AD5162BRM50-R2 [ADI]

IC DUAL 50K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO10, 3 X 4.90 MM, MO-187BA, MSOP-10, Digital Potentiometer;
AD5162BRM50-R2
型号: AD5162BRM50-R2
厂家: ADI    ADI
描述:

IC DUAL 50K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO10, 3 X 4.90 MM, MO-187BA, MSOP-10, Digital Potentiometer

光电二极管 转换器 电阻器
文件: 总20页 (文件大小:783K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 256-Position SPI  
Digital Potentiometer  
AD5162  
FEATURES  
2-channel, 256-position  
FUNCTIONAL BLOCK DIAGRAM  
A1  
W1  
B1  
W2  
B2  
End-to-end resistance: 2.5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ  
Compact MSOP-10 (3 mm × 4.9 mm) package  
Fast settling time: tS = 5 µs typical on power-up  
Full read/write of wiper register  
Power-on preset to midscale  
V
DD  
WIPER  
REGISTER 1  
WIPER  
REGISTER 2  
Extra package address decode pin AD0  
GND  
Computer software replaces µC in factory programming  
applications  
A = 0  
A = 1  
Single supply: 2.7 V to 5.5 V  
Low temperature coefficient: 35 ppm/°C  
Low power: IDD = 6 µA max  
AD5162  
CLK  
SDI  
CS  
SPI INTERFACE  
Wide operating temperature: −40°C to +125°C  
Evaluation board available  
Figure 1.  
APPLICATIONS  
Systems calibrations  
Electronics level settings  
Mechanical Trimmers® replacement in new designs  
Permanent factory PCB setting  
Transducer adjustment of pressure, temperature, position,  
chemical, and optical sensors  
RF amplifier biasing  
Automotive electronics adjustment  
Gain control and offset adjustment  
GENERAL DESCRIPTION  
The AD5162 provides a compact 3 mm × 4.9 mm packaged  
solution for dual 256-position adjustment applications. This  
device performs the same electronic adjustment function as a  
3-terminal mechanical potentiometer. Available in four different  
end-to-end resistance values (2.5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ),  
this low temperature coefficient device is ideal for high accu-  
racy and stability variable resistance adjustments. The wiper  
settings are controllable through an SPI digital interface. The  
resistance between the wiper and either endpoint of the fixed  
resistor varies linearly with respect to the digital code  
transferred into the RDAC1 latch.  
Operating from a 2.7 V to 5.5 V power supply and consuming  
less than 6 µA allows the AD5162 to be used in portable  
battery-operated applications.  
For applications that program the AD5162 at the factory,  
Analog Devices offers device programming software running  
on Windows® NT/2000/XP operating systems. This software  
effectively replaces any external SPI controllers, which in turn  
enhances users’ systems time-to-market. An AD5162 evaluation  
kit and software are available. The kit includes a cable and  
instruction manual.  
1 The terms digital potentiometer, VR, and RDAC are used interchangeably.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
 
