E-L9935013TR

更新时间:2024-12-04 10:24:56
描述:二相步进电机驱动器

E-L9935013TR 概述

二相步进电机驱动器 电机驱动器 运动控制电子器件

E-L9935013TR 规格参数

生命周期:Active零件包装代码:SOIC
包装说明:ROHS COMPLIANT, POWER, MO-166, SOP-20针数:20
Reach Compliance Code:not_compliantECCN代码:EAR99
HTS代码:8542.39.00.01Factory Lead Time:14 weeks
风险等级:0.43其他特性:ALSO REQUIRES 8V TO 24V SUPPLY
模拟集成电路 - 其他类型:STEPPER MOTOR CONTROLLERJESD-30 代码:R-PDSO-G20
JESD-609代码:e3长度:15.9 mm
湿度敏感等级:3功能数量:1
端子数量:20最大输出电流:2.5 A
封装主体材料:PLASTIC/EPOXY封装代码:SOP
封装等效代码:SOP20,.56封装形状:RECTANGULAR
封装形式:SMALL OUTLINE峰值回流温度(摄氏度):245
电源:5,8/24 V认证状态:Not Qualified
座面最大高度:3.6 mm子类别:Motion Control Electronics
最大供电电流 (Isup):10 mA最大供电电压 (Vsup):5.5 V
最小供电电压 (Vsup):4.5 V标称供电电压 (Vsup):5 V
表面贴装:YES端子面层:Matte Tin (Sn) - annealed
端子形式:GULL WING端子节距:1.27 mm
端子位置:DUAL处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:11 mmBase Number Matches:1

E-L9935013TR 数据手册

通过下载E-L9935013TR数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
L9935  
TWO-PHASE STEPPER MOTOR DRIVER  
2 X 1.1A FULL BRIDGE OUTPUTS  
INTEGRATED CHOPPING CURRENT REGU-  
LATION  
MINIMIZED POWER DISSIPATION DURING  
FLYBACK  
OUTPUT STAGES WITH CONTROLLED  
OUTPUT VOLTAGE SLOPES TO REDUCE  
ELECTROMAGNETIC RADIATION  
SHORT-CIRCUIT PROTECTION OF ALL  
OUTPUTS  
ERROR-FLAG FOR OVERLOAD, OPEN LOAD  
AND OVERTEMPERATURE PREALARM  
DELAYED CHANNEL SWITCH-ON TO RE-  
DUCE PEAK CURRENTS  
PowerSO20  
ORDERING NUMBER: L9935  
DESCRIPTION  
The L9935 is a two-phase stepper motor driver  
circuit suited to drive bipolar stepper motors. The  
device can be controlled by a serial interface  
(SPI). All protections required to design a well  
protected system (short-circuit, overtemperature,  
cross conductionetc.) are integrated.  
MAX. OPERATING SUPPLY VOLTAGE 24V  
STANDBY CONSUMPTION TYPICALLY40µA  
SERIAL INTERFACE (SPI)  
BLOCK DIAGRAM  
1
20  
GND  
GND  
~
19  
SR  
A
2
18  
DRIVER  
LOGIC  
OUT  
A1  
OUT  
A2  
17  
16  
N.C.  
V
S
3
SCK  
4
15  
14  
SDI  
OSC  
OSCILLATOR  
DIAGNOSTIC  
BIASING  
5
SDO  
COMMON  
LOGIC  
6
7
8
VCC  
CSN  
EN  
C
DRV  
9
13  
DRIVER  
LOGIC  
OUT  
OUT  
B1  
B2  
12  
11  
SR  
B
~
10  
GND  
GND  
D99AT415  
November 1999  
1/19  
L9935  
PIN CONNECTION  
10  
9
8
7
6
5
4
3
2
1
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GND  
GND  
SR  
OUT  
B1  
B
EN  
OUT  
B2  
CSN  
VCC  
SDO  
SDI  
C
DRV  
OSC  
V
S
N.C.  
OUT  
SCK  
A2  
OUT  
SR  
A
A1  
GND  
GND  
D99AT416  
PIN FUNCTIONS  
Pin No  
Name  
GND  
Description  
1,10,11,20  
Ground. (All ground pins are internally connected to the frame of the device).  
