AD5232BRU50-REEL7 [ADI]

8-Bit Dual Nonvolatile Memory Digital Potentiometer; 8位双非易失性存储器的数字电位器
AD5232BRU50-REEL7
型号: AD5232BRU50-REEL7
厂家: ADI    ADI
描述:

8-Bit Dual Nonvolatile Memory Digital Potentiometer
8位双非易失性存储器的数字电位器

转换器 电位器 数字电位计 存储 电阻器 光电二极管
文件: 总20页 (文件大小:266K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-Bit Dual Nonvolatile Memory  
Digital Potentiometer  
a
AD5232*  
FEATURES  
FUNCTIO NAL BLO CK D IAGRAM  
Nonvolatile Memory Preset Maintains Wiper Settings  
Dual Channel, 256-Position Resolution  
Full Monotonic Operation DNL < 1 LSB  
10 k, 50 k, 100 kTerminal Resistance  
Linear or Log Taper Settings  
Push-Button Increment/Decrement Compatible  
SPI-Compatible Serial Data Input with Readback  
Function  
AD5232  
CS  
V
DD  
RDAC1  
REGISTER  
ADDR  
DECODE  
RDAC1  
CLK  
SDI  
A1  
W1  
B1  
SDI  
SERIAL  
INTERFACE  
GND  
EEMEM1  
3 V to 5 V Single Supply or 2.5 V Dual Supply  
Operation  
14 Bytes of User EEMEM Nonvolatile Memory for  
Constant Storage  
Permanent Memory Write Protection  
100-Year Typical Data Retention TA = 55C  
RDAC2  
RDAC2  
REGISTER  
SDO  
SDO  
A2  
W2  
B2  
WP  
EEMEM  
CONTROL  
RDY  
EEMEM2  
14 BYTES  
USER EEMEM  
PR  
V
SS  
APPLICATIONS  
T he basic mode of adjustment is the increment and decrement  
command controlling the present setting of the Wiper position  
setting (RDAC) register. An internal scratch pad RDAC register  
can be moved UP or DOWN one step of the nominal terminal  
resistance between terminals A and B. T his linearly changes the  
wiper to B terminal resistance (RWB) by one position segment of  
the devices’ end-to-end resistance (RAB). For exponential/loga-  
rithmic changes in wiper setting, a left/right shift command  
adjusts levels in ±6 dB steps, which can be useful for audio and  
light alarm applications.  
Mechanical Potentiometer Replacement  
Instrumentation: Gain, Offset Adjustment  
Programmable Voltage-to-Current Conversion  
Programmable Filters, Delays, Time Constants  
Line Impedance Matching  
Power Supply Adjustment  
DIP Switch Setting  
GENERAL D ESCRIP TIO N  
T he AD5232 device provides a nonvolatile, dual-channel,  
digitally controlled variable resistor (VR) with 256-position  
resolution. T hese devices perform the same electronic adjust-  
ment function as a potentiometer or variable resistor. T he  
AD5232s versatile programming via a microcontroller allows  
multiple modes of operation and adjustment.  
T he AD5232 is available in a thin T SSOP-16 package. All parts  
are guaranteed to operate over the extended industrial tempera-  
ture range of –40°C to +85°C. An evaluation board is available,  
Part Number: AD5232EVAL.  
In the direct program mode a predetermined setting of the RDAC  
register can be loaded directly from the microcontroller.  
Another key mode of operation allows the RDAC register to be  
refreshed with the setting previously stored in the EEMEM  
register. When changes are made to the RDAC register to estab-  
lish a new wiper position, the value of the setting can be saved  
into the EEMEM by executing an EEMEM save operation.  
Once the settings are saved in the EEMEM register these values  
will be automatically transferred to the RDAC register to set the  
wiper position at system power ON. Such operation is enabled  
by the internal preset strobe and the preset can also be accessed  
externally.  
100  
75  
50  
25  
R
R
WA  
WB  
All internal register contents can be read out of the serial data  
output (SDO). T his includes the RDAC1 and RDAC2 registers,  
the corresponding nonvolatile EEMEM1 and EEMEM2 regis-  
ters, and the 14 spare USER EEMEM registers available for  
constant storage.  
0
0
64  
128  
192  
256  
CODE – Decimal  
Figure 1. Symmetrical RDAC Operation  
*P atent pending.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2001  
AD5232–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS, 10 k, 50 k, 100 kVERSIONS  
( V = 3 V 10% or 5 V 10% and V = 0 V, V = +V , V = 0 V, 40C < T < +85C unless otherwise noted.)  
DD  
SS  
A
DD  
B
A
P aram eter  
Sym bol  
Conditions  
Min  
Typ1 Max Unit  
DC CHARACT ERIST ICS  
RHEOST AT MODE – Specifications Apply to All VRs  
Resistor Differential Nonlinearity2  
R-DNL  
R-INL  
RAB  
RAB/T  
RW  
RWB, VA = NC  
RWB, VA = NC  
–1  
–0.4  
–40  
±1/2  
+1  
LSB  
Resistor Nonlinearity2  
+0.4 % FS  
Nominal Resistor T olerance  
Resistance T emperature Coefficient  
Wiper Resistance  
+20  
100  
%
600  
5
200  
ppm/°C  
IW = 100 µA, VDD = 5.5 V, Code = 1EH  
IW = 100 µA, VDD = 3 V, Code = 1EH  
RW  
POT ENT IOMET ER DIVIDER MODE — Specifications Apply to All VRs  
Resolution  
N
DNL  
INL  
8
–1  
–0.4  
Bits  
LSB  
+0.4 % FS  
ppm/°C  
% FS  
Differential Nonlinearity3  
±1/2  
+1  
Integral Nonlinearity3  
Voltage Divider Temperature Coefficient VW/T  
Full-Scale Error  
Zero-Scale Error  
Code = Half-Scale  
Code = Full-Scale  
Code = Zero-Scale  
15  
VWFSE  
VWZSE  
–3  
0
0
+3  
% FS  
RESIST OR T ERMINALS  
T erminal Voltage Range4  
Capacitance5 Ax, Bx  
VA,B,W  
CA,B  
VSS  
VDD  
V
f = 1 MHz, Measured to GND,  
Code = Half-Scale  
f = 1 MHz, Measured to GND,  
Code = Half-Scale  
45  
pF  
Capacitance5 Wx  
CW  
ICM  
60  
0.01  
pF  
µA  
Common-Mode Leakage Current5, 6  
VW = VDD/2  
1
DIGIT AL INPUT S AND OUT PUT S  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
VIH  
VIL  
VIH  
VIL  
VIH  
With Respect to GND, VDD = 5 V  
With Respect to GND, VDD = 5 V  
With Respect to GND, VDD= 3 V  
With Respect to GND, VDD = 3 V  
With Respect to GND, VDD = +2.5 V, 2.0  
VSS = –2.5 V  
2.4  
2.1  
V
V
V
V
V
0.8  
0.6  
Input Logic High  
Input Logic Low  
VIL  
With Respect to GND, VDD = +2.5 V,  
0.5  
4
V
VSS = –2.5 V  
Output Logic High (SDO and RDY)  
Output Logic Low  
VOH  
VOL  
IIL  
RPULL-UP = 2.2 kto 5 V  
IOL = 1.6 mA, VLOGIC = 5 V  
VIN = 0 V or VDD  
4.9  
V
V
0.4  
Input Current  
±2.5 µA  
Input Capacitance5  
CIL  
pF  
POWER SUPPLIES  
Single-Supply Power Range  
Dual-Supply Power Range  
Positive Supply Current  
Programming Mode Current  
Read Mode Current7  
VDD  
VSS = 0 V  
2.7  
±2.25  
5.5  
±2.75  
10  
V
V
µA  
mA  
mA  
VDD/VSS  
IDD  
VIH = VDD or VIL = GND  
VIH = VDD or VIL = GND  
VIH = VDD or VIL = GND  
VIH = VDD or VIL = GND,  
3.5  
35  
3
IDD(PG)  
IDD(XFR)  
ISS  
0.9  
9
Negative Supply Current  
V
DD = +2.5 V, VSS = –2.5 V  
3.5  
10  
µA  
Power Dissipation8  
PDISS  
PSS  
VIH = VDD or VIL = GND  
VDD = 5 V ±10%  
0.018 0.05 mW  
0.002 0.01 %/%  
Power Supply Sensitivity5  
–2–  
REV. 0  
AD5232  
P aram eter  
Sym bol  
Conditions  
Min  
Typ1 Max Unit  
DYNAMIC CHARACT ERIST ICS5, 9  
Bandwidth  
T otal Harmonic Distortion  
–3 dB, BW_10 k, R = 10 kΩ  
VA = 1 V rms, VB = 0 V, f = 1 kHz,  
RAB = 10 kΩ  
VA =1 V rms, VB = 0 V, f = 1 kHz,  
RAB = 50 k, 100 kΩ  
VDD = 5 V, VSS = 0 V, VA = VDD, VB = 0 V,  
VW = 0.50% Error Band, Code 00H to 80H  
For RAB = 10 k/50 k/100 kΩ  
RWB = 5 k, f = 1 kHz  
500  
kHz  
%
T HDW  
T HDW  
tS  
0.022  
0.045  
%
VW Settling T ime  
0.65/3/6  
9
µs  
Resistor Noise Voltage  
eN_WB  
nV/Hz  
Crosstalk (CW1/CW2  
)
CT  
VA = VDD, VB = 0 V, Measure VW with  
Adjacent VR Making Full-Scale Code Change  
VA1 = VDD, VB1 = 0 V, Measure VW1  
with VW2 = 5 V p-p @ f = 10 kHz,  
Code1 = 80H; Code2 = FFH  
–5  
nV-s  
dB  
Analog Crosstalk (CW1/CW2  
)
CT A  
–70  
INT ERFACE T IMING CHARACTERISTICS – Applies to All Parts5, 10  
Clock Cycle T ime (tCYC  
CS Setup T ime  
CLK Shutdown T ime to CS Rise  
Input Clock Pulsewidth  
Data Setup T ime  
)
t1  
t2  
t3  
t 4 , t 5  
t6  
20  
10  
1
10  
5
ns  
ns  
tCYC  
ns  
ns  
Clock Level High or Low  
From Positive CLK T ransition  
From Positive CLK T ransition  
Data Hold T ime  
t7  
5
ns  
CS to SDO-SPI Line Acquire  
CS to SDO-SPI Line Release  
CLK to SDO Propagation Delay11  
CLK to SDO Data Hold T ime  
CS High Pulsewidth12  
t8  
t 9  
40  
50  
50  
ns  
ns  
ns  
ns  
ns  
tCYC  
ns  
t10  
t11  
t12  
t 13  
t 14  
t 15  
RP = 2.2 k, CL < 20 pF  
RP = 2.2 k, CL < 20 pF  
