AD5242BRZ100 [ADI]

I2C-Compatible, 256-Position Digital Potentiometers; I2C兼容, 256位数字电位器
AD5242BRZ100
型号: AD5242BRZ100
厂家: ADI    ADI
描述:

I2C-Compatible, 256-Position Digital Potentiometers
I2C兼容, 256位数字电位器

电位器
文件: 总20页 (文件大小:550K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
I2C-Compatible,  
256-Position Digital Potentiometers  
AD5241/AD5242  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
A
W
B
O
O
2
1
1
1
1
256 positions  
10 kΩ, 100 kΩ, 1 MΩ  
SHDN  
Low temperature coefficient: 30 ppm/°C  
Internal power on midscale preset  
Single-supply 2.7 V to 5.5 V or dual-supply 2.7 V for ac or  
bipolar operation  
V
DD  
RDAC  
REGISTER 1  
REGISTER 2  
V
SS  
I2C-compatible interface with readback capability  
Extra programmable logic outputs  
Self-contained shutdown feature  
Extended temperature range: −40°C to +105°C  
ADDR  
DECODE  
8
AD5241  
SDA  
SCL  
GND  
PWR-ON  
RESET  
SERIAL INPUT REGISTER  
APPLICATIONS  
AD1  
AD0  
Multimedia, video, and audio  
Figure 1. AD5241 Functional Block Diagram  
Communications  
Mechanical potentiometer replacement  
Instrumentation: gain, offset adjustment  
Programmable voltage-to-current conversion  
Line impedance matching  
A
W
B
A
W
B
O
O
2
1
1
1
2
2
2
1
SHDN  
REGISTER  
V
DD  
RDAC  
REGISTER 1  
RDAC  
REGISTER 2  
V
SS  
ADDR  
DECODE  
AD5242  
8
1
SDA  
SCL  
GND  
PWR-ON  
RESET  
SERIAL INPUT REGISTER  
AD0  
AD1  
Figure 2. AD5242 Functional Block Diagram  
GENERAL DESCRIPTION  
The AD5241/AD5242 provide a single-/dual-channel, 256-  
position, digitally controlled variable resistor (VR) device. These  
devices perform the same electronic adjustment function as a  
potentiometer, trimmer, or variable resistor. Each VR offers a  
completely programmable value of resistance between the A  
terminal and the wiper, or the B terminal and the wiper. For the  
AD5242, the fixed A-to-B terminal resistance of 10 kΩ, 100 kΩ,  
or 1 MΩ has a 1% channel-to-channel matching tolerance. The  
nominal temperature coefficient of both parts is 30 ppm/°C.  
Wiper position programming defaults to midscale at system  
power on. When powered, the VR wiper position is programmed  
by an I2C®-compatible, 2-wire serial data interface. Both parts  
have two extra programmable logic outputs available that  
enable users to drive digital loads, logic gates, LED drivers, and  
analog switches in their system.  
The AD5241/AD5242 are available in surface-mount, 14-lead  
SOIC and 16-lead SOIC packages and, for ultracompact solutions,  
14-lead TSSOP and 16-lead TSSOP packages. All parts are  
guaranteed to operate over the extended temperature range of  
−40°C to +105°C.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2001–2009 Analog Devices, Inc. All rights reserved.  
 
AD5241/AD5242  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Test Circuits..................................................................................... 11  
Theory of Operation ...................................................................... 12  
Programming the Variable Resistor......................................... 12  
Programming the Potentiometer Divider............................... 13  
Digital Interface.......................................................................... 13  
Readback RDAC Value.............................................................. 14  
Multiple Devices on One Bus ................................................... 14  
Level-Shift for Bidirectional Interface..................................... 14  
Additional Programmable Logic Output................................ 15  
Shutdown Function.................................................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
10 kΩ, 100 kΩ, 1 MΩ Version .................................................... 3  
Timing Diagrams.......................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 8  
REVISION HISTORY  
12/09—Rev. B to Rev. C  
2/02—Rev. 0 to Rev. A  
Changes to Features Section............................................................ 1  
Changes to 10 kΩ, 100 kΩ, 1 MΩ Version Section...................... 3  
Changes to Table 3............................................................................ 6  
Deleted Digital Potentiometer Selection Guide Section ........... 14  
Changed Self-Contained Shutdown Function Section to  
Shutdown Function Section.......................................................... 15  
Changes to Shutdown Function Section ..................................... 15  
Changes to Ordering Guide .......................................................... 18  
Edits to Features.................................................................................1  
Edits to Functional Block Diagrams...............................................1  
Edits to Absolute Maximum Ratings..............................................4  
Changes to Ordering Guide.............................................................4  
Edits to Pin Function Descriptions.................................................5  
Edits to Figures 1, 2, 3.......................................................................6  
Added Readback RDAC Value Section, Additional  
Programmable Logic Output Section, and Figure 7;  
Renumbered Sequentially ............................................................. 11  
Changes to Digital Potentiometer Selection Guide ................... 14  
8/02—Rev. A to Rev. B  
Additions to Features ....................................................................... 1  
Changes to General Description .................................................... 1  
Changes to Specifications................................................................ 2  
Changes to Absolute Maximum Ratings....................................... 4  
Additions to Ordering Guide.......................................................... 4  
Changes to TPC 8 and TPC 9 ......................................................... 8  
Changes to Readback RDAC Value Section................................ 11  
Changes to Additional Programmable Logic Output Section.. 11  
Added Self-Contained Shutdown Section................................... 12  
Added Figure 8................................................................................ 12  
Changes to Digital Potentiometer Selection Guide ................... 14  
Rev. C | Page 2 of 20  
 
