ZL60102MJD

更新时间:2025-05-19 01:41:11
品牌:ZARLINK
描述:12 x 2.7 Gbps Parallel Fiber Optic Link Transmitter and Receiver

ZL60102MJD 概述

12 x 2.7 Gbps Parallel Fiber Optic Link Transmitter and Receiver 12× 2.7 Gbps的并行光纤连接发射器和接收器

ZL60102MJD 数据手册

通过下载ZL60102MJD数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
ZL60101/2  
12 x 2.7 Gbps Parallel Fiber Optic Link  
Transmitter and Receiver  
Data Sheet  
June 2004  
Ordering Information  
ZL60101/MJD Parallel Fiber Transmitter  
ZL60102/MJD Parallel Fiber Receiver  
Heat sink and EMI shield options  
are available upon request  
0°C to +80°C  
Features  
Description  
12 parallel channels, total 32.6 Gbps capacity  
Data rate up to 2.72 Gbps per channel  
850 nm VCSEL array  
Data I/O is CML compatible with DC blocking  
capacitors  
Link reach 300 m with 50/125 µm 500 MHz.km  
The ZL60101 and ZL60102 together make a very high  
speed transmitter/receiver pair for parallel fiber  
applications.  
The ZL60101 transmitter module converts parallel  
electrical input signals via a laser driver and a VCSEL  
array into parallel optical output signals at a wavelength  
of 850 nm.  
fiber at 2.5 Gbps  
Channel BER better than 10-12  
Industry standard MPO/MTPribbon fiber  
connector interface  
Pluggable MegArray® ball grid array connector  
Optionally available with EMI shield and external  
heat sink  
The ZL60102 receiver module converts parallel optical  
input signals via a PIN photodiode array and a  
transimpedance and limiting amplifier into electrical  
output signals.  
The modules are pluggable each fitted with an industry-  
standard MegArray® BGA connector. This provides  
ease of assembly on the host board and enables  
provisioning of bandwidth on demand.  
Laser class 1M IEC 60825-1:2001 compliant  
Power supply 3.3 V  
Compatible with industry MSA  
Applications  
High-speed interconnects within and between  
switches, routers and transport equipment  
Proprietary backplanes  
Low cost SONET/SDH VSR (Very Short Reach)  
OC-192/STM64 connections  
InfiniBand® connections  
Interconnects rack-to-rack, shelf-to-shelf, board-  
to-board, board-to-optical backplane  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2003-4, Zarlink Semiconductor Inc. All Rights Reserved.  
ZL60101/2  
Data Sheet  
Table of Contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
ZL60101 Transmitter Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Transmitter Control and Status Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Transmitter Control and Status Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Transmitter Pinout Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Transmitter Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
ZL60102 Receiver Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Receiver Control and Status Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Receiver Control and Status Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Receiver Pinout Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Receiver Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Regulatory Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Eye Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Electrostatic Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Electrostatic Discharge Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Electromagnetic Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Handling instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Cleaning the Optical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
ESD Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Link Reach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Link Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical Interface - Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2
Zarlink Semiconductor Inc.  
ZL60101/2  
Data Sheet  
Absolute Maximum Ratings  
Not necessarily applied together. Exceeding these values may cause permanent damage. Functional operation  
under these conditions is not implied.  
Parameter  
Symbol  
Min.  
Max.  
Unit  
Supply voltage  
VCC  
V  
-0.3  
4.0  
1.2  
V
V
Differential input voltage amplitude1  
Voltage on any pin  
VPIN  
MOS  
TSTG  
VESD  
-0.3  
5
VCC + 0.3  
95  
V
Relative humidity (non-condensing)  
Storage temperature  
%
°C  
kV  
-40  
100  
ESD resistance  
±1  
1. Differential input voltage amplitude is defined as V = DIN+ DIN-.  
Recommended Operating Conditions  
These parameters apply both to the transmitter and the receiver.  
Parameter  
Symbol  
Min.  
Max.  
