SN75374DRG4

更新时间:2024-12-04 05:34:59
品牌:TI
描述:四路 MOSFET 驱动器 | D | 16 | 0 to 70

SN75374DRG4 概述

四路 MOSFET 驱动器 | D | 16 | 0 to 70 MOSFET 驱动器

SN75374DRG4 规格参数

是否无铅: 不含铅是否Rohs认证: 符合
生命周期:Active零件包装代码:SOIC
包装说明:SOP, SOP16,.25针数:16
Reach Compliance Code:compliantECCN代码:EAR99
HTS代码:8542.39.00.01Factory Lead Time:6 weeks
风险等级:5.16其他特性:ALSO REQUIRES 24V SUPPLY
高边驱动器:YES输入特性:STANDARD
接口集成电路类型:NAND GATE BASED MOSFET DRIVERJESD-30 代码:R-PDSO-G16
JESD-609代码:e4长度:9.9 mm
湿度敏感等级:1功能数量:4
端子数量:16最高工作温度:70 °C
最低工作温度:输出特性:TOTEM-POLE
最大输出电流:0.5 A标称输出峰值电流:0.5 A
输出极性:INVERTED封装主体材料:PLASTIC/EPOXY
封装代码:SOP封装等效代码:SOP16,.25
封装形状:RECTANGULAR封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):260电源:5/24 V
认证状态:Not Qualified座面最大高度:1.75 mm
子类别:MOSFET Drivers最大压摆率:47 mA
最大供电电压:5.25 V最小供电电压:4.75 V
标称供电电压:5 V电源电压1-最大:24 V
电源电压1-分钟:4.75 V电源电压1-Nom:20 V
表面贴装:YES技术:BIPOLAR
温度等级:COMMERCIAL端子面层:Nickel/Palladium/Gold (Ni/Pd/Au)
端子形式:GULL WING端子节距:1.27 mm
端子位置:DUAL处于峰值回流温度下的最长时间:NOT SPECIFIED
断开时间:0.05 µs接通时间:0.06 µs
宽度:3.9 mmBase Number Matches:1

