AD5232BRUZ100-RL7 [ADI]

Nonvolatile Memory,Dual 256-Position Digital Potentiometer; 非易失性内存,双256位数字电位计
AD5232BRUZ100-RL7
型号: AD5232BRUZ100-RL7
厂家: ADI    ADI
描述:

Nonvolatile Memory,Dual 256-Position Digital Potentiometer
非易失性内存,双256位数字电位计

数字电位计
文件: 总24页 (文件大小:867K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Nonvolatile Memory,  
Dual 256-Position Digital Potentiometer  
Data Sheet  
AD5232  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
DD  
Dual-channel, 256-position resolution  
10 kΩ, 50 kΩ, and 100 kΩ nominal terminal resistance  
Nonvolatile memory maintenance of wiper settings  
Predefined linear increment/decrement instructions  
Predefined 6 dB step log taper increment/decrement  
instructions  
AD5232  
ADDR  
DECODE  
CS  
CLK  
SDI  
RDAC1  
REGISTER  
A1  
SERIAL  
INTERFACE  
W1  
B1  
SDO  
EEMEM1  
RDAC1  
SPI-compatible serial interface  
Wiper settings and EEMEM readback  
3 V to 5 V single-supply operation  
RDAC2  
REGISTER  
POWER-ON  
RESET  
PR  
A2  
2.5 V dual-supply operation  
W2  
WP  
14 bytes of general-purpose user EEMEM  
Permanent memory write protection  
100-year typical data retention (TA = 55°C)  
B2  
EEMEM  
CONTROL  
EEMEM2  
RDAC2  
RDY  
14 BYTES  
USER  
EEMEM  
APPLICATIONS  
Mechanical potentiometer replacement  
Instrumentation: gain and offset adjustment  
Programmable voltage-to-current conversion  
Programmable filters, delays, and time constants  
Programmable power supply  
GND  
V
SS  
Figure 1.  
Low resolution DAC replacement  
Sensor calibration  
GENERAL DESCRIPTION  
The AD5232 device provides a nonvolatile, dual-channel,  
digitally controlled variable resistor (VR) with 256-position  
resolution. This device performs the same electronic adjustment  
function as a mechanical potentiometer with enhanced resolution,  
solid state reliability, and superior low temperature coefficient  
performance. The versatile programming of the AD5232, per-  
ormed via a microcontroller, allows multiple modes of operation  
and adjustment.  
All internal register contents can be read via the serial data  
output (SDO). This includes the RDAC1 and RDAC2 registers,  
the corresponding nonvolatile EEMEM1 and EEMEM2 registers,  
and the 14 spare USER EEMEM registers that are available for  
constant storage.  
The basic mode of adjustment is the increment and decrement  
command instructions that control the wiper position setting  
register (RDACx). An internal scratch pad RDACx register can  
be moved up or down one step of the nominal resistance between  
Terminal A and Terminal B. This step adjustment linearly changes  
the wiper to Terminal B resistance (RWB) by one position segment  
of the device’s end-to-end resistance (RAB). For exponential/  
logarithmic changes in wiper setting, a left/right shift command  
instruction adjusts the levels in 6 dB steps, which can be useful  
for audio and light alarm applications.  
In the direct program mode, a predetermined setting of the RDAC  
registers (RDAC1 and RDAC2) can be loaded directly from the  
microcontroller. Another important mode of operation allows  
the RDACx register to be refreshed with the setting previously  
stored in the corresponding EEMEM register (EEMEM1 and  
EEMEM2). When changes are made to the RDACx register to  
establish a new wiper position, the value of the setting can be  
saved into the EEMEMx register by executing an EEMEM save  
operation. After the settings are saved in the EEMEMx register,  
these values are automatically transferred to the RDACx register  
to set the wiper position at system power-on. Such operation is  
enabled by the internal preset strobe. The preset strobe can also  
be accessed externally.  
The AD5232 is available in a thin, 16-lead TSSOP package.  
All parts are guaranteed to operate over the extended industrial  
temperature range of −40°C to +85°C. An evaluation board, the  
EVAL-AD5232-10EBZ, is available.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2001–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD5232  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Digital Input/Output Configuration........................................ 14  
Serial Data Interface................................................................... 15  
Daisy-Chaining Operation........................................................ 15  
Advanced Control Modes ......................................................... 17  
Using Additional Internal, Nonvolatile EEMEM................... 18  
Terminal Voltage Operating Range ......................................... 18  
Detailed Potentiometer Operation .......................................... 18  
Programming the Variable Resistor......................................... 19  
Programming the Potentiometer Divider............................... 20  
Operation from Dual Supplies ................................................. 20  
Application Programming Examples ...................................... 20  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—10 kΩ, 50 kΩ, 100 kΩ Versions .. 3  
Interface Timing Characteristics................................................ 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Test Circuits..................................................................................... 12  
Theory of Operation ...................................................................... 14  
Scratch Pad and EEMEM Programming................................. 14  
Basic Operation .......................................................................... 14  
EEMEM Protection.................................................................... 14  
Equipment Customer Start-up Sequence  
for a PCB Calibrated Unit with Protected Settings................ 21  
Flash/EEMEM Reliability.......................................................... 21  
Evaluation Board ........................................................................ 21  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 22  
REVISION HISTORY  
Changes to Applications Section.....................................................1  
Change to Wiper Resistance Parameter, Table 1...........................3  
11/13—Rev. B to Rev. C  
Changed t16 from 25 ms (max) to 25 ms (typ); Table 2 ............... 5  
Changes to Ordering Guide .......................................................... 22  
CS  
Changes to  
Rise to RDY Fall Time Parameter, Table 2...........5  
Changes to Figure 2 and Figure 3....................................................6  
Changes to Figure 24...................................................................... 12  
Added Figure 32 ............................................................................. 13  
Changes to Serial Data Interface Section .................................... 15  
Changes to Programming the Variable Resistor Section .......... 19  
Changes to Ordering Guide.......................................................... 22  
09/11—Rev. A to Rev. B  
Change to Resistor Noise Voltage Parameter in Table 1 ............. 4  
10/09—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Changes to Data Sheet Title ............................................................ 1  
Changes to Features Section............................................................ 1  
10/01—Revision 0: Initial Version  
Rev. C | Page 2 of 24  
 
Data Sheet  
AD5232  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—10 kΩ, 50 kΩ, 100 kΩ VERSIONS  
VDD = 3 V 10% or 5 V 10% and VSS = 0 V, VA = +VDD, VB = 0 V, 40°C < TA < +85°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol Conditions  
Specifications apply to all VRs  
Min  
Typ 1  
Max  
Unit  
DC CHARACTERISTICS,  
RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Nonlinearity2  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient  
Wiper Resistance  
R-DNL  
R-INL  
∆RAB  
∆RAB/∆T  
RW  
RWB, VA = NC  
RWB, VA = NC  
−1  
−0.4  
−40  
1/2  
+1  
+0.4  
+20  
LSB  
% FS  
%
ppm/°C  
600  
50  
200  
IW = 100 µA, VDD = 5.5 V, code = 0x1E  
IW = 100 µA, VDD = 3 V, code = 0x1E  
100  
POTENTIOMETER DIVIDER MODES  
Resolution  
N
8
Bits  
Differential Nonlinearity3  
Integral Nonlinearity3  
Voltage Divider Temperature  
Coefficient  
DNL  
INL  
∆VW/ΔT  
−1  
−0.4  
1/2  
15  
+1  
+0.4  
LSB  
% FS  
ppm/°C  
Code = half scale  
Full-Scale Error  
Zero-Scale Error  
VWFSE  
VWZSE  
Code = full scale  
Code = zero scale  
−3  
0
0
3
% FS  
% FS  
RESISTOR TERMINALS  
Terminal Voltage Range4  
Capacitance Ax, Bx5  
Capacitance Wx5  
Common-Mode Leakage Current5, 6  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
Output Logic High (SDO and RDY)  
Output Logic Low  
Input Current  
Input Capacitance5  
VA, VB, VW  
CA, CB  
CW  
VSS  
VDD  
V
f = 1 MHz, measured to GND, code = half-scale  
f = 1 MHz, measured to GND, code = half scale  
VW = VDD/2  
45  
60  
0.01  
pF  
pF  
µA  
ICM  
1
VIH  
VIL  
VIH  
VIL  
VIH  
VIL  
VOH  
VOL  
IIL  
With respect to GND, VDD = 5 V  
With respect to GND, VDD = 5 V  
With respect to GND, VDD= 3 V  
With respect to GND, VDD = 3 V  
With respect to GND, VDD = +2.5 V, VSS = −2.5 V  
With respect to GND, VDD = +2.5 V, VSS = −2.5 V  
RPULL-UP = 2.2 kΩ to 5 V  
2.4  
2.1  
2.0  
4.9  
V
V
V
V
V
V
V
V
0.8  
0.6  
0.5  
4
IOL = 1.6 mA, VLOGIC = 5 V  
VIN = 0 V or VDD  
0.4  
2.5  
µA  
pF  
CIL  
POWER SUPPLIES  
Single-Supply Power Range  
Dual-Supply Power Range  
Positive Supply Current  
Programming Mode Current  
Read Mode Current7  
Negative Supply Current  
VDD  
VDD/VSS  
IDD  
IDD(PG)  
IDD(XFR)  
ISS  
VSS = 0 V  
2.7  
2.25  
5.5  
2.75  
10  
9
V
V
µA  
mA  
mA  
VIH = VDD or VIL = GND  
VIH = VDD or VIL = GND  
VIH = VDD or VIL = GND  
VIH = VDD or VIL = GND,  
VDD = +2.5 V, VSS = −2.5 V  
VIH = VDD or VIL = GND  
∆VDD = 5 V 10%  
3.5  
35  
3
0.9  
3.5  
0.018  
0.002  
10  
0.05  
0.01  
µA  
mW  
%/%  
Power Dissipation8  
Power Supply Sensitivity5  
PDISS  
PSS  
Rev. C | Page 3 of 24  
 