Unit  
Power supply voltage  
VCC  
TCASE  
fD  
3.135  
0
3.465  
80  
V
°C  
Operating case temperature  
Signaling rate (per channel)1  
Link distance2  
1.0  
2
2.72  
Gbps  
m
LD  
Data I/O DC blocking capacitors3  
Power supply noise4  
CBLK  
VNPS  
100  
nF  
200  
mVp-p  
1. Data patterns are to have maximum run lengths and DC balance shifts no worse than that of a Pseudo Random Bit Sequence of  
length 223-1 (PRBS-23). Information on lower bit rates is available on request.  
2. For maximum distance, see Table 6.  
3. For AC-coupling, DC blocking capacitors external to the module with a minimum value of 100 nF is recommended.  
4. Power supply noise is defined at the supply side of the recommended filter for all VCC supplies over the frequency range of 500 Hz  
to 2720 MHz with the recommended power supply filter in place.  
L1 1  
µ
H
L2 6.8 nH  
R1 100  
R2 1.0 kΩ  
Host  
Vcc  
Module  
Vcc  
C1  
10  
C2  
10  
C3  
0.1  
C4  
0.1  
µ
F
µ
F
µ
F
µ
F
Figure 1 - Recommended Power Supply Filter  
3
Zarlink Semiconductor Inc.  
ZL60101/2  
Data Sheet  
ZL60101 Transmitter Specifications  
All parameters below require operating conditions according to “Recommended Operating Conditions” on page 3.  
Parameter  
Symbol  
Min.  
Max.  
Unit  
Optical Parameters  
Launch power (50/125 µm MMF)1  
Extinguished output power  
Extinction ratio2  
POUT  
POFF  
ER  
-7.5  
-2  
dBm  
dBm  
dB  
-30  
7
Optical modulation amplitude3  
OMA  
λC  
0.24  
830  
mW  
nm  
Center wavelength  
860  
0.85  
-116  
150  
150  
120  
50  
Spectral width4  
∆λ  
nmrms  
dB/Hz  
ps  
Relative intensity noise OMA  
Optical output rise time (20 - 80%)  
Optical output fall time (20 - 80%)  
Total jitter contributed (peak to peak)5  
Deterministic jitter contributed (peak to peak)  
Channel to channel skew6  
Electrical Parameters  
RIN12OMA  
tRO  
tFO  
ps  
TJ  
ps  
DJ  
ps  
tSK  
100  
ps  
Power dissipation  
PD  
ICC  
VIN  
ZIN  
tRE  
1.5  
450  
800  
120  
160  
160  
W
mA  
mVp-p  
Supply current  
Differential input voltage amplitude (peak to peak)7  
Differential input impedance8  
Electrical input rise time (20 - 80%)  
Electrical input fall time (20 - 80%)  
200  
80  
ps  
tFE  
ps  
1. The output optical power is compliant with IEC 60825-1 Amendment 2, Class 1M Accessible Emission Limits.  
2. The extinction ratio is measured at 622 Mbps.  
3. Informative. Corresponds to POUT = -7.5 dBm and ER = 7 dB.  
4. Spectral width is measured as defined in EIA/TIA-455-127 Spectral Characterization of Multimode Laser Diodes.  
5. Total jitter equals TP1 to TP2 as defined in IEEE 802.3 clauses 38.2 and 38.6 (Gigabit Ethernet).  
6. Channel skew is defined for the condition of equal amplitude, zero ps skew signals applied to the transmitter inputs.  
7. Differential input voltage is defined as the peak to peak value of the differential voltage between DIN+ and DIN-. Data inputs are  
CML compatible.  
8. Differential input impedance is measured between DIN+ and DIN-.  
4
Zarlink Semiconductor Inc.  