AD5162  
TABLE OF CONTENTS  
Electrical Characteristics—2.5 kΩ Version................................... 3  
Programming the Potentiometer Divider............................... 14  
ESD Protection ........................................................................... 14  
Terminal Voltage Operating Range.......................................... 14  
Power-Up Sequence ................................................................... 14  
Layout and Power Supply Bypassing ....................................... 15  
Constant Bias to Retain Resistance Setting............................. 15  
Evaluation Board........................................................................ 15  
SPI Interface .................................................................................... 16  
SPI Compatible 3-Wire Serial Bus ........................................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Electrical Characteristics—10 kΩ, 50 kΩ, 100 kΩ Versions ....... 4  
Timing Characteristics—All Versions ........................................... 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Pin Configuration......................................................................... 7  
Pin Function Descriptions .......................................................... 7  
Typical Performance Characteristics ............................................. 8  
Test Circuits ..................................................................................... 12  
Theory of Operation ...................................................................... 13  
Programming the Variable Resistor and Voltage.................... 13  
REVISION HISTORY  
11/03 Changed from REV. 0 to REV. A:  
Changes to Electrical Characteristics.................................... Page 3  
11/03 Revision 0: Initial Version  
Rev. A | Page 2 of 20  
AD5162  
ELECTRICAL CHARACTERISTICS—2.5 kΩ VERSION  
Table 1. VDD = 5 V 10ꢀ, or 3 V 10ꢀ% VA = +VDD% VB = 0 V% 40°C < TA < +125°C% unless otherwise noted  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
RWB (Wiper Resistance)  
R-DNL  
R-INL  
RAB  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 27°C  
−2  
−6  
−20  
0.1  
0.ꢀ7  
+2  
+6  
+77  
LSB  
LSB  
%
(∆RAB/RAB )/∆T VAB = VDD, wiper = no connect  
RWB Code = 0x00, VDD = 7 V  
37  
160  
ppm/°C  
200  
DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE (Specifications Apply to All VRs)  
Differential Nonlinearity4  
Integral Nonlinearity  
DNL  
INL  
−1.7  
−2  
0.1  
0.6  
+1.7  
+2  
LSB  
LSB  
Voltage Divider Temperature  
Coefficient  
(∆VW/VW)/∆T  
Code = 0x80  
17  
ppm/°C  
Full-Scale Error  
Zero-Scale Error  
RESISTOR TERMINALS  
Voltage Range7  
VWFSE  
VWZSE  
Code = 0xFF  
Code = 0x00  
−10  
0
−2.7  
2
0
10  
LSB  
LSB  
VA, B, W  
CA, B  
GND  
VDD  
V
pF  
Capacitance6 A, B  
f = 1 MHz, measured to GND, Code =  
0x80  
f = 1 MHz, measured to GND, Code =  
0x80  
47  
60  
1
Capacitance6 W  
CW  
ICM  
pF  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance6  
VA = VB = VDD/2  
nA  
VIH  
VIL  
VIH  
VIL  
IIL  
VDD = 7 V  
VDD = 7 V  
VDD = 3 V  
VDD = 3 V  
2.4  
2.1  
V
V
V
V
µA  
pF  
0.8  
0.6  
1
VIN = 0 V or 7 V  
CIL  
7
POWER SUPPLIES  
Power Supply Range  
Supply Current  
VDD RANGE  
IDD  
PDISS  
2.ꢀ  
7.7  
6
30  
V
VIH = 7 V or VIL = 0 V  
VIH = 7 V or VIL = 0 V, VDD = 7 V  
VDD = 7 V 10%, Code = midscale  
3.7  
µA  
µW  
%/%  
Power Dissipationꢀ  
Power Supply Sensitivity  
PSS  
0.02  
0.08  
DYNAMIC CHARACTERISTICS8  
Bandwidth −3 dB  
Total Harmonic Distortion  
VW Settling Time  
BW_2.7 K  
THDW  
tS  
Code = 0x80  
4.8  
0.1  
1
MHz  
%
µs  
VA = 1 V rms, VB = 0 V, f = 1 kHz  
VA = 7 V, VB = 0 V, 1 LSB error band  
RWB = 1.27 kΩ, RS = 0  
Resistor Noise Voltage Density  
See notes at end of section.  
eN_WB  
3.2  
nV/Hz  
Rev. A | Page 3 of 20  
 
AD5162  
ELECTRICAL CHARACTERISTICS—10 kΩ, 50 kΩ, 100 kΩ VERSIONS  
Table 2. VDD = 5 V 10ꢀ, or 3 V 10ꢀ% VA = VDD% VB = 0 V% −40°C < TA < 125°C% unless otherwise noted  
Parameter  
Symbol  
Conditions  
Min Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
RWB (Wiper Resistance)  
R-DNL  
R-INL  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 27°C  
−1  
−2.7  
−20  
0.1  
0.27  
+1  
+2.7  
+20  
LSB  
LSB  
%
RAB  
(∆RAB/RAB )/∆T  
RWB  
VAB = VDD, wiper = no connect  
Code = 0x00, VDD = 7 V  
37  
160  
ppm/°C  
200  
DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE (Specifications Apply to All VRs)  
Differential Nonlinearity4  
Integral Nonlinearity4  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
DNL  
INL  
(∆VW/VW)/∆T  
VWFSE  
VWZSE  
−1  
−1  
0.1  
0.3  
17  
+1  
+1  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
Code = 0x80  
Code = 0xFF  
Code = 0x00  
−2.7 −1  
0
0
2.7  
Zero-Scale Error  
1
RESISTOR TERMINALS  
Voltage Range7  
VA,B,W  
CA,B  
GND  
VDD  
V
pF  
Capacitance6 A, B  
f = 1 MHz, measured to GND,  
Code = 0x80  
f = 1 MHz, measured to GND,  
Code = 0x80  
47  
60  
1
Capacitance6 W  
CW  
ICM  
pF  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance  
POWER SUPPLIES  
VA = VB = VDD/2  
nA  
VIH  
VIL  
VIH  
VIL  
IIL  
VDD = 7 V  
VDD = 7 V  
VDD = 3 V  
VDD = 3 V  
2.4  
2.1  
V
V
V
V
µA  
pF  
0.8  
0.6  
1
VIN = 0 V or 7 V  
CIL  
7
Power Supply Range  
Supply Current  
Power Dissipation  
Power Supply Sensitivity  
VDD RANGE  
IDD  
PDISS  
2.ꢀ  
7.7  
6
30  
V
µA  
µW  
VIH = 7 V or VIL = 0 V  
VIH = 7 V or VIL = 0 V, VDD = 7 V  
VDD = 7 V 10%, Code =  
midscale  
3.7  
PSS  
0.02  
0.08 %/%  
DYNAMIC CHARACTERISTICS  
Bandwidth −3 dB  
BW  
RAB = 10 kΩ/70 kΩ/100 kΩ,  
Code = 0x80  
VA = 1 V rms, VB = 0 V,  
f = 1 kHz, RAB = 10 kΩ  
VA = 7 V, VB = 0 V,  
1 LSB error band  
600/100/40  
kHz  
%
Total Harmonic Distortion  
THDW  
tS  
0.1  
2
VW Settling Time (10 kΩ/70 kΩ/100 kΩ)  
µs  
Resistor Noise Voltage Density  
eN_WB  
RWB = 7 kΩ, RS = 0  
9
nV/Hz  
See notes at end of section.  
Rev. A | Page 4 of 20  
 
