U2008B-XFPG3

更新时间:2025-01-12 05:30:53
品牌:TEMIC
描述:AC Motor Controller, 0.03A, BIPolar, PDSO8, SO-8

U2008B-XFPG3 概述

AC Motor Controller, 0.03A, BIPolar, PDSO8, SO-8 运动控制电子器件

U2008B-XFPG3 规格参数

生命周期:Transferred包装说明:SO-8
Reach Compliance Code:unknown风险等级:5.61
模拟集成电路 - 其他类型:AC MOTOR CONTROLLERJESD-30 代码:R-PDSO-G8
功能数量:1端子数量:8
最大输出电流:0.03 A封装主体材料:PLASTIC/EPOXY
封装代码:SOP封装形状:RECTANGULAR
封装形式:SMALL OUTLINE认证状态:Not Qualified
表面贴装:YES技术:BIPOLAR
端子形式:GULL WING端子位置:DUAL
Base Number Matches:1

U2008B-XFPG3 数据手册

通过下载U2008B-XFPG3数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
U2008B  
Low-Cost Phase-Control IC with Soft Start  
Description  
The U2008B is designed as a phase-control circuit in with load-current feedback and overload protection are  
bipolar technology. It enables load-current detection as preferred applications.  
well as mains-compensated phase control. Motor control  
FD eFautlul wreavse current sensing  
D Internal supply-voltage monitoring  
D Mains supply variation compensated  
D Variable soft-start or load-current sensing  
D Voltage and current synchronization  
D Automatic retriggering switchable  
D Triggering pulse typ. 125 mA  
D Current requirement v 3 mA  
Applications  
D Low-cost motor control  
D Domestic appliance  
Block Diagram  
22 kW/2W  
BYT51K  
230 V ~  
R
1
D
1
R
R
8
2
a
max  
330 k  
W
1 M  
W
Load  
7
6
Limiting  
detector  
Voltage  
detector  
Mains voltage  
compensation  
Automatic  
retriggering  
U2008B  
Phase  
control unit  
–V  
5
4
S
Current  
detector  
TIC  
226  
ö
=
f
(
V
)
3
C
1
22 m F/  
R
3
25 V  
Supply  
voltage  
limiting  
8
1
GND  
180  
W
Reference  
voltage  
Full wave load  
current detector  
+
Voltage  
monitoring  
R
14  
Soft start  
47 k  
W
2
3
P
1
R
10  
Set point  
100 k  
W
^
R
6
V
= ±250 mV  
(R6)  
C
C
4
Load current  
compensation  
3
R
7
3.3 nF  
100 nF  
Figure 1. Block diagram with typical circuit: Load current sensing  
Rev. A4, 12-Jan-01  
1 (10)  
U2008B  
Ordering Information  
Extended Type Number  
U2008B-x  
Package  
DIP8  
SO8  
Remarks  
Tube  
Tube  
U2008B-xFP  
U2008B-xFPG3  
SO8  
Taped and reeled  
BYT51K  
230 V ~  
L
22 kW/2W  
R
1
D
1
R
2
R
8
a
max  
680 kW  
470 kW  
Load  
7
6
Limiting  
detector  
Voltage  
detector  
Mains voltage  
compensation  
Automatic  
retriggering  
U2008B  
Phase  
control unit  
–V  
5
4
S
Current  
detector  
TIC  
226  
ö
=
f
(
V
)
3
C
1
100 m F/  
25 V  
R
3
Supply  
voltage  
limiting  
8
1
GND  
180W  
Reference  
voltage  
Full wave load  
current detector  
+
Voltage  
monitoring  
Soft start  
2
3
P
R
10  
1
Set point  
68 kW  
Soft start  
4.7m F/ 25 V  
50 kW  
C
5
C
3
C
4
R
7
220 kW  
10 nF  
100 nF  
N
Figure 2. Block diagram with typical circuit: Soft start  
2 (10)  
Rev. A4, 12-Jan-01  
U2008B  
Pin Description  
Pin  
1
2
Symbol  
Function  
Load current sensing  
Ramp voltage  
Output  
I
1
2
3
4
8
7
6
5
sense  
I
sense  
Cϕ  
3
Control Control input / compensation  
output  
V
sync.  
Cϕ  
U2008B  
4
5
6
7
8
GND  
–V  
Ground  
Rϕ  
Control  
GND  
Supply voltage  
Ramp current adjustment  
Voltage synchronization  
S
Rϕ  
V
sync.  
*V  
S
Output Trigger output  
Figure 3. Pinning  
Mains Supply, Pin 5, Figure 2  
Phase Control, Pin 6  
The function of the phase control is largely identical to  
that of the well-known IC U211B. The phase angle of the  
The integrated circuit U2008B, which also contains  
voltage limiting, can be connected via D and R via the  
1
1
trigger pulse is derived by comparing the ramp voltage V  
2
mains supply. Supply voltage * between Pin 4 (pos. ă)  
,
at Pin 2 with the set value on the control input, Pin 3. The  
and Pin 5 * is smoothed by C .  
1
slope of the ramp is determined by C and its charging  
3
current I .  
ö
Series resistance R can be calculated as follows:  
1
The charging current can be regulated, changed, altered  
VM – VSmax  
using R at Pin 6. The maximum phase angle, α  
max,  
8
R
1max + 0.85 x  
2 x Itot  
(minimum current flow angle  
ö
) can also be adjusted  
min  
by using R (see figure 5).  
8
where:  