ZL60101/2  
Data Sheet  
Classified in accordance with IEC 60825-1/A2:2001, IEC 60825-2 : 2000  
Class 1M Laser Product  
Emited wavelength: 840 nm  
DIN0+  
DIN0-  
0
1
2
3
4
5
6
7
VCSEL  
Driver  
VCSEL  
Array  
8
DIN11+  
DIN11-  
9
10  
11  
VCSEL Driver Controller  
V
CC  
V
EE  
RESET Tx_DIS Tx_EN FAULT  
Figure 2 - ZL60101 Transmitter Block Diagram  
Front view - MTP key up  
Ch 11  
Ch 10  
Ch 9  
Ch 8  
Ch 7  
Ch 6  
Ch 5  
Ch 4  
Ch 3  
Ch 2  
Ch 1  
Ch 0  
Host circuit board  
Table 1 - Transmitter Optical Channel Assignment  
5
Zarlink Semiconductor Inc.  
ZL60101/2  
Data Sheet  
DIN+  
DIN-  
VCC  
50Ω  
50Ω  
13k  
11k  
VEE  
Figure 3 - Differential CML Input Equivalent Circuit  
Transmitter Control and Status Signals  
The following table shows the timing relationships of the status and control signals of the pluggable optical  
transmitter.  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Control input voltage high1  
Control input voltage low  
Control pull-up resistor2  
Control pull-down resistor3  
Status output voltage low4, 5  
Status pull-down resistor4  
FAULT assert time  
VIH  
VIL  
2.1  
V
0.62  
V
RPU  
RPD1  
VOL  
RPD2  
TFA  
10  
10  
kΩ  
kΩ  
V
0.4  
10  
kΩ  
µs  
µs  
µs  
µs  
ms  
ms  
µs  
µs  
ms  
100  
100  
FAULT lasers off  
TFD  
RESET duration  
TTDD  
TOFF  
TON  
TTEN  
TTD  
10  
RESET assert time  
5
10  
100  
1
RESET de-assert time  
Tx_EN assert time  
Tx_EN de-assert time  
Tx_DIS assert time  
5
5
10  
10  
1
TTD  
Tx_DIS de-assert time  
TTEN  
1. Applies to control signals RESET, Tx_DIS and Tx_EN.  
2. Applies to control signals RESET and Tx_EN. Internal pull-up resistor.  
3. Applies to control signal Tx_DIS. Internal pull-down resistor.  
4. Applies to status signal FAULT. Internal pull-down to VEE  
5. With status output sink current max. 2 mA.  
.
6
Zarlink Semiconductor Inc.  
ZL60101/2  
Data Sheet  
Transmitter Control and Status Timing Diagrams  
The following figures show the timing relationships of the status and control signals of the pluggable optical  
transmitter.  
Vcc  
TTEN  
Tx Output [0:11]  
Data [0:11]  
Transmitter Not Ready  
Normal operation  
RESET: floating or high  
Figure 4 - Transmitter Power-up Sequence  
FAULT  
TFA  
TFD  
Data [0:11]  
Tx Output [0:11]  
No Fault  
Fault  
Figure 5 - Transmitter Fault Signal Timing Diagram  
7
Zarlink Semiconductor Inc.  
ZL60101/2  
Data Sheet  
RESET  
FAULT  
TTDD  
TON  
Data [0:11]  
Tx Output [0:11]  
Transmitter Not Ready  
Normal operation  
Figure 6 - Transmitter Reset Signal Timing Diagram  
Tx_DIS  
Tx_EN  
TTD  
Data [0:11]  
TTD  
Data [0:11]  
Lasers  
off  
Lasers  
off  
Normal operation  
Tx_EN  
Tx Off  
Normal operation  
Tx Off  
TTEN  
Data [0:11]  
Transmitter Not Ready  
Normal operation  
Figure 7 - Transmitter Enable and Disable Timing Diagram  
Tx_DIS High  
Tx_DIS Low  
Normal operation  
Transmitter disabled  
Tx_EN High  
Tx_EN Low  
Transmitter disabled  
Transmitter disabled  
Table 2 - Truth Table for Transmitter Operation (Pre-condition: RESET floating or HIGH)  
8
Zarlink Semiconductor Inc.  