AD5162  
TIMING CHARACTERISTICS—ALL VERSIONS  
Table 3. VDD = +5 V 10ꢀ, or +3 V 10ꢀ% VA = VDD% VB = 0 V% −40°C < TA < +125°C% unless otherwise noted  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
SPI INTERFACE TIMING CHARACTERISTICS9 (Specifications Apply to All Parts)  
Clock Frequency  
Input Clock Pulse Width  
Data Setup Time  
fCLK  
tCH, tCL  
tDS  
27  
MHz  
ns  
ns  
Clock level high or low  
20  
7
Data Hold Time  
tDH  
7
ns  
CS Setup Time  
tCSS  
17  
40  
0
ns  
CS High Pulse Width  
CLK Fall to CS Fall Hold Time  
CLK Fall to CS Rise Hold Time  
tCSW  
tCSH0  
tCSH1  
tCS1  
ns  
ns  
0
ns  
CS Rise to Clock Rise Setup  
10  
ns  
See notes at end of section.  
NOTES  
1 Typical specifications represent average readings at 27°C and VDD = 7 V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.  
3 VAB = VDD, wiper (VW) = no connect.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output DAC converter. VA = VDD and VB = 0 V.  
DNL specification limits of 1 LSB maximum are guaranteed monotonic operating conditions.  
7 Resistor terminals A, B, W have no limitations on polarity with respect to each other.  
6 Guaranteed by design and not subject to production test.  
PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
8All dynamic characteristics use VDD = 7 V.  
9See timing diagrams for locations of measured values.  
Rev. A | Page 7 of 20  
 
AD5162  
ABSOLUTE MAXIMUM RATINGS  
Table 4. TA = 25°C, unless otherwise noted  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Value  
VDD to GND  
VA, VB, VW to GND  
–0.3 V to +ꢀ V  
VDD  
Terminal Current, Ax to Bx, Ax to Wx,  
Bx to Wx1  
Pulsed  
Continuous  
20 mA  
7 mA  
Digital Inputs and Output Voltage to GND 0 V to ꢀ V  
Operating Temperature Range  
Maximum Junction Temperature (TJMAX  
Storage Temperature  
Lead Temperature (Soldering, 10 s)  
Thermal Resistance2 θJA: MSOP-10  
–40°C to +127°C  
170°C  
–67°C to +170°C  
300°C  
230°C/W  
)
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 Package power dissipation = (TJMAX − TA)/θJA  
.
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 6 of 20  
 
 
 
AD5162  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN CONFIGURATION  
PIN FUNCTION DESCRIPTIONS  
Table 5.  
1
10  
9
W1  
B2  
B1  
Pin  
No.  
2
A1  
Mnemonic Description  
3
8
W2  
AD5162  
CS  
1
2
3
4
7
6
B1  
A1  
W2  
GND  
VDD  
CLK  
B1 Terminal.  
A1 Terminal.  
W2 Terminal.  
Digital Ground.  
Positive Power Supply.  
TOP VIEW  
7
4
5
GND  
SDI  
CLK  
6
V
DD  
Figure 2.  
Serial Clock Input. Positive edge  
triggered.  
8
SDI  
CS  
Serial Data Input.  
Chip Select Input, Active Low. When CS  
returns high, data is loaded into the DAC  
register.  
9
10  
B2  
W1  
B2 Terminal.  
W1 Terminal.  
Rev. A | Page ꢀ of 20  
 
