E-L6386D

更新时间:2025-01-13 14:53:44
描述:0.65A HALF BRDG BASED MOSFET DRIVER, PDSO14, SOP-14

E-L6386D 概述

0.65A HALF BRDG BASED MOSFET DRIVER, PDSO14, SOP-14 MOSFET 驱动器

E-L6386D 规格参数

生命周期:Obsolete零件包装代码:SOIC
包装说明:SOP,针数:14
Reach Compliance Code:unknownECCN代码:EAR99
HTS代码:8542.39.00.01风险等级:5.84
高边驱动器:YES接口集成电路类型:HALF BRIDGE BASED MOSFET DRIVER
JESD-30 代码:R-PDSO-G14JESD-609代码:e0
长度:8.65 mm功能数量:1
端子数量:14标称输出峰值电流:0.65 A
封装主体材料:PLASTIC/EPOXY封装代码:SOP
封装形状:RECTANGULAR封装形式:SMALL OUTLINE
认证状态:Not Qualified座面最大高度:1.75 mm
最大供电电压:17 V标称供电电压:15 V
表面贴装:YES端子面层:TIN LEAD
端子形式:GULL WING端子节距:1.27 mm
端子位置:DUAL断开时间:0.015 µs
接通时间:0.015 µs宽度:3.9 mm
Base Number Matches:1