ZL60101/2  
Data Sheet  
Transmitter Pinout Assignments  
K
J
H
G
F
E
D
C
B
A
NIC  
NIC  
NIC  
VEE  
VEE  
VEE  
VEE  
DIN5+  
DIN5-  
VEE  
VEE  
VEE  
VEE  
NIC  
1
2
NIC  
NIC  
NIC  
VCC  
NIC  
VCC  
VEE  
VEE  
VEE  
VEE  
VEE  
DIN7+  
DIN7-  
VEE  
DIN8+  
DIN8-  
VEE  
VEE  
VEE  
NIC  
VEE  
VEE  
NIC  
NIC  
NIC  
DNC  
DIN4+  
DIN4-  
VEE  
3
NIC  
VCC  
VCC  
DIN3+  
DIN3-  
VEE  
DIN6+  
DIN6-  
VEE  
4
NIC  
VCC  
VCC  
DIN2+  
DIN2-  
VEE  
DIN9-  
DIN9+  
VEE  
5
NIC  
VCC  
VCC  
DIN1+  
DIN1-  
VEE  
DIN10-  
DIN10+  
VEE  
6
NIC  
DNC  
DNC  
DNC  
NIC  
NIC  
DIN0+  
DIN0-  
VEE  
DIN11-  
DIN11+  
VEE  
7
RESET  
Tx_EN  
DNC  
FAULT  
Tx_DIS  
DNC  
VEE  
VEE  
8
VEE  
VEE  
VEE  
VEE  
9
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
10  
Table 3 - Transmitter Host Circuit Board Layout (Top view, toward MPO/MTPconnector end)  
(10x10 array, 1.27 mm pitch)  
Transmitter Pin Description  
Signal Name  
Type  
Description  
Comments  
DIN[0:11] +/-  
VCC  
Data input Transmitter data in, channel 0 to 11  
Transmitter power supply rail  
Internal differential termination at 100 Ω.  
VEE  
Transmitter signal common. All  
transmitter voltages are referenced  
to this potential unless otherwise  
stated.  
Directly connect these pads to the PC  
board transmitter signal ground plane.  
Tx_EN  
Tx_DIS  
FAULT  
Control  
input  
Transmitter enable.  
HIGH: normal operation  
LOW: disable transmitter  
Active high, internal pull-up. See  
Table 2.  
Control  
input  
Transmitter disable.  
HIGH: disable transmitter  
LOW: normal operation  
Active high, internal pull-down. See  
Table 2.  
Status  
output  
Transmitter fault.  
When active, all channels are disabled.  
Clear by reset signal. Internal pull-up.  
HIGH: normal operation  
LOW: laser fault detected on at least  
one channel  
RESET  
Control  
input  
Transmitter reset.  
HIGH: normal operation  
LOW:reset to clear fault signal  
Internal pull-up.  
DNC  
NIC  
Do not connect to any potential,  
including ground.  
No internal connection.  
9
Zarlink Semiconductor Inc.  
ZL60101/2  
Data Sheet  
ZL60102 Receiver Specifications  
All parameters below require operating conditions according to Table 2 and a termination load of 100 differential  
at the electrical output.  
Parameter  
Symbol  
Min.  
Max.  
Unit  
Optical Parameters  
Input optical power1  
Center wavelength  
Return loss2  
PIN  
λC  
-16  
830  
12  
-2  
dBm  
nm  
860  
RL  
dB  
Total jitter contributed (peak to peak)3  
Deterministic jitter contributed (peak to peak)  
Stressed receiver sensitivity4  
Channel to channel skew5  
TJ  
120  
50  
ps  
DJ  
ps  
PSS  
tSK  
PSA  
PSD  
-11.3  
100  
-17  
dBm  
ps  
Signal detect assert  
dBm  
dBm  
Signal detect de-assert  
-27  
Electrical Parameters  
Power dissipation  
PD  
ICC  
1.5  
450  
800  
120  
W
mA  
mVp-p  
Supply current  
Differential output voltage amplitude (peak to peak)6  
Output differential load impedance7  
Stressed receiver eye opening8  
Electrical output rise time (20 - 80 %)  
Electrical output fall time (20 - 80 %)  
VOUT  
ZL  
500  
80  
PSE  
tRE  
0.3  
UI  
150  
150  
ps  
tFE  
ps  
1. Receive power for a channel is measured for a BER of 10-12 and worst case extinction ratio. PIN (Min) is measured using a fast  
rise/fall time source with low RIN and adjacent channel(s) operating with incident power of 6 dB above PIN (Min).  