0
10  
4
CS High to CS High12  
RDY Rise to CS Fall  
0
CS Rise to RDY Fall T ime  
0.1  
0.15 ms  
25  
Read/Store to Nonvolatile EEMEM13 t 16  
Applies to Command 2H, 3H, 9H  
ms  
ns  
ns  
CS Rise to Clock Rise/Fall Setup  
Preset Pulsewidth (Asynchronous)  
Preset Response T ime to RDY High tPRESP  
t17  
tPRW  
10  
50  
Not Shown in T iming Diagram  
PR Pulsed Low to Refreshed  
Wiper Positions  
70  
µs  
FLASH/EE MEMORY RELIABILIT Y CHARACT ERIST ICS  
Endurance14  
100  
K Cycles  
Years  
Data Retention15  
100  
NOT ES  
1T ypical parameters represent average readings at 25°C and VDD = 5 V.  
2Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
postions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. I W ~ 50 µA @ VDD = 2.7 V and  
IW ~ 400 µA @ VDD = 5 V for the RAB = 10 kversion, IW ~ 50 µA for the RAB = 50 kand IW ~ 25 µA for the RAB = 100 kversion. See Figure 13.  
3INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = VSS. DNL  
specification limits of ±1 LSB maximum are Guaranteed Monotonic operating conditions. See Figure 14.  
4Resistor terminals A, B, W have no limitations on polarity with respect to each other. Dual Supply Operation enables ground-referenced bipolar signal adjustment.  
5Guaranteed by design and not subject to production test.  
6Common-mode leakage current is a measure of the dc leakage from any terminal A, B, W to a common-mode bias level of VDD/2.  
7T ransfer (XFR) Mode current is not continuous. Current consumed while EEMEM locations are read and transferred to the RDAC register. See T PC 9.  
8PDISS is calculated from (IDD VDD ) + (ISS VSS).  
9All dynamic characteristics use VDD = +2.5 V and VSS = –2.5 V unless otherwise noted.  
10See timing diagram for location of measured values. All input control voltages are specified with t R = tF = 2.5 ns (10% to 90% of 3 V) and timed from a voltage level  
of 1.5 V. Switching characteristics are measured using both VDD = 3 V or 5 V.  
11Propagation delay depends on value of VDD, RPULL_UP, and C L. See applications text.  
12Valid for commands that do not activate the RDY pin.  
13RDY pin low only for instruction commands 8, 9, 10, 2, 3, and the PR hardware pulse: CMD_8 ~ 1 ms; CMD_9,10 ~ 0.12 ms; CMD_2,3 ~ 20 ms. Device operation  
at T A = –40°C and VDD < 3 V extends the save time to 35 ms.  
14Endurance is qualified to 100,000 cycles as per JEDEC Std. 22 method A117 and measured at VDD = 2.7 V, T A = –40°C to +85°C, typical endurance at 25°C is  
700,000 cycles.  
15Retention lifetime equivalent at junction temperature (T J) = 55°C as per JEDEC Std. 22, Method A117. Retention lifetime based on an activation energy of 0.6eV  
will derate with junction temperature as shown in Figure 23 in the Flash/EE Memory description section of this data sheet. T he AD5232 contains 9,646  
transistors. Die size: 69 mil 115 mil, 7,993 sq. mil.  
Specifications subject to change without notice  
REV. 0  
–3–  
AD5232  
CPHA = 1  
CS  
t12  
t13  
t3  
t1  
t2  
CLK  
CPOL = 1  
t5  
t17  
t4  
t10  
t8  
t11  
t9  
MSB  
LSB OUT  
SDO  
SDI  
*
t7  
t6  
MSB  
LSB  
t14  
t15  
t16  
RDY  
*
NOT DEFINED, BUT NORMALLY LSB OF CHARACTER PREVIOUSLY TRANSMITTED.  
THE CPOL = 1 MICROCONTROLLER COMMAND ALIGNS THE INCOMING DATA TO THE POSITIVE EDGE OF THE CLOCK.  
Figure 2a. CPHA = 1 Timing Diagram  
CPHA = 0  
CS  
t12  
t1  
t3  
t13  
t2  
t5  
t17  
CLK  
CPOL = 0  
t4  
t8  
t10  
t11  
t9  
SDO  
SDI  
MSB OUT  
LSB  
*
t7  
t6  
LSB  
MSB IN  
t14  
t15  
t16  
RDY  
*
NOT DEFINED, BUT NORMALLY MSB OF CHARACTER JUST RECEIVED.  
THE CPOL = 0 MICROCONTROLLER COMMAND ALIGNS THE INCOMING DATA TO THE POSITIVE EDGE OF THE CLOCK.  
Figure 2b. CPHA = 0 Timing Diagram  
–4–  
REV. 0  
AD5232  
ABSO LUTE MAXIMUM RATINGS1  
(T A = 25°C, unless otherwise noted)  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V, +7 V  
Package Power Dissipation . . . . . . . . . . . . . (T J Max – TA)/␪  
T hermal Resistance Junction-to-Ambient JA,  
T SSOP-16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C/W  
T hermal Resistance Junction-to-Case ␪  
JA  
VSS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V, –7 V  
VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V  
VA, VB, VW to GND . . . . . . . . . . . . . VSS – 0.3 V, VDD + 0.3 V  
AX – BX, AX – WX, BX – WX  
,
JC  
T SSOP-16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28°C/W  
NOT ES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. T his is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
Intermittent2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA  
Digital Inputs and Output Voltage to  
2Maximum terminal current is bounded by the maximum current handling of the  
switches, maximum power dissipation of the package, and maximum applied  
voltage across any two of the A, B, and W terminals at a given resistance.  
3Includes programming of nonvolatile memory.  
GND . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V, VDD +0.3 V  
Operating T emperature Range3 . . . . . . . . . . . –40°C to +85°C  
Maximum Junction T emperature (TJ Max) . . . . . . . . 150°C  
Storage T emperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature, Soldering  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . 215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD5232 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. T herefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
O RD ERING GUID E  
Num ber of  
P ackage D evices per Branding*  
Num ber of  
Channels  
End-to-End Tem perature P ackage  
Model  
R AB (k)  
Range (°C)  
D escription O ption  
Container  
Inform ation  
AD5232BRU10  
AD5232BRU10-REEL7  
AD5232BRU50  
AD5232BRU50-REEL7  
AD5232BRU100  
AD5232BRU100-REEL7  
2
2
2
2
2
2
10  
10  
50  
50  
100  
100  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
–40 to +85  
T SSOP-16  
T SSOP-16  
T SSOP-16  
T SSOP-16  
T SSOP-16  
T SSOP-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
96  
1,000  
96  
1,000  
96  
1,000  
5232B10  
5232B10  
5232B50  
5232B50  
5232BC  
5232BC  
*Line 1 contains ADI logo symbol and the data code YYWW, line 2 contains detail model number listed in this column.  
–5–  
REV. 0  
AD5232  
P IN CO NFIGURATIO N  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
RDY  
CS  
CLK  
SDI  
SDO  
GND  
PR  
AD5232  
TOP VIEW  
(Not to Scale)  
WP  
V
V
DD  
SS  
A2  
W2  
B2  
A1  
W1  
B1  
P IN FUNCTIO N D ESCRIP TIO NS  
P in  
Num ber  
Mnem onic  
D escr iption  
1
2
3
CLK  
SDI  
SDO  
Serial Input Register Clock Pin. Shifts in one bit at a time on positive clock edges.  
Serial Data Input Pin. MSB Loaded First.  
Serial Data Output Pin. Open Drain Output requires external pull-up resistor. Commands 9 and 10  
activate the SDO output. See T able II. Other commands shift out the previously loaded SDI bit  
pattern delayed by 16 clock pulses. T his allows daisy-chain operation of multiple packages.  
Ground Pin, Logic Ground Reference.  
4
5
6
GND  
VSS  
A1  
Negative Supply. Connect to zero volts for single supply applications.  
A T erminal of RDAC1  
7
8
W1  
B1  
Wiper T erminal of RDAC1, ADDR(RDAC1) = 0H  
B T erminal of RDAC1  
9
B2  
B T erminal of RDAC2  
10  
11  
12  
13  
W2  
A2  
VDD  
WP  
Wiper T erminal of RDAC2, ADDR(RDAC2) = 1H  
A T erminal of RDAC2  
Positive Power Supply Pin  
Write Protect Pin. When active low, WP prevents any changes to the present register contents, except  
PR and CMD 1 and 8 will refresh RDAC register from EEMEM. Execute a NOP instruction before  
returning WP to logic high.  
14  
PR  
Hardware Override Preset Pin. Refreshes the scratch pad register with current contents of the EEMEM  
register. Factory default loads midscale 80H until EEMEM is loaded with a new value by the user  
(PR is activated at the logic high transition).  
15  
16  
CS  
RDY  
Serial Register Chip Select Active Low. Serial register operation takes place when CS returns to logic high.  
Ready. Active-high open drain output, requires pull-up resistor. Identifies completion of commands  