 
AD5232  
Data Sheet  
Parameter  
DYNAMIC CHARACTERISTICS5, 9  
Bandwidth  
Total Harmonic Distortion  
Symbol Conditions  
−3 dB, BW_10kΩ, R = 10 kΩ  
Min  
Typ 1  
Max  
Unit  
500  
kHz  
%
%
THDw  
VA = 1 V rms, VB = 0 V, f = 1 kHz, RAB = 10 kΩ  
VA = 1 V rms, VB = 0 V, f = 1 kHz, RAB = 50 kΩ, 100 kΩ  
VDD = 5 V, VSS = 0 V, VA = VDD, VB = 0 V,  
VW = 0.50% error band, Code 0x00 to Code 0x80  
for RAB = 10 kΩ/50 kΩ/100 kΩ  
0.022  
0.045  
0.65/3/6  
VW Settling Time  
tS  
µs  
Resistor Noise Voltage  
Crosstalk (CW1/CW2)  
eN_WB  
CT  
RWB = 5 kΩ, f= 1 kHz  
VA = VDD, VB = 0 V, measure VW with  
adjacent VR making full-scale code change  
9
−5  
nV/√Hz  
nV-sec  
Analog Crosstalk (CW1/CW2  
)
CTA  
VA1 = VDD, VB1 = 0 V, measure VW1 with VW2  
=
−70  
dB  
5 V p-p @ f = 10 kHz; Code1 = 0x80; Code2 = 0xFF  
FLASH/EE MEMORY RELIABILITY  
Endurance10  
Data Retention11  
100  
kCycles  
Years  
100  
1 Typical parameters represent average readings at 25°C and VDD = 5 V.  
2 Resistor position nonlinearity (R-INL) error is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. IW ~ 50 µA @ VDD = 2.7 V and IW  
400 µA @ VDD = 5 V for the RAB = 10 kΩ version, IW ~ 50 µA for the RAB = 50 kΩ version, and IW ~ 25 µA for the RAB = 100 kΩ version (see Figure 22).  
~
3 INL and DNL are measured at VW with the RDACx configured as a potentiometer divider similar to a voltage output digital-to-analog converter. VA = VDD and VB = VSS  
DNL specification limits of 1 LSB maximum are guaranteed monotonic operating conditions (see Figure 23).  
4 The A, B, and W resistor terminals have no limitations on polarity with respect to each other. Dual supply operation enables ground-referenced bipolar signal  
adjustment.  
.
5 Guaranteed by design; not subject to production test.  
6 Common-mode leakage current is a measure of the dc leakage from any A, B, or W terminal to a common-mode bias level of VDD/2.  
7 Transfer (XFR) mode current is not continuous. Current is consumed while the EEMEMx locations are read and transferred to the RDACx register (see Figure 13).  
8 PDISS is calculated from (IDD × VDD) + (ISS × VSS).  
9 All dynamic characteristics use VDD = +2.5 V and VSS = −2.5 V, unless otherwise noted.  
10 Endurance is qualified to 100,000 cycles per JEDEC Std. 22, Method A117 and measured at −40°C, +25°C, and +85°C. Typical endurance at +25°C is 700,000 cycles.  
11  
The retention lifetime equivalent at junction temperature (TJ) = 55°C, as per JEDEC Std. 22, Method A117. Retention lifetime, based on an activation energy of 0.6 eV,  
derates with junction temperature as shown in Figure 44 in the Flash/EEMEM Reliability section. The AD5232 contains 9,646 transistors. Die size = 69 mil × 115 mil,  
7,993 sq. mil.  
Rev. C | Page 4 of 24  
 
Data Sheet  
AD5232  
INTERFACE TIMING CHARACTERISTICS  
All input control voltages are specified with tR = tF = 2.5 ns (10% to 90% of 3 V) and are timed from a voltage level of 1.5 V. Switching  
characteristics are measured using both VDD = 3 V and VDD = 5 V.  
Table 2.  
Parameter1, 2  
Symbol  
t1  
t2  
Conditions  
Min  
20  
10  
1
Typ 3  
Max  
Unit  
ns  
Clock Cycle Time (tCYC  
CS Setup Time  
)
ns  
CLK Shutdown Time to CS Rise  
Input Clock Pulse Width  
Data Setup Time  
t3  
tCYC  
ns  
ns  
t4, t5  
t6  
t7  
Clock level high or low  
From positive CLK transition  
From positive CLK transition  
10  
5
5
Data Hold Time  
ns  
CS to SDO-SPI Line Acquire  
CS to SDO-SPI Line Release  
CLK to SDO Propagation Delay4  
CLK to SDO Data Hold Time  
CS High Pulse Width5  
t8  
40  
50  
50  
ns  
t9  
ns  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
RP = 2.2 kΩ, CL < 20 pF  
RP = 2.2 kΩ, CL < 20 pF  
ns  
ns  
ns  
0
10  
4
CS High to CS High5  
tCYC  
ns  
RDY Rise to CS Fall  
0
CS Rise to RDY Fall Time  
Store/Read EEMEM Time6  
0.15  
25  
0.3  
ms  
ms  
Applies to Command Instruction 2, Command  
Instruction 3, and Command Instruction 9  
CS Rise to Clock Rise/Fall Setup  
Preset Pulse Width (Asynchronous)  
Preset Response Time to RDY High  
t17  
10  
50  
ns  
ns  
µs  
tPRW  
tPRESP  
Not shown in timing diagram  
PR pulsed low to refresh wiper positions  
70  
1 Guaranteed by design; not subject to production test.  
2 See the Timing Diagrams section for the location of measured values.  
3 Typicals represent average readings at 25°C and VDD = 5 V.  
4 Propagation delay depends on the value of VDD, RPULL-UP, and CL.  
5 Valid for commands that do not activate the RDY pin.  
6
PR  
RDY pin low only for Command Instruction 2, Command Instruction 3, Command Instruction 8, Command Instruction 9, Command Instruction 10, and the hardware pulse:  
CMD_8 ~ 1 ms, CMD_9 = CMD_10 ~ 0.12 ms, and CMD_2 = CMD_3 ~ 20 ms. Device operation at TA = −40°C and VDD < 3 V extends the save time to 35 ms.  
Rev. C | Page 5 of 24  
 
