detecting the current flowing into each channel as a voltage value by a sense resistor  
Synthesizing the dummy sine wave of the half-wave generated by the internal D/A and PWM oscillation wave for  
chopping operation  
The driver stage performs PWM driving based on the result of comparing the detected voltage value and  
synthesized waves.  
The internal dummy sine wave is of 64 steps per cycle, so that the stepper motor can be driven in 64 steps. The  
microstep driving mode and two-phase excitation driving mode are switched by an external pin.  
+
M
A
Concept of microstep driving operation  
MOB output  
The MOB output pin outputs “L” if the current of ch1 or ch2 reaches 100% in the microstep output mode, or if the  
current of ch 1 reaches +100%. In the two-phase excitation output mode, the MOB pin outputs “L” when the current of  
ch1 and ch2 reaches +100%. The excitation position of the stepper motor can be checked by monitoring the MOB  
output. The MOB output also indicates the stop position information in the stop mode to be explained below.  
The MOB output goes into a Hi-Z state (output H level if pulled up) when OE = “L”.  
Stop mode  
If the stop mode is set by the STOP pin, the pulse is automatically output until MOB = “L” when CLK is input. If  
MOB = “L” in the stop mode, the pulse is not output even when CLK is input, and the output holds the excitation  
status.  
To advance the pulse, release the stop mode and restore the normal mode.  
9
Data Sheet S15840EJ2V0DS  
µPD168110  
Reset function  
When RESET = “L”, initialization is executed and the output goes into a Hi-Z state. When RESET = “H”, excitation  
is started with the current of ch1 at +100% and the current of ch2 at 0% (one-phase excitation position). To perform  
two-phase excitation driving, excitation is started with the currents of ch1 and ch2 at +100% after the mode has been  
set. Be sure to execute a reset operation after power application. MOB outputs “L” until the pulse is output when  
RESET goes “L”.  
Output enable (OE) pin  
The pulse output can be forcibly stopped from an external source by using the OE pin. When OE = “L”, the output  
is forcibly made to go into a Hi-Z state.  
Standby function  
The µPD168110 can enter the standby mode when the pulse is not output and when PS = “H” and  
STOP = “H”. In the standby mode, as many internal circuits as possible are stopped so that the self current  
consumption can be reduced. In the standby mode, the current consumption is 1 µA MAX. when external CLK input is  
stopped. While CLK is being input, the current consumption is reduced to 300 µA MAX. by the current flowing into the  
input buffer. The standby mode is released when PS = “L” and STOP = “L”.  
Under voltage lockout circuit (UVLO)  
This function is used to forcibly stop the operation of the IC to prevent malfunction of the circuits if VDD of the IC  
drops during operation. Note that if the VDD voltage abruptly drops in the order of µs, this function may not operate.  
VM pin current shutdown circuit  
A circuit that prevents a current from flowing into the VM pin when VDD = 0 V is provided. Therefore, the current  
flowing into the VM pin is cut off when VDD = 0 V.  
A current of up to 3 µA flows into the VM pin when VDD is applied so that the voltages on the VDD and VM pins can  
be monitored.  
10  
Data Sheet S15840EJ2V0DS  
µPD168110  
OPERATION DESCRIPTION  
Setting output current  
The peak value of the output current (when current of ch 1 or ch 2 is 100%) is determined by the resistor RFB that  
is connected to FB1 and FB2. This IC has an internal reference power supply VREF (500 mV TYP.) for comparing  
current, and drives the stepper motor with the current value calculated by RFB and VREF as the peak output  
current value.  
Peak output current value IMAX (A) VREF (V) ÷ RFB () x Output detection ratio  
Pulse output  
The motor is driven by inputting a pulse to the CLK pin. The motor advances by one pulse at the rising edge of  
the CLK signal. When MODE = “H”, the motor is driven in the 64-microstep driving mode, and the driving current  
of each step is determined based on the internal motor excitation position information and revolution direction.  
When MODE = “L”, the two-phase excitation mode is selected, and the current direction (100% drive) of ch 1 and  
ch 2 are switched each time a pulse has been input.  