2, 3, 8, 9, 10, and PR.  
–6–  
REV. 0  
AD5232  
O P ERATIO NAL O VERVIEW  
Table I. Set Two D igital P O Ts to Independent D ata Values  
th en Save Wiper P osition s in C or r espon din g Non volatile  
EEMEM Register s  
T he AD5232 digital potentiometer is designed to operate as a  
true variable resistor replacement device for analog signals that  
remain within the terminal voltage range of VSS < VT ERM < VDD  
.
SD I  
SD O  
Action  
T he basic voltage range is limited to a | VDD – VSS| < 5.5 V. T he  
digital potentiometer wiper position is determined by the RDAC  
register contents. T he RDAC register acts as a scratch pad,  
register allowing as many value changes as necessary to place the  
potentiometer wiper in the correct position. T he scratch pad  
register can be programmed with any position value using the  
standard SPI serial interface mode by loading the complete  
representative data word. Once a desirable position is found,  
this value can be saved into a corresponding EEMEM register.  
T hereafter the wiper position will always be set at that position  
for any future ON-OFF-ON power supply sequence. T he  
EEMEM save process takes approximately 25 ms, during this  
time the shift register is locked preventing any changes from  
taking place. T he RDY pin indicates the completion of this  
EEMEM save.  
B040H  
XXXXH Loads 40H data into RDAC1 register,  
Wiper W1 moves to 1/4 full-scale position.  
20xxH  
B180H  
21xxH  
B040H  
20xxH  
B180H  
Saves copy of RDAC1 register contents  
into corresponding EEMEM0 register.  
Loads 80H data into RDAC2 register,  
Wiper W2 moves to 1/2 full-scale position.  
Saves copy of RDAC2 register contents  
into corresponding EEMEM1 register.  
Be aware that the PR pulse first sets the wiper at midscale when  
brought to logic zero, and then on the positive transition to logic  
high, it reloads the DAC wiper register with the contents of  
EEMEM. Many additional advanced programming commands  
are available to simplify the variable resistor adjustment process.  
SCRATCH P AD AND EEMEM P RO GRAMMING  
For example, the wiper position can be changed one step at a  
time by using the software-controlled Increment/Decrement  
instruction or, by 6 dB at a time, with the Shift Left/Right  
instruction command. Once an Increment, Decrement, or Shift  
command has been loaded into the shift register, subsequent CS  
strobes will repeat this command. T his is useful for push-button  
control applications. See the Advanced Control Modes descrip-  
tion following T able I. A serial data output SD O pin is  
available for daisy chaining and for readout of the internal  
register contents. T he serial input data register uses a 16-bit  
[instruction/address/data] WORD.  
T he scratch pad register (RDAC register) directly controls the  
position of the digital potentiometer wiper. When the scratch  
pad register is loaded with all zeros, the wiper will be connected  
to the B-T erminal of the variable resistor. When the scratch pad  
register is loaded with midscale code (1/2 of full-scale position),  
the wiper will be connected to the middle of the variable resis-  
tor. And when the scratch pad is loaded with full-scale code, all  
1s, the wiper will connect to the A-T erminal. Since the scratch  
pad register is a standard logic register, there is no restriction on  
the number of changes allowed. T he EEMEM registers have a  
program erase/write cycle limitation described in the Flash/  
EEM EM Reliability section.  
EEMEM P RO TECTIO N  
Write protect (WP) disables any changes of the scratch pad  
register contents regardless of the software commands, except  
that the EEMEM setting can be refreshed using commands 8  
and PR. T herefore, the write-protect (WP) pin provides a hard-  
ware EEMEM protection feature. Execute a NOP command  
before returning WP to logic high.  
BASIC O P ERATIO N  
T he basic mode of setting the variable resistor wiper position  
(programming the scratch pad register) is accomplished by  
loading the serial data input register with the command instruc-  
tion # 11, which includes the desired wiper position data. When  
the desired wiper position is found, the user loads the serial data  
input register with the command instruction # 2, which copies  
the desired wiper position data into the corresponding nonvola-  
tile EEMEM register. After 25 ms the wiper position will be  
permanently stored in the corresponding nonvolatile EEMEM  
location. Table I provides an application-programming example  
listing the sequence of serial data input (SDI) words and the  
corresponding serial data output appearing at the SDO pin in  
hexadecimal format.  
D IGITAL INP UT/O UTP UT CO NFIGURATIO N  
All digital inputs are ESD-protected high input impedance that  
can be driven directly from most digital sources. PR and WP,  
which are active at logic low, must be biased to VDD if they are  
not being used. No internal pull-up resistors are present on any  
digital input pins.  
T he SDO and RDY pins are open-drain digital outputs where  
pull-up resistors are needed only if using these functions. A  
resistor value in the range of 1 kto 10 koptimizes the power  
and switching speed trade-off.  
At system power-on, the scratch pad register is refreshed with  
the value last saved in the EEMEM register. T he factory preset  
EEMEM value is midscale. T he scratch pad (wiper) register can  
be refreshed with the current contents of the nonvolatile  
EEMEM register under hardware control by pulsing the PR pin.  
–7–  
REV. 0  
AD5232  
V
SERIAL D ATA INTERFACE  
DD  
T he AD5232 contains a 4-wire SPI-compatible digital interface  
(SDI, SDO, CS, and CLK), and uses a 16-bit serial data word  
loaded MSB first. T he format of the SPI-compatible word is  
shown in T able II. T he chip select (CS) pin needs to be held  
low until the complete data word is loaded into the SDI pin.  
When CS returns high, the serial data word is decoded accord-  
ing to the instructions in T able III. T he Command Bits (Cx)  
control the operation of the digital potentiometer. T he Address  
Bits (Ax) determine which register is activated. T he Data Bits  
(Dx) are the values that are loaded into the decoded register.  
T able IV provides an address map of the EEMEM locations.  
T he last instruction executed prior to a period of no program-  
ming activity should be the N o Operation (N OP) instruction.  
T his will place the internal logic circuitry in a minimum power  
dissipation state.  
INPUT  
300ꢀ  
WP  
AD5232  
GND  
Figure 4b. Equivalent WP Input Protection  
D AISY CH AINING O P ERATIO N  
T he serial data output pin (SDO) serves two purposes. It can  
be used to read out the contents of the wiper setting and  
EEMEM values using instruction 10 and 9 respectively. T he  
remaining instructions (# 0–8, # 11–15) are valid for daisy-  
chaining multiple devices in simultaneous operations.  
D aisy-chaining minimizes the number of port pins required  
from the controlling IC (see Figure 5). T he SDO pin contains  
an open drain N-Channel FET that requires a pull-up resistor if  
this function is used. As shown in Figure 5, users need to tie  
the SDO pin of one package to the SD I pin of the next  
package. Users may need to increase the clock period because  
the pull-up resistor and the capacitive loading at the SDO-SDI  
interface may require additional time delay between subsequent  
packages. If two AD5232’s are daisy-chained, 32 bits of data  
are required. T he first 16 bits go to U 2 and the second 16  
bits with the same format go to U1. T he 16 bits are formatted  
to contain the 4-bit instruction, followed by the 4-bit address,  
then the 8 bits of data. T he CS should be kept low until all 32  
bits are locked into their respective serial registers. T he CS  
is then pulled high to complete the operation.  
PR  
WP  
VALID  
COMMAND  
COMMAND  
PROCESSOR  
AND ADDRESS  
DECODE  
5V  
COUNTER  
R
PULLUP  
CLK  
SERIAL  