 
AD5232  
Data Sheet  
Timing Diagrams  
CPHA = 1  
CS  
t12  
t13  
t3  
t1  
t2  
CLK  
CPOL = 1  
t5  
B15  
t4  
B0  
t17  
t7  
t6  
HIGH  
HIGH  
B15  
(MSB)  
B0  
(LSB)  
OR LOW  
OR LOW  
SDI  
t8  
t11  
t9  
t10  
B15  
(MSB)  
B0  
(LSB)  
B16*  
SDO  
t14  
t15  
t16  
RDY  
NOTES  
1. B24 IS AN EXTRA BIT THAT IS NOT DEFINED, BUT IT IS USUALLY THE LSB OF THE CHARACTER THAT WAS PREVIOUSLY TRANSMITTED.  
2. THE CPOL = 1 MICROCONTROLLER COMMAND ALIGNS THE INCOMING DATA TO THE POSITIVE EDGE OF THE CLOCK.  
Figure 2. CPHA = 1  
CPHA = 0  
CS  
t12  
B15  
(MSB)  
B0  
(LSB)  
t1  
t3  
t13  
t2  
t5  
B15  
t4  
B0  
t17  
CLK  
CPOL = 0  
t7  
t6  
HIGH  
HIGH  
OR LOW  
OR LOW  
B15  
(MSB IN)  
B0  
(LSB)  
SDI  
SDO  
RDY  
t8  
t10  
t11  
t9  
B15  
(MSB OUT)  
B0  
(LSB)  
*
t14  
t15  
t16  
NOTES  
1. THIS EXTRA BIT IS NOT DEFINED, BUT IT IS USUALLY THE MSB OF THE CHARACTER THAT WAS JUST RECEIVED.  
2. THE CPOL = 0 MICROCONTROLLER COMMAND ALIGNS THE INCOMING DATA TO THE POSITIVE EDGE OF THE CLOCK.  
Figure 3. CPHA = 0  
Rev. C | Page 6 of 24  
 
Data Sheet  
AD5232  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 3.  
Parameter  
Rating  
VDD to GND  
VSS to GND  
VDD to VSS  
VA, VB, VW to GND  
−0.3 V, +7 V  
+0.3 V, −7 V  
7 V  
VSS − 0.3 V, VDD + 0.3 V  
AX − BX, AX WX, BX − WX  
Intermittent1  
Continuous  
Digital Inputs and Output Voltage to GND  
Operating Temperature Range2  
Maximum Junction Temperature (TJ max)  
Storage Temperature Range  
Lead Temperature, Soldering  
Vapor Phase (60 sec)  
Infrared (15 sec)  
20 mA  
2 mA  
−0.3 V, VDD + 0.3 V  
−40°C to +85°C  
150°C  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 4. Thermal Resistance  
−65°C to +150°C  
Package Type  
θJA  
θJC  
Unit  
16-Lead TSSOP (RU-16)  
150  
28  
°C/W  
215°C  
220°C  
ESD CAUTION  
Package Power Dissipation  
(TJ max − TA)/θJA  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 Includes programming of nonvolatile memory.  
Rev. C | Page 7 of 24  
 
 
 
 
AD5232  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
CLK  
SDI  
RDY  
CS  
SDO  
GND  
PR  
AD5232  
TOP VIEW  
(Not to Scale)  
WP  
V
V
DD  
SS  
A1  
W1  
B1  
A2  
W2  
B2  
Figure 4. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin  
No.  
Mnemonic Description  
1
2
CLK  
SDI  
Serial Input Register Clock. Shifts in one bit at a time on positive clock edges.  
Serial Data Input. The MSB is loaded first.  
3
SDO  
Serial Data Output. This open-drain output requires an external pull-up resistor. Command Instruction 9 and Command  
Instruction 10 activate the SDO output (see Table 8). Other commands shift out the previously loaded SDI bit pattern  
delayed by 16 clock pulses, allowing daisy-chain operation of multiple packages.  
4
5
6
GND  
VSS  
A1  
Ground, Logic Ground Reference.  
Negative Power Supply. Connect to 0 V for single-supply applications.  
Terminal A of RDAC1.  
7
8
W1  
B1  
Wiper Terminal W of RDAC1, ADDR (RDAC1) = 0x0.  
Terminal B of RDAC1.  
9
B2  
Terminal B of RDAC2.  
10  
11  
12  
13  
W2  
A2  
VDD  
WP  
Wiper Terminal W of RDAC2, ADDR (RDAC2) = 0x1.  
Terminal A of RDAC2.  
Positive Power Supply.  
Write Protect. When active low, WP prevents any changes to the present register contents, except PR, Command  
Instruction 1, and Command Instruction 8, which refresh the RDACx register from EEMEM. Execute an NOP instruction  
(Command Instruction 0) before returning WP to logic high.  
14  
PR  
Hardware Override Preset. Refreshes the scratch pad register with current contents of the EEMEMx register. Factory  
default loads Midscale 0x80 until EEMEMx is loaded with a new value by the user (PR is activated at the logic high  
transition).  
15  
16  
CS  
Serial Register Chip Select, Active Low. Serial register operation takes place when CS returns to logic high.  
RDY  
Ready. This active-high, open-drain output requires a pull-up resistor. Identifies completion of Command Instruction 2,  
Command Instruction 3, Command Instruction 8, Command Instruction 9, Command Instruction 10, and PR.  
Rev. C | Page 8 of 24  
 
Data Sheet  
AD5232  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.00  
2000  
V
= 2.7V  
1.75  
V
T
= 5V  
DD  
DD  
V
= 0V  
= –40°C/+85°C  
SS  
1.50  
A
V
R
= NO CONNECT  
A
1.25  
MEASURED  
WB  
1.00  
1500  
1000  
INL T = –40°C  
A
INL T = +25°C  
A
0.75  
0.50  
0.25  
0
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
–1.50  
–1.75  
–2.00  
INL T = +85°C  
A
500  
0
0
64  
128  
DIGITAL CODE  
192  
256  
256  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
256  
85  
CODE (Decimal)  
Figure 5. INL vs. Code; TA = −40°C, +25°C, +85°C Overlay  
Figure 8. ΔRWB/ΔT vs. Code; RAB = 10 kΩ, VDD = 5 V  
2.00  
1.75  
70  
60  
50  
40  
30  
20  
V
V
= 2.7V  
= 0V  
V
T
V
V
= 5V  
DD  
SS  
DD  
= –40°C/+85°C  
= 2V  
= 0V  
1.50  
A
A
B
1.25  
1.00  
DNL T = –40°C  
A
0.75  
DNL T = +25°C  
0.50  
A
0.25  
0
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
–1.50  
–1.75  
–2.00  
DNL T = +85°C  
A
10  
0
–10  
0
64  
128  
192  
0
32  
64  
96  
128  
160  
192  
224  
DIGITAL CODE  
CODE (Decimal)  
Figure 6. DNL vs. Code; TA = −40°C, +25°C, +85°C Overlay  
Figure 9. ΔVWB/ΔT vs. Code; RAB = 10 kΩ, VDD = 5 V  
0.20  
1
V
V
= 5.5V  
= 0V  
= 25°C  
DD  
SS  
V
V
V
= +2.5V  
= –2.5V  
= 0V  
DD  
SS  
CM  
0.15  
0.10  
0.05  
0
T
A
0.1  
0.01  
–0.05  
–0.10  
–0.15  
–0.20  
0.001  
0
32  
64  
96  
128  
160  
192  
224  
–50  
–35  
–20  
–5  
10  
25  
40  
55  
70  
CODE (Decimal)  
TEMPERATURE (°C)  
Figure 10. ICM vs. Temperature (See Figure 30)  
Figure 7. R-DNL vs. Code; RAB = 10 kΩ, 50 kΩ, 100 kΩ Overlay  
Rev. C | Page 9 of 24  
 
AD5232  
Data Sheet  
4
12  
6
V
= 5.5V  
DD  
f–3dB = 500kHz, R = 10k  
0
–6  
f–3dB = 45kHz, R = 100kΩ  
f–3dB = 95kHz, R = 50kΩ  
–12  
–18  
–24  
–30  
–36  
–42  
2
V
= 2.7V  
DD  
V
V
V
R
T
= 100mV rms  
IN  
= +2.5V  
= –2.5V  
= 1MΩ  
DD  
SS  
L
= +25°C  
A
0
–50  
–35  
–20  
–5  
10  
25  
40  
55  
70  
85  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 14. −3 dB Bandwidth vs. Resistance  
Figure 11. IDD vs. Temperature  
10  
1
T
V
= 5V  
= 25°C  
DD  
T
A
FILTER = 22kHz  
CS  
1
2
3
4
CLK  
SDI  
0.1  
0.01  
R
= 10k  
AB  
R
= 50k, 100kΩ  
AB  
I
DD  
2mA/DIV  
0.001  
CH2 5.00V  
M 2.00ms  
CH1 5.00V  
CH3 5.00V CH4 10.00V  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 12. IDD vs. Time (Save) Program Mode  
Figure 15. Total Harmonic Distortion + Noise vs. Frequency  
110  
T
V
= 2.7V  
DD  
= 25°C  
100  
90  
80  
70  
60  
50  
40  
30  
T
A
CS  
1
2
3
4
CLK  
SDI  
20  
10  
0
I
*
DD  
2mA/DIV  
CH2 5.00V  
M 2.00ms  
CH1 5.00V  
0
32  
64  
96  
128  
160  
192  
224  
256  
CH3 5.00V CH4 10.00V  
CODE (Decimal)  
*SUPPLY CURRENT RETURNS TO MINIMUM POWER CONSUMPTION  
IF COMMAND INSTRUCTION 0 (NOP) IS EXECUTED IMMEDIATELY  
AFTER COMMAND INSTRUCTION 1 (READ EEMEM).  
Figure 13. IDD vs. Time Read Mode  
Figure 16. Wiper On Resistance vs. Code  
Rev. C | Page 10 of 24  
 