Setting motor revolution direction  
The revolution direction of the motor is set by CW. In the CW mode (CW = “L”), the current of ch2 is output, 90°  
degrees in phase behind the current of ch1. In the CCW mode (CW = “H”), the current of ch2 is output, 90°  
degrees in phase ahead of the current of ch1.  
CW Pin  
Operation Mode  
CW mode (forward revolution)  
CCW mode (reverse revolution)  
L
H
Setting stop mode (valid only in microstep driving mode)  
When STOP = “H”, the motor advances to the position of MOB output = “L”, and the output status is held.  
The excitation status is not changed even when a pulse is input to CLK while MOB = “L” when STOP = “H”. The  
pulse can be advanced when STOP = “L”.  
STOP  
Operation Mode  
L
Normal mode  
Stop mode  
H
Caution If STOP = “L” before the stop mode is set (until MOB = “L”), the operation is performed in the  
same manner as in the normal mode.  
11  
Data Sheet S15840EJ2V0DS  
µPD168110  
Power save mode (valid only in microstep driving mode)  
When PS = “H” and STOP = “H”, the motor advances to the position of MOB output = “L” and then the output  
goes to a Hi-Z state.  
The internal circuitry is stopped as much as possible and the standby mode is set. The power save mode is  
released when PS = “L” and STOP = “L”.  
STOP  
Operation Mode  
L
Normal mode  
Power save mode (only when STOP = “H”)  
H
Caution Inputting PS = “H” and STOP = “L” is prohibited.  
Setting output enable  
When OE = “H”, the motor is driven (output excitation status). Be sure to set OE to “H” to drive the motor.  
STOP  
Operation Mode  
L
Output Hi-Z  
H
Enable mode  
Selecting two-phase excitation/microstep driving mode  
The MODE pin can be used to select the two-phase excitation or microstep driving mode. When MODE = “H”,  
the microstep driving mode is selected. When MODE = “L”, the two-phase excitation mode (both ch 1 and ch 2  
are driven at +100% or –100%) is selected. The µPD168110 is initialized immediately after a RESET operation,  
so excitation is started from the position at which the output current of ch 1 is 100% and the output current of ch  
2 is 0% in the microstep driving mode, and from the position at which the output currents of both ch 1 and ch 2  
are +100% in the two-phase excitation driving mode.  
If the mode is changed from the microstep to the two-phase, the position of the microstep mode is retained until  
CLK is input. When the first CLK is input, pulse output is started, the operation skips to the two-phase position of  
the next quadrant, and driving is started.  
2-phase  
excitation stop  
position  
Microstep stop position  
(example 1)  
(1)  
Skips to next quadrant  
MODE  
Operation Mode  
L
2-phase excitation  
Microstep driving  
H
Microstep stop  
position  
(example 2)  
(3)  
(2)  
Concept of switching operation mode  
from microstep to 2-phase excitation  
12  
Data Sheet S15840EJ2V0DS  
µPD168110  
Selecting MOB output (in microstep driving mode only)  
The output function of MOB can be selected by MOBSEL. When MOBSEL = “L”, MOB is output at the position  
where the current of ch1 is +100% and the current of ch2 is 0%. When MOBSEL = “H”, MOB is output at the  
position where the current of ch1 or ch2 is 100%.  
MOBSEL  
MOB Output  
L
Current of ch1 is +100% and current of ch2 is 0% (1 pulse/cycle).  
Current of ch1 or ch2 is 100% (4 pulses/cycle).  