AD5241/AD5242  
SPECIFICATIONS  
10 kΩ, 100 kΩ, 1 MΩ VERSION  
VDD = 2.7 V to 5.5 V, VA = VDD, VB = 0 V, 40°C < TA < +105°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS, RHEOSTAT MODE  
(SPECIFICATIONS APPLY TO ALL VRs)  
Resolution  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance  
N
8
Bits  
LSB  
LSB  
%
R-DNL  
R-INL  
ΔRAB/RAB  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 2ꢁ°C, RAB = 10 kΩ  
−1  
−2  
−30  
−30  
0.ꢀ  
0.ꢁ  
+1  
+2  
+30  
+ꢁ0  
TA = 2ꢁ°C,  
%
RAB = 100 kΩ/1 MΩ  
Resistance Temperature Coefficient  
Wiper Resistance  
(ΔRAB/RAB)/  
ΔT × 106  
RW  
VAB = VDD, wiper =  
no connect  
IW = VDD/R  
30  
60  
ppm/°C  
Ω
120  
DC CHARACTERISTICS, POTENTIOMETER DIVIDER  
MODE (SPECIFICATIONS APPLY TO ALL VRs)  
Resolution  
N
8
Bits  
Differential Nonlinearity3  
Integral Nonlinearity3  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
DNL  
INL  
−1  
−2  
0.ꢀ  
0.ꢁ  
−0.ꢁ  
0.ꢁ  
+1  
+2  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
(ΔVW/VW)/∆T × 106 Code = 0x80  
VWFSE  
VWZSE  
Code = 0xFF  
Code = 0x00  
−1  
0
0
1
Zero-Scale Error  
RESISTOR TERMINALS  
Voltage Rangeꢀ  
VA, VB, VW  
CA, CB  
VSS  
VDD  
V
pF  
Capacitance (A, B)ꢁ  
f = 1 MHz, measured  
to GND, code = 0x80  
f = 1 MHz, measured  
to GND, code = 0x80  
ꢀꢁ  
60  
1
Capacitance (W)ꢁ  
CW  
ICM  
pF  
Common-Mode Leakage  
DIGITAL INPUTS  
VA = VB = VW  
nA  
Input Logic High (SDA and SCL)  
Input Logic Low (SDA and SCL)  
Input Logic High (AD0 and AD1)  
Input Logic Low (AD0 and AD1)  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitanceꢁ  
VIH  
VIL  
VIH  
VIL  
VIH  
VIL  
IIL  
CIL  
VOL  
VOL  
VOL  
VOH  
IOZ  
0.7 × VDD  
VDD + 0.ꢁ V  
+0.3 × VDD  
V
V
V
V
V
V
μA  
pF  
V
V
V
V
μA  
pF  
−0.ꢁ  
2.ꢀ  
0
2.1  
0
VDD = ꢁ V  
VDD = ꢁ V  
VDD = 3 V  
VDD = 3 V  
VDD  
0.8  
VDD  
0.6  
1
VIH = ꢁ V or VIL = GND  
3
3
DIGITAL OUTPUT  
IOL = 3 mA  
IOL = 6 mA  
ISINK = 1.6 mA  
ISOURCE = ꢀ0 μA  
VIH = ꢁ V or VIL = GND  
0.ꢀ  
0.6  
0.ꢀ  
Output Logic Low (SDA)  
Output Logic Low (O1 and O2)  
Output Logic High (O1 and O2)  
Three-State Leakage Current (SDA)  
Output Capacitanceꢁ  
1
8
COZ  
POWER SUPPLIES  
Power Single-Supply Range  
Power Dual-Supply Range  
Positive Supply Current  
Negative Supply Current  
Power Dissipation6  
VDD RANGE  
VDD/VSS RANGE  
IDD  
ISS  
PDISS  
VSS = 0 V  
2.7  
2.3  
ꢁ.ꢁ  
2.7  
ꢁ0  
−ꢁ0  
2ꢁ0  
V
V
μA  
μA  
VIH = ꢁ V or VIL = GND  
VSS = −2.ꢁ V, VDD = +2.ꢁ V  
VIH = ꢁ V or VIL = GND,  
0.1  
+0.1  
0.ꢁ  
μW  
VDD = ꢁ V  
Power Supply Sensitivity  
PSS  
−0.01  
+0.002 +0.01  
%/%  
Rev. C | Page 3 of 20  
 