 
Data Sheet  
AD5232  
0
80  
60  
40  
20  
0
R
= 100kΩ  
= 50kΩ  
AB  
0x80  
0x40  
–6  
R
AB  
–12  
–18  
0x20  
0x10  
R
= 10kΩ  
AB  
–24  
–30  
–36  
–42  
–48  
0x08  
0x04  
0x02  
0x01  
V
V
V
V
= 5.5V ± 100mV AC  
= 0V  
DD  
SS  
= 5V  
= 0V  
B
A
V
V
V
V
= +2.7V  
= –2.7V  
A
DD  
SS  
A
A
R
= 10kΩ  
AB  
–54  
–60  
MEASURE AT V WITH CODE = 0x80  
W
= 100mV rms  
= 25°C  
T
= 25°C  
A
T
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Gain vs. Frequency vs. Code, RAB = 10 kΩ  
Figure 20. PSRR vs. Frequency  
120  
0
–6  
0x80  
0x40  
–12  
–18  
100  
80  
0x20  
0x10  
R
= 10kΩ  
AB  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x08  
0x04  
R
= 100kΩ  
AB  
R
= 50kΩ  
AB  
60  
0x02  
0x01  
V
V
V
= V = +2.75V  
A2  
= V = –2.75V  
B2  
= +5V  
P-P  
= 25°C  
DD  
40  
V
V
V
V
= +2.7V  
= –2.7V  
A
SS  
DD  
SS  
A
A
R
= 50kΩ  
AB  
IN  
A
= 100mV rms  
= 25°C  
T
T
20  
1k  
10k  
100k  
1M  
1
10  
FREQUENCY (kHz)  
100  
FREQUENCY (Hz)  
Figure 18. Gain vs. Frequency vs. Code, RAB = 50 kΩ  
Figure 21. Analog Crosstalk vs. Frequency (See Figure 31)  
0
–6  
0x80  
0x40  
0x20  
0x10  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x08  
0x04  
0x02  
0x01  
V
V
= +2.7V  
= –2.7V  
A
DD  
SS  
V
V
R
= 100kΩ  
AB  
= 100mV rms  
= 25°C  
A
A
T
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 19. Gain vs. Frequency vs. Code, RAB = 100 kΩ  
Rev. C | Page 11 of 24  
AD5232  
Data Sheet  
TEST CIRCUITS  
Figure 22 to Figure 32 define the test conditions that are used in the Specifications section.  
NC  
A
DUT  
B
DUT  
I
W
5V  
OP279  
A
W
V
W
IN  
V
OUT  
OFFSET  
GND  
B
V
MS  
OFFSET BIAS  
NC = NO CONNECT  
Figure 22. Resistor Position Nonlinearity Error (Rheostat Operation; R-INL, R-DNL)  
Figure 26. Inverting Gain  
5V  
DUT  
A
W
V+ = V  
DD  
1LSB = V+/2  
N
OP279  
V
OUT  
V
IN  
V+  
W
B
V
MS  
OFFSET  
GND  
A
DUT  
B
OFFSET BIAS  
Figure 23. Potentiometer Divider Nonlinearity Error (INL, DNL)  
Figure 27. Noninverting Gain  
+15V  
A
DUT  
A
I
= V /R  
DD NOMINAL  
W
W
V
W
W
V
IN  
V
DUT  
MS2  
V
OP42  
B
OUT  
B
OFFSET  
GND  
R
= [V  
MS1  
– V ]/I  
W
MS2  
W
V
MS1  
2.5V  
–15V  
Figure 24. Wiper Resistance  
Figure 28. Gain vs. Frequency  
V
0.1V  
A
R
=
SW  
I
V+ = V ± 10%  
DD  
SW  
DUT  
A
ΔV  
CODE = 0x00  
MS  
V
A
B
DD  
PSRR (dB) = 20 LOG  
W
(ΔV )  
W
DD  
V+  
~
+
ΔV  
ΔV  
%
%
MS  
B
0.1V  
I
PSS (%/%) =  
V
SW  
MS  
DD  
V
SS  
TO V  
DD  
A = NC  
Figure 25. Power Supply Sensitivity (PSS, PSRR)  
Figure 29. Incremental On Resistance  
Rev. C | Page 12 of 24  
 
 
 
Data Sheet  
AD5232  
NC  
200µA  
I
OL  
A
V
I
DD  
CM  
DUT  
W
V
(MIN)  
OH  
TO OUTPUT  
PIN  
OR  
V
V
GND  
SS  
B
C
L
50pF  
(MAX)  
OL  
V
CM  
NC  
200µA  
I
OH  
NC = NO CONNECT  
NOTES  
1. THE DIODE BRIDGE TEST CIRCUIT IS EQUIVALENT TO  
THE APPLICATION CIRCUIT WITH R OF 2.2kΩ.  
PULL-UP  
Figure 32. Load Circuit for Measuring VOH and VOL  
Figure 30. Common-Mode Leakage Current  
V
DD  
A1  
A2  
RDAC2  
W2  
RDAC1  
V
IN  
W1  
V
NC  
OUT  
B2  
V
SS  
B1  
C
= 20 LOG [V /V ]  
OUT IN  
TA  
NC = NO CONNECT  
Figure 31. Analog Crosstalk  
Rev. C | Page 13 of 24  
 
 
 
AD5232  
Data Sheet  
THEORY OF OPERATION  
The AD5232 digital potentiometer is designed to operate as a  
true variable resistor replacement device for analog signals that  
The application programming example shown in Table 6 lists  
two digital potentiometers set to independent data values. The  
wiper positions are then saved in the corresponding nonvolatile  
EEMEMx registers.  
remain within the terminal voltage range of VSS < VTERM < VDD  
.
The basic voltage range is limited to a |VDD − VSS| < 5.5 V. The  
digital potentiometer wiper position is determined by the RDACx  
register contents. The RDACx register acts as a scratch pad register,  
allowing as many value changes as necessary to place the poten-  
tiometer wiper in the correct position. The scratch pad register  
can be programmed with any position value using the standard  
SPI serial interface mode by loading the complete representative  
data-word. When a desirable position is found, this value can be  
saved into a corresponding EEMEMx register. Thereafter, the wiper  
position is always set at that position for any future on-off-on  
power supply sequence. The EEMEM save process takes approx-  
imately 25 ms. During this time, the shift register is locked,  
preventing any changes from taking place. The RDY pin indicates  
the completion of this EEMEM save.  
Table 6. Application Programming Example  
SDI  
SDO  
Action  
0xB040  
0xXXXX1 Loads 0x40 data into the RDAC1 register;  
Wiper W1 moves to 1/4 full-scale position.  
0x20XX1 0xB040  
Saves a copy of the RDAC1 register contents  
into the corresponding EEMEM1 register.  
0xB180  
0x20XX1 Loads 0x80 data into the RDAC2 register;  
Wiper W2 moves to 1/2 full-scale position.  
0x21XX1 0xB180  
Saves a copy of the RDAC2 register contents  
into the corresponding EEMEM2 register.  
1 X = don’t care.  
PR  
Note that the  
pulse first sets the wiper at midscale when it is  
brought to Logic 0. Then, on the positive transition to logic high,  
it reloads the DAC wiper register with the contents of EEMEMx.  
Many additional advanced programming commands are avail-  
able to simplify the variable resistor adjustment process.  
SCRATCH PAD AND EEMEM PROGRAMMING  
The scratch pad register (RDACx register) directly controls the  
position of the digital potentiometer wiper. When the scratch  
pad register is loaded with all 0s, the wiper is connected to  
Terminal B of the variable resistor. When the scratch pad register  
is loaded with midscale code (1/2 of full-scale position), the wiper  
is connected to the middle of the variable resistor. When the  
scratch pad is loaded with full-scale code, which is all 1s, the  
wiper connects to Terminal A. Because the scratch pad register  
is a standard logic register, there is no restriction on the number  
of changes allowed. The EEMEMx registers have a program  
erase/write cycle limitation that is described in the Flash/EEMEM  
Reliability section.  
For example, the wiper position can be changed, one step at  
a time, by using the software controlled increment/decrement  
command instructions. The wiper position can be also be changed,  
6 dB at a time, by using the shift left/right command instructions.  
After an increment, decrement, or shift command instruction is  
CS  
loaded into the shift register, subsequent  
strobes repeat this  
command instruction. This is useful for push-button control appli-  
cations (see the Advanced Control Modes section). The SDO pin  
is available for daisy chaining and for readout of the internal  
register contents. The serial input data register uses a 16-bit  
instruction/address/data-word.  
BASIC OPERATION  
The basic mode of setting the variable resistor wiper position  
(by programming the scratch pad register) is accomplished by  
loading the serial data input register with Command Instruc-  
tion 11, which includes the desired wiper position data. When  
the desired wiper position is found, the user loads the serial  
data input register with Command Instruction 2, which copies  
the desired wiper position data into the corresponding non-  
volatile EEMEMx register. After 25 ms, the wiper position is  
permanently stored in the corresponding nonvolatile EEMEM  
location. Table 6 provides an application programming example  
listing the sequence of serial data input (SDI) words and the  
corresponding serial data output appearing at the serial data  
output (SDO) pin in hexadecimal format.  
EEMEM PROTECTION  
WP  
The write protect ( ) pin disables any changes of the scratch  
pad register contents, regardless of the software commands,  
except that the EEMEM setting can be refreshed using Instruction  
PR  
WP  
Command 8 and . Therefore, the  
pin provides a hardware  
EEMEM protection feature. Execute an NOP command (Com-  
WP  
mand Instruction 0) before returning  
to logic high.  
DIGITAL INPUT/OUTPUT CONFIGURATION  
All digital inputs are ESD protected, high input impedance that  
can be driven directly from most digital sources. The  
pins, which are active at logic low, must be biased to VDD if they  
are not being used. No internal pull-up resistors are present on  
any digital input pins.  
PR  
WP  
and  
At system power-on, the scratch pad register is refreshed with  
the last value saved in the EEMEMx register. The factory preset  
EEMEM value is midscale. The scratch pad (wiper) register can  
be refreshed with the current contents of the nonvolatile EEMEMx  
The SDO and RDY pins are open-drain, digital outputs when pull-  
up resistors are needed, but only if these functions are in use.  
A resistor value in the range of 1 kΩ to 10 kΩ optimizes the power  
and switching speed trade-off.  
PR  
register under hardware control by pulsing the  
pin.  
Rev. C | Page 14 of 24  
 