AD5162  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.0  
0.5  
0.4  
T
R
= 25°C  
R
= 10k  
A
AB  
= 10kΩ  
AB  
1.5  
1.0  
0.3  
V
= 2.7V  
DD  
0.2  
0.5  
0.1  
V
= 2.7V; T = –40°C, +25°C, +85°C, +125°C  
A
DD  
0
0
V
= 5.5V  
DD  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
–1.0  
–1.5  
–2.0  
0
0
0
32  
64  
96  
128  
160  
192  
224  
256  
0
0
0
32  
32  
32  
64  
96  
128  
160  
192  
224  
256  
256  
256  
CODE (DECIMAL)  
CODE (DECIMAL)  
Figure 3. R-INL vs. Code vs. Supply Voltages  
Figure 6. DNL vs. Code vs. Temperature  
0.5  
0.4  
1.0  
0.8  
T
R
= 25°C  
T
R
= 25°C  
= 10kΩ  
A
A
= 10kΩ  
AB  
AB  
0.3  
0.6  
0.2  
0.4  
V
= 2.7V  
DD  
V
= 5.5V  
0.1  
0.2  
DD  
0
0
V
= 2.7V  
DD  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
= 5.5V  
DD  
32  
64  
96  
128  
160  
192  
224  
256  
64  
96  
128  
160  
192  
224  
CODE (DECIMAL)  
CODE (DECIMAL)  
Figure 4. R-DNL vs. Code vs. Supply Voltages  
Figure 7. INL vs. Code vs. Supply Voltages  
0.5  
0.4  
0.5  
0.4  
R
= 10kΩ  
T
R
= 25°C  
= 10kΩ  
AB  
A
AB  
0.3  
0.3  
V
= 5.5V  
DD  
T
= –40°C, +25°C, +85°C, +125°C  
A
0.2  
0.2  
0.1  
0.1  
V
= 2.7V  
DD  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
V
= 5.5V  
DD  
V
= 2.7V  
DD  
T
= –40°C, +25°C, +85°C, +125°C  
A
32  
64  
96  
128  
160  
192  
224  
256  
64  
96  
128  
160  
192  
224  
CODE (DECIMAL)  
CODE (DECIMAL)  
Figure 5. INL vs. Code vs. Temperature  
Figure 8. DNL vs. Code vs. Supply Voltages  
Rev. A | Page 8 of 20  
 