H
RESET position  
Ch 1 current  
100  
98.1  
92.4  
99.5  
95.7  
88.2  
83.1  
77.3  
70.7  
63.4  
55.6  
47.1  
38.3  
29.0  
19.5  
9.8  
0
9.8  
19.5  
29.0  
38.3  
47.1  
55.6  
63.4  
70.7  
77.3  
83.1  
88.2  
92.4  
98.1  
100  
95.7  
99.5  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
Ch 2 current  
100  
98.1  
92.4  
99.5  
95.7  
88.2  
83.1  
77.3  
70.7  
63.4  
55.6  
47.1  
38.3  
29.0  
19.5  
9.8  
0
9.8  
19.5  
29.0  
38.3  
47.1  
55.6  
63.4  
70.7  
77.3  
83.1  
88.2  
92.4  
98.1  
100  
95.7  
99.5  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
MOB output MOBSEL = “L”  
0
0
5
5
10  
10  
15  
15  
20  
20  
25  
30  
35  
40  
45  
50  
50  
55  
55  
60  
60  
65  
65  
MOB output MOBSEL = “H”  
25  
30  
35  
40  
45  
13  
Data Sheet S15840EJ2V0DS  
µPD168110  
ABSOLUTE MAXIMUM RATINGS  
(TA = 25°C: GLASS EPOXY BOARD OF 100 mm × 100 mm × 1 mm WITH C OPPER FOIL OF 15%)  
Parameter  
Symbol  
Conditions  
Rating  
0.5 to +6.0  
0.5 to +6.0  
0.5 to VDD +0.5  
6.2  
Unit  
Power supply voltage  
VDD  
Control block  
Motor block  
V
VM  
Input voltage  
VIN  
V
V
Output pin voltage  
VOUT  
ID(DC)  
ID(pulse)  
PT  
DC output current  
DC  
0.4  
A/ch  
A/ch  
W
Instantaneous output current  
Power consumption  
Peak junction temperature  
Storage temperature  
PW < 10 ms, Duty 20%  
0.7  
0.7  
TCH(MAX)  
Tstg  
150  
°C  
55 to +150  
°C  
RECOMMENDED OPERATING CONDITIONS  
(TA = 25°C: GLASS EPOXY BOARD OF 100 mm × 100 mm × 1 mm WITH COPPER FOIL OF 15%)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
Power supply voltage  
VDD  
Control block  
2.7  
3.6  
V
VM  
Motor block  
2.7  
5.5  
V
Input voltage  
VIN  
0
VDD  
+0.35  
+0.6  
5
V
DC output current  
ID(DC)  
ID(pulse)  
IMOB  
TA  
DC  
0.35  
0.6  
A/ch  
A/ch  
mA  
°C  
Instantaneous output current  
MOB pin output sink current  
Operating temperature range  
PW < 10 ms, Duty 20%  
Open-drain output  
10  
75  
14  
Data Sheet S15840EJ2V0DS  
µPD168110  
ELECTRICAL CHARACTERISTICS (UNLESS OTHERWISE SPECIFIED, VDD = VM = 3 V, TA = 25°C)  
Parameter  
Symbol  
Conditions  
External CLK stopped  
External CLK stopped  
External CLK is input  
MIN.  
TYP.  
MAX.  
Unit  
VDD pin current after reset  
VDD pin current in standby mode  
IDD(STB)  
1.0  
µA  
IDD(STB2)  
IDD(STB3)  
IDD(ACT)  
30  
µA  
300  
3.0  
µA  
VDD pin current during operation  
VM pin current  
mA  
VM = 5.5 V per VM pin, after reset  
and in standby mode  
IM(OFF)  
3.0  
1.0  
µA  
High-level input current  
Low-level input current  
High-level input voltage  
Low-level input voltage  
Input hysteresis voltage  
H bridge on-resistance  
IIH  
VIN = VDD  
µA  
µA  
V
IIL  
VIN = 0 V  
1.0  
VIH  
VIL  
Vhys  
2.7 V VDD 3.6 V  
2.7 V VDD 3.6 V  
0.7 x VDD  
0.3 x VDD  
2.0  
V
0.3  
V
IM = 0.35 A, sum of upper and  
lower stages,  
RON  
FB1 = FB2 = 0 V  
Output turn-on time  
tON  
RM = 20 Ω  
OE pin ↑ → output SW time  
0.02  
0.02  
450  
0.5  
0.5  
µs  
µs  
Output turn-off time  
tOFF  
VREF  
Internal reference voltage  
Output detection ratio  
500  
550  
mV  
IM = 0.1 A, with 5 ksense  
resistor connected  
950  
1050  
1150  
Cautions 1. The undervoltage lockout detection circuit (UVLO) operates at 1.7 V TYP. whereupon the  
output goes into a Hi-Z state. Internal data such as the excitation position information is  
reset. The UVLO circuit does not operate after reset.  