 
 
 
 
 
 
Data Sheet  
AD5232  
V
DD  
SERIAL DATA INTERFACE  
The AD5232 contains a 4-wire SPI-compatible digital interface  
CS  
(SDI, SDO, , and CLK) and uses a 16-bit serial data-word  
INPUTS  
300Ω  
LOGIC  
PINS  
that is loaded MSB first. The format of the SPI-compatible word  
CS  
is shown in Table 7. The chip select ( ) pin must be held low  
until the complete data-word is loaded into the SDI pin. When  
CS  
returns high, the serial data-word is decoded according to  
AD5232  
the instructions in Table 8. The command bits (Cx) control the  
operation of the digital potentiometer. The address bits (Ax)  
determine which register is activated. The data bits (Dx) are the  
values that are loaded into the decoded register. Table 9 provides  
an address map of the EEMEM locations. The last command  
instruction executed prior to a period of no programming activity  
should be the no operation (NOP) command instruction (Com-  
mand Instruction 0). This instruction places the internal logic  
circuitry in a minimum power dissipation state.  
GND  
Figure 34. Equivalent ESD Digital Input Protection  
V
DD  
INPUTS  
300Ω  
WP  
PR  
WP  
AD5232  
VALID  
COMMAND  
GND  
COMMAND  
PROCESSOR  
AND ADDRESS  
DECODE  
5V  
WP  
Figure 35. Equivalent  
Input Protection  
COUNTER  
DAISY-CHAINING OPERATION  
R
PULL-UP  
The SDO pin serves two purposes: it can be used to read back  
the contents of the wiper setting and the EEMEM using Command  
Instruction 9 and Command Instruction 10 (see Table 8), or it can  
be used for daisy-chaining multiple devices.The remaining com-  
mand instructions are valid for daisy-chaining multiple devices in  
simultaneous operations. Daisy chaining minimizes the number  
of port pins required from the controlling IC (see Figure 36).  
The SDO pin contains an open-drain N-channel FET that requires  
a pull-up resistor if this function is used. As shown in Figure 36,  
users must tie the SDO pin of one package to the SDI pin of the  
next package. Users may need to increase the clock period because  
the pull-up resistor and the capacitive loading at the SDO-to-SDI  
interface may require additional time delay between subsequent  
packages. If two AD5232s are daisy-chained, 32 bits of data are  
required. The first 16 bits go to U2, and the second 16 bits with  
the same format go to U1. The 16 bits are formatted to contain  
the 4-bit instruction, followed by the 4-bit address, followed by  
CLK  
SERIAL  
REGISTER  
SDO  
GND  
CS  
SDI  
AD5232  
Figure 33. Equivalent Digital Input/Output Logic  
The AD5232 has an internal counter that counts a multiple of  
16 bits (per frame) for proper operation. For example, the AD5232  
works with a 16-bit or 32-bit word, but it cannot work properly  
with a 15-bit or 17-bit word. To prevent data from mislocking  
(due to noise, for example), the counter resets if the count is not  
CS  
a multiple of 4 when  
register if the count is a multiple of 4. In addition, the AD5232 has  
CS  
goes high, but the data remains in the  
a subtle feature whereby, if  
is pulsed without CLK and SDI,  
the part repeats the previous command (except during power-  
up). As a result, care must be taken to ensure that no excessive  
noise exists in the CLK or  
number of bits pattern.  
CS  
the eight bits of data. The  
pin should be kept low until all 32 bits  
CS  
line that may alter the effective  
CS  
are locked into their respective serial registers. The  
pulled high to complete the operation.  
pin is then  
The equivalent serial data input and output logic is shown in  
CS  
V
DD  
Figure 33. The open-drain SDO is disabled whenever  
is logic  
high. The SPI interface can be used in two slave modes: CPHA = 1,  
CPOL = 1; and CPHA = 0, CPOL = 0. CPHA and CPOL refer  
to the control bits that dictate SPI timing in the following micro-  
processors and MicroConverter® devices: the ADuC812 and the  
ADuC824, the M68HC11, and the MC68HC16R1/916R1. ESD  
protection of the digital inputs is shown in Figure 34 and Figure 35.  
R
2.2kΩ  
P
AD5232  
U1  
AD5232  
U2  
SDI  
SDO  
SDI  
SDO  
MicroConverter  
CS CLK  
CLK  
CS  
Figure 36. Daisy-Chain Configuration Using the SDO  
Rev. C | Page 15 of 24  
 
 
 
 
 