REGISTER  
SDO  
GND  
CS  
SDI  
AD5232  
Figure 3. Equivalent Digital Input-Output Logic  
The equivalent serial data input and output logic is shown in  
Figure 3. The open-drain output SDO is disabled whenever chip  
select CS is logic high. The SPI interface can be used in two slave  
modes CPH A = 1, CPOL = 1 and CPH A = 0, CPOL = 0.  
C PH A and C POL refer to the control bits, which dictate  
SPI timing in these M icroConverters® and microprocessors:  
ADuC812/ADuC824, M68HC11, and MC68HC16R1/916R1.  
+V  
AD5232  
R
2kꢀ  
AD5232  
P
C  
SDI  
SDO  
SDI  
U1  
SDO  
U2  
ESD protection of the digital inputs is shown in Figures 4a and 4b.  
CLK  
CLK  
V
CS  
CS  
DD  
INPUTS  
300ꢀ  
Figure 5. Daisy-Chain Configuration Using SDO  
LOGIC  
PINS  
AD5232  
GND  
Figure 4a. Equivalent ESD Digital Input Protection  
Table II. 16-Bit Serial D ata Word  
MSB B14 B13 B12 B11 B10 B9  
C3 C2 C1 C0 A3 A2 A1  
B8  
A0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
LSB  
D0  
AD 5232  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Command bits are identified as Cx, address bits are Ax, and data bits are Dx. Command instruction codes are defined  
in T able III.  
MicroConverter is a registered trademark of Analog Devices, Inc.  
–8–  
REV. 0  
AD5232  
Table III. Instruction/O peration Truth Table  
D ata Byte 0  
Instr uction Byte 1  
B15  
Inst  
No.  
B8  
B7  
B0  
C3 C2 C1 C0 A3 A2 A1 A0  
D 7 D 6 D5 D4 D3 D2 D1 D 0  
O peration  
0
1
0
0
0
0
0
0
0
1
X
0
X
0
X
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
No Operation (NOP). Do nothing.  
A0  
Write contents of EEM EM (A0) to  
RD AC(A0) Register. T his command  
leaves device in the Read Program power  
state. T o return part to the idle state,  
perform NOP instruction # 0.  
2
3
4
5
6
7
8
0
0
0
0
0
0
1
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
0
0
0
A0  
X
X
X
X
X
X
X
X
SAVE WIPER SET T ING. Write con-  
tents of RDAC(ADDR) to EEMEM(A0)  
< < AD D R > >  
D7 D6 D5 D4 D3 D2 D1 D0  
Write contents of Serial Register D ata  
Byte 0 to EEMEM(ADDR).  
0
0
0
A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Decrement 6 dB right shift contents of  
RDAC(A0), stops at all “Zeros.”  
X
0
X
0
X
0
Decrement All 6 dB right shift contents  
of all RDAC Registers, stops at all “Zeros.”  
A0  
X
Decrement contents of RDAC(A0) by  
“One,” stops at all “Zeros.”  
X
0
X
0
X
0
Decrement contents of all RDAC Regis-  
ters by “One,” stops at all “Zeros.”  
0
RESET . Load all RDACs with their cor-  
responding EEMEM previously-saved  
values.  
9
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
< < AD D R > >  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Write contents of EEMEM(ADDR) to  
Serial Register Data Byte 0.  
10  
0
0
0
A0  
A0  
A0  
X
Write contents of RDAC(A0) to Serial  
Register Data Byte 0.  
11  
0
0
0
D7 D6 D5 D4 D3 D2 D1 D0  
Write contents of Serial Register Data  
Byte 0 to RDAC(A0).  
12  
0
0
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Increment 6 dB left shift contents of  
RDAC(A0), stops at all “Ones.”  
13  
X
0
X
0
X
0
Increment all 6 dB left shift contents  
of all RDAC Registers, stops at all “Ones.”  
14  
A0  
X
Increment contents of RDAC(A0) by  
“One,” stops at all “Ones.”  
15  
X
X
X
Increment contents of all RDAC Regis-  
ters “One,” stops at all “Ones.”  
NOT ES  
1. The SDO output shifts out the last eight bits of data clocked into the serial register for daisy-chain operation. Exception: following Instruction #9 or #10 the selected internal  
register data will be present in data byte 0. Instructions following #9 and #10 must be a full 16-bit data word to completely clock out the contents of the serial register.  
2. T he RDAC register is a volatile scratch pad register that is refreshed at power-on from the corresponding nonvolatile EEMEM register.  
3. T he increment, decrement, and shift commands ignore the contents of the shift register Data Byte 0.  
4. Execution of the Operation column noted in the table takes place when the CS strobe returns to logic high.  
5. Execution of a NOP instruction minimizes power dissipation.  
–9–  
REV. 0  
AD5232  
AD VANCED CO NTRO L MO D ES  
Also the left shift commands were modified so that if the data in  
the RDAC register is greater than or equal to midscale and the  
data is left shifted then the data in the RDAC register is set to  
full-scale. T his makes the left shift function as close to ideally  
logarithmic as is possible.  
The AD5232 digital potentiometer contains a set of user program-  
ming features to address the wide applications available to these  
universal adjustment devices. Key programming features include:  
Independently Programmable Read and Write to all registers.  
T he right shift # 4 and # 5 commands will be ideal only if the  
LSB is zero (i.e., ideal logarithmic–no error). If the LSB is a  
one then the right shift function generates a linear half LSB  
error, which translates to a code dependent logarithmic error  
for odd codes only as shown in the attached plots, (see Figure  
5). T he plot shows the errors of the odd codes for the AD5232.  
Simultaneous refresh of all RDAC wiper registers from  
corresponding internal EEMEM registers.  
Increment and D ecrement instructions for each RD AC wiper  
register.  
Left and right bit shift of all RDAC wiper registers to achieve  
6 dB level changes.  
LEFT SHIFT  
RIGHT SHIFT  
Nonvolatile storage of the present scratch pad RDAC register  
values into the corresponding EEMEM register.  
0000 0000  
0000 0001  
0000 0010  
0000 0100  
0000 1000  
0001 0000  
0010 0000  
0100 0000  
1000 0000  
1111 1111  
1111 1111  
1111 1111  
0111 1111  
0011 1111  
0001 1111  
0000 1111  
0000 0111  
0000 0011  
0000 0001  
0000 0000  
0000 0000  
0000 0000  
LEFT  
SHIFT  
(+6 dB)  
RIGHT  
SHIFT  
(6 dB)  
Fourteen extra bytes of user-addressable electrical-erasable memory.  
Incr em ent and D ecr em ent Com m ands  
T he increment and decrement commands (# 14, # 15, # 6, # 7)  
are useful for the basic servo adjustment application. T his com-  
mand simplifies microcontroller software coding by eliminating  
the need to perform a readback of the current wiper position,  
then add one to the register contents using the microcontroller’s  
adder. T he microcontroller simply sends an increment command  
(# 14) to the digital POT , which will automatically move the  
wiper to the next resistance segment position. T he master incre-  
ment command (# 15) will move all POT wipers by one position  
from their present position to the next resistor segment position.  
T he direction of movement is referenced to T erminal B. T hus  
each increment # 15 command will move the wiper tap position  
farther away from T erminal B.  
Figure 6. Detail Left and Right Shift Function for the  
8-Bit AD5232  
Actual conformance to a logarithmic curve between the data  
contents in the RDAC register and the wiper position for each  
Right Shift # 4 and # 5 command execution contains an error  
only for the odd codes. Even codes are ideal except zero right  
shift or greater than half-scale left shift. T he graph in Figure 7  
shows plots of Log_Error [i.e., 20 × log 10 (error/code)]. For  
example, code 3 Log_Error = 20 × log 10 (0.5/3) = –15.56 dB,  
which is the worst case. T he plot of Log_Error is more signifi-  
cant at the lower codes.  
Logar ithm ic Taper Mode Adjustm ent  
Programming instructions allow a decrement and an increment  
wiper position control by individual POT or in a ganged POT  
arrangement where both wiper positions are changed at the  
same time. T hese settings are activated by the 6 dB decrement  
and 6 dB increment instructions # 4 and # 5 and # 12 and # 13  
respectively. For example, starting with the wiper connected to  
T erminal B executing nine increment instructions (# 12) would  
move the wiper in +6 dB steps from the 0% of RBA (B terminal)  
position to the 100% of RBA position of the AD 5232 8-Bit  
potentiometer. T he 6 dB increment instruction doubles the  