AD5162  
2.0  
1.5  
4.50  
3.75  
3.00  
2.25  
1.50  
0.75  
0
R
= 10kΩ  
R
= 10kΩ  
AB  
AB  
V
= 2.7V  
DD  
= –40°C, +25°C, +85°C, +125°C  
T
A
1.0  
0.5  
0
V
= 2.7V, V = 2.7V  
A
DD  
V
= 5.5V  
DD  
= –40°C, +25°C, +85°C, +125°C  
–0.5  
–1.0  
–1.5  
–2.0  
T
A
V
= 5.5V, V = 5.0V  
A
DD  
0
32  
64  
96  
128  
160  
192  
224  
256  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
CODE (DECIMAL)  
TEMPERATURE (°C)  
Figure 9. R-INL vs. Code vs. Temperature  
Figure 12. Zero-Scale Error vs. Temperature  
0.5  
0.4  
10  
R
= 10kΩ  
AB  
0.3  
V
V
= 5V  
DD  
0.2  
V
= 2.7V, 5.5V; T = –40°C, +25°C, +85°C, +125°C  
A
DD  
0.1  
0
1
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
= 3V  
DD  
0.1  
–40  
0
32  
64  
96  
128  
160  
192  
224  
256  
–7  
26  
59  
92  
125  
TEMPERATURE (°C)  
CODE (DECIMAL)  
Figure 10. R-DNL vs. Code vs. Temperature  
Figure 13. Supply Current vs. Temperature  
120  
100  
80  
2.0  
1.5  
R
= 10kΩ  
R
= 10kΩ  
AB  
AB  
1.0  
0.5  
60  
V
= 2.7V  
DD  
= –40°C TO +85°C, –40°C TO +125°C  
T
A
0
V
= 5.5V, V = 5.0V  
A
DD  
40  
V
= 5.5V  
DD  
= –40°C TO +85°C, –40°C TO +125°C  
–0.5  
–1.0  
–1.5  
–2.0  
T
A
20  
V
= 2.7V, V = 2.7V  
A
DD  
0
–20  
0
32  
64  
96  
128  
160  
192  
224  
256  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
CODE (DECIMAL)  
TEMPERATURE (°C)  
Figure 14. Rheostat Mode Tempco ∆RWB/∆T vs. Code  
Figure 11. Full-Scale Error vs. Temperature  
Rev. A | Page 9 of 20  
AD5162  
50  
0
–6  
R
= 10kΩ  
AB  
0x80  
0x40  
0x20  
0x10  
40  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
30  
V
T
= 2.7V  
DD  
= –40°C TO +85°C, –40°C TO +125°C  
20  
A
0x08  
0x04  
0x02  
0x01  
10  
0
–10  
–20  
V
= 5.5V  
DD  
= –40°C TO +85°C, –40°C TO +125°C  
T
A
–30  
0
32  
64  
96  
128  
160  
192  
224  
256  
1k  
10k  
100k  
1M  
CODE (DECIMAL)  
FREQUENCY (Hz)  
Figure 15. Potentiometer Mode Tempco ∆VWB/∆T vs. Code  
Figure 18. Gain vs. Frequency vs. Code, RAB = 50 kΩ  
0
–6  
0
–6  
0x80  
0x80  
0x40  
0x20  
0x40  
0x20  
0x10  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x10  
0x08  
0x04  
0x02  
0x01  
0x08  
0x04  
0x02 0x01  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
Figure 16. Gain vs. Frequency vs. Code, RAB = 2.5 kΩ  
Figure 19. Gain vs. Frequency vs. Code, RAB = 100 kΩ  
0
–6  
0
–6  
0x80  
0x40  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
100kΩ  
60kHz  
50kΩ  
0x20  
0x10  
0x08  
0x04  
120kHz  
10kΩ  
570kHz  
2.5kΩ  
2.2MHz  
0x02  
0x01  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 17. Gain vs. Frequency vs. Code, RAB = 10 kΩ  
Figure 20. –3 dB Bandwidth @ Code = 0x80  
Rev. A | Page 10 of 20  
AD5162  
10  
T
= 25°C  
A
1
V
= 5.5V  
DD  
V
V
W2  
0.1  
0.01  
V
= 2.7V  
DD  
W1  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
DIGITAL INPUT VOLTAGE (V)  
Figure 21. IDD vs. Input Voltage  
Figure 24. Analog Crosstalk  
Figure 25. Midscale Glitch, Code 0x80 to 0x7F  
Figure 26. Large Signal Settling Time  
V
W
V
W
CLK  
Figure 22. Digital Feedthrough  
V
V
W2  
W
V
CS  
W1  
Figure 23. Digital Crosstalk  
Rev. A | Page 11 of 20  
AD5162  
TEST CIRCUITS  
Figure 27 through Figure 32 illustrate the test circuits that  
define the test conditions used in the product specification  
tables.  
V
A
V+ = V ± 10%  
DD  
V  
V  
MS  
DUT  
W
PSRR (dB) = 20 LOG  
(
)
DD  
V  
V  
%
%
A
B
MS  
DD  
V  
PSS (%/%) =  
DD  
V+ = V  
1LSB = V+/2  
DUT  
W
DD  
V+  
N
A
B
V
MS  
V+  
V
MS  
Figure 30. Test Circuit for Power Supply Sensitivity  
(PSS, PSSR)  
Figure 27. Test Circuit for Potentiometer Divider Nonlinearity Error  
(INL, DNL)  
DUT  
+15V  
NO CONNECT  
DUT  
A
W
V
IN  
I
W
A
AD8610  
–15V  
V
B
OUT  
W
OFFSET  
GND  
B
2.5V  
V
MS  
Figure 31. Test Circuit for Gain vs. Frequency  
Figure 28. Test Circuit for Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
NC  
DUT  
I
DUT  
CM  
A
B
V
DD  
I
= V /R  
DD NOMINAL  
W
W
A
B
V
W
W
GND  
V
MS2  
V
CM  
R
= [V  
– V  
]/I  
MS2 W  
W
MS1  
V
MS1  
NC NC = NO CONNECT  
Figure 32. Test Circuit for Common-Mode Leakage Current  
Figure 29. Test Circuit for Wiper Resistance  
Rev. A | Page 12 of 20  
 
 
 