When the potential on Pin 2 reaches the set point level of  
Pin 3, a trigger pulse is generated whose pulse width, t ,  
V
V
+ Mains voltage  
+ Maximum supply voltage  
+ I )I = Total current compensation  
= Maximum current consumption of the IC  
= Current consumption of the external  
components  
M
p
Smax  
is determined from the value of C (t = 9 m s/nF, see  
p
3
I
I
I
tot  
Smax  
x
figure 7). At the same time, a latch is set with the output  
pulse, as long as the automatic retriggering has not been  
activated, then no more pulses can be generated in that  
half cycle. Control input at Pin 3 (with respect to Pin 4)  
Smax  
x
has an active range from –9 V to –2 V. When V = –9 V,  
3
An operation with external stabilized DC voltage is not  
recommended.  
then the phase angle is at its maximum α  
i.e., the  
max,  
current flow angle is minimum. The minimum phase  
angle α is set with V w –1 V.  
min  
3
Automatic Retriggering  
Voltage Monitoring  
The current-detector circuit monitors the state of the triac  
after triggering by measuring the voltage drop at the triac  
gate. A current flow through the triac is recognized when  
the voltage drop exceeds a threshold level of typ. 40 mV.  
When the voltage is built up, uncontrolled output pulses  
are avoided by internal voltage monitoring. Apart from  
that, all latches in the circuit (phase control, load limit  
regulation) are reset and the soft-start capacitor is short  
circuited. This guarantees a specified start-up behavior  
each time the supply voltage is switched on or after short  
interruptions of the mains supply. Soft start is initiated  
after the supply voltage has been built up. This behavior  
If the triac is quenched within the relevant half wave after  
triggering (for example owing to low load currents before  
or after the zero crossing of current wave, or for commu-  
tator motors, owing to brush lifters), the automatic  
retriggering circuit ensures immediate retriggering, if  
guarantees  
a gentle start-up for the motor and  
necessary with a high repetition rate, t /t , until the triac  
pp  
p
automatically ensures the optimum run-up time.  
remains reliably triggered.  
Rev. A4, 12-Jan-01  
3 (10)  
U2008B  
Mains  
Current Synchronization, Pin 8  
Current synchronization fulfils two functions:  
R
2
*Monitoring the current flow after triggering.  
In case the triac extinguishes again or it does not switch  
on, automatic triggering is activated as long as  
triggering is successful.  
7
2x  
U2008B  
BZX55  
C6V2  
*Avoiding triggering due to inductive load.  
In the case of inductive load operation, the current  
synchronization ensures that in the new half wave no  
pulse is enabled as long as there is a current available  
from the previous half wave, which flows from the  
opposite polarity to the actual supply voltage.  
4
Figure 4. Suppression of automatic retriggering and mains  
voltage compensation  
A special feature of the IC is the realization of current  
synchronization. The device evaluates the voltage at the  
pulse output between the gate and reference electrode of  
the triac. This results in saving separate current  
synchronization input with specified series resistance.  
A further feature of the IC is the selection between soft-  
start or load-current compensation. Soft start is possible  
by connecting a capacitor between Pin 1 and Pin 4, see  
figure 8. In the case of load-current compensation, Pin 1  
is directly connected with resistance R , which is used for  
6
sensing load current.  
Voltage Synchronization with Mains Voltage  
Compensation, Pin 7  
Load Current Detection, Pin 1  
The voltage detector synchronizes the reference ramp  
with the mains supply voltage. At the same time, the  
mains-dependent input current at Pin 7 is shaped and rec-  
tified internally. This current activates the automatic  
retriggering and at the same time is available at Pin 3 (see  
figure 9). By suitable dimensioning, it is possible to attain  
the specified compensation effect. Automatic  
retriggering and mains voltage compensation are not  