value of the RDAC register contents each time the command is  
executed. When the wiper position is greater than midscale, the  
last 6 dB increment instruction will cause the wiper to go to the  
Full-Scale 255 code position. Any additional +6 dB instruction  
will no longer change the wiper position from full scale (RDAC  
register code = 255).  
0
10  
LOG_ERROR (CODE) FOR 8-BIT  
20  
30  
40  
50  
60  
Figure 6 illustrates the operation of the 6 dB shifting function  
on the individual RDAC register data bits for the 8-bit AD5232  
example. Each line going down the table represents a successive  
shift operation. Very important: the left shift # 12 and # 13 com-  
mands were modified so that if the data in the RDAC register is  
equal to zero and the data is left shifted, it is then set to code 1.  
0
20 40 60 80 100 120  
160 180 200 220 240 260  
140  
CODE, FROM 1 TO 255 BY 2  
Figure 7. Plot of Log_Error Conformance for Odd Codes  
Only (Even Codes Are Ideal)  
–10–  
REV. 0  
AD5232  
V
USING AD D ITIO NAL INTERNAL NO NVO LATILE EEMEM  
T he AD5232 contains additional internal user storage registers  
(EEMEM) for saving constants and other 8-bit data. T able IV  
provides an address map of the internal nonvolatile storage  
registers shown in the functional block diagram as EEMEM1,  
EEMEM2, and bytes of USER EEMEM.  
DD  
A
W
B
Table IV. EEMEM Addr ess Map  
EEMEM  
Addr ess  
(AD D R)  
EEMEM Contents of Each  
D evice EEMEM (AD D R)  
AD 5232 (8B)  
0000  
0001  
0010  
0011  
0100  
0101  
***  
RDAC1  
RDAC2  
USER 1  
USER 2  
USER 3  
USER 4  
***  
V
SS  
Figure 8. Maximum Terminal Voltages Set by VDD and VSS  
DETAIL POTENTIOMETER OPERATION  
T he actual structure of the RDAC is designed to emulate the  
performance of a mechanical potentiometer. The patent-pending  
RDAC contains multiple strings of connected resistor segments,  
with an array of analog switches that act as the wiper connection  
to several points along the resistor array. T he number of points  
is the resolution of the device. For example, the AD5232 has  
256 connection points allowing it to provide better than 0.5%  
setability resolution. Figure 9 provides an equivalent dia-  
gram of the connections between the three terminals that  
make up one channel of the RDAC. T he SWA and SWB will  
always be ON, while one of the switches SW(0) to SW(2N–1)  
will be ON one at a time depending upon the resistance step  
decoded from the Data Bits. T he resistance contributed by RW  
must be accounted for in the output resistance. T he SWA and  
SWB will always be ON while one of the switches SW(0) to  
SW(2N–1) will be ON one at a time, depending upon the  
resistance step decoded from the Data Bits. T he resistance  
contributed by RW must be accounted for in the output resistance.  
1111  
USER 14  
NOT ES  
1RDAC data stored in EEMEM locations are transferred to their  
corresponding RDAC REGIST ER at Power ON, or when  
instructions Inst# 1 and Inst# 8 are executed.  
2USER <data> is internal nonvolatile EEMEM registers available  
to store and retrieve constants using Inst# 3 and Inst# 9 respectively.  
3AD5232 EEMEM locations are 1 byte each (8 bits).  
4Execution of instruction # 1 leaves the device in the Read Mode power con-  
sumption state. After the last Instruction # 1 is executed, the user should  
perform a NOP, Instruction # 0 com mand to return the device to the low  
power idle state.  
Table V. RD AC and D igital Register Address Map  
Register Addr ess  
(AD D R)  
Nam e of Register*  
AD 5232 (8B)  
0000  
0001  
RDAC1  
RDAC2  
*RDACx registers contain data determining the  
position of the variable resistor wiper.  
SW  
A
A
X
TERMINAL VO LTAGE O P ERATING RANGE  
N
SW(2  
1)  
T he digital potentiometer’s positive VDD and negative VSS power  
supply defines the boundary conditions for proper three-terminal  
programmable resistance operation. Signals present on terminals  
A, B, W that exceed VDD or VSS will be clamped by a forward  
biased diode; see Figure 8.  
RDAC  
WIPER  
REGISTER  
AND  
W
X
R
S
N
SW(2  
2)  
DECODER  
T he ground pin of the AD5232 device is primarily used as a  
digital ground reference, which needs to be tied to the PCBs’  
common ground. T he digital input logic signals to the AD5232  
must be referenced to the devices’ ground pin (GND), and  
satisfy the logic minimum input high level and the maximum  
low level defined in the specification table of this data sheet.  
SW(1)  
SW(0)  
R
R
S
S
N
R
= R /2  
AB  
S
An internal level-shift circuit between the digital interface and  
the wiper switch control ensures that the common-mode voltage  
range of the three-terminals A, W, and B extends from VSS to VDD  
DIGITAL  
SW  
B
CIRCUITRY  
OMITTED FOR  
CLARITY  
B
X
.
Figure 9. Equivalent RDAC Structure (Patent Pending)  
–11–  
REV. 0  
AD5232  
100  
75  
50  
25  
0
Table VI. Nom inal Individual Segm ent Resistor Values ()  
Segment Resistor Size  
for RAB End-to-End Values  
Device  
Resolution  
10 kVer sion 50 kVer sion 100 kVer sion  
8-Bit  
78.10  
390.5  
781.0  
P RO GRAMMING TH E VARIABLE RESISTO R  
Rheostat O per ation  
The nominal resistances of the RDAC between terminals A and B  
are available with values of 10 k, 50 k, and 100 k. The final  
digits of the part number determine the nominal resistance value,  
e.g., 10 k= 10; 100 k= 100. The nominal resistance (RAB) of  
the AD5232 VR has 256 contact points accessed by the wiper  
terminal, plus the B terminal contact. The 8-bit data word in the  
RDAC latch is decoded to select one of the 256 possible settings.  
R
R
WA  
WB  
0
64  
128  
192  
256  
CODE Decimal  
Figure 10. Symmetrical RDAC Operation  
T he general transfer equation, which determines the digitally  
programmed output resistance between Wx and Bx, is:  
Like the mechanical potentiometer the RDAC replaces, the  
AD5232 parts are totally symmetrical. T he resistance between  
the wiper W and terminal A also produces a digitally controlled  
resistance RWA. Figure 10 shows the symmetrical programmabil-  
ity of the various terminal connections. When these terminals  
are used the B–terminal should be tied to the wiper. Setting the  
resistance value for RWA starts at a maximum value of resistance  
and decreases as the data loaded in the latch is increased in  
value. T he general transfer equation for this operation is:  
R
WB(Dx) = (Dx)/2N × RBA + RW  
(1)  
Where N is the resolution of the VR, Dx is the data contained in  
the RDACx latch, and RBA is the nominal end-to-end resistance.  
For example, the following output resistance values will be set  
for the following RDAC latch codes (applies to the 8-bit, 10 kΩ  
potentiometers):  
WA(Dx) = (2N-Dx)/2N × RBA + RW  
(2)  
Table VII. Nom inal Resistance Value at Selected Codes for  
RAB = 10 kꢀ  
R
where N is the resolution of the VR, Dx is the data contained in  
the RDACx latch, and RBA is the nominal end-to-end resistance.  
For example, the following output resistance values will be set  
for the following RDAC latch codes (applies to 8-bit, 10 kΩ  
potentiometers).  
D (D EC)  
RWB (V) O utput State  
255  
128  
1
10011  
5050  
89  
Full-Scale  
Midscale  
1 LSB  
0
50  
Zero-Scale*(Wiper Contact Resistance)  
*Note that in the zero-scale condition a finite wiper resistance of 50 is present. Care  
should be taken to limit the current flow between W and B in this state to a  
maximum continuous value of 2 mA to avoid degradation or possible de struc-  
tion of the internal switch metalization. Intermittent current operation to  
20 mA is allowed.  
Table VIII. Nom inal Resistance Value at Selected  
Codes for RAB = 10 kꢀ  
D (D EC) RWA (W)  
O utput State  
255  
128  
1
89  
Full-Scale  
Midscale  
1 LSB  
5050  
10011  
10050  
0
Zero-Scale  
T he multichannel AD5232 has a ±0.2% typical distribution of  
internal channel-to-channel RBA match. D evice-to-device  
matching is process-lot-dependent and exhibits a –40% to +20%  