SN75374DRG4 数据手册

通过下载SN75374DRG4数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
ꢀ ꢁꢂ ꢃꢄ ꢂꢅ  
ꢆ ꢇꢈꢉꢊ ꢇꢋꢌ ꢍ ꢎ ꢏꢀ ꢐꢍ ꢑ ꢉ ꢊꢒ ꢓ ꢍꢊ  
SLRS028A − SEPTEMBER 1988 − REVISED NOVEMBER 2004  
D OR N PACKAGE  
(TOP VIEW)  
D Quadruple Circuits Capable of Driving  
High-Capacitance Loads at High Speeds  
D Output Supply Voltage Range From 5 V  
V
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
CC1  
CC2  
1Y  
to 24 V  
4Y  
D Low Standby Power Dissipation  
4A  
1A  
1E1  
1E2  
2A  
D V  
Supply Maximizes Output Source  
Voltage  
2E2  
CC3  
12 2E1  
11  
10  
9
3A  
3Y  
V
description/ordering information  
2Y  
GND  
CC3  
The SN75374 is a quadruple NAND interface  
circuit designed to drive power MOSFETs from  
TTL inputs. It provides the high current and  
voltage necessary to drive large capacitive loads  
at high speeds.  
The outputs can be switched very close to the V  
supply rail when V  
is about 3 V higher than V . V  
CC2 CC3  
CC2  
CC3  
also can be tied directly to V  
when the source voltage requirements are lower.  
CC2  
ORDERING INFORMATION  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
PACKAGE  
T
A
PDIP (N)  
SOIC (D)  
Tube of 25  
Tube of 40  
Reel of 2500  
SN75374N  
SN75374D  
SN75374DR  
SN75374N  
0°C to 70°C  
SN75374  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design  
guidelines are available at www.ti.com/sc/package.  
logic diagram (positive logic)  
4
1E1  
1E2  
5
12  
2E1  
13  
3
2E2  
1A  
2
7
6
2A  
3A  
4A  
10  
15  
11  
14  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2004, Texas Instruments Incorporated  
ꢋꢙ ꢘ ꢤꢟꢞ ꢜ ꢝ ꢞ ꢘꢖ ꢗꢘ ꢙ ꢚ ꢜ ꢘ ꢝ ꢡꢠ ꢞ ꢕꢗ ꢕꢞꢛ ꢜꢕ ꢘꢖꢝ ꢡꢠ ꢙ ꢜꢦ ꢠ ꢜꢠ ꢙ ꢚꢝ ꢘꢗ ꢑꢠꢧ ꢛꢝ ꢒꢖꢝ ꢜꢙ ꢟꢚ ꢠꢖꢜ ꢝ  
ꢝ ꢜ ꢛ ꢖꢤ ꢛ ꢙꢤ ꢨ ꢛ ꢙꢙ ꢛ ꢖ ꢜꢩꢥ ꢋꢙ ꢘ ꢤꢟꢞ ꢜꢕꢘꢖ ꢡꢙ ꢘꢞ ꢠꢝ ꢝꢕ ꢖꢪ ꢤꢘꢠ ꢝ ꢖꢘꢜ ꢖꢠ ꢞꢠ ꢝꢝ ꢛꢙ ꢕꢣ ꢩ ꢕꢖꢞ ꢣꢟꢤ ꢠ  
ꢜ ꢠ ꢝ ꢜꢕ ꢖꢪ ꢘꢗ ꢛ ꢣꢣ ꢡꢛ ꢙ ꢛ ꢚ ꢠ ꢜ ꢠ ꢙ ꢝ ꢥ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢂ ꢅ  
ꢆꢇ ꢈ ꢉꢊ ꢇ ꢋꢌ ꢍ ꢎ ꢏꢀ ꢐꢍ ꢑ ꢉꢊ ꢒ ꢓꢍ ꢊ  
SLRS028A − SEPTEMBER 1988 − REVISED NOVEMBER 2004  
schematic (each driver)  
V
CC1  
V
CC3  
V
CC2  
To Other Drivers  
Input A  
Enable E1  
Output Y  
Enable E2  
GND  
To Other Drivers  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range (see Note 1):V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 25 V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 30 V  
CC1  
CC2  
CC3  
V
V
Input voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V  
I
Peak output current, I (t < 10 ms, duty cycle < 50%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mA  
I
w
Package thermal impedance, θ (see Notes 2 and 3): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W  
JA  
N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67°C/W  
Operating virtual junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Voltage values are with respect to network ground terminal.  
2. Maximum power dissipation is a function of T (max), θ , and T . The maximum allowable power dissipation at any allowable  
J
JA  
A
ambient temperature is P = (T (max) − T )/θ . Operating at the absolute maximum T of 150°C can affect reliability.  
D
J
A
JA  
J
3. The package thermal impedance is calculated in accordance with JESD 51-7.  
recommended operating conditions  
MIN NOM  
MAX  
5.25  
24  
UNIT  
V
V
V
V
V
V
V
Supply voltage  
4.75  
4.75  
5
20  
24  
4
CC1  
CC2  
CC3  
Supply voltage  
V
Supply voltage  
V
28  
V
CC2  
0
− V  
Voltage difference between supply voltages  
High-level input voltage  
Low-level input voltage  
High-level output current  