E-L6386D 数据手册

通过下载E-L6386D数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
L6386  
®
HIGH-VOLTAGE HIGH AND LOW SIDE DRIVER  
HIGH VOLTAGE RAIL UP TO 600V  
dV/dt IMMUNITY +- 50 V/nsec iN FULL TEM-  
PERATURE RANGE  
DRIVER CURRENT CAPABILITY:  
400 mA SOURCE,  
650 mA SINK  
SWITCHING TIMES 50/30 nsec RISE/FALL  
WITH 1nF LOAD  
SO14  
DIP14  
CMOS/TTL SCHMITT TRIGGER INPUTS  
WITH HYSTERESIS AND PULL DOWN  
UNDER VOLTAGE LOCK OUT ON LOWER  
AND UPPER DRIVING SECTION  
ORDERING NUMBERS:  
L6386D  
L6386  
INTEGRATED BOOTSTRAP DIODE  
OUTPUTS IN PHASE WITH INPUTS  
pendent referenced Chael Power MOS or  
IGBT. The Upper (Fating) Section is enabled to  
work with voltage Rail up to 600V. The Logic In-  
puts are CMOSTTL compatible for ease of inter-  
facing with controlling devices.  
DESCRIPTION  
The L6386 is an high-voltage device, manufac-  
tured with the BCD "OFF-LINE" technology. It has  
a Driver structure that enables to drive inde-  
BLOCK DIAGRAM  
BOOTSTRAP DRIVER  
Vboot  
14  
CBOOT  
H.V.  
VCC  
UV  
UV  
HVG  
DRIVER  
DETECTION  
DETECTION  
4
3
R
HVG  
R
13  
S
LEVEL  
SHIFTER  
HIN  
SD  
OUT  
12  
9
TO LOAD  
VCC  
LOGIC  
2
1
LVG  
LVG  
DRIVER  
PGND  
DIAG  
8
5
LIN  
-
VREF  
+
SGND  
7
6
CIN  
D97IN520D  
July 1999  
1/10  
L6386  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
-3 to Vboot - 18  
- 0.3 to +18  
-1 to 618  
Unit  
V
Vout  
Vcc  
Output Voltage  
Supply Voltage  
V
Vboot  
Vhvg  
Vlvg  
Vi  
Floating Supply Voltage  
V
Upper Gate Output Voltage  
Lower Gate Output Voltage  
Logic Input Voltage  
- 1 to Vboot  
-0.3 to Vcc +0.3  
-0.3 to Vcc +0.3  
-0.3 to Vcc +0.3  
-0.3 to Vcc +0.3  
50  
V
V
V
Vdiag  
Vcin  
dVout/dt  
Ptot  
Open Drain Forced Voltage  
Comparator Input Voltage  
Allowed Output Slew Rate  
Total Power Dissipation (Tj = 85 °C)  
Junction Temperature  
V
V
V/ns  
mW  
°C  
°C  
750  
Tj  
150  
Ts  
Storage Temperature  
-50 to 150  
Note:  
ESD immunity for pins 12, 13 and 14 is guaranteed up to 900V (Human Body Model)  
PIN CONNECTION  
LIN  
SD  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
Vboot  
HVG  
OUT  
N.C.  
N.C.  
LVG  
PGND  
HIN  
VCC  
DIAG  
CIN  
SGND  
8
D97IN521A  
THERMAL DATA  
Symbol  
Parameter  
Thermal Resistance Junction to Ambient  
SO14  
DIP14  
100  
Unit  
Rth j-amb  
165  
°C/W  
PIN DESCRIPTION  
N.  
Name  
LIN  
Type  
Function  
1
I
I
Lower Driver Logic Input  
Shut Down Logic Input  
Upper Driver Logic Input  
Low Voltage Supply  
Open Drain Diagnostic Output  
Comparator Input  
2
SD (*)  
HIN  
3
4
I
VCC  
I
5
DIAG  
CIN  
O
I
6
7
SGND  
PGND  
LVG (*)  
N.C.  
Ground  
8
Power Ground  
9
O
Low Side Driver Output  
Not Connected  
10, 11  
12  
13  
14  
OUT  
O
O
Upper Driver Floating Driver  
High Side Driver Output  
Bootstrapped Supply Voltage  
HVG (*)  
Vboot  
(*) The circuit guarantees 0.3V maximum on the pin (@ Isink = 10mA), with VCC >3V. This allows to omit the "bleeder" resistor connected  
between the gate and the source of the external MOSFET normally used to hold the pin low; the gate driver assures low impedance also  
in SD condition.  
2/10  
L6386  
RECOMMENDED OPERATING CONDITIONS  
Symbol Pin  
Parameter  
Output Voltage  
Test Condition  
Min.  
Note1  
Note1  
Typ.  
Max.  
580  
17  
Unit  
V
Vout  
12  
14  
Vboot-  
Vout  
Floating Supply Voltage  
V
fsw  
Vcc  
Tj  
Switching Frequency  
Supply Voltage  
HVG,LVG load CL = 1nF  
400  
17  
kHz  
V
4
Junction Temperature  
-45  
125  
°C  
Note 1:  
if the condition Vboot - Vout < 18V is guaranteed, Vout can range from -3 to 580V.  
ELECTRICAL CHARACTERISTICS  
AC Operation (Vcc = 15V; Tj = 25°C)  
Symbol Pin  
Parameter  
Test Condition  
Vout = 0V  
Min.  
Typ.  
Max.  
Unit  
ton  
toff  
tsd  
1.3  
High/Low Side Driver Turn-On  
110  
150  
ns  
vs 9, Propagation Delay  
13  
High/Low Side Driver Turn-Off  
Propagation Delay  
Vout = 0V  
Vout = 0V  
105  
105  
150  
150  
ns  
ns  
2 vs Shut Down to High/Low Side  
9,13 Propagation Delay  
tr  
tf  
13,9 Rise Time  