The circuit continuously measures the load current as a  
voltage drop at resistance R . The evaluation and use of  
6
both half waves results in a quick reaction to load-current  
change. Due to voltage at resistance R , there is an  
6
increase of input current at Pin 1. This current increase  
controls the internal current source, whose positive  
current values is available at Pin 3 (see figure 11). The  
output current generated at Pin 3 contains the difference  
from the load-current detection and from the  
mains-voltage compensation (see figure 9).  
activated until |V – | increases to 8 V. The resistance  
7
4
R
defines the width of the zero voltage cross-over  
sync.  
pulse, synchronization current, and hence the mains sup-  
ply voltage compensation current. If the mains voltage  
compensation and the automatic retriggering are not  
required, both functions can be suppressed by limiting  
The effective control voltage is the final current at Pin 3  
together with the desired value network. An increase of  
mains voltage causes the increase of control angle α. An  
increase of load current results in a decrease in the control  
angle. This avoids a decrease in revolution by increasing  
the load as well as the increase of revolution by the  
increment of mains supply voltage.  
|V  
7 – 4  
| v 7 V (see figure 4).  
4 (10)  
Rev. A4, 12-Jan-01  
U2008B  
Absolute Maximum Ratings  
V = 14 V, reference point Pin 4, unless otherwise specified  
S
Parameters  
Symbol  
Value  
30  
100  
5
20  
Unit  
mA  
mA  
mA  
mA  
Current limitation  
Pin 5  
–I  
S
–i  
S
t v  
1
1
0
0
m s  
m s  
Sync. currents  
Pin 7  
Pin 3  
"I  
"i  
syncV  
syncV  
t v  
Phase control  
Control voltage  
Input current  
–V  
" I  
V to 0  
500  
0.5  
V
m A  
mA  
I
S
I
Charge current  
Pin 6  
– I  
max  
ϕ
Load current monitoring / Soft start, Pin 1  
Input current  
Input voltage  
Pulse output  
I
V
1
mA  
V
I
–40 to + 125  
I
Input voltage  
Pin 8  
+V  
–V  
2
V
V
I
I
V
S
Storage temperature range  
Junction temperature range  
T
stg  
*40 to )125  
*10 to )125  
C
T
C
j
Thermal Resistance  
Parameters  
Symbol  
Value  
Unit  
Junction ambient  
DIP8  
SO8 on p.c.  
SO8 on ceramic  
R
R
R
110  
220  
140  
K/W  
K/W  
K/W  
thJA  
thJA  
thJA  
Rev. A4, 12-Jan-01  
5 (10)  
U2008B  
Electrical Characteristics  
V + –13 V, T  
= 25°C, reference point Pin 4, unless otherwise specified  
S
amb  
Parameters  
Test Conditions / Pins  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Supply  
Pin 5  
Supply-voltage limitation  
–I = 3.5 mA  
–I = 30 mA  
S
–V  
–V  
14.5  
14.6  
16.5  
16.8  
V
V
S
S
S
Current requirement  
Voltage monitoring  
Turn-on threshold  
Phase control  
Pins 1, 4 and 7 open  
–I  
3.0  
mA  
S
Pin 5  
–V  
11.3  
12.3  
V
TON  
Input current  
Voltage sync.  
Current sync.  
" IL = 2 mA  
Pin 7  
Pin 8  
Pin 7  
"I  
"I  
0.15  
8.5  
2
30  
9.0  
mA  
m A  
V
syncV  
3
8.0  
syncI  
Voltage limitation  
Reference ramp, see figure 5  
Charge current  
"V  
syncV  
Pin 7  
Pin 2  
I
–V  
1
1.85  
100  
2.05  
m A  
V
ϕ
Start voltage  
1.95  
max  
Temperature coefficient of  
start voltage  
Pin 2  
Pins 6 – 5  
Pin 6  
–TC  
–0.003  
1.02  
0.03  
0.06  
%/K  
V
%/K  
%/K  
R
R reference voltage  
I
I
I
=
=
=
1
1
0 Α  
0 Αm  
m
V
R
ϕ
0.96  
100  
1.10  
150  
ϕ
ϕ
Temperature coefficient  
TC  
TC  
VR  
VR  
ϕ
ϕ
ϕ
1
Α
m
ϕ
Pulse output, see figure 6  
Output-pulse current  
Output-pulse width  
Automatic retriggering  
Turn-on threshold voltage  
Repetition rate  
Pin 8  
V = – 1.2 , R = 0  
W
I
125  
30  
mA  
m s  
8
GT  
0
C = 3.3 nF, V = V  
t
3
S
limit  
p
Pin 8  
"V  
20  
3
60  
7.5  
mV  
t
p
ION  
I w 150 m A  
t
5
7
pp  
Soft start, see figure 8  
Starting current  
Final current  
Discharge current  
Output current  
Pin 1  
V
V
= 8 V  
= –2 V  
I
I
–I  
–I  
5
10  
25  
15  
40  
m A  
m A  
mA  
mA  
1-4  
0
0
15  
0.5  
0.2  
1-4  
0
0
Pin 3  
2
Mains voltage compensation, see figure 9  
Current transfer gain I /I  
Pins 7, Pin 3  
Pins 1 and 2 open  