Output 1 of full bridge 1  
2
3
OUTA1  
SCK  
SDI  
Clock for serial interface (SPI)  
Serial data input  
4
5
SDO  
VCC  
CSN  
EN  
Serial data output  
6
5V logic suplly voltage  
7
Chip select (Low active)  
8
Enable (Low active)  
9
OUTB1  
SRB  
Output 1 of full bridge 2  
12  
13  
14  
15  
16  
17  
18  
19  
Cyrrent sense resistor of the chopper regulator for OUTB  
Output 2 of full bridge 2  
OUTB2  
CDRV  
OSC  
VS  
Charge pump buffer capacitor  
Oscillator capacitor or external clock  
Supply voltage  
NC  
Not connected  
OUTA2  
SRA  
Output of full bridge 1  
Current sense resistor of the chopper regulator for OUTA  
2/19  
L9935  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
V
VS  
DC Supply Voltage  
-0.3 to 35  
-0.3 to 40  
VSPulsed  
VOUT (Ai/Bi)  
Pulsed supply voltage T < 400ms  
Output Voltages  
V
internally clamped to VS  
or GND depending on the  
current direction  
IOUT (Ai/Bi)  
DC Output Currents  
Peak Output Currents (T/tp 10)  
1.2  
±2.5  
A
A
±
VSRA/SRB  
VCC  
Sense Resistor Voltages  
Logic Supply Voltages  
-0.3 to 6.2  
-0.3 to 6.2  
-0.3 to 10  
-2 to 8  
V
V
V
V
VCDRV  
Charge Pump Buffer Voltage versus VS  
Logic Input Voltages  
V
SCK, VSDI,  
V
CSN, VEN  
VOSC, VSDO  
Oscillator Voltage Range, Logic Output  
-0.3 to VCC +0.3  
V
Note: ESD for all pins, except pins SDO, SRA and SRB, are according to MIL883C, tested at 2kV, corresponding to a maximum energy  
dissipation of 0.2mJ. SDO, SRA and SRB pins are tested with 800V.  
THERMAL DATA  
Symbol  
Rth j-case  
Rth j-amb  
Parameter  
Value  
5
Unit  
°C/W  
°C/W  
Typical Thermal Resistance Junction to Case  
Typical Thermal Resistance Junction to Ambient  
35  
(6cm2 Ground Plane 35µm Thhickness)  
Rth j-amb, FR4  
Typical Thermal Resistance Junction to Ambient  
(soldered on a FR 4 board with through holes for heat transfer  
and external heat sink applied)  
8
°C/W  
TS  
Storage Temperature  
-40 to 150  
180  
°C  
°C  
TSD  
Typical Thermal Shut-Down Temperature  
ELECTRICAL CHARACTERISTICS  
(8V VS 24V; -40°C Tj 150°C; 4.5V VCC 5.5V, unless oth-  
erwise specified.)1)  
Symbol  
SUPPLY  
IS85  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Total Supply Current  
VS = 14V  
40  
100  
A
µ
IS + IVCC (Both Bridges Off)  
EN = HIGH  
TJ 85°C  
ISOP  
Operating Supply Current  
5V Supply Current  
IOUT Ai/Bi = 0  
4.5  
1.4  
mA  
mA  
fOSC = 30kHz  
VS = 14V  
ICC  
FULL BRIDGES  
EN = LOW  
10  
ROUT, Sink  
RDSON of Sink Transistors  
Current bit  
combinations LL, LH,  
0.4  
0.4  
0.7  
0.7  
ROUT, Source RDSON of Source Transistors  
VS 12V  
ROUT8, Sink  
RDSON of Sink Transistors +  
DSON of Source Transistors  
Current bit  
Combinations LL, LH,  
VS = 8V  
1.6  
3
R
VFWD  
VREV  
tr, tf  
Forward Voltage of the DMOS  
Body Diodes  
EN = HIGH  
1
1.4  
0.9  
1.5  
V
V
I
FWD = 1A; VS 12V  
EN = LOW  
REV = 1A  
Reverse DMOS Voltage  
0.5  
0.6  
I
Rise and Fall Time of Outputs  
OUTAi/Bi  
0.1...0.9 VOUT VS = 14V  
Chopping 550mA  
0.3  
s
µ
3/19  
L9935  
ELECTRICAL CHARACTERISTICS  
(continued)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
SWITCH OFF THRESHOLD OF THE CHOPPER (R1 R = 0.33 )  
2
2)  
VSRHL  
VSRLH  
VSRLL  
Voltage Drops Across R1 R2  
(Voltage at Pin SRA or SRB vs.  
GND)  
Bit 5, 2 = H Bit 4, 1 = L  
Bit 5, 2 = L Bit 4, 1 = H  
Bit 5, 4, 2, 1 = L  
12  
20  
35  
mV  
mV  
mV  
160  
270  
180  
300  
210  
340  
ENABLE INPUT EN  
VEN High  
High Input Voltage  
VCC  
-1.2V  
V
VEN low  
VEN Hyst  
IEN High  
IEN Low  
Low Input Voltage  
Enable Hysteresis  
High Input Current  
Low Input Current  
1.2  
V
V
0.1  
-10  
-3  
VHigh = VCC  
VLOW = 0V  
0
10  
A
A
µ
µ
-10  
-30  
LOGIC INPUTS SDI. SCK, CSN  
VHIGH  
VLOW  
VHyst  
IHIGH  
ILow  
High Input Voltage  
Low Input Voltage  
Hysteresis  
EN = LOW  
2.6  
-0.3  
0.8  
-10  
-3  
8
V
1
V
V
1.2  
0
1.6  
10  
-30  
High Input Current  
Low Input Current  
VHigh = VCC  
VLow = 0V  
µA  
µA  
-10  
LOGIC OUTPUTS (SDO)  
VSDO,High High Output Voltage  
ISDO = -1mA  
ISDO = 1mA  
VCC -1  
VCC  
-0.17  
VCC  
1
V
V
VSDO,Low  
Low Output Voltage  
0.17  
OSCILLATOR  
VOSC, H  
VOSC, L  
IOSC  
High Peak Voltage  
EN = LOW  
EN = LOW  
2.2  
1
2.46  
1.23  
62  
2.6  
1.4  
V
V
Low Peak Voltage  
Charging/Discharging Current  
Oscillator Frequency  
45  
80  
µA  
kHz  
fOSC  
COSC = 1nF  
20  
25  
31  
tStart  
Oscillator Startup Time  
EN = High  
Low  
2/fosc  
5/fosc  
8/fosc  
THERMAL PROTECTION  
TJ-OFF  
Thermal Shut-Down  
Temperature  
160  
180  
200  
30  
°C  
TJ-ALM  
Thermal Prealarm  
Margin Prealarm/Shut-Down  
130  
10  
160  
20  
°C  
TMGN  
K
1) Parameters are tested at 125°C. Values at 140°C are guaranteed by design and correlation.  