 
AD5232  
Data Sheet  
Command bits are identified as Cx, address bits are Ax, and  
data bits are Dx. The command instruction codes are defined  
in Table 8. The SDO output shifts out the last eight bits of data  
clocked into the serial register for daisy-chain operation, with  
the following exception: after Command Instruction 9 or Com-  
mand Instruction 10, the selected internal register data is present  
in Data Byte 0. The command instructions following Command  
Instruction 9 and Command Instruction 10 must be full 16-bit  
data-words to completely clock out the contents of the serial  
register. The RDACx register is a volatile scratch pad register  
that is refreshed at power-on from the corresponding nonvol-  
atile EEMEMx register. The increment, decrement, and shift  
command instructions ignore the contents of Data Byte 0 in the  
shift register. Execution of the operation noted in Table 8 occurs  
CS  
when the  
strobe returns to logic high. Execution of an NOP  
instruction minimizes power dissipation.  
Table 7. 16-Bit Serial Data Word  
MSB  
LSB  
B0  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Table 8. Instruction/Operation Truth Table  
Instruction Byte 1  
Data Byte 0  
Comm.  
Inst.  
B15  
B8  
B7  
B0  
No.  
C3  
0
0
C2  
0
0
C1 C0  
A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
Operation  
0
1
0
0
0
1
X
0
X
0
X
0
X
A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
No operation (NOP). Do nothing.  
Write contents of EEMEM (A0) to  
the RDAC (A0) register. This com-  
mand leaves the device in the read  
program power state. To return  
the part to the idle state, perform  
Command Instruction 0 (NOP).  
2
0
0
1
0
0
0
0
A0  
X
X
X
X
X
X
X
X
Save wiper setting. Write  
contents of RDAC (ADDR) to  
EEMEM (A0).  
3
4
5
0
0
0
0
1
1
1
0
0
1
0
1
ADDR  
D7 D6 D5 D4 D3 D2 D1 D0  
Write contents of Serial Register  
Data Byte 0 to EEMEM (ADDR).  
Decrement 6 dB right shift con-  
0
0
0
A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
tents of RDAC (A0). Stops at all 0s.  
X
X
X
Decrement all 6 dB right shift  
contents of all RDAC registers.  
Stops at all 0s.  
6
7
8
0
0
1
1
1
0
1
1
0
0
1
0
0
X
0
0
X
0
0
X
0
A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Decrement contents of RDAC (A0)  
by 1. Stops at all 0s.  
Decrement contents of all RDAC  
registers by 1. Stops at all 0s.  
Reset. Load all RDACs with their  
corresponding, previously saved  
EEMEM values.  
0
9
1
1
1
1
1
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
ADDR  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Write contents of EEMEM(ADDR)  
to Serial Register Data Byte 0.  
Write contents of RDAC (A0) to  
Serial Register Data Byte 0.  
Write contents of Serial Register  
Data Byte 0 to RDAC (A0).  
Increment 6 dB left shift contents  
of RDAC (A0). Stops at all 1s.  
10  
11  
12  
13  
0
0
0
X
0
0
0
X
0
0
0
X
A0  
A0  
A0  
X
D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Increment all 6 dB left shift  
contents of all RDAC registers.  
Stops at all 1s.  
14  
15  
1
1
1
1
1
1
0
1
0
0
0
A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Increment contents of RDAC (A0)  
by 1. Stops at all 1s.  
Increment contents of all RDAC  
registers by 1. Stops at all 1s.  
X
X
X
Rev. C | Page 16 of 24  
 
 
Data Sheet  
AD5232  
tional 6 dB instruction does not change the wiper position from  
full scale (RDACx register code = 255).  
ADVANCED CONTROL MODES  
The AD5232 digital potentiometer contains a set of user program-  
ming features to address the wide variety of applications avail-  
able to these universal adjustment devices. Key programming  
features include the following:  
Figure 37 illustrates the operation of the 6 dB shifting function  
on the individual RDACx register data bits for the 8-bit AD5232  
example. Each line going down the table represents a successive  
shift operation. Note that the Left Shift 12 and Left Shift 13 com-  
mand instructions were modified so that if the data in the RDACx  
register is equal to 0 and is left shifted, it is then set to Code 1.  
Independently programmable read and write to all  
registers  
Simultaneous refresh of all RDAC wiper registers from  
corresponding internal EEMEM registers  
Increment and decrement command instructions for each  
RDAC wiper register  
Left and right bit shift of all RDAC wiper registers to  
achieve 6 dB level changes  
Nonvolatile storage of the present scratch pad RDACx  
register values into the corresponding EEMEMx register  
Fourteen extra bytes of user-addressable, electrical erasable  
memory  
In addition, the left shift commands were modified so that if the  
data in the RDAC register is greater than or equal to midscale and  
is left shifted, the data is then set to full scale. This makes the left  
shift function as close to ideally logarithmic as possible.  
The Right Shift 4 and Right Shift 5 command instructions are  
ideal only if the LSB is 0 (that is, ideal logarithmic, with no error).  
If the LSB is a 1, the right shift function generates a linear half-  
LSB error that translates to a code-dependent logarithmic error  
for odd codes only, as shown in Figure 38. The plot shows the  
errors of the odd codes.  
Increment and Decrement Commands  
LEFT SHIFT RIGHT SHIFT  
0000 0000  
0000 0001  
0000 0010  
0000 0100  
0000 1000  
0001 0000  
0010 0000  
0100 0000  
1000 0000  
1111 1111  
1111 1111  
1111 1111  
0111 1111  
0011 1111  
0001 1111  
0000 0111  
0000 0011  
0000 0001  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
The increment and decrement command instructions (Command  
Instruction 14, Command Instruction 15, Command Instruction 6,  
and Command Instruction 7) are useful for the basic servo adjust-  
ment application. These commands simplify microcontroller  
software coding by eliminating the need to perform a readback  
of the current wiper position and then add a 1 to the register  
contents using the microcontroller adder. The microcontroller  
sends an increment command instruction (Command Instruc-  
tion 14) to the digital potentiometer, which automatically moves  
the wiper to the next resistance segment position. The master  
increment command instruction (Command Instruction 15)  
moves all potentiometer wipers by one position from their present  
position to the next resistor segment position. The direction of  
movement is referenced to Terminal B. Thus, each Command  
Instruction 15 moves the wiper tap position farther from  
Terminal B.  
LEFT SHIFT  
(+6dB)  
RIGHT SHIFT  
(–6dB)  
Figure 37. Detail Left and Right Shift Function  
Actual conformance to a logarithmic curve between the data  
contents in the RDACx register and the wiper position for each  
Right Shift 4 and Right Shift 5 command execution contains an  
error only for the odd codes. The even codes are ideal, with the  
exception of zero right shift or greater than half-scale left shift.  
Figure 38 shows plots of Log_Error, that is, 20 × log10  
(error/code). For example, Code 3 Log_Error = 20 × log10 (0.5/3)  
= −15.56 dB, which is the worst case. The plot of Log_Error is  
more signifi-cant at the lower codes.  
Logarithmic Taper Mode Adjustment  
0
Programming instructions allow decrement and increment wiper  
position control by an individual potentiometer or in a ganged  
potentiometer arrangement, where both wiper positions are  
changed at the same time. These settings are activated by the  
6 dB decrement and 6 dB increment command instructions  
(Command Instruction 4 and Command Instruction 5, and  
Command Instruction 12 and Command Instruction 13,  
respectively). For example, starting with the wiper connected  
to Terminal B, executing nine increment instructions (Command  
Instruction 12) moves the wiper in 6 dB steps from the 0% of the  
–10  
–20  
–30  
LOG_ERROR (CODE) FOR 8-BIT  
–40  
R
BA (Terminal B) position to the 100% of the RBA position of the  
AD5232 8-bit potentiometer. The 6 dB increment instruction  
doubles the value of the RDACx register contents each time the  
command is executed. When the wiper position is greater than  
midscale, the last 6 dB increment command instruction causes  
the wiper to go to the full-scale 255 code position. Any addi-  
–50  
–60  
0
20 40 60 80 100 120 140 160 180 200 220 240 260  
CODE, FROM 1 TO 255 BY 2  
Figure 38. Plot of Log_Error Conformance for Odd Codes Only  
(Even Codes Are Ideal)  
Rev. C | Page 17 of 24  
 
 
 