13,9 Fall Time  
CL = 1000pF  
CL = 1000pF  
50  
30  
ns  
ns  
DC Operation (Vcc = 15V; Tj = 25°C)  
Symbol Pin  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Low Supply Voltage Section  
Vcc  
Vccth1  
Vccth2  
Vcchys  
Iqccu  
4
Supply Voltage  
17  
V
V
Vcc UV Turn On Threshold  
Vcc UV Turn Off Threshold  
Vcc UV Hysteresis  
11.5  
9.5  
12  
10  
2
12.5  
10.5  
V
V
Undervoltage Quiescent Supply Current Vcc 11V  
200  
250  
µA  
µA  
Iqcc  
Quiescent Current  
Vcc = 15V  
320  
Bootstrapped Supply Section  
Vboot  
Vbth1  
Vbth2  
Vbhys  
Iqboot  
Ilk  
14  
Bootstrapped Supply Voltage  
Vboot UV Turn On Threshold  
Vboot UV Turn Off Threshold  
Vboot UV Hysteresis  
17  
12.9  
10.7  
V
V
10.7  
8.8  
11.9  
9.9  
2
V
V
Vboot Quiescent Current  
Leakage Current  
Bootstrap Driver on Resistance (*)  
Vout = Vboot  
200  
10  
µA  
µA  
Vout = Vboot = 600V  
Vcc 12.5V; Vin = 0V  
Rdson  
125  
Driving Buffers Section  
Iso  
9, 13 High/Low Side Driver Short Circuit  
VIN = Vih (tp < 10µs)  
300  
500  
400  
650  
mA  
mA  
Source Current  
Isi  
High/Low Side Driver Short Circuit  
Sink Current  
Logic Inputs  
Vil  
Vih  
Iih  
Iil  
1,2,3 Low Level Logic Threshold Voltage  
High Level Logic Threshold Voltage  
High Level Logic Input Current  
1.5  
V
V
3.6  
VIN = 15V  
VIN = 0V  
50  
70  
1
µA  
µA  
Low Level Logic Input Current  
(VCC VCBOOT1) − (VCC VCBOOT2  
)
(*)  
=
R
DSON is tested in the following way: RDSON  
I1(VCC,VCBOOT1) − I2(VCC,VCBOOT2  
)
where I1 is pin 8 current when VCBOOT = VCBOOT1, I2 when VCBOOT = VCBOOT2  
.
3/10  
L6386  
DC OPERATION (continued)  
Symbol Pin  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Sense Comparator  
Vio  
Iio  
Input Offset Voltage  
-10  
10  
mV  
µA  
V
6
2
Input Bias Current  
Vcin 0.5  
0.2  
0.5  
Vol  
Open Drain Low Level Output  
Voltage, Iod = -2.5mA  
0.8  
Vref  
Comparator Reference voltage  
0.460  
0.540  
V
Figure 1. Timing Waveforms  
HIN  
LIN  
SD  
HOUT  
LOUT  
V
REF  
V
CIN  
DIAG  
D97IN522A  
Note: SD active condition is latched until next negative IN edge.  
Figure 2. Typical Rise and Fall Times vs.  
Load Capacitance  
Figure 3. Quiescent Current vs. Supply  
Voltage  
D99IN1054  
time  
(nsec)  
Iq  
(µA)  
D99IN1057  
104  
250  
200  
150  
100  
50  
Tr  
Tf  
103  
102  
10  
0
0
1
2
3
4
5
C (nF)  
0
2
4
6
8
10 12 14 16 V (V)  
S
For both high and low side buffers @25˚C Tamb  
4/10  
L6386  
µ
. This charge on a 1µF ca-  
supply 1 C to CEXT  
BOOTSTRAP DRIVER  
pacitor means a voltage drop of 1V.  
A bootstrap circuitry is needed to supply the high  
voltage section. This function is normally accom-  
plished by a high voltage fast recovery diode (fig.  
4a). In the L6386 a patented integrated structure  
replaces the external diode. It is realized by a  
high voltage DMOS, driven synchronously with  
the low side driver (LVG), with in series a diode,  
as shown in fig. 4b  
The internal bootstrap driver gives great advan-  
tages: the external fast recovery diode can be  
avoided (it usually has great leakage current).  
This structure can work only if VOUT is close to  
GND (or lower) and in the meanwhile the LVG is  
on. The charging time (Tcharge ) of the CBOOT is  
the time in which both conditions are fulfilled and  
it has to be long enough to charge the capacitor.  
An internal charge pump (fig. 4b) provides the  
DMOS driving voltage .  
The diode connected in series to the DMOS has  
been added to avoid undesirable turn on of it.  
The bootstrap driver introduces a voltage drop  
due to the DMOS RDSON (typical value: 125  
Ohm). At low frequency this drop can be ne-  
glected. Anyway increasing the frequency it  
must be taken in to account.  
CBOOT selection and charging  
:
To choose the proper CBOOT value the external  
MOS can be seen as an equivalent capacitor.  
This capacitor CEXT is related to the MOS total  
gate charge :  
The following equation is useful to compute the  
drop on the bootstrap DMOS:  
Qgate  
Tcharge  
=
=
V