2) Currents of combinations LH and LL are sensed at the external resistors. The Current of bit combination HL is sensed internally and  
cannot be adjusted by changing the sense resistors.  
4/19  
L9935  
Figure 1. General Application Circuit Proposal.  
GND  
1
20  
19  
GND  
~
SR  
A
R1 0.33Ω  
OUT  
2
3
18  
OUT  
N.C.  
A1  
DRIVER  
LOGIC  
A2  
17  
16  
SCK  
V
S
SDI  
SDO  
4
5
7
8
6
15  
14  
OSC  
SDI  
INTERFACE  
OSCILLATOR  
DIAGNOSTIC  
BIASING  
C
1nF  
STEPPER  
MOTOR  
OSC  
COMMON  
LOGIC  
CSN  
C
Driver  
100nF  
POWER  
SUPPLY  
µC  
EN  
C
DRV  
C1  
C2  
10µF  
+5V VCC  
100nF  
100nF  
OUT  
9
13  
OUT  
B1  
B2  
DRIVER  
LOGIC  
12  
11  
SR  
B
R2 0.33Ω  
GND  
~
GND  
10  
D99AT417  
loads with a choppercurrent regulation.  
Application hints:  
C1 and C2 should be placed as close to the de-  
vice as possible. Low ESR of C2 is advanta-  
geous. Peak currents through C1 and C2 may  
reach 2A. Care should be taken that the reso-  
nance of C1, C2 together with supply wire induc-  
tances is not the chopping frequencyor a multiple  
of it.  
Outputs A1 and A2 belong to full bridge A  
Outputs B1 and B2 belong to full bridge B  
The polarity of the bridges can be controlled by  
bit0 and bit3 (for full bridge A, bit3, for full bridge  
B, bit0). Bit5, bit4 (for full bridge A) and bit2, bit1  
(for full bridge B) control the currents. Bit3 high  
leads to output A1 high. Bit0 high leads to output  
B1 high.  
FUNCTIONAL DESCRIPTION  
Basic structure  
Current setting Table 1 using a 0.33W sense re-  
sistor.  
The L9935 is a dual full bridge driver for inductive  
Table 1.  
bit5, bit2  
bit4, bit1  
IQX (Typ.)  
IRX/max  
Remark  
H
H
L
H
L
H
L
0
0%  
60mA  
550mA  
900mA  
inernally sensed  
61%  
100%  
L
5/19  
L9935  
Figure 2. Typical average load current dependence on RSense  
.
I
D99AT418  
typical current limitation of high side transistor  
A
1.8  
limit recommended for usual application  
suggested range of operation  
1.1  
1
0.8  
0.6  
0.4  
0.2  
I
LL  
I
LH  
I
HL  
0.075  
0
R
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6  
Full Bridge Function  
Figure 3. Displays a full bridge including the current sense circuit.  
V
S
M
M
M
11  
21  
D
D
D
D
D
D
D
21  
11  
11  
21  
A
2
A
1
DRIVE  
LOGIC  
bit3, (bit0)  
M
LOAD  
12  
22  
D
22  
12  
12  
22  
-
COMP1  
τ
+
R
1
R
EXTERNAL  
INHIBIT  
ON HH  
1
bit5, (bit2)  
bit4, (bit1)  
SENSE RESISTOR  
CURRENT  
LOGIC  
CURRENT ADJUST  
D99AT419  
6/19  
L9935  
by capacitiveload componentsup to 5 nF.  
No current:  
Turning off for example M12 will yield a flyback  
current through D11. (So now the free wheeling  
current flows through M21, the load and D11).  
This leads to a slow current decay during flyback.  
Maximum duty cycles of more than 85% (at fOSC  
= 25kHz) are possible. In this case current flows  
of both bridges will overlap (not shown in Fig. 5).  
Bit 5, bit 4 (correspondingbit 2 and bit1 for bridge  
B) both are HIGH, the current logic will inhibit all  
drivers D11, D12, D21, D22 turning off M11, M12,  
M21, M22 independentlyfrom the signal of the cur-  
rent sense comparator comp 1.  
Turning on:  
Changing bit 5 or bit 4 or bothto LOW will turn on  
either M11 and M22 orM21 and M12 (dependingon  
the phase signal bit 3). Current will start to flow  
through the load. The current will be sensed by  
the drop across R1.  
The threshold of the comparator comp 1 depends  
on the current settings of bit 5 and bit 4.  