variation. The change in RBA with temperature has a 600 ppm/°C  
temperature coefficient.  
–12–  
REV. 0  
AD5232  
P RO GRAMMING TH E P O TENTIO METER D IVID ER  
Voltage O utput O per ation  
The internal parasitic capacitances and the external capacitive loads  
dominate the ac characteristics of the RDACs. Configured as a  
potentiometer divider the –3 dB bandwidth of the AD5232BRU10  
(10 kresistor) measures 500 kHz at half scale. Figure TPC 10  
provides the large signal BODE plot characteristics of the three  
resistor versions 10 k, 50 k, and 100 k. A parasitic simu-  
lation model has been developed, and is shown in Figure 12.  
Listing I provides a macro model net list for the 10 kRDAC:  
T he digital potentiometer easily generates an output voltage  
proportional to the input voltage applied to a given terminal.  
For example, connecting A-terminal to 5 V and B-terminal to  
ground produces an output voltage at the wiper which can be  
any value starting at zero volts up to 5 V. Each LSB of voltage is  
equal to the voltage applied across terminal AB divided by the  
2N position resolution of the potentiometer divider. T he general  
equation defining the output voltage with respect to ground for  
any given input voltage applied to terminals AB is:  
Listing I. Macr o Model Net List for RD AC  
.PARAM DW=255, RDAC=10E3  
VW(Dx) = Dx/2N × VAB + VB  
(3)  
*
.SUBCKT DPOT (A,W,B)  
*
Operation of the digital potentiometer in the divider mode results in  
more accurate operation over temperature. Here the output voltage is  
dependent on the ratio of the internal resistors, not the absolute  
value; therefore, the drift improves to 15 ppm/°C. There is no  
voltage polarity restriction between terminals A, B, and W, as long  
CA  
RAW  
CW  
RBW  
CB  
*
A
A
W
W
B
0
W
0
B
0
{45E-12}  
{(1-DW/256)*RDAC+50}  
60E-12  
as the terminal voltage (VTERM) stays within VSS < VTERM < VDD  
.
{DW/256*RDAC+50}  
{45E-12}  
O P ERATIO N FRO M D UAL SUP P LIES  
T he AD5232 can be operated from dual supplies enabling con-  
trol of ground-referenced ac signals. See Figure 11 for a typical  
circuit connection.  
.ENDS DPOT  
+2.75V  
AP P LICATIO N P RO GRAMMING EXAMP LES  
The following command sequence examples have been developed  
to illustrate a typical sequence of events for the various features  
of the AD5232 nonvolatile digital potentiometer.  
V
V
DD  
SS  
CS  
DD  
CLK  
SDI  
SCLK  
MOSI  
C  
2V p-p  
~
1V p-p  
GND  
[PCB = Printed Circuit Board containing the AD523x part].  
Instruction numbers (Commands), addresses and data appear-  
ing at SDI and SDO pins are listed in hexadecimal.  
GND  
V
SS  
AD5232  
Table IX. Set Two Digital P OTs to Independent Data Values  
2.5V  
SD I  
SD O  
Action  
Figure 11. Operation from Dual Supplies  
B140H  
XXXXH  
Loads 40H data into RDAC2 register,  
Wiper W2 moves to 1/4 full-scale  
position.  
RDAC  
10kꢀ  
A
B
B080H  
B140H  
Loads 80H data into RDAC1 register,  
Wiper W1 moves to 1/2 Full-Scale  
position.  
C
C
B
A
C
W
60pF  
C
= 45pF  
C = 45pF  
B
A
W
Figure 12. RDAC Circuit Simulation Model for RDAC = 10 k  
–13–  
REV. 0  
AD5232  
Table X. Active Trim m ing of O ne P O T Followed by a Save to  
Nonvolatile Mem ory (P CB Calibrate)  
Analog D evices offers the AD 5232EVAL board for sale to  
simplify evaluation of these programmable devices controlled by  
a personal computer via the printer port.  
SD I  
SD O  
Action  
TEST CIRCUITS  
Figures 13 to 22 define the test conditions used in the product  
specification’s table.  
B040H  
XXXXH  
Loads 40H data into RDAC1 register,  
Wiper W1 moves to 1/4 full-scale  
position.  
E0XXH  
E0XXH  
B040H  
Increments RDAC1 register by one to  
41H , Wiper W1 moves one resistor  
segment away from terminal B.  
Increments RDAC1 register by one to  
42H , Wiper W1 moves one more  
resistor segment away from terminal B.  
Continue until desired wiper position  
reached.  
NC  
DUT  
A
I
W
E0XXH  
W
B
V
MS  
NC = NO CONNECT  
20XXH  
E0XXH  
Saves RD AC 1 register data into  
corresponding nonvolatile EEMEM1  
memory ADDR = 0H.  
Figure 13. Resistor Position Nonlinearity Error (Rheostat  
Operation; R-INL, R-DNL)  
DUT  
A
W
V+ =V  
DD  
1LSB =V+/2  
EQ UIP MENT CUSTO MER STARTUP SEQ UENCE FO R A  
P CB CALIBRATED UNIT WITH P RO TECTED SETTINGS  
N
V+  
B
PCB setting: T ie WP to GND [prevents changes in PCB  
wiper set position]  
V
MS  
Power VDD and VSS with respect to GND  
Optional: Strobe PR pin [ensures full power ON preset of  
wiper register with EEMEM contents in unpredictable supply  
sequencing environments]  
Figure 14. Potentiometer Divider Nonlinearity Error Test  
Circuit (INL, DNL)  
Table XI. Using Left Shift by O ne to Change Circuit Gain in  
6 dB Steps  
DUT  
A
I
W
V
W
W
V
MS2  
SD I  
SD O  
Action  
B
R
=
[
V
V  
]/I  
MS2 W  
V
W
MS1  
MS1  
C1XXH  
XXXXH  
Moves Wiper W2 to double the present  
data value contained in RDAC2 regis-  
ter, in the direction of the A terminal.  
Moves Wiper W2 to double the present  
data value contained in RDAC2 regis-  
ter, in the direction of the A terminal.  
Figure 15. Wiper Resistance Test Circuit  
C1XXH  
XXXXH  
V
A
V+ =V  
10%  
DD  
V  
MS  
V
A
B
PSRR (dB) = 20 LOG  
DD  
)
(
W
V  
DD  
Table XII. Storing Additional D ata in Nonvolatile Mem ory  
V+ ~  
V  
V  
%
MS  
PSS (%/%) =  
V
MS  
%
SD I  
SD O  
Action  
DD  
3280H  
XXXXH  
Stores 80H data into spare EEMEM  
location USER1.  
Figure 16. Power Supply Sensitivity Test Circuit (PSS, PSRR)  
3340H  
XXXXH  
Stores 40H data into spare EEMEM  
location USER2.  
A
DUT  
B
5V  
Table XIII. Reading Back Data from Various Mem ory Locations  
W
V
~
IN  
OP279  
V
OUT  
SD I  
SD O  
Action  
OFFSET  
GND  
94XXH  
XXXXH  
Prepares data read from USER3 location.  
Assumption: USER3 previously loaded  
with 80H.  
OFFSET BIAS  
00XXH  
XX80H  
NOP instruction # 0 sends 16-bit word  
out of SDO where the last 8 bits con-  
tain the contents of USER3 location.  
NOP command ensures device returns  
to idle power dissipation state.  
Figure 17. Inverting Gain Test Circuit  
–14–  
REV. 0  
AD5232  
Endurance quantifies the ability of the Flash/EE memory to be  
cycled through many Program, Read, and Erase cycles. In real  
terms, a single endurance cycle is composed of four indepen-  
dent, sequential events. T hese events are defined as:  
5V  
OP279  
V
OUT  
V
~
IN  
W
a. Initial page erase sequence  
b. Read/verify sequence  
OFFSET  
GND  
A
DUT  
B
OFFSET BIAS  
c. Byte program sequence  
d. Second read/verify sequence  
Figure 18. Noninverting Gain Test Circuit  
During reliability qualification Flash/EE memory is cycled from  
00H to FFH until a first fail is recorded, signifying the endurance  
limit of the on-chip Flash/EE memory.  
+15V  
A
W
~
V
IN  
DUT  
OP42  
V
As indicated in the specification pages of this data sheet, the  
AD5232 Flash/EE Memory Endurance qualification has been  
carried out in accordance with JEDEC Specification A117 over  
the industrial temperature range of –40°C to +85°C. T he results  
allow the specification of a minimum endurance figure over supply  
and temperature of 100,000 cycles, with an endurance figure of  
700,000 cycles being typical of operation at 25°C.  
OUT  
B
OFFSET  
GND  
2.5V  
15V  
Figure 19. Gain vs. Frequency Test Circuit  
0.1V  
R
=
SW  
I
DUT  
B
Retention quantifies the ability of the Flash/EE memory to retain  
its programmed data over time. Again, the AD5232 has been  
qualified in accordance with the formal JEDEC Retention Life-  
time Specification (A117) at a specific junction temperature  
(TJ = 55°C). As part of this qualification procedure, the Flash/EE  
memory is cycled to its specified endurance limit described above,  
before data retention is characterized. This means that the Flash/EE  
memory is guaranteed to retain its data for its full-specified reten-  
tion lifetime every time the Flash/EE memory is reprogrammed. It  
should also be noted that retention lifetime, based on an activa-  
tion energy of 0.6 eV, will derate with TJ as shown in Figure 23.  