Low-level output current  
Operating free-air temperature  
10  
V
CC3 CC2  
2
V
IH  
IL  
0.8  
10  
40  
V
I
I
mA  
mA  
°C  
OH  
OL  
T
A
0
70  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢂꢅ  
ꢆ ꢇꢈꢉꢊ ꢇꢋꢌ ꢍ ꢎ ꢏꢀ ꢐꢍꢑ ꢉ ꢊꢒ ꢓ ꢍꢊ  
SLRS028A − SEPTEMBER 1988 − REVISED NOVEMBER 2004  
electrical characteristics over recommended ranges of V  
temperature (unless otherwise noted)  
, V  
, V  
, and operating free-air  
CC1 CC2 CC3  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
V
Input clamp voltage  
I = 12 mA  
1.5  
V
IK  
I
V
V
V
V
V
V
= V  
= V  
= V  
= V  
+ 3 V,  
+ 3 V,  
V
V
V
V
= 0.8 V,  
= 0.8 V,  
= 0.8 V,  
= 0.8 V,  
= 10 mA  
= 2 V,  
I
I
I
I
= 100 µA  
= 10 mA  
= 50 µA  
= 10 mA  
V
V
− 0.3  
− 1.3  
V
0.1  
− 0.9  
− 0.7  
− 1.8  
0.15  
CC3  
CC3  
CC3  
CC3  
CC2  
CC2  
CC2  
CC2  
IL  
OH  
OH  
OH  
OH  
CC2  
CC2  
CC2  
CC2  
CC2  
V
V
V
IL  
CC2  
High-level output voltage  
V
OH  
,
,
V
− 1  
IL  
CC2  
V
CC2  
− 2.5  
IL  
= 2 V,  
I
0.3  
0.5  
IH  
OL  
V
V
Low-level output voltage  
V
V
OL  
= 15 V to 28 V,  
V
IH  
I
= 40 mA  
0.25  
CC2  
OL  
Output clamp-diode  
forward voltage  
V = 0,  
I
I
F
= 20 mA  
1.5  
1
F
Input current at  
maximum input voltage  
I
I
V = 5.5 V  
I
mA  
µA  
Any A  
Any E  
Any A  
Any E  
40  
80  
High-level  
input current  
I
IH  
V = 2.4 V  
I
−1  
−2  
1.6  
3.2  
Low-level  
input current  
I
I
I
I
I
I
I
V = 0.4 V  
I
mA  
IL  
Supply current from  
, all outputs high  
4
2.2  
2.2  
8
0.25  
3.5  
47  
CC1(H)  
CC2(H)  
CC3(H)  
CC1(L)  
CC2(L)  
CC3(L)  
V
CC1  
Supply current from  
, all outputs high  
V
= 5.25 V,  
V
= 24 V,  
V
V
= 28 V,  
CC1  
All inputs at 0 V,  
CC2  
No load  
CC3  
CC3  
mA  
V
CC2  
Supply current from  
, all outputs high  
V
CC3  
Supply current from  
, all outputs low  
31  
V
CC1  
Supply current from  
, all outputs low  
V
= 5.25 V,  
V
= 24 V,  
= 28 V,  
CC1  
All inputs at 5 V,  
CC2  
No load  
2
mA  
V
CC2  
Supply current from  
, all outputs low  
16  
27  
V
CC1  
Supply current from  
, all outputs high  
I
I
0.25  
0.5  
CC2(H)  
V
CC2  
Supply current from  
, all outputs high  
V
= 5.25 V,  
V
= 24 V,  
V
V
= 24 V,  
= 24 V,  
CC1  
All inputs at 0 V,  
CC2  
No load  
CC3  
CC3  
mA  
mA  
CC3(H)  
V
CC3  
Supply current from  
, standby condition  
I
I
0.25  
0.5  
CC2(S)  
V
CC2  
Supply current from  
, standby condition  
V
= 0,  
V
= 24 V,  
CC1  
All inputs at 0 V,  
CC2  
No load  
CC3(S)  
V
CC3  
All typical values are at V  
conditions.  
= 5 V, V  
CC2  
= 20 V, V  
CC3  
= 24 V, and T = 25°C, except for V  
OH  
for which V  
and V  
are as stated under test  
CC1  
A
CC2  
CC3  
switching characteristics, V  
= 5 V, V  
= 20 V, V  
= 24 V, T = 25°C  
CC1  
CC2  
CC3  
A
PARAMETER  
Delay time, low- to high-level output  
Delay time, high- to low-level output  
TEST CONDITIONS  
MIN  
TYP  
MAX  
30  
UNIT  
ns  
t
t
t
t
t
t
20  
10  
40  
30  
20  
20  
DLH  
DHL  
PLH  
PHL  
TLH  
THL  
20  
ns  
C
R
= 200 pF,  
= 24 ,  
L
D
Propagation delay time, low- to high-level output  
Propagation delay time, high- to low-level output  
Transition time, low- to high-level output  
10  
10  
60  
ns  
50  
ns  
See Figure 1  
30  
ns  
Transition time, high- to low-level output  
30  
ns  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢂ ꢅ  
ꢆꢇ ꢈ ꢉꢊ ꢇ ꢋꢌ ꢍ ꢎ ꢏꢀ ꢐꢍ ꢑ ꢉꢊ ꢒ ꢓꢍ ꢊ  
SLRS028A − SEPTEMBER 1988 − REVISED NOVEMBER 2004  
PARAMETER MEASUREMENT INFORMATION  
24 V  
20 V  
5 V  
Input  