Reversing phase:  
Suppose the current flowed via M21, the load and  
M12 before reversing phase. Reversing phase  
M21 and M12 will be turned off. So now the cur-  
rent will flow through D22, the load and D11. This  
leads to a fast current decay.  
The current will rise until it exceeds the turn off  
thresholdof comp 1.  
Chopper control by oscillator  
Both chopping circuits work with offset phase.  
One chopper will switch on the bridge at the  
maximum voltage of the oscillator while the other  
chopper will switch on the bridge at minimum  
voltage of the oscillator.  
MS1 and MS2 blank switching spikes that could  
lead to errors of the current control circuit.  
Chopping:  
Exceeding the threshold of comp 1 the drive logic  
will turn off the sink transistor (M12 or M22). The  
sink transistor periodically is turned on again by  
the oscillator. Immediately after turning on M12 or  
M22 the comparator comp 1 will be inhibited for a  
certain time to blank switch over spikes caused  
Figure 4. Principal chopper control circuit.  
MS1  
inhibit  
SR  
A
+
-
Comp1  
RESET  
DOMINANT  
R
RES1  
RSFF1  
S
Dr1  
Dr2  
OSC  
C
OSCILLATOR  
OSC  
S
RSFF2  
R
iOSC  
2.46V · COSC  
RES2  
fOSC=  
RESET  
DOMINANT  
MOS DRIVERS  
SR  
B
+
-
Comp2  
inhibit  
MS2  
D99AT420  
7/19  
L9935  
Figure 5. Pulse diagram to explain offset chopping.  
V
OSC  
current  
threshold 1  
V
V
SRA  
SRB  
current  
threshold 2  
turn off delay  
due to slope  
velocity control  
total current consumption  
I
VS  
I  
D99AT421  
Using offset chopping the changes of the supply current remain half as large as using non offset chop-  
ping.  
Turning off the oscillator for example by shorting pin OSC to ground will hinder turning on of the bridges  
anymore after the comparatorshave generateda turn off signal.  
External clocking is possible overdriving the charge and discharge currents of the oscillator for example  
with a push pull logic gate. So several devices can be synchronized.  
Protection and Diagnosis Functions  
The L9935 provides several protection functions and error detection functions. Current limitation usually  
is customerdefined by the external current sense resistors. The current sensed there is used to regulate  
the current through the steppermotor windings by pulse width modulation. This PWM regulation protects  
the sink transistors. The source transistors are protected by an internal overcurrent shut down turning off  
the source transistors in case of overload.  
Overload detection of the source transistor will turn off the bridge and set the corresponding error flag.  
To turn on the bridge again a new byte must be written into the interface. (Rising slope of CSN resets  
the overload error flag).  
Both bridges use the same flags. To locate which bridge is affected by an error the bridges can be  
tested individually (One bridge just is turned off to check for the error in the other bridge).  
Short from an Output to the Supply Voltage VS  
The current will be limited by the pulse width modulator. The sink transistor will turn off again after some  
microseconds. The transistor will periodically be turned on again by the oscillator 8 times. After having  
detected short 8 times the low side transistor will remain off until the next data transfer took place. After  
detection of a short to VS we suggest to turn off the corresponding bridge to reduce power dissipation  
for at least 1ms.  
8/19  
L9935  
Diagnosis of a Short to VS  
During the short current through the sink transistor will rise more rapidly than under normal load condi-  
µ
µ
tions. Reaching a peak current of 1.5 times the maximum PWM current between typically 2 s and 5 s  
after turn on will be detected as a short to VS.  
Detecting a short the low side transistor will try to turn on again the next 7 trigger pulse of the oscillator.  
Simultaneouslythe error flag will updated on each pulse.  
Figure 6. Normal PWM current versus short circuit current and detection of short to VS..  
I short threshold  
Q
PWM threshold  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
PWM  
ON short PWM  
ON short PWM  
ON  
short  
PWM  
ON  
short  
PWM detection  
signal (internal)  
Short detection  
signal (internal)  
t
t
Error 1  
t
t
t
:
turn on of the sink transistor  
activation of short threshold  
: activation of PWM threshold  
on  
on  
on  
+ t = t  
+ t  
:
1
short  
D99AT422  
= t  
PWM  
delay  
Between ton and tshort the over current detection is totally blanked.  
Between tshort and tPWM the current threshold is set to 1.5 times the maximum PWM current (1.5 times  
the current of current setting LL).  
Overcurrent now will set the error flag.  
After tPWM the current threshold is the nominal PWM current set by the external resistor. Exceeding this  
current will just turn off the sink transistor. This is considered as normal operation. The error flag is de-  
tachedfrom the comparator after tPWM so no error flag is set during normal pulse width modulation.  
Short from an Output to Ground  
The current through the short will be detected by the protection of the source transistor. The source tran-  
sistor will turn off exceeding a current of typically 1.8A. Minimum overload detection current is 1.2A. To  
obtain proper current regulation (by the sink transistors and not by source transistor shut down) the  
maximum current of the PWMregulator should be set to a maximum value of 1.1A.  
9/19  
L9935  
Diagnosis of a Short to Ground  
Detecting an overload will set an overcurrent error (Error2 = LOW) (bit6). To reset the error flag a new  
byte must be written into the interface. (Reset of the error flag takes place at the rising slope of CSN).  