2. Return loss is measured as defined in TIA/EIA-455-107A Determination of Component Reflectance or Link/System Return Loss Us-  
ing a Loss Test Set.  
3. Total jitter equals TP3 to TP4 as defined in IEEE 802.3 clauses 38.2 and 38.6 (Gigabit Ethernet).  
4. The stressed receiver sensitivity is measured using PRBS 223-1 pattern, 2.7 dB inter-symbol interference, ISI (Min), 30 ps duty cycle  
dependent deterministic jitter, DCD DJ (Min), and 7 dB extinction ratio, ER (Min) (ER penalty = 1.76 dB). All channels not under test  
are receiving signals with an average input power of 6 dB above PIN (Min).  
5. Channel skew is defined for the condition of equal amplitude, zero ps skew signals applied to the receiver inputs.  
6. Differential output voltage is defined as the peak to peak value of the differential voltage between DOUT+ and DOUT- and measured  
with a 100 differential load connected between DOUT+ and DOUT-. Data outputs are CML compatible.  
7. See Figure 14.  
8. The stressed receiver eye opening represents the eye at TP4 as defined in IEEE 802.3 clauses 38.2 and 38.6 (Gigabit Ethernet).  
The stressed receiver eye opening is measured using PRBS 223-1 pattern, 2.7 dB ISI min, 30 ps DCD DJ min, 7 dB ER min and an  
average input power of -10.8 dBm (0.5 dB above minimum stressed receiver sensitivity as defined in IEEE 802.3 clause 38.6). All chan-  
nels not under test are receiving signals with an average input power of 6 dB above PIN (Min).  
10  
Zarlink Semiconductor Inc.  
ZL60101/2  
Data Sheet  
DOUT0+  
DOUT0-  
0
1
2
3
Trans-  
Impedance  
and  
Limiting  
Amplifier  
4
PIN  
Array  
5
6
7
8
9
10  
11  
DOUT11+  
DOUT11-  
VCC VEE  
Rx_EN Rx_SD SQ_EN  
Figure 8 - ZL60102 Receiver Block Diagram  
Front view - MTP key up  
Ch 11  
Ch 10  
Ch 9  
Ch 8  
Ch 7  
Ch 6  
Host circuit board  
Table 4 - Receiver Optical Channel Assignment  
Ch 5  
Ch 4  
Ch 3  
Ch 2  
Ch 1  
Ch 0  
Receiver Control and Status Signals  
The following table shows the timing relationships of the status and control signals of the pluggable optical receiver.  
Parameter  
Control input voltage high1  
Symbol  
Min.  
Typ.  
Max.  
Unit  
VIH  
VIL  
2.0  
V
V
Control input voltage low1  
0.9  
100  
0.4  
Control input pull-up current1  
Status output voltage low2, 3  
Status output pull-up resistor2  
Receiver signal detect assert time  
Receiver signal detect de-assert time  
Receiver enable assert time  
Receiver enable de-assert time  
IIN  
VOL  
10  
µA  
V
RPU  
3.25  
50  
50  
33  
5
kΩ  
µs  
µs  
ms  
µs  
TSD  
200  
200  
TLOS  
TRXEN  
TRXD  
1. Applies to control signals Rx_EN, SQ_EN.  
2. Applies to status signal Rx_SD. Internal pull-up to VCC  
3. With status output sink current max 2 mA.  
.
11  
Zarlink Semiconductor Inc.  
ZL60101/2  
Data Sheet  
Receiver Control and Status Timing Diagrams  
The following figures show the timing relationships of the status and control signals of the pluggable optical  
receiver.  
Rx_EN  
TRXD  
ICC  
Normal Operation  
Rx Off  
Figure 9 - Receiver Enable Signal Timing Diagram  
Rx_SD  
TLOS  
Signal  
No Signal  
Figure 10 - Receiver Signal Detect Timing Diagram  
12  
Zarlink Semiconductor Inc.  