AD5241/AD5242  
Parameter  
DYNAMIC CHARACTERISTICS, 7, 8  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
−3 dB Bandwidth  
BW_10 kΩ  
BW_100 kΩ  
BW_1 MΩ  
THDW  
RAB = 10 kΩ, code = 0x80  
RAB = 100 kΩ, code = 0x80  
RAB = 1 MΩ, code = 0x80  
VA = 1 V rms + 2 V dc,  
VB = 2 V dc, f = 1 kHz  
6ꢁ0  
69  
6
kHz  
kHz  
kHz  
%
Total Harmonic Distortion  
VW Settling Time  
0.00ꢁ  
tS  
VA = VDD, VB = 0 V, 1 LSB  
error band, RAB = 10 kΩ  
2
μs  
Resistor Noise Voltage  
eN_WB  
RWB = ꢁ kΩ, f = 1 kHz  
1ꢀ  
nV√Hz  
INTERFACE TIMING CHARACTERISTICS  
(APPLIES TO ALL PARTS, 9  
SCL Clock Frequency  
Bus Free Time Between Stop and Start, tBUF  
)
fSCL  
t1  
0
1.3  
ꢀ00  
kHz  
μs  
Hold Time (Repeated Start), tHD; STA  
t2  
After this period, the first 600  
clock pulse is generated  
ns  
Low Period of SCL Clock, tLOW  
High Period of SCL Clock, tHIGH  
Setup Time for Repeated Start Condition, tSU; STA  
Data Hold Time, tHD; DAT  
Data Setup Time, tSU; DAT  
Rise Time of Both SDA and SCL Signals, tR  
t3  
tꢀ  
tꢁ  
t6  
t7  
t8  
1.3  
0.6  
600  
μs  
μs  
ns  
ns  
ns  
ns  
ꢁ0  
900  
100  
300  
300  
Fall Time of Both SDA and SCL Signals, tF  
Setup Time for Stop Condition, tSU; STO  
t9  
t10  
ns  
1 Typicals represent average readings at 2ꢁ°C, VDD = ꢁ V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. See Test Circuits.  
3 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V. DNL  
specification limits of 1 LSB maximum are guaranteed monotonic operating conditions. See Figure 37.  
Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other.  
Guaranteed by design, not subject to production test.  
6 PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
7 Bandwidth, noise, and settling time are dependent on the terminal resistance value chosen. The lowest R value results in the fastest settling time and highest  
bandwidth. The highest R value results in the minimum overall power consumption.  
8 All dynamic characteristics use VDD = ꢁ V.  
9 See timing diagram in Figure 3 for location of measured values.  
Rev. C | Page ꢀ of 20  
 
 
 
 
AD5241/AD5242  
TIMING DIAGRAMS  
t8  
SDA  
SCL  
t1  
t8  
t9  
t2  
t4  
t2  
t7  
t5  
t10  
t3  
P
S
S
P
t6  
Figure 3. Detail Timing Diagram  
Data of AD5241/AD5242 is accepted from the I2C bus in the following serial format.  
Table 2.  
W
R/  
A
/B  
S
0
1
0
1
1
AD1 AD0  
A
RS SD O1 O2  
Instruction Byte  
X
X
X
A
D7 D6 D5 D4 D3 D2 D1 D0  
Data Byte  
A
P
Slave Address Byte  
where:  
S = start condition  
P = stop condition  
A = acknowledge  
X = don’t care  
AD1, AD0 = Package pin programmable address bits. Must be matched with the logic states at Pins AD1 and AD0.  
W
R/ = Read enable at high and output to SDA. Write enable at low.  
A
/B = RDAC subaddress select; 0 for RDAC1 and 1 for RDAC2.  
RS = Midscale reset, active high.  
SHDN  
SD = Shutdown in active high. Same as  
except inverse logic.  
O1, O2 = Output logic pin latched values  
D7, D6, D5, D4, D3, D2, D1, D0 = data bits.  
1
9
1
9
1
9
SCL  
O
O
2
AD1 AD0  
0
0
1
1
1
R/W  
A/B RS SD  
X
X
X
D7 D6 D5 D4 D3 D2 D1 D0  
SDA  
1
ACK BY  
AD5241  
ACK BY  
AD5241  
ACK BY  
AD5241  
STOP BY  
MASTER  
START BY  
MASTER  
FRAME 1  
SLAVE ADDRESS BYTE  
FRAME 2  
INSTRUCTION BYTE  
FRAME 3  
DATA BYTE  
Figure 4. Writing to the RDAC Serial Register  
1
9
1
9
SCL  
0
0
AD1 AD0  
1
1
1
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
NO ACK BY  
SDA  
ACK BY  
AD5241  
MASTER  
STOP BY  
MASTER  
START BY  
MASTER  
FRAME 2  
FRAME 1  
SLAVE ADDRESS BYTE  
DATA BYTE FROM PREVIOUSLY SELECTED  
RDAC REGISTER IN WRITE MODE  
Figure 5. Reading Data from a Previously Selected RDAC Register in Write Mode  
Rev. C | Page ꢁ of 20  
 
 
 
 
 