Shorted Load  
With a shorted load both, the sink- and the source protection or the PWM alone will respond. In either  
case there will be no flyback pulse.  
Diagnosis of a Shorted Load  
Shorting the load two events may take place:  
- overload (of the high side transistor) while low side transistor overcurrent is detected will set the  
following combinations:  
bit6 = LOW  
bit7 = HIGH  
- overload is marginal. So the low side driver may turn off before overload is detected.This leads to the  
combinationbit6 = HIGH and bit7 = LOW.  
Open Load  
An open load will not lead to any flyback pulses. Error detection will take advantageof the flyback pulse.  
Missing the flyback pulse after reversing the polarity of a motor winding bit7 will become LOW.  
Open load will not be tested in the low current mode (current bits HL) to avoid the risk of instable diagno-  
sis at low flayback currents. Open load immediately after reset or power down may on random be de-  
tected in the low current mode too. This diagnosishowever will not persist longer than 8 changes of po-  
larity. We strongly suggest to test open load at a high current mode (combination LH or LL).  
OvertemperaturePrealarm  
Typically 20K before thermal shut down takes place an overtemperature prealarm (bit7 and bit6 low)  
takes place. Typically overtemperatureprealarm temperature is between 150°C and 160°C.  
Application hints using a high resistivestepper motor  
The L9935 was originally targeted on stepper chopping stepper motor application with typical resis-  
tances of 8..12W. Using motors with higher resistance will work too but diagnosis behaviour will slightly  
change. This paragraph shows the details that should be taken in account using diagnosis for high resis-  
tive motors.  
Startup behaviour:  
The device has simple digital filter to avoid triggering diagnosis at a single event that could be random  
noise. This digital filter needs 4 chopping pulses to settle. Using a high resistive motor this chopping  
does not take place. Instead the digital filter samples each time a polarty change takes place. So the first  
three response telegrams after reset may show an ’open load’ error.  
Input data  
High resistive motor (error bits)  
Low resistive motor (error bits)  
Standby  
1st telegram (550mA or 900mA)  
Reverse phase (550mA or 900mA)  
Reverse phase (550mA or 900mA)  
Any data  
HH  
XH  
XH  
XH  
HH  
HH  
HH  
HH  
HH  
HH  
Any data  
H means check for HIGH at the error bits.  
X means don’t care becausefilter is not yet settled.  
10/19  
L9935  
Using 75mA chopping immediatelly after stand by:  
The high resistive motor can be forced to chopping operation in the low current range. This leads to the  
samebehaviouras using a low resistive motor.  
Short to VS detectionusing high resistive motors:  
The short to VS flag is overwritten each time the chopper comparator responds. Having detected a short  
this flagonly can be reset by reachingchopping operation or resetting the circuit (ENN=1). For a high re-  
sistive motor thisleads to the following consequence: Once a short to VS is detected the error flag will  
persist even if the short is removed again until either a reset (ENN=1) or chopping(for example in 75mA  
mode) has taken place. We suggest to return to operation once a short to VS was detected by using the  
low current mode to reset the flag.  
Limitation of the Diagnosis  
The diagnosis depends on either detecting an overcurrent of more than typically 1.8A through the  
source transistor or on not detecting a flyback pulse, or on detecting severe overcurrents of the sink  
transistorimmediately after turn on.  
Small currents bypassing the load will not be detected.  
In the low current range (hold current) the flyback pulse (especially commutating against the supply  
voltage after changing phase) may (depending on the inductivity of the stepper motor windings) be  
too short to be detected correctly. For this reason diagnosis using the flyback pulse is blanked at  
phase reversal at hold current.  
In the low current range (hold current) the current capability of the bridge is reduced on purpose.  
Short to VS may not be detected. In stead the bridge may just chop like normal operation.  
Flyback pulse detection is not blanked during PWM regulation at hold current (here commutation  
voltage is less than 1V thus providing a longer pulse duration.) This however should be taken in ac-  
count using stepper motors with low inductivity (less than 0.5mH). Using motors with such a low in-  
ductivity the flyback voltage in hold mode may decay too fast.  
Motors with extremely low ohmic resistance tend to pump up the current because current decay dur-  
ing flyback approaches zero while at bridge turn on the current will increase. This may lead to over-  
current detection. We suggest to use stepper motors with an ohmic resistance of approximately 3or  
more.  
Partial shorts of windings or shorts of stepper motors with coils in series may still yield a flyback pulses  
that are accepted by the diagnosisas a proper signal.  
Table 2. Error table.  
Error 1  
bit7  
Error 2  
bit6  
Description  
H
L
H
H
Normal operation  
Short to VS (sink overload immediately after turn on)  
shorted load (no flyback)  
open load (no flyback)  
H
L
L
L
short to gnd (source overload, missing flyback is masked)  
overtemperature prealarm  
At stepping rates faster than 1ms/data transfer error flags indicating a short should be used to initiate a  
pause of at least 1ms to allow the power bridges to cool down again.  
11/19  
L9935  
Serial Data Interface (SPI)  
The serial data interface itself consists of the pins SCL (serial clock), SDI (serial data input) and SDO  
(serial data output).  