2.4 V  
V
CC1  
V
V
CC2  
CC3  
R
D
Pulse  
Generator  
(see Note A)  
Output  
= 200 pF  
(see Note B)  
C
L
GND  
TEST CIRCUIT  
10 ns  
10 ns  
3 V  
0 V  
90%  
1.5 V  
90%  
Input  
1.5 V  
0.5 µs  
t
10%  
10%  
PHL  
t
DHL  
t
PLH  
t
TLH  
t
THL  
V
V
OH  
V
CC2  
− 2 V  
V
CC2  
− 2 V  
t
DLH  
Output  
2 V  
2 V  
OL  
VOLTAGE WAVEFORMS  
NOTES: A. The pulse generator has the following characteristics: PRR = 1 MHz, Z 50 .  
O
B.  
C includes probe and jig capacitance.  
L
Figure 1. Test Circuit and Voltage Waveforms, Each Driver  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢂꢅ  
ꢆ ꢇꢈꢉꢊ ꢇꢋꢌ ꢍ ꢎ ꢏꢀ ꢐꢍꢑ ꢉ ꢊꢒ ꢓ ꢍꢊ  
SLRS028A − SEPTEMBER 1988 − REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
V
V
CC2  
CC2  
V
V
= 5 V  
= V  
CC3  
CC1  
CC2  
= 20 V  
V1 = 0.8 V  
− 0.5  
0.5  
T
= 70°C  
= 0°C  
A
− 1  
− 1.5  
− 2  
−1  
1.5  
−2  
T
A
T
= 25°C  
A
T
A
= 70°C  
T
A
= 0°C  
V
V
V
= 5 V  
= 20 V  
= 24 V  
CC1  
CC2  
CC3  
− 2.5  
− 3  
2.5  
−3  
V = 0.8 V  
I
− 0.01  
− 0.1  
− 1  
− 10  
− 100  
0.01  
0.1  
−1  
10  
100  
I
− High-Level Output Current − mA  
I
− High-Level Output Current − mA  
OH  
OH  
Figure 2  
Figure 3  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
VOLTAGE TRANSFER CHARACTERISTICS  
LOW-LEVEL OUTPUT CURRENT  
0.5  
0.4  
0.3  
0.2  
0.1  
0
24  
20  
16  
12  
8
V
V
V
= 5 V  
= 20 V  
= 24 V  
CC1  
CC2  
CC3  
V = 2 V  
I
T
A
= 70°C  
T
A
= 0°C  
V
V
V
= 5 V  
= 20 V  
= 24 V  
CC1  
CC2  
CC3  
4
T
= 25°C  
A
No Load  
0
0
0
20  
40  
60  
80  
100  
0.5  
1
1.5  
2
2.5  
I
− Low-Level Output Current − mA  
V − Input Voltage − V  
I
OL  
Figure 4  
Figure 5  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢂ ꢅ  
ꢆꢇ ꢈ ꢉꢊ ꢇ ꢋꢌ ꢍ ꢎ ꢏꢀ ꢐꢍ ꢑ ꢉꢊ ꢒ ꢓꢍ ꢊ  
SLRS028A − SEPTEMBER 1988 − REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS  
PROPAGATION DELAY TIME  
LOW- TO HIGH-LEVEL OUTPUT  
vs  
PROPAGATION DELAY TIME  
HIGH- TO LOW-LEVEL OUTPUT  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
250  
225  
200  
175  
150  
125  
100  
75  
250  
225  
200  
175  
150  
125  
100  
75  
C
= 4000 pF  
L
V
V
V
= 5 V  
= 20 V  
= 24 V  
C
= 4000 pF  
= 2000 pF  
CC1  
CC2  
CC3  
L
V
V
V
= 5V  
= 20V  
= 24V  
R
= 24 Ω  
CC1  
CC2  
CC3  
D
See Figure 1  
C
C
= 2000 pF  
= 1000 pF  
L
L
R = 24 Ω  
See Figure 1  
D
C
C
L
L
= 1000 pF  
= 200 pF  
50  
50  
C
C
= 200 pF  
= 50 pF  
C
L
L
L
25  
0
25  
0
C
= 50 pF  
L
0
10  
20  
30  
40  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 6  
Figure 7  
PROPAGATION DELAY TIME  
PROPAGATION DELAY TIME  
LOW-TO HIGH-LEVEL OUTPUT  
vs  
HIGH- TO LOW-LEVEL OUTPUT  
vs  
V
SUPPLY VOLTAGE  
V
SUPPLY VOLTAGE  
CC2  
CC2  
250  
250  
225  
200  
175  
150  
125  
100  
75  
V
= 5 V  
= V  
= 24 Ω  
= 25°C  
CC1  
V
V
= 5 V  
CC1  
V
R
+ 4 V  
225  
200  
175  
150  
125  
100  
75  
CC3 CC2  
= V  
+ 4 V  
CC3 CC2  
C
= 4000 pF  
L
D
C = 4000 pF  
L
R
T
A
= 24 Ω  
= 25°C  
D
T
A
See Figure 1  
See Figure 1  
C
= 2000 pF  
C = 2000 pF  
L
L
C
= 1000 pF  
= 200 pF  
L
C
= 1000 pF  
L
50  
50  
C
C
= 50 pF  
C
= 200 pF  
L
C
= 50 pF  
5
L
L
L
25  
0
25  
0
0
5
10  
15  
20  
25  
0
10  
15  
20  
25  
V
CC2  
− Supply Voltage − V  
V
CC2  
− Supply Voltage − V  
Figure 8  
Figure 9  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢂꢅ  
ꢆ ꢇꢈꢉꢊ ꢇꢋꢌ ꢍ ꢎ ꢏꢀ ꢐꢍꢑ ꢉ ꢊꢒ ꢓ ꢍꢊ  
SLRS028A − SEPTEMBER 1988 − REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS  
PROPAGATION DELAY TIME  
LOW- TO HIGH-LEVEL OUTPUT  
vs  
PROPAGATION DELAY TIME  