2. A shutdown circuit that prevents a current from flowing into the VM pin when VDD = 0 V is  
provided.  
15  
Data Sheet S15840EJ2V0DS  
µPD168110  
PACKAGE DRAWING  
24-PIN PLASTIC TSSOP (5.72 mm (225))  
13  
24  
detail of lead end  
F
G
R
P
L
S
12  
1
E
H
I
A
J
A'  
S
N
S
C
K
M
B
D
M
NOTE  
ITEM MILLIMETERS  
Each lead centerline is located within 0.10 mm of  
its true position (T.P.) at maximum material condition.  
A
A'  
B
C
D
E
F
6.65 0.10  
6.5 0.1  
0.575  
0.5 (T.P.)  
0.22 0.05  
0.1 0.05  
1.2 MAX.  
1.0 0.05  
6.4 0.1  
4.4 0.1  
1.0 0.1  
0.17 0.025  
0.5  
G
H
I
J
K
L
0.10  
M
N
0.08  
+5°  
3°  
P
3°  
R
S
0.25  
0.6 0.15  
P24MA-50-6A5  
16  
Data Sheet S15840EJ2V0DS  
µPD168110  
RECOMMENDED SOLDERING CONDITIONS  
The µPD168110 should be soldered and mounted under the following recommended conditions.  
For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales  
representative.  
For technical information, see the following website.  
Semiconductor Device Mount Manual (http://www.necel.com/pkg/en/mount/index.html)  
Recommended Soldering Conditions for Surface Mounting Type  
µPD168110MA-6A5 24pin TSSOP  
Soldering Method  
Soldering Conditions  
Recommended  
Condition Symbol  
Infrared reflow  
Package peak temperature: 260°C, Time: 60 seconds max. (at 220°C or  
higher), Count: Three times or less, Exposure limit: None, Flux: Rosin flux with  
low chlorine (0.2 Wt% or below) recommended  
IR60-00-3  
Caution Do not use different soldering methods together (except for partial heating).  
17  
Data Sheet S15840EJ2V0DS  
µPD168110  
The information in this document is current as of June, 2005. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or  
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all  
products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1)  
"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2)  
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

UPD168110MA-6A5-A 相关器件

型号 制造商 描述 价格 文档
UPD168110MA-6A5-E1-A RENESAS IC,MOTOR CONTROLLER,CMOS,TSSOP,24PIN 获取价格
UPD168110MA-6A5-E2 RENESAS IC,MOTOR CONTROLLER,CMOS,TSSOP,24PIN 获取价格
UPD168110MA-6A5-E2-A RENESAS IC,MOTOR CONTROLLER,CMOS,TSSOP,24PIN 获取价格
UPD168111 NEC MICROSTEP DRIVER FOR DRIVING CAMERA LENS 获取价格
UPD168111A NEC MICROSTEP DRIVER FOR DRIVING CAMERA LENS 获取价格
UPD168111AMA-6A5 RENESAS IC,MOTOR CONTROLLER,CMOS,TSSOP,24PIN 获取价格
UPD168111AMA-6A5-A NEC MICROSTEP DRIVER FOR DRIVING CAMERA LENS 获取价格
UPD168111AMA-6A5-E1-A RENESAS IC,MOTOR CONTROLLER,CMOS,TSSOP,24PIN 获取价格
UPD168111AMA-6A5-E2-A RENESAS IC,MOTOR CONTROLLER,CMOS,TSSOP,24PIN 获取价格
UPD168111MA-6A5 NEC MICROSTEP DRIVER FOR DRIVING CAMERA LENS 获取价格

UPD168110MA-6A5-A 相关文章

  • Nidec交付全球首款4U 250kw CDU,助力英伟达GB200 NVL72高效冷却
    2024-12-06
    9
  • 博通推出行业首个3.5D F2F封装技术,将赋能富士通2nm MONAKA处理器
    2024-12-06
    9
  • 东方晶源回应被美国商务部列入实体清单:预计对公司影响可控
    2024-12-06
    9
  • 台积电与英伟达就美国工厂生产AI芯片展开谈判
    2024-12-06
    9