drop  
Vdrop IchargeRdson  
R
dson  
Qgate  
Vgate  
=
CEXT  
where Qgate is the gate charge of the external  
power MOS, Rdson is the on resistance of the  
bootstrap DMOS, and Tcharge is the charging time  
of the bootstrap capacitor.  
The ratio between the capacitors CEXT and CBOOT  
is proportional to the cyclical voltage loss .  
It has to be:  
For example: using a power MOS with a total  
gate charge of 30nC the drop on the bootstrap  
CBOOT>>>CEXT  
µ
DMOS is about 1V, if the Tcharge is 5 s. In fact:  
e.g.: if Qgate is 30nC and Vgate is 10V, CEXT is  
3nF. With CBOOT = 100nF the drop would be  
300mV.  
30nC  
µ
5 s  
=
125~ 0.8V  
Vdrop  
Vdrop has to be taken into account when the volt-  
age drop on CBOOT is calculated: if this drop is  
too high, or the circuit topology doesn’t allow a  
sufficient charging time, an external diode can be  
used.  
If HVG has to be supplied for a long time, the  
CBOOT selection has to take into account also the  
leakage losses.  
e.g.: HVG steady state consumption is lower than  
µ
200 A, so if HVG TON is 5ms, CBOOT has to  
Figure 4. Bootstrap Driver.  
DBOOT  
VS  
VBOOT  
H.V.  
VBOOT  
VS  
H.V.  
HVG  
LVG  
HVG  
CBOOT  
CBOOT  
VOUT  
VOUT  
TO LOAD  
TO LOAD  
LVG  
D99IN1056  
a
b
5/10  
L6386  
Figure 5. Turn On Time vs. Temperature  
Figure 8. VBOOT UV Turn On Threshold vs.  
Temperature  
250  
15  
@ Vcc = 15V  
14  
@ Vcc = 15V  
200  
13  
Typ.  
12  
150  
11  
10  
9
Typ.  
100  
50  
0
8
7
-45 -25  
0
25  
50  
75 100 125  
-45 -25  
0
25  
50  
75 100 125  
Tj (°C)  
Tj (°C)  
Figure 6. Turn Off Time vs. Temperature  
Figure 9. VBOOT UV Turn Off Threshold vs.  
Temperature  
15  
250  
@ Vcc = 15V  
@ Vcc = 15V  
14  
13  
12  
11  
10  
9
200  
150  
Typ.  
100  
Typ.  
50  
0
8
7
-45 -25  
0
25  
50  
75 100 125  
-45 -25  
0
25  
50  
75 100 125  
Tj (°C)  
Tj (°C)  
Figure 7. Shutdown Time vs. Temperature  
Figure 10. VBOOT UV Hysteresis  
3
250  
@ Vcc = 15V  
@ Vcc = 15V  
200  
2.5  
2
150  
Typ.  
Typ.  
100  
1.5  
1
50  
0
-45 -25  
0
25  
50  
75 100 125  
-45 -25  
0
25  
50  
75 100 125  
Tj (°C)  
Tj (°C)  
6/10  
L6386  
Figure 11. Vcc UV Turn On Threshold vs. Tem-  
perature  
Figure 14. Output Source Current vs. Tem-  
perature  
1000  
800  
600  
400  
200  
0
15  
14  
13  
@ Vcc = 15V  
Typ.  
12  
Typ.  
11  
10  
9
-45 -25  
0
25  
50  
75 100 125  
-45 -25  
0
25 50 75 100 125  
Tj (°C)  
Tj (°C)  
Figure 12. Vcc UV Turn Off Threshold vs.  
Temperature  
Figure 15. Output Sink Current vs. Tempera-  
ture  
12  
11  
10  
1000  
@ Vcc = 15V  
800  
Typ.  
600  
400  
200  
0
Typ.  
9
8
7
-45 -25  
0
25  
50  
75 100 125  
-45 -25  
0
25  
50  
75 100 125  
Tj (°C)  
Tj (°C)  
Figure 13. Vcc UV Hysteresis vs. Tempera-  
ture  
3
2.5  
Typ.  
2
1.5  
1
-45 -25  
0
25  
50  
75 100 125  
Tj (°C)  
7/10  
L6386  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN. TYP. MAX.  
a1  
B
b
0.51  
1.39  
0.020  
1.65 0.055  
0.065  
0.787  
0.5  
0.020  
0.010  
b1  
D
E
e
0.25  
20  
8.5  
2.54  
15.24  
0.335  
0.100  
0.600  
e3  
F
7.1  
5.1  
0.280  
0.201  
I
L
3.3  
0.130  
DIP14  
Z
1.27  
2.54 0.050  
0.100  
8/10  
L6386  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN.. TYP. MAX.. MIN.. TYP.. MAX..  
A
a1  
a2  
b
1.75  
0.069  
0.009  
0.063  
0.018  
0.010  
0.1  
0.25 0.004  
1.6  
0.35  
0.19  
0.46 0.014  
0.25 0.007  
b1  
C
0.5  
0.020  
c1  
D (1)  
E
45˚ (typ.)  
8.55  
5.8  
8.75 0.336  
0.344  
0.244  
6.2  
0.228  
e
1.27  
7.62  
0.050  
0.300  
e3  
F (1)  
G
3.8  
4.6  
0.4  
4
0.150  
0.181  
0.157  
0.209  
0.050  
0.027  
5.3  
L
1.27 0.016  
0.68  
M
SO14  
S
8˚ (max.)  
(1) D and F do not include mold flash or protrusions. Mold flash or  
potrusions shall not exceed 0.15mm (.006inch).  
9/10  
L6386  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is  
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are  
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products  
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
10/10  