HIGH- TO LOW-LEVEL OUTPUT  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
250  
225  
200  
175  
150  
125  
100  
75  
250  
225  
200  
175  
150  
125  
100  
75  
V
V
V
T
= 5 V  
= 20 V  
= 24 V  
V
V
V
T
= 5 V  
= 20 V  
= 24 V  
CC1  
CC2  
CC3  
CC1  
CC2  
CC3  
= 25°C  
= 25°C  
A
A
See Figure 1  
See Figure 1  
R
R
= 24 Ω  
= 10 Ω  
R
R
= 24 Ω  
= 10 Ω  
D
D
D
D
R
= 0  
R
= 0  
D
D
50  
50  
25  
25  
0
0
0
1000  
2000  
3000  
4000  
0
1000  
C
2000  
− Load Capacitance − pF  
L
3000  
4000  
C
− Load Capacitance − pF  
L
Figure 10  
Figure 11  
POWER DISSIPATION (ALL DRIVERS)  
vs  
FREQUENCY  
V
CC1  
V
CC2  
V
CC3  
= 5 V  
= 20 V  
= 24 V  
Input: 3-V Square Wave  
(50% duty cycle)  
2000  
1800  
1600  
T
= 25°C  
A
C
= 600 pF  
L
1400  
1200  
C
= 1000 pF  
L
C
= 2000 pF  
L
1000  
800  
600  
400  
C
= 4000 pF  
L
C
= 400 pF  
400  
L
200  
0
10  
20  
40  
70 100  
200  
1000  
f − Frequency − kHz  
Figure 12  
NOTE: For R = 0, operation with C > 2000 pF violates absolute maximum current rating.  
D
L
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢂ ꢅ  
ꢆꢇ ꢈ ꢉꢊ ꢇ ꢋꢌ ꢍ ꢎ ꢏꢀ ꢐꢍ ꢑ ꢉꢊ ꢒ ꢓꢍ ꢊ  
SLRS028A − SEPTEMBER 1988 − REVISED NOVEMBER 2004  
THERMAL INFORMATION  
power-dissipation precautions  
Significant power may be dissipated in the SN75374 driver when charging and discharging high-capacitance  
loads over a wide voltage range at high frequencies. Figure 12 shows the power dissipated in a typical SN75374  
as a function of frequency and load capacitance. Average power dissipated by this driver is derived from the  
equation:  
P
= P  
+ P  
+ P  
T(AV)  
DC(AV)  
C(AV) S(AV)  
where P  
is the steady-state power dissipation with the output high or low, P  
is the power level during  
DC(AV)  
C(AV)  
charging or discharging of the load capacitance, and P  
is the power dissipation during switching between  
S(AV)  
the low and high levels. None of these include energy transferred to the load, and all are averaged over a full  
cycle.  
The power components per driver channel are:  
(
PHtH ) PLtL  
+
)
PDC(AV)  
T
f
C(AV) [ CV2  
c
P
(
PLHtLH ) PHLtHL  
+
)
PS(AV)  
T
where the times are as defined in Figure 15.  
t
LH  
t
HL  
t
H
t
L
T = 1/f  
Figure 13. Output-Voltage Waveform  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢂꢅ  
ꢆ ꢇꢈꢉꢊ ꢇꢋꢌ ꢍ ꢎ ꢏꢀ ꢐꢍꢑ ꢉ ꢊꢒ ꢓ ꢍꢊ  
SLRS028A − SEPTEMBER 1988 − REVISED NOVEMBER 2004  
THERMAL INFORMATION  
power-dissipation precautions (continued)  
P , P , P , and P are the respective instantaneous levels of power dissipation, and C is the load capacitance.  
L
H
LH  
HL  
V is the voltage across the load capacitance during the charge cycle shown by the equation:  
C
V = V  
− V  
OL  
C
OH  
P
may be ignored for power calculations at low frequencies.  
S(AV)  
In the following power calculation, all four channels are operating under identical conditions: f = 0.2 MHz,  
= 19.9 V and V = 0.15 V with V = 5 V, V = 20 V, V = 24 V, V = 19.75 V, C = 1000 pF, and the  
V
OH  
OL  
CC1  
CC2  
S(AV)  
CC3  
C
duty cycle = 60%. At 0.2 MHz for C < 2000 pF, P  
is low, I  
is negligible and can be ignored. When the output voltage  
L
is negligible and can be ignored.  
CC2  
On a per-channel basis using data-sheet values,  
ǒ4 mAǓ ) 20 Vǒ−2.2 mAǓ ) 24 Vǒ2.2 mA  
Ǔ
ƫ
0.6 )  
+ ƪ  
P
5 V  
DC(AV)  
4
4
4
ǒ31 mAǓ ) 20 Vǒ0 mAǓ ) 24 Vǒ16 mA  
Ǔ
ƫ
0.4  
ƪ
5 V  
4
4
4
P
= 58.2 mW per channel  
DC(AV)  
Power during the charging time of the load capacitance is  
2
P