AD5232  
Data Sheet  
V
DD  
USING ADDITIONAL INTERNAL, NONVOLATILE  
EEMEM  
A
The AD5232 contains additional internal user storage registers  
(EEMEM) for saving constants and other 8-bit data. Table 9  
provides an address map of the internal nonvolatile storage  
registers, which are shown in the functional block diagram as  
EEMEM1, EEMEM2, and bytes of USER EEMEM.  
W
B
Note the following about EEMEM function:  
V
SS  
RDAC data stored in EEMEM locations are transferred to  
their corresponding RDACx register at power-on or when  
Command Instruction 1 and Command Instruction 8 are  
executed.  
USERx refers to internal nonvolatile EEMEM registers that are  
available to store and retrieve constants by using Command  
Instruction 3 and Command Instruction 9, respectively.  
The EEMEM locations are one byte each (eight bits).  
Execution of Command Instruction 1 leaves the device in  
the read mode power consumption state. When the final  
Command Instruction 1 is executed, the user should perform  
an NOP (Command Instruction 0) to return the device to  
the low power idle state.  
Figure 39. Maximum Terminal Voltages Set by VDD and VSS  
Table 10. RDAC and Digital Register Address Map  
Register Address (ADDR)  
Name of Register1  
RDAC1  
0000  
0001  
RDAC2  
1
The RDACx registers contain data that determines the position of the  
variable resistor wiper.  
DETAILED POTENTIOMETER OPERATION  
The actual structure of the RDACx is designed to emulate the  
performance of a mechanical potentiometer. The RDACx contains  
multiple strings of connected resistor segments, with an array of  
analog switches that act as the wiper connection to several points  
along the resistor array. The number of points is equal to the  
resolution of the device. For example, the AD5232 has 256 con-  
nection points, allowing it to provide better than 0.5% setability  
resolution. Figure 40 provides an equivalent diagram of the con-  
nections between the three terminals that make up one channel of  
the RDACx. The SWA and SWB switches are always on, whereas  
only one of the SW(0) to SW(2N–1) switches is on at a time,  
depending on the resistance step decoded from the data bits. The  
resistance contributed by RW must be accounted for in the output  
resistance.  
Table 9. EEMEM Address Map  
EEMEM Address  
(ADDR)  
EEMEM Contents of Each Device  
EEMEM (ADDR)  
0000  
0001  
0010  
0011  
0100  
0101  
***  
RDAC1  
RDAC2  
USER 1  
USER 2  
USER 3  
USER 4  
***  
USER 14  
1111  
SW  
A
A
TERMINAL VOLTAGE OPERATING RANGE  
N
SW(2  
1)  
2)  
The positive VDD and negative VSS power supply of the digital  
potentiometer defines the boundary conditions for proper  
3-terminal programmable resistance operations. Signals present  
on Terminal A, Terminal B, and Wiper Terminal W that exceed  
W
R
RDAC  
WIPER  
REGISTER  
AND  
S
N
SW(2  
DECODER  
VDD or VSS are clamped by a forward biased diode (see Figure 39).  
R
R
SW(1)  
SW(2)  
S
S
The ground pin of the AD5232 device is used primarily as  
a digital ground reference that needs to be tied to the common  
ground of the PCB. The digital input logic signals to the AD5232  
must be referenced to the ground (GND) pin of the device and  
satisfy the minimum input logic high level and the maximum  
input logic low level that are defined in the Specifications section.  
N
R
= R /2  
S
AB  
SW  
B
B
NOTES  
1. DIGITAL CIRCUITRY  
OMITTED FOR CLARITY  
An internal level shift circuit between the digital interface and  
the wiper switch control ensures that the common-mode voltage  
range of the three terminals, Terminal A, Terminal B, and  
Figure 40. Equivalent RDAC Structure  
Wiper Terminal W, extends from VSS to VDD  
.
Rev. C | Page 18 of 24  
 
 
 
 
 
 
Data Sheet  
AD5232  
100  
75  
Table 11. Nominal Individual Segment Resistor Values (Ω)  
Segmented Resistor Size  
for RAB End-to-End Values  
Device  
Resolution Version  
8-Bit 78.10  
10 kΩ  
50 kΩ  
Version  
100 kΩ  
Version  
390.5  
781.0  
50  
25  
0
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation  
The nominal resistances of the RDACx between Terminal A and  
Terminal B are available with values of 10 kΩ, 50 kΩ, and 100 kΩ.  
The final digits of the part number determine the nominal  
resistance value; for example, 10 kΩ = 10; 100 kΩ = 100. The  
nominal resistance (RAB) of the AD5232 VR has 256 contact  
points accessed by Wiper Terminal W, plus the Terminal B contact.  
The 8-bit data-word in the RDACx latch is decoded to select  
one of the 256 possible settings.  
R
R
WA  
WB  
0
64  
128  
192  
258  
CODE (Decimal)  
Figure 41. Symmetrical RDAC Operation  
When these terminals are used, Terminal B should be tied to  
the wiper. Setting the resistance value for RWA starts at a maximum  
value of resistance and decreases as the data loaded in the latch  
is increased in value. The general transfer equation for this  
operation is  
The general transfer equation, which determines the digitally  
programmed output resistance between Wx and Bx, is  
D
256  
256 D  
RWB (D)   
RAB RW  
(1)  
RWA (D)   
RAB RW  
(2)  
256  
where:  
where:  
D is the decimal equivalent of the data contained in the RDACx  
register.  
RAB is the nominal resistance between Terminal A and Terminal B.  
RW is the wiper resistance.  
D is the decimal equivalent of the data contained in the RDAC  
register.  
RAB is the nominal resistance between Terminal A and Terminal B.  
RW is the wiper resistance.  
Table 12 lists the output resistance values that are set for the  
RDACx latch codes shown for 8-bit, 10 kΩ potentiometers.  
Table 13 lists the output resistance values that are set for the  
RDACx latch codes shown for 8-bit, 10 kΩ potentiometers.  
Table 12. Nominal Resistance Value at Selected Codes for  
RAB = 10 kΩ  
Table 13. Nominal Resistance Value at Selected Codes for  
RAB = 10 kΩ  
D (Dec)  
RWB (D) (Ω) Output State  
D (Dec)  
RWA (D) (Ω)  
Output State  
Full scale  
Midscale  
1 LSB  
255  
128  
1
10011  
5050  
89  
Full scale  
Midscale  
1 LSB  
255  
128  
1
89  
5050  
10011  
10050  
0
50  
Zero scale1 (wiper contact resistance)  
0
Zero scale  
1 Note that in the zero-scale condition, a finite wiper resistance of 50 Ω is  
present. Care should be taken to limit the current flow between Wx and Bx  
in this state to a maximum continuous value of 2 mA to avoid degradation  
or possible destruction of the internal switch metallization. Intermittent  
current operation to 20 mA is allowed.  
The multichannel AD5232 has a 0.2% typical distribution of  
internal channel-to-channel RBA match. Device-to-device matching  
is dependent on process lot and exhibits a −40% to +20% variation.  
The change in RBA with temperature has a 600 ppm/°C temperature  
coefficient.  
Like the mechanical potentiometer that the RDACx replaces,  
the AD5232 parts are totally symmetrical. The resistance between  
the Wiper Terminal W and Terminal A also produces a digitally  
controlled resistance, RWA. Figure 41 shows the symmetrical  
programmability of the various terminal connections.  
Rev. C | Page 19 of 24  
 
 
 
 
 
AD5232  
Data Sheet  
RDAC  
10kΩ  
PROGRAMMING THE POTENTIOMETER DIVIDER  
A
B
Voltage Output Operation  
C
C
B
A
45pF  
45pF  
C
60pF  
The digital potentiometer easily generates an output voltage pro-  
portional to the input voltage applied to a given terminal. For  
example, connecting Terminal A to 5 V and Terminal B to GND  
produces an output voltage at the wiper that can be any value  
from 0 V to 5 V. Each LSB of voltage is equal to the voltage  
applied across Terminal A to Terminal B, divided by the 2N  
position resolution of the potentiometer divider. The general  
equation defining the output voltage with respect to ground for  
any given input voltage applied to Terminal A to Terminal B is  
W
W
Figure 43. RDAC Circuit Simulation Model for RDACx = 10 kΩ  
The following code provides a macro model net list for the  
10 kΩ RDAC:  
.PARAM DW=255, RDAC=10E3  
*
R
WB (D)  
RAB  
R
RAB  
WA (D)  
VW (D) =  
×VA +  
×VB  
(3)  
.SUBCKT DPOT (A,W,B)  
*
where RWB(D) can be obtained from Equation 1 and RWA(D)  
can be obtained from Equation 2.  
CA A 0 {45E-12}  
RAW A W {(1-DW/256)*RDAC+50}  
CW W 0 60E-12  
RBW W B {DW/256*RDAC+50}  
CB B 0 {45E-12}  
*
Operation of the digital potentiometer in the divider mode  
results in more accurate operation over temperature. Here the  
output voltage is dependent on the ratio of the internal resistors,  
not the absolute value; therefore, the drift improves to 15 ppm/°C.  
There is no voltage polarity restriction between Terminal A,  
Terminal B, and Wiper Terminal W as long as the terminal voltage  
.ENDS DPOT  
(VTERM) stays within VSS < VTERM < VDD  
.
APPLICATION PROGRAMMING EXAMPLES  
OPERATION FROM DUAL SUPPLIES  
The command sequence examples shown in Table 14 to Table 18  
have been developed to illustrate a typical sequence of events  
for the various features of the AD5232 nonvolatile digital poten-  
tiometer. Table 14 illustrates setting two digital potentiometers  
to independent data values.  
The AD5232 can be operated from dual supplies, enabling  
control of ground-referenced ac signals (see Figure 42 for  
a typical circuit connection).  
+2.5V  
V
SS  
CS  
V
±2V p-p  
±1V p-p  
DD  
DD  
Table 14.  
CLK  
SDI  
SCLK  
MOSI  
MicroConverter  
GND  
SDI  
SDO  
Action  
0xB140 0xXXXX  
Loads 0x40 data into the RDAC2 register;  
Wiper W2 moves to 1/4 full-scale position.  
GND  
0xB080 0xB140  
Loads 0x80 data into the RDAC1 register;  
Wiper W1 moves to 1/2 full-scale position.  
AD5232  
V
SS  
Table 15 illustrates the active trimming of one potentiometer,  
followed by a save to nonvolatile memory (PCB calibrate).  
–2.5V  
Figure 42. Operation from Dual Supplies  
Table 15.  
SDI  
The internal parasitic capacitances and the external capacitive  
loads dominate the ac characteristics of the RDACs. When  
configured as a potentiometer divider, the −3 dB bandwidth of  
the AD5232BRU10 (10 kΩ resistor) measures 500 kHz at half  
scale. Figure 14 provides the large signal BODE plot character-  
istics of the three resistor versions: 10 kΩ, 50 kΩ, and 100 kΩ (see  
Figure 43 for a parasitic simulation model of the RDAC circuit).  
SDO  
Action  
0xB040 0xXXXX  
Loads 0x40 data into the RDAC1 register;  
Wiper W1 moves to 1/4 full-scale position.  
Increments the RDAC1 register by 1, to 0x41;  
Wiper W1 moves one resistor segment  
away from Terminal B.  
Increments the RDAC1 register by 1, to 0x42;  
Wiper W1 moves one more resistor segment  
away from Terminal B. Continue until  
desired the wiper position is reached.  
Saves the RDAC1 register data into the  
corresponding nonvolatile EEMEM1  
memory: ADDR = 0x0.  
0xE0XX 0xB040  
0xE0XX 0xE0XX  
0x20XX 0xE0XX  
Rev. C | Page 20 of 24  
 