= V = V = 0, Pin 3  
7
3
G
"IR  
14  
17  
20  
2
i
Reverse current  
V
m
A
(R6)  
3
7
Load-current detection, V = 0, see figure 11  
7
Transfer gain  
Offset current  
I /V  
G
I0  
0.280  
0
0.320  
3
0.370  
6
m A/mV  
m A  
3
1
V = 0,V = –8 V, Pin 3  
1 3  
Input voltage  
Input offset voltage  
Pin 1  
Pin 1  
–V  
"V  
300  
400  
6
mV  
mV  
I
0
6 (10)  
Rev. A4, 12-Jan-01  
U2008B  
1
0
250  
200  
150  
100  
50  
6.8 nF  
4.7 nF 3.3 nF  
33 nF  
10 nF  
2.2 nF  
–1  
–2  
–3  
C =1m F  
5
10m F  
C
= 1.5 nF  
ö/ t  
Supply  
R =22kW/2W  
4.7m F  
–4  
–5  
1
C =100m F/25V  
1
0
5
0
1
2
3
4
0
200  
400  
600  
(R ) ( kW )  
800  
1000  
t ( s )  
R
ö
8
Figure 5. Ramp control  
Figure 8. Option soft start  
120  
100  
0
40  
80  
V
GT  
=–1.2V  
80  
60  
40  
120  
160  
200  
20  
0
Pins 1  
V =–13V  
Reference Point  
Pin 10  
s
1000  
0
200  
400  
600  
( W )  
800  
2
–2  
–1  
0
1
R
GT  
I ( mA )  
7
Figure 6. Pulse output  
Figure 9. Mains voltage compensation  
400  
300  
200  
100  
80  
Max. Series Resistance  
Dt /DCö=9m s/nF  
p
V =230V  
M
60  
40  
20  
0
100  
0
30  
10  
0
10  
20  
0
2
4
6
8
Cö = ( nF )  
I ( mA )  
S
Figure 7. Output-pulse width  
Figure 10. Maximum resistance of R1  
Rev. A4, 12-Jan-01  
7 (10)  
U2008B  
200  
10  
8
Reference Point  
Pin 8  
V =V =V  
8
6
Ref  
Power Dissipation at Series Resistance  
V =–13V  
S
V
15  
=V =0V  
160  
120  
10  
6
80  
40  
0
4
2
0
400  
15  
–400  
–200  
0
200  
0
3
6
9
12  
V
(R6)  
( mV )  
I ( mA )  
S
Figure 11. Load-current detection  
Power Dissipation at Series Resistance R  
Figure 13. Power dissipation of R1  
according to current consumption  
10  
8
1
6
4
2
0
50  
0
10  
20  
30  
40  
R ( kW )  
1
Figure 12. Power dissipation of R1  
8 (10)  
Rev. A4, 12-Jan-01  
U2008B  
Package Information  
Package DIP8  
Dimensions in mm  
9.8  
9.5  
7.77  
7.47  
1.64  
1.44  
4.8 max  
3.3  
6.4 max  
0.5 min  
0.36 max  
0.58  
0.48  
9.8  
8.2  
2.54  
7.62  
8
5
technical drawings  
according to DIN  
specifications  
1
4
Package SO8  
Dimensions in mm  
5.2  
4.8  
5.00  
3.7  
4.85  
1.4  
0.2  
0.25  
0.10  
0.4  
3.8  
1.27  
6.15  
5.85  
3.81  
8
5
technical drawings  
according to DIN  
specifications  
1
4
Rev. A4, 12-Jan-01  
9 (10)  
U2008B  
Ozone Depleting Substances Policy Statement  
It is the policy of Atmel Germany GmbH to  
1. Meet all present and future national and international statutory requirements.  
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems  
with respect to their impact on the health and safety of our employees and the public, as well as their impact on  
the environment.  
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as  
ozone depleting substances (ODSs).  
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid  
their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these  
substances.  
Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed  
in the following documents.  
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively  
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental  
Protection Agency (EPA) in the USA  
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.  
Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances  
and do not contain such substances.  
We reserve the right to make changes to improve technical design and may do so without further notice.  
Parameters can vary in different applications. All operating parameters must be validated for each customer  
application by the customer. Should the buyer use Atmel Wireless & Microcontrollers products for any unintended  
or unauthorized application, the buyer shall indemnify Atmel Wireless & Microcontrollers against all claims,  
costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death  
associated with such unintended or unauthorized use.  
Data sheets can also be retrieved from the Internet:  
http://www.atmel–wm.com  
Atmel Germany GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany  
Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423  
10 (10)  
Rev. A4, 12-Jan-01  