ZL60101/2  
Data Sheet  
Receiver Pinout Assignments  
K
J
H
G
F
E
D
C
B
A
DNC  
NIC  
NIC  
VEE  
VEE  
VEE  
VEE  
DOUT5-  
DOUT5+  
VEE  
VEE  
VEE  
VEE  
NIC  
1
2
DNC  
NIC  
NIC  
VCC  
NIC  
VCC  
VEE  
VEE  
VEE  
VEE  
VEE  
DOUT7-  
DOUT7+  
VEE  
DOUT8-  
DOUT8+  
VEE  
VEE  
VEE  
NIC  
VEE  
VEE  
NIC  
NIC  
NIC  
DNC  
DOUT4-  
DOUT4+  
VEE  
3
NIC  
VCC  
VCC  
DOUT3-  
DOUT3+  
VEE  
DOUT6-  
DOUT6+  
VEE  
4
NIC  
VCC  
VCC  
DOUT2-  
DOUT2+  
VEE  
DOUT9+  
DOUT9-  
VEE  
5
NIC  
VCC  
VCC  
DOUT1-  
DOUT1+  
VEE  
DOUT10+  
DOUT10-  
VEE  
6
NIC  
NIC  
Rx_SD  
NIC  
DOUT0-  
DOUT0+  
VEE  
DOUT11+  
DOUT11-  
VEE  
7
DNC  
DNC  
SQ_EN  
NIC  
VEE  
VEE  
8
Rx_EN  
DNC  
NIC  
VEE  
VEE  
VEE  
VEE  
9
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
DNC  
10  
Table 5 - Receiver Pinout Assignments (Top view, toward MPO/MTPconnector end)  
(10x10 array, 1.27 mm pitch)  
Receiver Pin Description  
Signal Name  
Type  
Description  
Comments  
DOUT[0:11] +/-  
Data  
Receiver data out, channel 0 to 11.  
output  
VCC  
VEE  
Receiver power supply rail.  
Receiver signal common. All receiver voltages Directly connect these pads to  
are referenced to this potential unless  
otherwise stated.  
the PC board transmitter  
signal ground plane.  
Rx_EN  
Rx_SD  
SQ_EN  
Control  
input  
Receiver enable.  
HIGH: normal operation  
LOW: disable receiver  
Internal pull-up.  
Internal pull-up.  
Internal pull-up.  
Status  
output  
Receiver signal detect.  
HIGH: valid optical input on all channels  
LOW: loss of signal on at least one channel  
Control  
input  
Squelch enable.  
HIGH: squelch function enabled. Data OUT is  
squelched on any channels that have loss of  
signal  
LOW: squelch function disabled  
DNC  
NIC  
Do not connect to any potential, including  
ground.  
No internal connection.  
13  
Zarlink Semiconductor Inc.  
ZL60101/2  
Data Sheet  
Thermal Characteristics  
There are three options for heat sinks depending on the cooling needs. They are:  
1. Direct application without any attached external heat sink  
2. Use a generic heat sink specified by Zarlink  
3. Use a customer designed external heat sink  
In Figure 11 and Figure 12, the temperature rise and thermal resistance as a function of air velocity (free air velocity  
at the top of the module) is shown for option 1 and 2. The thermal resistance is defined as the temperature  
difference between the case temperature and ambient flowing air divided by the total heat dissipation of the  
module.  
Improved thermal properties can be achieved by using a larger heat sink especially if more height is available  
(option 3). For this option, a more detailed discussion with Zarlink is recommended regarding heat sink design  
attachment materials.  
Temperature rise at 1.5W  
(Free stream air velocity)  
20  
16  
12  
Option ZL6010*/ML  
8
Option ZL6010*/MJ  
4
0
0
1
2
3
4
Air velocity (m/s)  
Figure 11 - Temperature Difference Between Ambient Flowing Air and Case at a Heat Dissipation  
of 1.5 W  
Thermal resistance to air  
(Free stream air velocity)  
15  
10  
Option ZL6010*/ML  
5
0
Option ZL6010*/MJ  
0
1
2
3
4
Air velocity (m/s)  
Figure 12 - Thermal Resistance, as a Function of Air Velocity (the airflow is along the shortest  
side of the module)  
For any other orientation, the thermal resistance is 75-100% of the values shown above.  