SW  
CODE = OO  
H
W
+
_
0.1V  
I
SW  
V
TO V  
DD  
SS  
Figure 20. Incremental ON Resistance Test Circuit  
NC  
A
B
V
I
DD  
CM  
DUT  
W
300  
250  
V
GND  
SS  
V
CM  
NC  
NC = NO CONNECT  
ADI TYPICAL  
200  
PERFORMANCE  
AT  
T
= 55C  
Figure 21. Common-Mode Leakage Current Test Circuit  
J
150  
100  
50  
A1  
V
A2  
RDAC  
DD  
RDAC  
W1  
1
2
W2  
NC  
V
OUT  
V
~
IN  
B2  
V
B1  
SS  
C
= 20 log [V  
/V  
IN  
]
TA  
OUT  
0
40  
50  
60  
70  
80  
90  
100  
110  
Figure 22. Analog Crosstalk Test Circuit  
Flash/EEMEM Reliability  
T he Flash/EE Memory array on the AD5232 is fully qualified  
for two key Flash/EE memory characteristics, namely Flash/EE  
M emory C ycling Endurance and Flash/EE M emory D ata  
Retention.  
T
JUNCTIONTEMPERATURE C  
J
Figure 23. Flash/EE Memory Data Retention  
–15–  
REV. 0  
Typical Performance Characteristics  
AD5232  
2.00  
2000  
1500  
1000  
500  
0
V
= 2.7V  
= 0V  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
DD  
V
= 5V  
DD  
V
SS  
T
= 40C/+85C  
A
INL T = 40C  
A
V
= NO CONNECT  
A
R
MEASURED  
WB  
INL T = +25C  
A
0
0.25  
0.50  
0.75  
INL T = +85C  
A
1.00  
1.25  
1.50  
1.75  
2.00  
0
64  
128  
DIGITAL CODE  
192  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE Decimal  
TPC 1. INL vs. Code, TA = –40ЊC, +25ЊC, +85ЊC Overlay  
TPC 4. RWB/T vs. Code RAB = 10 k, VDD = 5 V  
2.00  
70  
V
= 2.7V  
= 0V  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
DD  
V
= 5V  
DD  
V
60  
50  
40  
30  
20  
10  
0
SS  
T
= 40C/+85C  
A
V
= 2.00V  
A
DNL T = 40C  
A
V
= 0V  
B
DNL T = +25C  
A
0
0.25  
0.50  
0.75  
DNL T = +85C  
A
1.00  
1.25  
1.50  
1.75  
2.00  
10  
1
64  
128  
DIGITAL CODE  
192  
256  
160  
CODE Decimal  
192  
224  
256  
0
32  
64  
96  
128  
TPC 2. DNL vs. Code, TA = –40ЊC, +25ЊC, +85ЊC Overlay  
TPC 5. VWB/T vs. Code RAB = 10 k, VDD = 5 V  
0.20  
1
V
= 5.5V, V = 0V  
SS  
DD  
V
= +2.5V  
= 2.5V  
= 0V  
DD  
T
= 25C  
0.15  
0.10  
A
V
SS  
V
CM  
SEE FIGURE 21  
0.1  
0.05  
0.00  
0.05  
0.10  
0.15  
0.20  
0.01  
0.001  
0
32  
64  
96  
128  
160  
192  
224  
256  
25  
40  
55  
70  
85  
50  
35  
20 5  
10  
CODE Decimal  
TEMPERATURE C  
TPC 3. R-DNL vs. Code RAB = 10 k, 50 k, 100 kOverlay  
TPC 6. ICM vs. Temperature  
–16–  
REV. 0  
AD5232  
4
12  
6
f3dB = 500kHz, R = 10kꢀ  
V
= 5.5V  
DD  
0
6  
f3dB = 45kHz, R = 100kꢀ  
12  
18  
24  
30  
36  
42  
2
f
= 95kHz, R = 50kꢀ  
3dB  
V
= 2.7V  
DD  
V
= 100mV rms  
IN  
V
= +2.5V,V = 2.5V  
DD  
SS  
R
T
= 1Mꢀ  
= 25C  
L
A
25  
40  
55  
70  
85  
50  
35  
20  
5  
10  
1k  
10k  
100k  
1M  
TEMPERATURE C  
FREQUENCY Hz  
TPC 7. IDD vs. Temperature  
TPC 10. –3 dB Bandwidth vs. Resistance  
10  
V
= 5V  
DD  
FILTER = 22kHz  
T
= 25C  
A
1
0.1  
R
= 10kꢀ  
AB  
0.01  
R
= 50k, 100kꢀ  
AB  
0.001  
10  
100  
1k  
FREQUENCY Hz  
10k  
100k  
TPC 8. IDD vs. Time (Save) Program Mode  
TPC 11. Total Harmonic Distortion vs. Frequency  
110  
100  
T
= 25C  
A
V
= 2.7V  
90  
80  
70  
60  
DD  
50  
40  
30  
20  
10  
0
1
64  
128  
192  
256  
CODE  
TPC 12. Wiper On-Resistance vs. Code  
TPC 9. IDD vs. Time Read Mode  
–17–  
REV. 0  
AD5232  
0
80  
60  
40  
20  
0
DATA = 80  
H
R
= 100kꢀ  
AB  
6  
12  
18  
24  
30  
DATA = 40  
DATA = 20  
DATA = 10  
R
= 50kꢀ  
H
H
H
AB  
R
= 10kꢀ  
AB  
DATA = 08  
DATA = 04  
H
H
36  
42  
DATA = 02  
DATA = 01  
H
H
V
= 5.5V 100mV ac  
V
V
V
T
= +2.7V  
= 2.7V  
= 100mV rms  
= 25C  
DD  
48  
54  
60  
DD  
V
A
V
= 0V,V = 5V,V = 0V  
SS  
B
A
SS  
MEASURE atV WITH CODE = 80  
R
= 10kꢀ  
W
H
AB  
A
A
T
= 25C  
A
1k  
10k  
100k  
FREQUENCYHz  
1M  
1k  
10k  
100k  
1M  
FREQUENCY Hz  
TPC 16. PSRR vs. Frequency  
TPC 13. Gain vs. Frequency vs. Code, RAB = 10 kΩ  
120  
100  
80  
0
DATA = 80  
H
6  
12  
18  
24  
30  
DATA = 40  
DATA = 20  
DATA = 10  
H
H
H
R
= 10kꢀ  
R
= 50kꢀ  
AB  
AB  
R
= 100kꢀ  
DATA = 08  
DATA = 04  
AB  
H
H
60  
36  
42  
48  
54  
60  
DATA = 02  
DATA = 01  
H
H
V
V
V
T
=V = +2.75V  
A2  
DD  
V
= +2.7V  
= 2.7V  
= 100mV rms  
= 25C  
40  
DD  
V
A
=V = 2.75V  
SS  
B2  
V
V
T
SS  
= +2.5V  
IN  
P
R
= 50kꢀ  
AB  
A
= 25C  
A
SEE TEST CIRCUIT, FIGURE 22  
A
20  
1
10  
FREQUENCY kHz  
100  
1k  
10k  
100k  
1M  
FREQUENCY Hz  
TPC 17. Analog Crosstalk vs. Frequency  
TPC 14. Gain vs. Frequency vs. Code, RAB = 50 kΩ  
0
DATA = 80  
H
6  
12  
18  
24  
30  
DATA = 40  
DATA = 20  
DATA = 10  
H
H
H
DATA = 08  
DATA = 04  
H
H
36  
42  
48  
54  
60  
DATA = 02  
DATA = 01  
H
H
V
= +2.7V  
= 2.7V  
= 100mV rms  
= 25C  
DD  
V
A
V
V
T
SS  
R
= 100kꢀ  
AB  
A
A
1k  
10k  
100k  
1M  
FREQUENCY Hz  
TPC 15. Gain vs. Frequency vs. Code, RAB = 100 kΩ  
–18–  
REV. 0  
AD5232  
D IGITAL P O TENTIO METER FAMILY SELECTIO N GUID E  
Resolution P ower  
Num ber  
of VRs  
per  
Ter m inal  
Voltage  
Inter face Nom inal  
D ata Resistance  
Contr ol (k)  
(Num ber  
of Wiper  
Supply  
P ar t  
Cur r ent  
Num ber P ackage Range (V)  
P ositions) (ID D )(A) P ackages  
Com m ents  
AD 5201  
1
±3, +5.5  
3-wire  
10, 50  
33  
40  
µSOIC-10  
Full ac Specs, Dual  
Supply, Pwr-On-Reset,  
Low Cost  
AD 5220  
AD 7376  
1
1
5.5  
UP/  
10, 50, 100  
128  
40  
PDIP, SO-8,  
No Rollover,  
DOWN  
µSOIC-8  
Pwr-On-Reset  
±15 , +28  
3-wire  
10, 50, 100, 1000 128  
100  
PDIP-14,  
SOL-16,  
T SSOP-14  
Single 28 V  
or Dual ±15 V  
Supply Operation  
AD 5200  
1
±3 , +5.5  
3-wire  
10, 50  
256  
40  
µSOIC-10  
Full ac Specs,  
Dual Supply,  
Pwr-On-Reset  
AD 8400  
AD 5260  
1
1
5.5  
3-wire  
3-wire  
1, 10, 50, 100  
20, 50, 200  
256  
256  
5
SO-8  
Full ac Specs  
±5, +15  
60  
T SSOP-14  
+5 V to +15 V or ±5 V  
Operation,  
T C < 50 ppm/°C  
AD 5241  
AD 5231  
1
1
±3, +5.5  
2-wire  
3-wire  
10, 100, 1000  
10, 50, 100  
256  
50  
10  
SO-14,  
I2C Compatible,  
T SSOP-14  
T C < 50 ppm/°C  
±2.75, +5.5  
1024  
T SSOP-16  
Nonvolatile Memory,  
Direct Program, I/D,  
±6 dB Settability  
AD 5222  
2
±3, +5.5  
UP/  
DOWN  
10, 50, 100, 1000 128  
80  
SO-14,  
T SSOP-14  
No Rollover, Stereo,  
Pwr-On-Reset,  
T C < 50 ppm/°C  
AD 8402  
AD 5207  
2
2
5.5  
3-wire  
3-wire  
1, 10, 50, 100  
10, 50, 100  
256  
256  
5
PDIP, SO-14, Full ac Specs, nA  
TSSOP-14  
Shutdown Current  
±3, +5.5  
40  
T SSOP-14  
Full ac Specs, Dual  
Supply, Pwr-On-  
Reset, SDO  
AD 5232  
2
±2.75, +5.5  
±2.75, +5.5  
3-wire  
3-wire  
10, 50, 100  
25, 250  
256  
10  
20  
T SSOP-16  
T SSOP-16  
Nonvolatile Memory,  
Direct Program, I/D,  
±6 dB Settability  
AD 5235* 2  
1024  
Nonvolatile Memory,  
Direct Program,  
T C < 50 ppm/°C  
AD 5242  
2
±3, +5.5  
±5, +15  
2-wire  
3-wire  
10, 100, 1000  
20, 50, 200  
256  
256  
50  
60  
SO-16,  
I2C Compatible,  
T SSOP-16  
T C < 50 ppm/°C  
AD 5262* 2  
T SSOP-16  
+5 V to +15 V or ±5 V  
Operation,  
T C < 50 ppm/°C  
AD 5203  
AD 5233  
4
4
5.5  
3-wire  
3-wire  
10, 100  
64  
64  
5
PDIP, SOL-24, Full ac Specs, nA  
T SSOP-24  
Shutdown Current  
±2.75, +5.5  
10, 50, 100  
10  
T SSOP-16  
Nonvolatile Memory,  
Direct Program,  
I/D, ±6 dB Settability  
AD 5204  
4
±3, +5.5  
3-wire  
10, 50, 100  
256  
60  
PDIP, SOL-24, Full ac Specs,  
T SSOP-24  
Dual Supply,  
Pwr-On-Reset  
AD 8403  
AD 5206  
4
6
5.5  
3-wire  
3-wire  
1, 10, 50, 100  
10, 50, 100  
256  
256  
5
PDIP, SOL-24, Full ac Specs, nA  
T SSOP-24 Shutdown Current  
±3, +5.5  
60  
PDIP, SOL-24, Full ac Specs,  
T SSOP-24  
Dual Supply,  
Pwr-On-Reset  
*Future Product, consult factory for latest status.  
Latest Digital Potentiometer Information located at: www.analog.com/DigitalPotentiometers  
–19–  
REV. 0  
AD5232  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
16-Lead TSSO P  
(RU-16)  
0.201 (5.10)  
0.193 (4.90)  
16  
9
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
8
1
PIN 1  
0.0433 (1.10)  
MAX  
0.006 (0.15)  
0.002 (0.05)  
8ꢂ  
0ꢂ  
0.028 (0.70)  
0.020 (0.50)  
0.0256 (0.65) 0.0118 (0.30)  
0.0079 (0.20)  
0.0035 (0.090)  
SEATING  
PLANE  
BSC  
0.0075 (0.19)  
–20–  
REV. 0  