AD5241/AD5242  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 3.  
Parameter  
Rating  
VDD to GND  
VSS to GND  
VDD to VSS  
−0.3 V to +7 V  
0 V to −7 V  
7 V  
VA, VB, VW to GND  
IA, IB, IW  
VSS to VDD  
ꢁ.0 mA1  
ESD CAUTION  
RAB = 10 kΩ in TSSOP-1ꢀ  
RAB = 100 kΩ in TSSOP-1ꢀ  
RAB = 1 MΩ in TSSOP-1ꢀ  
Digital Input Voltage to GND  
Operating Temperature Range  
Thermal Resistance θJA  
1ꢀ-Lead SOIC  
1.ꢁ mA1  
0.ꢁ mA1  
0 V to VDD + 0.3 V  
−ꢀ0°C to +10ꢁ°C  
1ꢁ8°C/W  
73°C/W  
16-Lead SOIC  
1ꢀ-Lead TSSOP  
16-Lead TSSOP  
206°C/W  
180°C/W  
Maximum Junction Temperature (TJ max) 1ꢁ0°C  
Package Power Dissipation  
Storage Temperature Range  
Lead Temperature  
PD = (TJ max − TA)/θJA  
−6ꢁ°C to +1ꢁ0°C  
Vapor Phase, 60 sec  
Infrared, 1ꢁ sec  
21ꢁ°C  
220°C  
1 Maximum current increases at lower resistance and different packages.  
Rev. C | Page 6 of 20  
 
 
 
AD5241/AD5242  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
1
2
3
4
5
16  
15  
14  
13  
12  
A
W
B
14  
13  
12  
11  
10  
9
A
2
O
O
A
1
1
1
1
1
1
1
1
W
2
NC  
B
2
W
B
O
2
AD5241  
AD5242  
O
2
V
V
DD  
SS  
TOP VIEW  
TOP VIEW  
(Not to Scale)  
V
V
SHDN  
DGND  
AD1  
(Not to Scale)  
SS  
DD  
SHDN  
SCL  
6
7
8
11 DGND  
SCL  
SDA  
10  
8
AD1  
AD0  
9
AD0  
SDA  
NC = NO CONNECT  
Figure 6. AD5241 Pin Configuration  
Figure 7. AD5242 Pin Configuration  
Table 4. AD5241 Pin Function Descriptions  
Table 5. AD5242 Pin Function Descriptions  
Pin No. Mnemonic Description  
Pin No. Mnemonic Description  
1
2
3
A1  
W1  
B1  
Resistor Terminal A1.  
Wiper Terminal W1.  
Resistor Terminal B1.  
Positive Power Supply, Specified for  
Operation from 2.2 V to ꢁ.ꢁ V.  
Active low, asynchronous connection of  
Wiper W to Terminal B, and open circuit  
of Terminal A. RDAC register contents  
unchanged. SHDN should tie to VDD  
if not used.  
1
2
3
O1  
A1  
W1  
B1  
Logic Output Terminal O1.  
Resistor Terminal A1.  
Wiper Terminal W1.  
Resistor Terminal B1.  
Positive Power Supply, Specified for  
Operation from 2.2 V to ꢁ.ꢁ V.  
Active Low, Asynchronous Connection  
of Wiper W to Terminal B, and Open  
Circuit of Terminal A. RDAC register  
contents unchanged. SHDN should  
tie to VDD, if not used.  
Serial Clock Input.  
Serial Data Input/Output.  
Programmable Address Bit for Multiple  
Package Decoding. Bit AD0 and Bit AD1  
provide four possible addresses.  
Programmable Address Bit for Multiple  
Package Decoding. Bit AD0 and Bit AD1  
provide four possible addresses.  
Common Ground.  
Negative Power Supply, Specified for  
Operation from 0 V to −2.7 V.  
VDD  
VDD  
SHDN  
6
SHDN  
6
7
8
SCL  
SDA  
AD0  
Serial Clock Input.  
7
8
9
SCL  
SDA  
AD0  
Serial Data Input/Output.  
Programmable Address Bit for Multiple  
Package Decoding. Bit AD0 and Bit AD1  
provide four possible addresses.  
Programmable Address Bit for Multiple  
Package Decoding. Bit AD0 and Bit AD1  
provide four possible addresses.  
Common Ground.  
Negative Power Supply, Specified for  
Operation from 0 V to −2.7 V.  
9
AD1  
10  
AD1  
10  
11  
DGND  
VSS  
11  
12  
DGND  
VSS  
12  
13  
1ꢀ  
O2  
NC  
O1  
Logic Output Terminal O2.  
No Connect.  
Logic Output Terminal O1.  
13  
1ꢀ  
1ꢁ  
16  
O2  
B2  
W2  
A2  
Logic Output Terminal O2.  
Resistor Terminal B2.  
Wiper Terminal W2.  
Resistor Terminal A2.  
Rev. C | Page 7 of 20  
 