To especially support bus controlled applications the additional signals EN (chip enable not) and CSN  
(chip select not) are available.  
Startup of the Serial Data Interface  
Falling slope of EN activates the device. After ten.sck the device is ready to work.  
Falling slope of CSN indicates start of frame. Data transfer (reading SDI into the register) takes place at  
the rising slopes of SCK.  
Data transfer of the register to SDO takes place at the falling slope of SCK.  
Rising slope of CSN indicates end of frame. At the end of frame data will only be accepted if modulo 8  
bit (modulo8 falling slopes to SCK) have been transferred. If this is not the case the input will be ignored  
and the bridges will maintain the same status as before.  
SDO is a tristate output.  
SDO is active while CSN = LOW, while CSN = HIGH SDO is high resistive.  
Figure 7. SPI Data/Clock Timing.  
t
en_sck  
EN  
CSN  
SCK  
SDI  
MSB7  
MSB7  
bit6  
bit6  
bit5  
bit5  
bit4  
bit4  
bit3  
bit2  
bit2  
bit1  
bit1  
bit0  
SDO  
bit3  
bit0  
ERROR BITS  
CURRENT A  
POLARITY A  
CURRENT B  
POLARITY B  
A
X
t
Pd  
CSN  
SCK  
SDI  
t
t
1
t
cl  
t
ch  
t
t
1
1
1
t
t
su sh  
bit7  
bit0  
td  
t
zch  
bit7  
bit0  
SDO  
D99AT437  
12/19  
L9935  
Test condition for all propagation times (unless otherwise specified)  
HIGH 3V; LOW 0.8V;tr, tf = 10ns, Enable: ENN Low < 0.8V, ENN High > Vcc -0.8V  
Symbol  
fSCLK  
t1  
Parameter  
SCK-Frequency  
SCK stable before and after  
CSN = 0  
Test Conditions  
Min.  
DC  
100  
Typ.  
Max.  
2MHz  
Unit  
ns  
tch  
tcl  
tsu  
tsh  
td  
tzc  
ten_sck  
tpd  
Width of SCK high pulse  
Width of SCK low pulse  
SDI setup time  
SDI hold time  
SDO delay time (CL = 50pF)  
SDO high Z CSN high  
Setup time ENABLE to SCK  
Propagation delay SPI to  
output QXX  
200  
200  
80  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
80  
100  
100  
HIGH > VCC -1.2V  
30  
2 (*)  
(*) Measured at a transition from High impedance (Bridge off) to bridgeon. (Reversing polarity takes about 1µs longer because the bridge first  
turns off before turning on in reverse direction).  
Table of bits  
bit5,bit4 : current range of bridge A (Outputs A1 and A2)  
bit3  
: polarityof bridge A  
bit2,bit1 : current range of bridge B (Outputs B1 and B2)  
bit0  
: polarityof bridge B  
bit7,bit6 : Error1 and Error 2  
Cascading several Devices  
Cascading several devices can be done using the SDO output to pass data to the next device. The  
whole frame now consists of n byte. n is the number of devices used.  
Figure 8. CascadingSeveral Stepper motor drivers.  
no.1  
no.2  
no.3  
SDO  
SDI  
SDO  
SDI  
SDO  
SDI  
SDO  
µP  
CSN SCK  
CSN  
CSN  
CSN  
SCK  
SCK  
SCK  
D99AT438  
Figure 9. Control sequence for 3 Stepper motor drivers.  
EN  
CSN  
SCK  
SDO  
byte for no. 3  
byte for no. 2  
byte for no. 1  
of µP  
Q
D99AT439  
XX  
13/19  
L9935  
Figure 10. Paralleling several Devices.  
no.1  
no.2  
SDI  
SDO  
SDI  
SDO  
SDO  
SCK  
CSN1  
CSN2  
SCK  
CSN  
µP  
SDI  
SCK  
CSN  
D99AT440  
here usually only one Steppermotor driver is selected at a time while all others are deselected.  
Application Information  
For driving a steppermotor we suggest to use the following codes. The columned ’SDO correct’ shows  
the data returned at SDO in correct function. The columnes presented under ’Error cases’ display the di-  
agnosis bits if errors are detected.  
Examples of control sequences  
Full step mode control sequencesand diagnosis response.  
SDI  
SDO  
Error cases and SDObit7, bit6  
correct  
A
B
A1  
A2  
B1  
B2  
A1  
*)  
S
H
O
R
T
A2  
*)  
S
H
O
R
T
B1  
*)  
S
H
O
R
T
B2 therm.  
*)  
therm.  