= (1000 pF)(19.75 V) (0.2 MHz) = 78 mW per channel  
C(AV)  
Total power for each driver is:  
= 58.2 mW + 78 mW = 136.2 mW  
P
T(AV)  
The total package power is:  
= (136.2)(4) = 544.8 mW  
P
T(AV)  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢂ ꢅ  
ꢆꢇ ꢈ ꢉꢊ ꢇ ꢋꢌ ꢍ ꢎ ꢏꢀ ꢐꢍ ꢑ ꢉꢊ ꢒ ꢓꢍ ꢊ  
SLRS028A − SEPTEMBER 1988 − REVISED NOVEMBER 2004  
APPLICATION INFORMATION  
driving power MOSFETs  
The drive requirements of power MOSFETs are much lower than comparable bipolar power transistors. The  
input impedance of an FET consists of a reverse-biased PN junction that can be described as a large  
capacitance in parallel with a very high resistance. For this reason, the commonly used open-collector driver  
with a pullup resistor is not satisfactory for high-speed applications. In Figure 14a, an IRF151 power MOSFET  
switching an inductive load is driven by an open-collector transistor driver with a 470-pullup resistor. The input  
capacitance (C ) specification for an IRF151 is 4000 pF maximum. The resulting long turn-on time, due to the  
ISS  
product of input capacitance and the pullup resistor, is shown in Figure 14b.  
48 V  
5 V  
M
4
470 Ω  
3
2
4
8
IRF151  
7
3
5
TLC555  
1
0
6
2
1
1/2 SN75447  
0
0.5  
1
1.5  
2
2.5  
3
t − Time − µs  
(a)  
(b)  
Figure 14. Power MOSFET Drive Using SN75447  
A faster, more efficient drive circuit uses an active pullup, as well as an active pulldown output configuration,  
referred to as a totem-pole output. The SN75374 driver provides the high-speed totem-pole drive desired in an  
application of this type (see Figure 15a). The resulting faster switching speeds are shown in Figure 15b.  
48 V  
5 V  
M
4
3
2
1
0
4
8
7
3
5
TLC555  
IRF151  
6
1/4 SN75374  
2
1
0
0.5  
1
1.5  
2
2.5  
3
t − Time − µs  
(a)  
(b)  
Figure 15. Power MOSFET Drive Using SN75374  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄ ꢂꢅ  
ꢆ ꢇꢈꢉꢊ ꢇꢋꢌ ꢍ ꢎ ꢏꢀ ꢐꢍꢑ ꢉ ꢊꢒ ꢓ ꢍꢊ  
SLRS028A − SEPTEMBER 1988 − REVISED NOVEMBER 2004  
APPLICATION INFORMATION  
driving power MOSFETs (continued)  
Power MOSFET drivers must be capable of supplying high peak currents to achieve fast switching speeds as  
shown by the equation:  
VC  
+
I
PK  
t
r
where C is the capacitive load and t is the desired rise time. V is the voltage that the capacitance is charged  
r
to. In the circuit shown in Figure 14a, V is found by the equation:  
V = V  
− V  
OL  
OH  
Peak current required to maintain a rise time of 100 ns in the circuit of Figure 14a is:  
−9  
(3 * 0)4(10 )  
I
+
+ 120 mA  
PK  
−9  
100(10 )  
Circuit capacitance can be ignored because it is very small compared to the input capacitance of the IRF151.  
With a V of 5 V and assuming worst-case conditions, the gate drive voltage is 3 V.  
CC  
For applications in which the full voltage of V  
must be supplied to the MOSFET gate, V  
should be at least  
CC2  
CC3  
3 V higher than V  
.
CC2  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2006  
PACKAGING INFORMATION  
Orderable Device  
SN75374D  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
16  
16  
16  
16  
16  
16  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN75374DE4  
SN75374DR  
SN75374DRE4  
SN75374N  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
D
D
D
N
N
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
SN75374NE4  
25  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Low Power Wireless www.ti.com/lpw  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2006, Texas Instruments Incorporated  