AD5162  
THEORY OF OPERATION  
The AD5162 is a 256-position digitally controlled variable  
resistor (VR) device.  
The general equation determining the digitally programmed  
output resistance between W and B is  
An internal power-on preset places the wiper at midscale  
during power-on, which simplifies the fault condition recovery  
at power-up.  
D
256  
R
WB (D) =  
× RAB + 2× RW  
(1)  
where:  
PROGRAMMING THE VARIABLE RESISTOR AND  
VOLTAGE  
D is the decimal equivalent of the binary code loaded in the  
8-bit RDAC register.  
Rheostat Operation  
R
R
AB is the end-to-end resistance.  
W is the wiper resistance contributed by the ON resistance of  
The nominal resistance of the RDAC between terminals A and  
B is available in 2.5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ. The nominal  
resistance (RAB) of the VR has 256 contact points accessed by  
the wiper terminal, plus the B terminal contact. The 8-bit data  
in the RDAC latch is decoded to select one of the 256 possible  
settings.  
the internal switch.  
In summary, if RAB = 10 kΩ and the A terminal is open  
circuited, the following output resistance RWB is set for the  
indicated RDAC latch codes.  
Table 6. Codes and Corresponding RWB Resistance  
A
A
A
D (Dec)  
RWB (Ω)  
9,961  
7,060  
139  
Output State  
277  
128  
1
Full scale (RAB − 1 LSB + RW)  
Midscale  
1 LSB  
W
W
W
B
B
B
0
100  
Zero scale (wiper contact resistance)  
Figure 33. Rheostat Mode Configuration  
Note that, in the zero-scale condition, a finite wiper resistance  
of 100 Ω is present. Care should be taken to limit the current  
flow between W and B in this state to a maximum pulse current  
of no more than 20 mA. Otherwise, degradation or possible  
destruction of the internal switch contact can occur.  
Assuming that a 10 kΩ part is used, the wiper’s first connection  
starts at the B terminal for data 0x00. Because there is a 50 Ω  
wiper contact resistance, such a connection yields a minimum  
of 100 Ω (2 × 50 Ω) resistance between terminals W and B. The  
second connection is the first tap point, which corresponds to  
139 Ω (RWB = RAB/256 + 2 × RW = 39 Ω + 2 × 50 Ω) for data  
0x01. The third connection is the next tap point, representing  
178 Ω (2 × 39 Ω + 2 × 50 Ω) for data 0x02, and so on. Each LSB  
data value increase moves the wiper up the resistor ladder until  
the last tap point is reached at 10,100 Ω (RAB + 2 × RW).  
Similar to the mechanical potentiometer, the resistance of the  
RDAC between the wiper W and terminal A also produces a  
digitally controlled complementary resistance RWA. When these  
terminals are used, the B terminal can be opened. Setting the  
resistance value for RWA starts at a maximum value of resistance  
and decreases as the data loaded in the latch increases in value.  
The general equation for this operation is  
A
R
S
256 D  
256  
RWA(D) =  
× RAB + 2× RW  
(2)  
R
R
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S
For RAB = 10 kΩ and the B terminal open circuited, the  
following output resistance RWA is set for the indicated RDAC  
latch codes.  
S
W
Table 7. Codes and Corresponding RWA Resistance  
D (Dec)  
RWA (Ω)  
Output State  
Full scale  
Midscale  
1 LSB  
277  
128  
1
139  
7,060  
9,961  
10,060  
R
RDAC  
S
LATCH  
AND  
DECODER  
B
0
Zero scale  
Typical device-to-device matching is process lot dependent and  
may vary by up to 30ꢀ. Because the resistance element is  
processed in thin film technology, the change in RAB with  
temperature has a very low 35 ppm/°C temperature coefficient.  
Figure 34. AD5162 Equivalent RDAC Circuit  
Rev. A | Page 13 of 20  
 