相关型号:

AD5232BRUZ10

Nonvolatile Memory,Dual 256-Position Digital Potentiometer
ADI

AD5232BRUZ10-REEL7

Nonvolatile Memory,Dual 256-Position Digital Potentiometer
ADI

AD5232BRUZ100

Nonvolatile Memory,Dual 256-Position Digital Potentiometer
ADI

AD5232BRUZ100-REEL7

IC DUAL 100K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO16, ROHS COMPLIANT, MO-153AB, TSSOP-16, Digital Potentiometer
ADI

AD5232BRUZ100-RL7

Nonvolatile Memory,Dual 256-Position Digital Potentiometer
ADI

AD5232BRUZ50

Nonvolatile Memory,Dual 256-Position Digital Potentiometer
ADI

AD5232BRUZ50-REEL7

Nonvolatile Memory,Dual 256-Position Digital Potentiometer
ADI

AD5233

2-Channel, 256-Position Digital Potentiometer
ADI

AD5233BRU10

Nonvolatile Memory Digital Potentiometers
ADI

AD5233BRU10-REEL7

Nonvolatile Memory Digital Potentiometers
ADI

AD5233BRU100

Nonvolatile Memory Digital Potentiometers
ADI

AD5233BRU100-REEL7

Nonvolatile Memory Digital Potentiometers
ADI