SN75374DRG4 CAD模型

  • 引脚图

  • 封装焊盘图

  • SN75374DRG4 替代型号

    型号 制造商 描述 替代类型 文档
    SN75374D TI QUADRUPLE MOSFET DRIVER 完全替代

    SN75374DRG4 相关器件

    型号 制造商 描述 价格 文档
    SN75374N TI QUADRUPLE MOSFET DRIVER 获取价格
    SN75374N-00 TI 0.5A 4 CHANNEL, NAND GATE BASED MOSFET DRIVER, PDIP16 获取价格
    SN75374NE4 TI QUADRUPLE MOSFET DRIVER 获取价格
    SN75374_06 TI QUADRUPLE MOSFET DRIVER 获取价格
    SN75403NE TI IC,PERIPHERAL DRIVER,2 DRIVER,BIPOLAR,DIP,14PIN,PLASTIC 获取价格
    SN75403NEP3 TI IC IC,PERIPHERAL DRIVER,2 DRIVER,BIPOLAR,DIP,14PIN,PLASTIC, Peripheral Driver 获取价格
    SN75423 TI HIGH-VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAYS 获取价格
    SN75423N TI HIGH-VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAYS 获取价格
    SN75423N-90 TI HIGH-VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAYS 获取价格
    SN75424 TI HIGH-VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAYS 获取价格

    SN75374DRG4 相关文章

  • 苹果Apple Intelligence适配百度AI模型遇技术挑战
    2024-12-05
    12
  • 苹果携手亚马逊,定制AI芯片助力Apple Intelligence模型训练
    2024-12-05
    10
  • 革命性突破:光衍射极限下微型步行机器人成功面世
    2024-12-05
    12
  • Soitec将为格罗方德9SW平台供应300mm RF-SOI晶圆
    2024-12-05
    11