O
P
E
N
O
P
E
N
S
H
O
R
T
S
H
O
R
T
S
H
O
R
T
S
H
O
R
T
S
H
O
R
T
alarm  
shut  
down  
(reset  
operating  
codes)  
VS VS VS VS GND GND GND GND  
76 76 76 76 76 76 76 76  
bit  
76543210  
XX111111  
76543210  
76  
76  
76  
76543210  
SDO PRESENT LAST DATA OR 11111111 IN CASE PREV. STATE WAS STAND BY  
11  
10  
10  
01  
11  
10  
10  
01  
11  
11  
11  
10  
10  
01  
11  
10  
00  
00  
00  
00  
00  
00  
00  
00  
00111111  
00111111  
00111111  
00111111  
00111111  
00111111  
00111111  
00111111  
XX011011  
XX010011  
XX010010  
XX011010  
XX011011  
XX010011  
XX010010  
XX011010  
11111111  
11011011  
11010011  
11010010  
11011010  
11011011  
11010011  
11010010  
11  
11  
01  
11  
01  
11  
01  
11  
11  
11  
11  
01  
11  
01  
11  
01  
11  
11  
01  
01  
01  
11  
01  
01  
11  
01  
01  
11  
01  
01  
01  
11  
11  
11  
11  
01  
01  
01  
11  
01  
11  
01  
01  
01  
11  
01  
01  
01  
11  
10  
01  
11  
10  
10  
01  
11  
11  
11  
10  
10  
01  
11  
10  
10  
*) Motor resistance approximatelly 10and VS = 12V. So a short to ground only is detected on one branche of the bridge. Lower resistivity of  
the motor may lead to detection of short to ground on both branches of the bridge leading to code 10 on all steps.  
14/19  
L9935  
These sequences are intended to give the user a good starting point for his software development. Be-  
sides these two there are further possibilities how to implement control sequences for this device (other  
currents, quarters step etc.).  
SDI  
SDO  
A
B
A1  
A2  
B1  
B2  
A1  
*)  
S
H
O
R
T
A2  
*)  
S
H
O
R
T
B1  
*)  
S
H
O
R
T
B2 therm.  
*)  
therm.  
O
P
E
N
O
P
E
N
S
H
O
R
T
S
H
O
R
T
S
H
O
R
T
S
H
O
R
T
S
H
O
R
T
alarm  
shut  
down  
(reset  
operating  
codes)  
VS VS VS VS GND GND GND GND  
bit  
76543210  
76543210  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76  
76543210  
XX111111 previous code  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00111111  
00111111  
00111111  
00111111  
00111111  
00111111  
00111111  
00111111  
00111111  
00111111  
00111111  
00111111  
00111111  
00111111  
00111111  
00111111  
00111111  
11  
11  
11  
11  
11  
11  
11  
01  
01  
01  
01  
01  
11  
11  
11  
01  
01  
11  
10  
10  
10  
10  
01  
11  
11  
11  
11  
10  
01  
10  
01  
11  
11  
11  
11  
11  
11  
11  
11  
11  
10  
10  
10  
01  
11  
11  
11  
11  
10  
10  
10  
11  
11  
11  
11  
10  
10  
10  
01  
11  
11  
11  
11  
10  
10  
10  
01  
11  
11  
11  
11  
11  
11  
11  
11  
11  
10  
10  
10  
01  
11  
11  
11  
11  
10  
XX011111  
XX011111  
XX011111  
XX011011  
XX111011  
XX010011  
XX010111  
XX010010  
XX110010  
XX011010  
XX011110  
XX011011  
XX111011  
XX010011  
XX010111  
XX010010  
XX110010  
11111111  
11011111  
11011111  
11011111  
11011111  
11011011  
11111011  
11010011  
11010111  
11110010  
11011010  
11011110  
11011011  
11111011  
11010011  
11010111  
11010010  
11  
11  
11  
11  
11  
01  
11  
11  
11  
01  
11  
11  
11  
01  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
01  
11  
11  
11  
01  
11  
11  
11  
01  
11  
11  
11  
11  
11  
11  
01  
01  
01  
01  
01  
11  
11  
01  
01  
01  
01  
01  
11  
01  
01  
01  
01  
01  
11  
11  
11  
01  
01  
01  
01  
01  
11  
11  
11  
11  
11  
11  
11  
01  
01  
01  
01  
11  
11  
11  
01  
01  
01  
01  
01  
11  
Double errors: Double errors will create composite codes by an AND operation between columns of the  
same dominance. Open and short to VS are the least dominant error codes. (first 6 error code columns).  
Short to ground is the second dominant error code. detection of short to gnd will overwrite error codes of  
the least dominant kind (open, short to VS). Temperature prealarm and thermal shut down are the most  
dominant error codes. Thermal prealarm returns error code 00 but the device still is working and returns  
the appropriateoperation code (bits 0..5).  
Thermal shut down returns error code 00 and turns off the device. The opcode returnedcorresponds the  
action eventuallyperformed (bit 0..5 become 1).  
For example open bridge A and simultaneously open bridge B will lead to error code 01 by performing  
an AND operation between the two correspondingcolumns.  
*) Motor resistance approximatelly 10and VS = 12V. So a short to ground only is detected on one branche of the bridge. Lower resistivity of  
the motor may lead to detection of short to ground on both branches of the bridge leading to code 10 on all steps.  
Electromagnetic Emission classification(EME)  
ElectromagneticEmission classes presented below are typical data found on bench test. For detailed test de-  
scription please refer to ’ElectromagneticEmission (EME) Measurement of IntegratedCircuits, DC to 1GHz’ of  
VDE/ZVEIwork group767.13andVDE/ZVEIwork group767.14or IEC projectnumber47A1967Ed.This data  
is targetedto boarddesignerstoallow an estimationof emission filtering effortrequired in application.  