14  
Zarlink Semiconductor Inc.  
ZL60101/2  
Data Sheet  
Regulatory Compliance  
Eye Safety  
The maximum optical output power is specified to comply with Class 1M in accordance with IEC 608251:2001. In  
addition the transmitter complies with FDA performance standards for laser products except for deviations pursuant  
to Laser Notice No.50, dated July 26, 2001. No maintenance or service of the product may be performed.  
Electrostatic Discharge  
The module is classified as Class 1 (> 1000 Volts) according to MILSTD883, test method 3015.7, with regards to  
the electrical pads.  
Electrostatic Discharge Immunity  
The part withstand a 15 kV (air discharge) and 8 kV (contact discharge) either indirect or directly to receptacle;  
tested according to IEC 6100042, while in operation without addition of bit errors.  
Electromagnetic Interference  
Emission  
The electromagnetic emission is tested in front of the module (module fitted with EMI shield), with the module  
mounted in a frontplate cutout. The part is tested with FCC Part 15, 30 1000 MHz and 1 GHz to 5th harmonic of  
the highest fundamental frequency (6.75 GHz), and is specified to be Class B with > 6 dB margin.  
Immunity  
The electromagnetic immunity is tested without a front panel or enclosure. The module specification is maintained  
with an applied field of 10 V/m for frequencies between 10 kHz and 10 GHz, according to IEC 6100043 and  
GR1089CORE.  
Handling instructions  
Cleaning the Optical Interface  
A protective connector plug is supplied with each module. This plug should remain in place whenever a fiber cable  
is not inserted. This will keep the optical port free from dust or other contaminants, which may potentially degrade  
the optical signal. Before reattaching the connector plug to the module, visually inspect the plug and remove any  
contamination. If the module’s optical port becomes contaminated, it can be cleaned with high-pressure nitrogen  
(the use of fluids, or physical contact, is not advised due to potential for damage).  
Before a fiber cable connector is attached to the module, it is recommended to clean the fiber cable connector  
using an optical connector cleaner, or according to the cable manufacturer's instructions. It is also recommended to  
clean the optical port of the module with high-pressure nitrogen.  
Connectors  
For optimum performance, it is recommended that the number of insertions is limited to 50 for the electrical  
MegArray connector and 200 for the optical MPO/MTP connector.  
ESD Handling  
When handling the modules, precautions for ESD sensitive devices should be taken. These include use of ESD  
protected work areas with wrist straps, controlled work-benches, floors etc.  
15  
Zarlink Semiconductor Inc.  
ZL60101/2  
Data Sheet  
Link Reach  
The following table lists the minimum reach distance of the 12 channel pluggable optical modules for different multi-  
mode fiber (MMF) types and bandwidths assuming worst case parameters. Each case allows for a maximum of  
2 dB per channel connection loss for patch cables and other connectors.  
Fiber Type  
Modal Bandwidth ReachDistance ReachDistance ReachDistance  
@ 850 nm  
@ 1 Gbps  
@ 2.5 Gbps  
@ 2.72 Gbps  
[core / cladding µm]  
[MHz*km]  
[m]  
[m]  
[m]  
62.5/125 MMF  
200  
400  
500  
350  
650  
750  
130  
260  
300  
110  
220  
270  
62.5/125 or 50/125 MMF  
50/125 MMF  
Table 6 - Link Reach for Different Fiber Types and Data Rates  
Link Model Parameters  
The link reaches above have been calculated using the following link model parameters and Gigabit Ethernet link  
model version 2.3.5 (filename: 5pmd047.xls).  