AD5241/AD5242  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
0.50  
0.25  
0
V
V
V
= +2.7V  
= +5.5V  
= ±2.7V  
V
V
V
= +2.7V  
= +5.5V  
= ±2.7V  
DD  
DD  
DD  
DD  
DD  
DD  
0.5  
V
/V = +2.7V  
V
/V = +2.7V/0V  
DD SS  
DD SS  
0
V
/V = +2.7V/0V, +5.5V/0V  
DD SS  
–0.5  
–1.0  
–0.25  
–0.50  
V
/V = +5.5V/0V, ±2.7V  
DD SS  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 8. RDNL vs. Code  
Figure 11. INL vs. Code  
1.0  
0.5  
10k  
1k  
100  
10  
1
V
T
= 2.7V  
V
V
V
= +2.7V  
= +5.5V  
= ±2.7V  
DD  
= 25°C  
DD  
DD  
DD  
A
V
/V = +2.7V/0V  
DD SS  
1M  
100kΩ  
10kΩ  
0
V
/V = +5.5V/0V, ±2.7V  
DD SS  
–0.5  
–1.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
–40  
–20  
0
20  
40  
60  
80  
CODE (Decimal)  
TEMPERATURE (°C)  
Figure 9. RINL vs. Code  
Figure 12. Nominal Resistance vs. Temperature  
0.25  
0.13  
0
10k  
V
V
V
= +2.7V  
= +5.5V  
= ±2.7V  
DD  
DD  
DD  
V
= 5V  
DD  
1k  
100  
10  
V
/V  
=
+2.7V/0V, +5.5V/0V, ±2.7V  
DD SS  
V
= 3V  
DD  
–0.13  
–0.25  
V
= 2.5V  
DD  
1
0
32  
64  
96  
128  
160  
192  
224  
256  
0
1
2
3
4
5
CODE (Decimal)  
INPUT LOGIC VOLTAGE (V)  
Figure 13. Supply Current vs. Input Logic Voltage  
Figure 10. DNL vs. Code  
Rev. C | Page 8 of 20  
 
AD5241/AD5242  
0.1  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
R
V
= 10k  
= 5.5V  
T
= 25°C  
AB  
DD  
A
V
/V = +2.7V/0V  
DD SS  
0.01  
V
/V = ±2.7V/0V  
DD SS  
V
/V = +5.5V/0V  
DD SS  
0.001  
–3  
–2  
–1  
0
1
2
3
4
5
6
–20  
0
40  
TEMPERATURE (°C)  
60  
80  
–40  
20  
COMMON-MODE (V)  
Figure 17. Incremental Wiper Contact vs. VDD/VSS  
Figure 14. Shutdown Current vs. Temperature  
300  
70  
60  
A: V /V = 5.5V/0V  
DD SS  
CODE = 0xFF  
V
/V = 2.7V/0V  
= 25°C  
DD SS  
T
A
B: V /V = 3.3V/0V  
DD SS  
D
A
10MVERSION  
10kVERSION  
100kVERSION  
250  
200  
150  
100  
50  
CODE = 0xFF  
50  
C: V /V = 2.5V/0V  
DD SS  
CODE = 0xFF  
40  
D: V /V = 5.5V/0V  
DD SS  
CODE = 0x55  
30  
E: V /V = 3.3V/0V  
DD SS  
CODE = 0x55  
20  
F: V /V = 2.5V/0V  
DD SS  
CODE = 0x55  
10  
E
B
0
–10  
–20  
–30  
F
C
0
10  
100  
1k  
0
32  
64  
96  
128  
160  
192  
224  
256  
FREQUENCY (kHz)  
CODE (Decimal)  
Figure 18. Supply Current vs. Frequency  
Figure 15. ΔVWB/ΔT Potentiometer Mode Temperature Coefficient  
6
0
120  
0xFF  
0x80  
0x40  
V
/V = 2.7V/0V  
= 25°C  
DD SS  
T
100  
80  
A
100kVERSION  
–6  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
60  
0x20  
0x10  
0x08  
0x04  
40  
20  
0
–20  
–40  
–60  
–80  
0x02  
0x01  
10kVERSION  
10MVERSION  
100  
1k  
10k  
100k  
1M  
0
32  
64  
96  
128  
160  
192  
224  
256  
FREQUENCY (Hz)  
CODE (Decimal)  
Figure 19. AD5242 10 k Ω Gain vs. Frequency vs. Code  
Figure 16. ΔRWB/ΔT Rheostat Mode Temperature Coefficient  
Rev. C | Page 9 of 20  
AD5241/AD5242  
6
6
0
0xFF  
0xFF  
0
0x80  
0x40  
0x20  
0x10  
0x08  
0x80  
0x40  
0x20  
0x10  
0x08  
–6  
–6  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
0x04  
0x02  
0x01  
0x04  
0x02  
0x01  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20. AD5242 100 kΩ Gain vs. Frequency vs. Code  
Figure 21. AD5242 1 MΩ Gain vs. Frequency vs. Code  
Rev. C | Page 10 of 20  
AD5241/AD5242  
TEST CIRCUITS  
Figure 22 to Figure 30 define the test conditions used in the product specifications table.  
5V  
OP279  
VOUT  
DUT  
A
V+ = V  
DD  
VIN  
N
1 LSB = V+/2  
W
W
OFFSET  
GND  
V+  
A
DUT  
B
B
V
MS  
OFFSET  
BIAS  
Figure 22. Potentiometer Divider Nonlinearity Error (INL, DNL)  
Figure 27. Noninverting Gain  
NO CONNECT  
DUT  
A
+15V  
I
W
W
DUT  
A
V
IN  
W
V
OP42  
OUT  
OFFSET  
GND  
B
B
V
MS  
2.5V  
–15V  
Figure 28. Gain vs. Frequency  
Figure 23. Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
0.1V  
R
=
SW  
I
SW  
CODE = 0x00  
DUT  
DUT  
W
I
= V /R  
DD NOMINAL  
W
A
V
B
W
0.1V  
W
I
SW  
V
V
MS2  
B
V
R
= [V  
MS1  
– V ]/I  
MS2  
MS1  
W
W
TO V  
DD  
SS  
Figure 29. Incremental On Resistance  
Figure 24. Wiper Resistance  
NC  
V
A
V+ = V ±10%  
DD  
Δ
VMS  
VDD  
I
PSRR (dB) = 20 LOG  
VDD  
DUT  
CM  
A
B
Δ
V
DD  
W
A
Δ
VMS  
%
%
W
V+  
PSS (%/%) =  
MS  
VSS  
Δ
VDD  
GND  
V
CM  
B
V
NC  
Figure 30. Common-Mode Leakage Current  
Figure 25. Power Supply Sensitivity (PSS, PSRR)  
A
B
DUT  
5V  
W
OP279  
V
OUT  
OFFSET  
GND  
OFFSET  
BIAS  
Figure 26. Inverting Gain  
Rev. C | Page 11 of 20  
 