Pin  
EME class  
Remark  
GND  
VCC  
E
E
K
G
E
10  
0
e
h
f
1
test  
Blocked with 100nF closemto the device  
EN. SDI, CSN, CSK, SDO in tristate  
SDO  
SDO in low-Z state, no data transfer  
Sourcing output  
Power output A1, A2, B1, B2  
Power output A1, A2, B1, B2  
5
6
f
f
Sinking output in chopping mode fosc = 20kHz  
Electromagnetic Emission is not testedin production.  
15/19  
L9935  
Figure 11. State diagram.  
new telegram  
same polarity  
new telegram  
no error  
DEVICE ON  
CHECKS FOR  
ERRORS 11  
turn on  
new telegram  
flyback OK  
STAND  
BY  
ON  
11  
short  
to gnd  
short  
to VS  
ON  
CHECKING  
FLYBACK 6  
new telegram current = 0  
or reverse polarity  
t
OFF  
OFF  
new  
telegram  
missing  
flyback  
shor  
to VS  
t
shor  
to gnd  
t
new  
telegram  
new  
telegram  
ON  
01  
CHECKING  
FOR ERRORS  
01  
CHECKING  
FOR ERRORS  
10  
no short  
LOGIC  
SELECTS  
BRANCHE  
DEPENDING  
ON PREVIOUS  
STATE  
different polarity  
than before  
no short  
short to VS  
same polarity as before  
short to VS  
D99AT441  
Remark: Return to stand by is possiblefrom every state  
Note: Reversing polarity in low current mode no flyback check will be performed.  
Electromagnetic Emission classification(EME)  
Electromagnetic Emission classes presentel below are typicaldata found on bench test. For detailed test  
description please refer to ’Electromagnetic Emission (EME) Measurement of Integrated Circuits, DC to  
1GHz’ of VDE/ZVEI work group 767.13 and VDE/ZVEI work group 767.14 or IEC project number 47A  
1967Ed. This data is targeted to board designers to allow an estimation of emission filtering effort re-  
quired in application.  
Pin  
EME class  
Remark  
GND  
VCC  
E
E
K
G
E
10  
o
e
h
f
1test  
Blocked with 100nF close to the device  
EN, SDI, CSN, SCK, SDO in tristate  
SDO  
SDO in low-state, no data transfer  
Sourcing output  
Power output A1, A2, B1, B2  
Power output A1, A2, B1, B2  
5
6
f
f
Sinking output in chopping mode fOSC = 20kHz  
Electromagnetic Emission is not testedin production.  
16/19  
L9935  
Figure 12. EMC Compatibility for L9935  
100 H  
Vbatt  
47nF  
47nF100 F  
Vs  
Out 1  
Out 2  
Out 3  
Out 4  
to motors  
4* 2,2nF  
GND 1/101/1/20  
17/19  
L9935  
18/19  
L9935  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is  
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are  
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products  
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
1999 STMicroelectronics – Printed in Italy – All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China- Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
19/19  

E-L9935013TR 替代型号

型号 制造商 描述 替代类型 文档
L9935013TR STMICROELECTRONICS Two-Phase Stepper Motor Driver 完全替代
L9935 STMICROELECTRONICS TWO-PHASE STEPPER MOTOR DRIVER 类似代替

E-L9935013TR 相关器件

型号 制造商 描述 价格 文档
E-LIS2L02AS4 STMICROELECTRONICS MEMS INERTIAL SENSOR: 2-Axis - 【2g/【6g LINEAR ACCELEROMETER 获取价格
E-LIS2L02AS4TR STMICROELECTRONICS MEMS INERTIAL SENSOR: 2-Axis - 【2g/【6g LINEAR ACCELEROMETER 获取价格
E-LIS3L02AS4 STMICROELECTRONICS MEMS INERTIAL SENSOR 3-Axis - 【2g/【6g LINEAR ACCELEROMETER 获取价格
E-LIS3L02AS4TR STMICROELECTRONICS MEMS INERTIAL SENSOR 3-Axis - 【2g/【6g LINEAR ACCELEROMETER 获取价格
E-LS1240A STMICROELECTRONICS Low current consumption, in order to allow the parallel operation of 4 devices 获取价格
E-LS1240AD1 STMICROELECTRONICS Electronic two-tone ringer 获取价格
E-MA-S54A ACCRETECH SURFCOM · CONTOURECORD Option 获取价格
E-MA-S62A ACCRETECH SURFCOM · CONTOURECORD Option 获取价格
E-MA-S63A ACCRETECH SURFCOM · CONTOURECORD Option 获取价格
E-MA-S64A ACCRETECH SURFCOM · CONTOURECORD Option 获取价格

E-L9935013TR 相关文章

  • 苹果Apple Intelligence适配百度AI模型遇技术挑战
    2024-12-05
    12
  • 苹果携手亚马逊,定制AI芯片助力Apple Intelligence模型训练
    2024-12-05
    10
  • 革命性突破:光衍射极限下微型步行机器人成功面世
    2024-12-05
    12
  • Soitec将为格罗方德9SW平台供应300mm RF-SOI晶圆
    2024-12-05
    11