E-L6386D 相关器件

型号 制造商 描述 价格 文档
E-L6386D013TR STMICROELECTRONICS 0.65A HALF BRDG BASED MOSFET DRIVER, PDSO14, SOP-14 获取价格
E-L6452 STMICROELECTRONICS Dual 13x16 Matrix Head Ink Jet Driver 获取价格
E-L6506D STMICROELECTRONICS STEPPER MOTOR CONTROLLER, PDSO20, SOP-20 获取价格
E-L6561 STMICROELECTRONICS 0.7A POWER FACTOR CONTROLLER, PDIP8, MINI, DIP-8 获取价格
E-L6561D STMICROELECTRONICS 0.7A POWER FACTOR CONTROLLER, PDSO8, SO-8 获取价格
E-L6561D013TR STMICROELECTRONICS 0.7A POWER FACTOR CONTROLLER, PDSO8, SO-8 获取价格
E-L6562D STMICROELECTRONICS Transition mode 获取价格
E-L6563 STMICROELECTRONICS IC,POWER FACTOR CONTROLLER,SOP,14PIN 获取价格
E-L6563TR STMICROELECTRONICS 0.003A POWER FACTOR CONTROLLER WITH POST REGULATOR, PDSO14, SO-14 获取价格
E-L6565D STMICROELECTRONICS Quasi-resonant Controller 获取价格

E-L6386D 相关文章

  • 英伟达CEO黄仁勋本周将访问中国,业界高度关注
    2025-01-15
    4
  • 美出台禁令:禁止进口中国联网汽车软硬件技术,引发产业震荡
    2025-01-15
    3
  • 中美科技博弈升级:中国加强美企出口审查,东南亚、印度扩产路受阻
    2025-01-15
    6
  • 台积电美国厂面临封装能力挑战,4nm芯片进入质量验证最后阶段
    2025-01-15
    4