 
 
 
AD5241/AD5242  
THEORY OF OPERATION  
The AD5241/AD5242 provide a single-/dual-channel, 256-  
position digitally controlled variable resistor (VR) device. The  
terms VR, RDAC, and programmable resistor are commonly  
used interchangeably to refer to digital potentiometer.  
Figure 31 shows a simplified diagram of the equivalent RDAC  
circuit where the last resistor string is not accessed; therefore,  
there is 1 LSB less of the nominal resistance at full scale in  
addition to the wiper resistance.  
To program the VR settings, refer to the Digital Interface section.  
Both parts have an internal power-on preset that places the wiper  
in midscale during power-on that simplifies the fault condition  
The general equation determining the digitally programmed  
resistance between W and B is  
D
256  
R
WB(D) =  
× RAB + RW  
(1)  
SHDN  
recovery at power-up. In addition, the shutdown pin (  
)
of AD5241/AD5242 places the RDAC in an almost zero power  
consumption state where Terminal A is open circuited and Wiper  
W is connected to Terminal B, resulting in only leakage current  
being consumed in the VR structure. During shutdown, the VR  
latch contents are maintained when the RDAC is inactive. When  
the part returns from shutdown, the stored VR setting is applied  
to the RDAC.  
where:  
D is the decimal equivalent of the binary code between 0 and 255,  
which is loaded in the 8-bit RDAC register.  
R
AB is the nominal end-to-end resistance.  
RW is the wiper resistance contributed by the on resistance of  
the internal switch.  
Again, if RAB = 10 kΩ, Terminal A can be either open circuit or  
tied to W. Table 6 shows the RWB resistance based on the code  
set in the RDAC latch.  
A
SHDN  
SW  
SHDN  
N
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R
R
SW  
2–1  
Table 6. RWB (D) at Selected Codes for RAB = 10 kΩ  
N
2–2  
D (DEC)  
RWB (Ω) Output State  
SW  
2ꢁꢁ  
10021  
Full-scale (RWB – 1 LSB + RW)  
128  
1
0
ꢁ060  
99  
60  
Midscale  
1 LSB  
W
SW  
R
R
1
Zero-scale (wiper contact resistance)  
RDAC  
N
/2  
AB  
R
R
LATCH  
AND  
SW  
0
Note that in the zero-scale condition, a finite wiper resistance of  
60 Ω is present. Care should be taken to limit the current flow  
between W and B in this state to a maximum current of no more  
than 20 mA. Otherwise, degradation or possible destruction of  
the internal switch contact can occur.  
DECODER  
DIGITAL CIRCUITRY  
OMITTED FOR CLARITY  
B
Figure 31. Equivalent RDAC Circuit  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation  
Similar to the mechanical potentiometer, the resistance of the  
RDAC between Wiper W and Terminal A also produces a  
digitally controlled resistance, RWA. When these terminals are  
used, Terminal B can be opened or tied to the wiper terminal.  
The minimum RWA resistance is for Data 0xFF and increases as  
the data loaded in the latch decreases in value. The general  
equation for this operation is  
The nominal resistance of the RDAC between Terminal A and  
Terminal B is available in 10 kΩ, 100 kΩ, and 1 MΩ. The final two  
or three digits of the part number determine the nominal resistance  
value, for example, 10 kΩ = 10, 100 kΩ = 100, and 1 MΩ = 1 M.  
The nominal resistance (RAB) of the VR has 256 contact points  
accessed by the wiper terminal, plus the B terminal contact. The  
8-bit data in the RDAC latch is decoded to select one of the 256  
possible settings. Assume a 10 kΩ part is used; the first connection  
of the wiper starts at the B terminal for Data 0x00. Because there is  
a 60 Ω wiper contact resistance, such connection yields a minimum  
of 60 Ω resistance between Terminal W and Terminal B. The  
second connection is the first tap point that corresponds to 99 Ω  
(RWB = RAB/256 + RW = 39 + 60) for Data 0x01. The third connection  
is the next tap point representing 138 Ω (39 × 2 + 60) for Data 0x02,  
and so on. Each LSB data value increase moves the wiper up the  
resistor ladder until the last tap point is reached at 10,021 Ω  
[RAB – 1 LSB + RW].  
256 D  
256  
R
WA(D) =  
× RAB + RW  
(2)  
For RAB = 10 kΩ, Terminal B can be either open circuit or tied  
to W. Table 7 shows the RWA resistance based on the code set in  
the RDAC latch.  
Table 7. RWA (D) at Selected Codes for RAB = 10 kΩ  
D (DEC)  
RWA (Ω)  
Output State  
2ꢁꢁ  
128  
1
99  
Full-scale  
Midscale  
1 LSB  
ꢁ060  
10021  
10060  
0
Zero-scale  
Rev. C | Page 12 of 20  
 