AD5162  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
ESD PROTECTION  
All digital inputs are protected with a series of input resistors  
and parallel Zener ESD structures shown in Figure 36 and  
Figure 37. This applies to the digital input pins SDI, CLK,  
The digital potentiometer easily generates a voltage divider at  
wiper-to-B and wiper-to-A proportional to the input voltage at  
A to B. Unlike the polarity of VDD to GND, which must be  
positive, voltage across A to B, W to A, and W to B can be at  
either polarity.  
CS  
and  
.
340  
LOGIC  
V
I
A
GND  
W
V
O
Figure 36. ESD Protection of Digital Pins  
B
A, B, W  
Figure 35. Potentiometer Mode Configuration  
GND  
If ignoring the effect of the wiper resistance for approximation,  
connecting the A terminal to 5 V and the B terminal to ground  
produces an output voltage at the wiper-to-B starting at 0 V up  
to 1 LSB less than 5 V. Each LSB of voltage is equal to the volt-  
age applied across terminal AB divided by the 256 positions of  
the potentiometer divider. The general equation defining the  
output voltage at VW with respect to ground for any valid input  
voltage applied to terminals A and B is  
Figure 37. ESD Protection of Resistor Terminals  
TERMINAL VOLTAGE OPERATING RANGE  
The AD5162 VDD and GND power supply defines the boundary  
conditions for proper 3-terminal digital potentiometer opera-  
tion. Supply signals present on terminals A, B, and W that  
exceed VDD or GND are clamped by the internal forward biased  
diodes (see Figure 38).  
D
256 D  
VW (D) =  
VA +  
VB  
(3)  
256  
256  
V
DD  
A more accurate calculation, which includes the effect of wiper  
resistance, VW, is  
A
W
B
R
WB (D)  
RAB  
RWA(D)  
RAB  
(4)  
VW (D) =  
VA +  
VB  
GND  
Operation of the digital potentiometer in the divider mode  
results in a more accurate operation over temperature. Unlike  
the rheostat mode, the output voltage is dependent mainly on  
the ratio of the internal resistors RWA and RWB and not the  
absolute values. Therefore, the temperature drift reduces to  
15 ppm/°C.  
Figure 38. Maximum Terminal Voltages Set by VDD and GND  
POWER-UP SEQUENCE  
Because the ESD protection diodes limit the voltage compliance  
at terminals A, B, and W (see Figure 38), it is important to  
power VDD/GND before applying any voltage to terminals A, B,  
and W; otherwise, the diode is forward biased such that VDD is  
powered unintentionally and may affect the rest of the users  
circuit. The ideal power-up sequence is in the following order:  
GND, VDD, digital inputs, and then VA, VB, VW. The relative order  
of powering VA, VB, VW, and the digital inputs is not important  
as long as they are powered after VDD/GND.  
Rev. A | Page 14 of 20  
 
 
 
 
AD5162  
110%  
108%  
106%  
104%  
102%  
100%  
98%  
LAYOUT AND POWER SUPPLY BYPASSING  
It is good practice to employ compact, minimum lead length  
layout design. The leads to the inputs should be as direct as  
possible with a minimum conductor length. Ground paths  
should have low resistance and low inductance.  
T
= 25°C  
A
Similarly, it is also good practice to bypass the power supplies  
with quality capacitors for optimum stability. Supply leads to the  
device should be bypassed with disc or chip ceramic capacitors  
of 0.01 µF to 0.1 µF. Low ESR 1 µF to 10 µF tantalum or electro-  
lytic capacitors should also be applied at the supplies to  
minimize any transient disturbance and low frequency ripple  
(see Figure 39). Note that the digital ground should also be  
joined remotely to the analog ground at one point to minimize  
the ground bounce.  
96%  
94%  
92%  
90%  
0
5
10  
15  
20  
25  
30  
DAYS  
Figure 40. Battery Operating Life Depletion  
V
V
DD  
DD  
+
EVALUATION BOARD  
C3  
C1  
10µF  
0.1µF  
AD5162  
An evaluation board, along with all necessary software, is  
available to program the AD5162 from any PC running  
Windows 98/2000/XP. The graphical user interface, as shown in  
Figure 41, is straightforward and easy to use. More detailed  
information is available in the user manual, which comes with  
the board.  
GND  
Figure 39. Power Supply Bypassing  
CONSTANT BIAS TO RETAIN RESISTANCE SETTING  
For users who desire nonvolatility but cannot justify the addi-  
tional cost for the EEMEM, the AD5162 may be considered as a  
low cost alternative by maintaining a constant bias to retain the  
wiper setting. The AD5162 is designed specifically with low  
power in mind, which allows low power consumption even in  
battery-operated systems. The graph in Figure 40 demonstrates  
the power consumption from a 3.4 V 450 mAhr Li-Ion cell  
phone battery, which is connected to the AD5162. The measure-  
ment over time shows that the device draws approximately  
1.3 µA and consumes negligible power. Over a course of  
30 days, the battery is depleted by less than 2ꢀ, the majority of  
which is due to the intrinsic leakage current of the battery itself.  
Figure 41. AD5162 Evaluation Board Software  
The AD5162 starts at midscale upon power-up. To increment or  
decrement the resistance, the user may simply move the scroll-  
bars on the left. To write any specific value, the user should use  
the bit pattern in the upper screen and press the Run button.  
The format of writing data to the device is shown in Table 8.  
This demonstrates that constantly biasing the potentiometer is  
not an impractical approach. Most portable devices do not  
require the removal of batteries for the purpose of charging.  
Although the resistance setting of the AD5162 is lost when the  
battery needs replacement, such events occur rather infre-  
quently such that this inconvenience is justified by the lower  
cost and smaller size offered by the AD5162. If and when total  
power is lost, the user should be provided with a means to  
adjust the setting accordingly.  
Rev. A | Page 17 of 20  
 
 
 