Parameter  
Mode partition noise k-factor  
Symbol  
Value  
Unit  
k
0.3  
0.3  
Modal noise  
MN  
SO  
UO  
αdB  
C1  
Q
dB  
ps/nm2*km  
nm  
Dispersion slope parameter  
Wavelength of zero dispersion  
Attenuation coefficient at 850 nm  
Conversion factor  
0.11  
1320  
3.5  
dB/km  
ns.MHz  
480  
7.04  
0.3  
Q-factor [BER 10-12  
]
TP4 eye opening  
UI  
UI  
DCD allocation at TP3  
RMS baseline wander S.D.  
RIN coefficient  
DCD DJ  
σBLW  
kRIN  
0.08  
0.025  
0.70  
329  
Conversion factor  
c_rx  
ns.MHz  
16  
Zarlink Semiconductor Inc.  
ZL60101/2  
Data Sheet  
Electrical Interface - Application Examples  
Recommended CML output  
Transmitter CML input  
Host PCB  
100nF  
100nF  
ZOUT=100  
Differential  
ZIN=100  
Differential  
Z0=100Differential  
Figure 13 - Recommended Differential CML Input Interface  
Receiver CML output  
Recommended CML input  
Host PCB  
100nF  
100nF  
ZTERM=100  
Differential  
Z0=100Differential  
ZL  
Figure 14 - Recommended Differential CML Output Interface  
17  
Zarlink Semiconductor Inc.  
NOTES:-  
1. All dimensions in mm.  
2. Tolerancing per ASME Y14.5M-1994.  
© Zarlink Semiconductor 2002. All rights reserved.  
Package code  
Drawing type  
Package drawing - module layout  
MJD  
ISSUE  
ACN  
1
Previous package codes  
JS004293R1A  
12-JUN-03  
DATE  
Title  
APPRD. TD/BE  
JS004293  
NOTES:-  
1. All dimensions in mm.  
2. Tolerancing per ASME Y14.5M-1994.  
© Zarlink Semiconductor 2002. All rights reserved.  
Package code  
Drawing type  
MJD  
ISSUE  
ACN  
1
Previous package codes  
Package Drawing,  
JS004293R1A  
Host circuit board footprint layout  
12-JUN-03  
DATE  
Title  
APPRD. TD/BE  
JS004293  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

ZL60102MJD 相关器件

型号 制造商 描述 价格 文档
ZL60102MLDC ZARLINK 12 x 2.7 Gbps Parallel Fiber Optic Link Transmitter and Receiver 获取价格
ZL60105 ZARLINK 12 x 1.6 Gbps Parallel Fiber Optic Link Transmitter and Receiver 获取价格
ZL60105/MJD ZARLINK Transmitter, 830nm Min, 860nm Max, 1600Mbps, Panel Mount 获取价格
ZL60106 ZARLINK 12 x 1.6 Gbps Parallel Fiber Optic Link Transmitter and Receiver 获取价格
ZL6010XMMDC ZARLINK 12 x 2.7 Gbps Parallel Fiber Optic Link Transmitter and Receiver 获取价格
ZL60113 ZARLINK 12 x 3.125 Gbps Parallel Fiber Optic Link Transmitter and Receiver 获取价格
ZL60113MLDA ZARLINK 12 x 3.125 Gbps Parallel Fiber Optic Link Transmitter and Receiver 获取价格
ZL60114 ZARLINK 12 x 3.125 Gbps Parallel Fiber Optic Link Transmitter and Receiver 获取价格
ZL60114MLDA ZARLINK 12 x 3.125 Gbps Parallel Fiber Optic Link Transmitter and Receiver 获取价格
ZL60212 ZARLINK 880 nm High-Performance Single-chip DUPLEX 获取价格

ZL60102MJD 相关文章

  • 电路设计中瞬态过压保护:三大疑问全解读
    2025-05-22
    5
  • 小米豪掷造芯,YU7 能否重现华为汽车的辉煌时刻?
    2025-05-22
    4
  • 千兆级集成电路封装:重塑全球半导体供应链格局
    2025-05-21
    17
  • 电容器的原理阐释与重要作用剖析
    2025-05-21
    14
  • Hi,有什么可以帮您? 在线客服 或 微信扫码咨询