 
 
 
AD5241/AD5242  
The typical distribution of the nominal resistance RAB from  
channel to channel matches within 1% for AD5242. Device-  
to-device matching is process lot dependent, and it is possible to  
have 30% variation. Because the resistance element is processed in  
thin film technology, the change in RAB with temperature has no  
more than a 30 ppm/°C temperature coefficient.  
DIGITAL INTERFACE  
2-Wire Serial Bus  
The AD5241/AD5242 are controlled via an I2C-compatible  
serial bus. The RDACs are connected to this bus as slave devices.  
Referring to Figure 3 and Figure 4, the first byte of AD5241/  
AD5242 is a slave address byte. It has a 7-bit slave address and  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
W
an R/ bit. The five MSBs are 01011 and the following two bits  
are determined by the state of the AD0 and AD1 pins of the  
device. AD0 and AD1 allow users to use up to four of these  
devices on one bus.  
The 2-wire, I2C serial bus protocol operates as follows:  
The digital potentiometer easily generates output voltages at  
wiper-to-B and wiper-to-A to be proportional to the input  
voltage at A-to-B. Unlike the polarity of VDD /VSS, which must  
be positive, voltage across terminal A to terminal B, terminal W  
to terminal A, and terminal W to terminal B can be at either  
polarity provided that VSS is powered by a negative supply.  
1. The master initiates a data transfer by establishing a start  
condition, which is when a high-to-low transition on the SDA  
line occurs while SCL is high (see Figure 4). The following  
byte is the Frame 1, slave address byte, which consists of the  
If ignoring the effect of the wiper resistance for approximation,  
connecting Terminal A to 5 V and Terminal B to ground produces  
an output voltage at the wiper-to-B starting at 0 V up to 1 LSB less  
than 5 V. Each LSB of voltage is equal to the voltage applied across  
Terminal AB divided by the 256 positions of the potentiometer  
divider. Because AD5241/AD5242 can be supplied by dual  
supplies, the general equation defining the output voltage at VW  
with respect to ground for any valid input voltage applied to  
Terminal A and Terminal B is  
W
7-bit slave address followed by an R/ bit (this bit determines  
whether data is read from or written to the slave device).  
The slave whose address corresponds to the transmitted  
address responds by pulling the SDA line low during the  
ninth clock pulse (this is the acknowledge bit). At this stage,  
all other devices on the bus remain idle while the selected  
device waits for data to be written to or read from its serial  
D
256  
256 D  
256  
W
register. If the R/ bit is high, the master reads from the  
VW  
(
D
)
=
VA +  
VB  
(3)  
W
slave device. If the R/ bit is low, the master writes to the  
slave device.  
which can be simplified to  
2. A write operation contains an extra instruction byte more  
than the read operation. The Frame 2 instruction byte in  
write mode follows the slave address byte. The MSB of the  
D
256  
VW  
(
D
)
=
VAB +VB  
(4)  
where D is the decimal equivalent of the binary code between 0  
to 255 that is loaded in the 8-bit RDAC register.  
A
instruction byte labeled /B is the RDAC subaddress select. A  
low selects RDAC1 and a high selects RDAC2 for the dual-  
A
For a more accurate calculation, including the effects of wiper  
resistance, VW can be found as  
channel AD5242. Set /B to low for the AD5241. The  
second MSB, RS, is the midscale reset. A logic high of this  
bit moves the wiper of a selected RDAC to the center tap  
where RWA = RWB. The third MSB, SD, is a shutdown bit. A  
logic high on SD causes the RDAC to open circuit at  
Terminal A while shorting the wiper to Terminal B. This  
operation yields almost a 0 Ω rheostat mode or 0 V in  
potentiometer mode. This SD bit serves the same function  
R
WB (D)  
RAB  
R
WA (D)  
RAB  
VW  
(
D
)
=
VA +  
VB  
(5)  
where RWB(D) and RWA(D) can be obtained from Equation 1 and  
Equation 2.  
Operation of the digital potentiometer in divider mode results  
in a more accurate operation over temperature. Unlike rheostat  
mode, the output voltage is dependent on the ratio of the internal  
resistors, RWA and RWB, and not the absolute values; therefore,  
the temperature drift reduces to 5 ppm/°C.  
SHDN  
SHDN  
as the  
pin except that the  
pin reacts to active  
low. The following two bits are O2 and O1. They are extra  
programmable logic outputs that users can use to drive  
other digital loads, logic gates, LED drivers, analog switches,  
and the like. The three LSBs are don’t care (see Figure 4).  
3. After acknowledging the instruction byte, the last byte in  
write mode is the, Frame 3 data byte. Data is transmitted  
over the serial bus in sequences of nine clock pulses (eight  
data bits followed by an acknowledge bit). The transitions  
on the SDA line must occur during the low period of SCL  
and remain stable during the high period of SCL (see Figure 4).  
Rev. C | Page 13 of 20  
 