U2008B-XFPG3 相关器件

型号 制造商 描述 价格 文档
U2008B-XFPG3Y ATMEL Low-cost Phase-control IC with Soft Start 获取价格
U2008B-XFPG3Y MICROCHIP AC Motor Controller, 0.03A, BIPolar, PDSO8 获取价格
U2008B-XFPY ATMEL Low-cost Phase-control IC with Soft Start 获取价格
U2008B-XFPY MICROCHIP AC Motor Controller, 0.03A, BIPolar, PDSO8, LEAD FREE, SO-8 获取价格
U2008B-XY ATMEL Low-cost Phase-control IC with Soft Start 获取价格
U2008B-XY MICROCHIP AC Motor Controller, 0.03A, BIPolar, PDIP8 获取价格
U2008B_07 ATMEL Low-cost Phase-control IC with Soft Start 获取价格
U200G YEASHIN ULTRAFAST SWITCHING RECTIFIER VOLTAGE - 50 to 1000 Volts CURRENT - 2.0 Amperes 获取价格
U201 INTERSIL N-CHANNEL JFET 获取价格
U20100DG THINKISEMI 20.0 Ampere Heatsink Doubler Polarity Ultra Fast Recovery Rectifiers 获取价格

U2008B-XFPG3 相关文章

  • 中国台湾取消对台积电海外生产2nm芯片限制
    2025-01-14
    4
  • 英伟达AI芯片机架过热问题引发关注,微软等客户削减订单
    2025-01-14
    3
  • Arm拟大幅提高芯片设计授权费用300%,并考虑自主开发芯片
    2025-01-14
    5
  • Rapidus计划6月向博通交付2nm芯片,日本半导体产业迈出新步伐
    2025-01-14
    4