 
AD5162  
SPI INTERFACE  
Table 8. Serial Data-Word Format  
SPI COMPATIBLE 3-WIRE SERIAL BUS  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
D0  
LSB  
20  
The AD5162 contains a 3-wire SPI compatible digital interface  
(SDI, , and CLK). The 9-bit serial word must be loaded MSB  
CS  
first. The format of the word is shown in Table 8.  
A0  
Dꢀ  
D6  
D7  
D4  
D3  
D2  
D1  
MSB  
28  
2ꢀ  
The positive-edge sensitive CLK input requires clean transitions  
to avoid clocking incorrect data into the serial input register.  
Standard logic families work well. If mechanical switches are  
used for product evaluation, they should be debounced by a  
1
A0 D7 D6 D5 D4 D3 D2 D1 D0  
SDI  
0
1
CLK  
CS  
flip-flop or other suitable means. When  
is low, the clock  
CS  
0
1
loads data into the serial register on each positive clock edge  
(see Figure 42).  
RDAC REGISTER LOAD  
0
1
V
OUT  
0
The data setup and data hold times in the specification table  
determine the valid timing requirements. The AD5162 uses a  
9-bit serial input data register word that is transferred to the  
Figure 42. SPI Interface Timing Diagram  
(VA = 5 V, VB = 0 V, VW = VOUT  
)
internal RDAC register when the  
line returns to logic high.  
CS  
Extra MSB bits are ignored.  
1
SDI  
Dx  
Dx  
tDS  
(DATA IN)  
0
1
tCS1  
tCH  
tCH  
CLK  
CS  
0
tCSH1  
tCL  
tCSHO  
tCSS  
1
0
tCSW  
tS  
V
DD  
0
±1LSB  
V
OUT  
Figure 43. SPI Interface Detailed Timing Diagram (VA = 5 V, VB = 0 V, VW = VOUT  
)
Rev. A | Page 16 of 20  
 
 
 
AD5162  
OUTLINE DIMENSIONS  
3.00 BSC  
10  
6
4.90 BSC  
3.00 BSC  
PIN 1  
1
5
0.50 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.27  
0.17  
SEATING  
PLANE  
0.23  
0.08  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187BA  
Figure 44. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
RAB (Ω)  
Temperature  
Package Description  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
Package Option  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
Branding  
AD7162BRM2.7  
AD7162BRM2.7-RLꢀ  
AD7162BRM10  
AD7162BRM10-RLꢀ  
AD7162BRM70  
AD7162BRM70-RLꢀ  
AD7162BRM100  
AD7162BRM100-RLꢀ  
AD7162EVAL  
2.7 k  
2.7 k  
10 k  
10 k  
70 k  
70 k  
100 k  
100 k  
See Note 1  
–40°C to +127°C  
–40°C to +127°C  
–40°C to +127°C  
–40°C to +127°C  
–40°C to +127°C  
–40°C to +127°C  
–40°C to +127°C  
–40°C to +127°C  
D0Q  
D0Q  
D0R  
D0R  
D0S  
D0S  
D0T  
D0T  
Evaluation Board  
1The evaluation board is shipped with the 10 kΩ RAB resistor option; however, the board is compatible with all available resistor value options.  
Rev. A | Page 1ꢀ of 20  
 
AD5162  
NOTES  
Rev. A | Page 18 of 20  
AD5162  
NOTES  
Rev. A | Page 19 of 20  
AD5162  
NOTES  
©
2003 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C04108–0–11/03(A)  
Rev. A | Page 20 of 20  

相关型号:

AD5162BRM50-RL7

Dual 256-Position SPI Digital Potentiometer
ADI

AD5162BRMZ10

Dual, 256-Position, SPI Digital Potentiometer
ADI

AD5162BRMZ10-RL7

Dual, 256-Position, SPI Digital Potentiometer
ADI

AD5162BRMZ100

Dual, 256-Position, SPI Digital Potentiometer
ADI

AD5162BRMZ100-RL7

Dual, 256-Position, SPI Digital Potentiometer
ADI

AD5162BRMZ2.5

Dual, 256-Position, SPI Digital Potentiometer
ADI

AD5162BRMZ2.5-RL7

Dual, 256-Position, SPI Digital Potentiometer
ADI

AD5162BRMZ50

Dual, 256-Position, SPI Digital Potentiometer
ADI

AD5162BRMZ50-RL7

Dual, 256-Position, SPI Digital Potentiometer
ADI

AD5162EVAL

Dual, 256-Position, SPI Digital Potentiometer
ADI

AD5162WBRMZ100-RL7

Dual, 256-Position, SPI Digital Potentiometer
ADI

AD5165

256-Position, Ultralow Power 1.8 V Logic-Level Digital Potentiometer
ADI