 
 
 
 
 
 
Data Sheet  
AD5232  
Table 16 illustrates using the left shift-by-one to change circuit  
gain in 6 dB steps.  
During reliability qualification, Flash/EE memory is cycled  
from 0x00 to 0xFF until a first fail is recorded, signifying the  
endurance limit of the on-chip Flash/EE memory.  
Table 16.  
As indicated in the Specifications section, the AD5232 Flash/EE  
memory endurance qualification has been carried out in accor-  
dance with JEDEC Std. 22, Method A117 over the industrial  
temperature range of −40°C to +85°C. The results allow the  
specification of a minimum endurance figure over supply and  
temperature of 100,000 cycles, with an endurance figure of  
700,000 cycles being typical of operation at 25°C.  
SDI  
SDO  
Action  
0xC1XX 0xXXXX Moves Wiper W2 to double the present  
data value contained in the RDAC2 register  
in the direction of Terminal A.  
0xC1XX 0xXXXX Moves Wiper W2 to double the present  
data value contained in the RDAC2 register  
in the direction of Terminal A.  
Table 17 illustrates storing additional data in nonvolatile memory.  
Retention quantifies the ability of the Flash/EE memory to retain  
its programmed data over time. Again, the AD5232 has been  
qualified in accordance with the formal JEDEC Retention  
Lifetime Specification (A117) at a specific junction temperature of  
TJ = 55°C. As part of this qualification procedure, the Flash/EE  
memory is cycled to its specified endurance limit, as described  
previously, before data retention is characterized. This means  
that the Flash/EE memory is guaranteed to retain its data for  
its full specified retention lifetime every time the Flash/EE  
memory is repro-grammed. It should also be noted that  
retention lifetime, based on an activation energy of 0.6 eV,  
derates with TJ, as shown in Figure 44.  
Table 17.  
SDI  
SDO  
Action  
0x3280  
0xXXXX Stores 0x80 data in spare EEMEM location,  
USER1.  
0x3340  
0xXXXX Stores 0x40 data in spare EEMEM location,  
USER2.  
Table 18 illustrates reading back data from various memory  
locations.  
Table 18.  
SDI  
SDO  
Action  
300  
0x94XX  
0xXXXX Prepares data read from USER3 location.  
(USER3 is already loaded with 0x80.)  
250  
200  
0x00XX  
0xXX80 Instruction 0 (NOP) sends 16-bit word out  
of SDO where the last eight bits contain  
the contents of USER3 location. The NOP  
command ensures that the device returns  
to the idle power dissipation state.  
ADI TYPICAL PERFORMANCE  
150  
AT T = 55°C  
J
100  
50  
0
EQUIPMENT CUSTOMER START-UP SEQUENCE  
FOR A PCB CALIBRATED UNIT WITH PROTECTED  
SETTINGS  
WP  
1. For the PCB setting, tie  
the PCB wiper set position.  
2. Set power VDD and VSS with respect to GND.  
PR  
to GND to prevent changes in  
40  
50  
60  
70  
80  
90  
100  
110  
T
JUNCTION TEMPERATURE (°C)  
J
Figure 44. Flash/EE Memory Data Retention  
3. As an optional step, strobe the  
pin to ensure full power-  
on preset of the wiper register with EEMEM contents in  
unpredictable supply sequencing environments.  
EVALUATION BOARD  
Analog Devices, Inc., offers a user-friendly EVAL-AD5232-SDZ  
evaluation kit that can be controlled by a personal computer  
through a printer port. The driving program is self-contained;  
no programming languages or skills are needed.  
FLASH/EEMEM RELIABILITY  
The Flash/EE memory array on the AD5232 is fully qualified  
for two key Flash/EE memory characteristics: namely, Flash/EE  
memory cycling endurance and Flash/EE memory data retention.  
Endurance quantifies the ability of the Flash/EE memory to be  
cycled through many program, read, and erase cycles. In real  
terms, a single endurance cycle is composed of four independent,  
sequential events. These events are defined as follows:  
1. Initial page erase sequence  
2. Read/verify sequence  
3. Byte program sequence  
4. Second read/verify sequence  
Rev. C | Page 21 of 24  
 
 
 
 
 
 
 
 
AD5232  
Data Sheet  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 45. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Number of End-to-End RAB  
Temperature  
Range  
Package  
Description  
Package Ordering  
Model1  
Channels  
(kΩ)  
Option  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
Quantity  
Branding2  
5232B10  
5232B10  
5232B10  
5232B10  
5232B50  
5232B50  
5232B50  
5232BC  
AD5232BRU10  
AD5232BRU10-REEL7  
AD5232BRUZ10  
AD5232BRUZ10-REEL7  
AD5232BRU50  
AD5232BRUZ50  
AD5232BRUZ50-REEL7  
AD5232BRU100-REEL7  
AD5232BRUZ100  
AD5232BRUZ100-RL7  
EVAL-AD5232-SDZ  
2
2
2
2
2
2
2
2
2
2
10  
10  
10  
10  
50  
50  
50  
100  
100  
100  
10  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
Evaluation Board  
96  
1,000  
96  
1,000  
96  
96  
1,000  
1,000  
96  
1,000  
1
5232BC  
5232BC  
1 Z = RoHS Compliant Part.  
2 Line 1 contains the Analog Devices logo, followed by the date code: YYWW. Line 2 contains the model number, followed by the end-to-end resistance value. (Note that  
C = 100 kΩ).  
OR  
Line 1 contains the model number. Line 2 contains the Analog Devices logo, followed by the end-to-end resistance value. Line 3 contains the date code: YYWW.  
Rev. C | Page 22 of 24  
 
 
Data Sheet  
NOTES  
AD5232  
Rev. C | Page 23 of 24  
AD5232  
NOTES  
Data Sheet  
©2001–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02618-0-11/13(C)  
Rev. C | Page 24 of 24  
 

相关型号:

AD5232BRUZ50

Nonvolatile Memory,Dual 256-Position Digital Potentiometer
ADI

AD5232BRUZ50-REEL7

Nonvolatile Memory,Dual 256-Position Digital Potentiometer
ADI

AD5233

2-Channel, 256-Position Digital Potentiometer
ADI

AD5233BRU10

Nonvolatile Memory Digital Potentiometers
ADI

AD5233BRU10-REEL7

Nonvolatile Memory Digital Potentiometers
ADI

AD5233BRU100

Nonvolatile Memory Digital Potentiometers
ADI

AD5233BRU100-REEL7

Nonvolatile Memory Digital Potentiometers
ADI

AD5233BRU50

Nonvolatile Memory Digital Potentiometers
ADI

AD5233BRU50-REEL7

Nonvolatile Memory Digital Potentiometers
ADI

AD5233BRUZ100-R7

Nonvolatile, Quad, 64-Position Digital Potentiometer
ADI

AD5233BRUZ50-R7

Nonvolatile, Quad, 64-Position Digital Potentiometer
ADI

AD5235

Nonvolatile Memory, Dual 1024 Position Digital Potentiometers
ADI