 
AD5241/AD5242  
4. Unlike the write mode, the data byte follows immediately  
after the acknowledgment of the slave address byte in  
Frame 2 read mode. Data is transmitted over the serial bus  
in sequences of nine clock pulses (slightly different from  
the write mode, there are eight data bits followed by a no  
acknowledge Logic 1 bit in read mode). Similarly, the  
transitions on the SDA line must occur during the low  
period of SCL and remain stable during the high period of  
SCL (see Figure 5).  
5. When all data bits have been read or written, a stop condition  
is established by the master. A stop condition is defined as  
a low-to-high transition on the SDA line while SCL is high.  
In write mode, the master pulls the SDA line high during  
the tenth clock pulse to establish a stop condition (see  
Figure 4). In read mode, the master issues a no acknowledge  
for the ninth clock pulse (that is, the SDA line remains high).  
The master then brings the SDA line low before the tenth  
clock pulse, which goes high to establish a stop condition  
(see Figure 5).  
MULTIPLE DEVICES ON ONE BUS  
Figure 33 shows four AD5242 devices on the same serial bus.  
Each has a different slave address because the state of their AD0  
and AD1 pins are different. This allows each RDAC within each  
device to be written to or read from independently. The master  
device output bus line drivers are open-drain pull-downs in a  
fully I2C-compatible interface. Note, a device is addressed properly  
only if the bit information of AD0 and AD1 in the slave address  
byte matches with the logic inputs at the AD0 and AD1 pins of  
that particular device.  
LEVEL-SHIFT FOR BIDIRECTIONAL INTERFACE  
While most old systems can operate at one voltage, a new  
component may be optimized at another. When they operate  
the same signal at two different voltages, a proper method of  
level-shifting is needed. For instance, a 3.3 V E2PROM can be  
used to interface with a 5 V digital potentiometer. A level-shift  
scheme is needed to enable a bidirectional communication so that  
the setting of the digital potentiometer can be stored to and  
retrieved from the E2PROM. Figure 32 shows one of the techniques.  
M1 and M2 can be N-channel FETs (2N7002) or low threshold  
FDV301N if VDD falls below 2.5 V.  
A repeated write function gives the user flexibility to update the  
RDAC output a number of times after addressing and instructing  
the part only once. During the write cycle, each data byte updates  
the RDAC output. For example, after the RDAC has acknowledged  
its slave address and instruction bytes, the RDAC output is  
updated. If another byte is written to the RDAC while it is still  
addressed to a specific slave device with the same instruction,  
this byte updates the output of the selected slave device. If  
different instructions are needed, the write mode has to start a  
completely new sequence with a new slave address, instruction,  
and data bytes transferred again. Similarly, a repeated read  
function of the RDAC is also allowed.  
V
= 3.3V  
V
= 5V  
DD  
DD  
RP  
RP  
RP  
RP  
G
S
D
SDA1  
SCL1  
SDA2  
M1  
G
S
D
SCL2  
M2  
3.3V  
5V  
AD5242  
2
E PROM  
Figure 32. Level-Shift for Different Voltage Devices Operation  
READBACK RDAC VALUE  
Specific to the AD5242 dual-channel device, the channel of  
interest is the one that was previously selected in the write mode.  
In addition, to read both RDAC values consecutively, users have to  
perform two write-read cycles. For example, users may first specify  
the RDAC1 subaddress in write mode (it is not necessary to issue  
the data byte and stop condition), and then change to read mode  
to read the RDAC1 value. To continue reading the RDAC2 value,  
users have to switch back to write mode, specify the subaddress,  
and then switch once again to read mode to read the RDAC2  
value. It is not necessary to issue the write mode data byte or  
the first stop condition for this operation. Users should refer to  
Figure 4 and Figure 5 for the programming format.  
5V  
R
R
P
P
SDA  
SCL  
MASTER  
V
V
V
DD  
DD  
DD  
SDA SCL  
SDA SCL  
AD1  
SDA SCL  
AD1  
SDA SCL  
AD1  
AD1  
AD0  
AD0  
AD0  
AD0  
AD5242  
AD5242  
AD5242  
AD5242  
Figure 33. Multiple AD5242 Devices on One Bus  
Rev. C | Page 1ꢀ of 20  
 
 
 
AD5241/AD5242  
ADDITIONAL PROGRAMMABLE LOGIC OUTPUT  
SHUTDOWN FUNCTION  
The AD5241/AD5242 feature additional programmable logic  
outputs, O1 and O2, that can be used to drive digital load, analog  
switches, and logic gates. They can also be used as a self-contained  
shutdown preset to Logic 0 that is further explained in the  
Shutdown Function section. O1 and O2 default to Logic 0 during  
power-up. The logic states of O1 and O2 can be programmed in  
Frame 2 under the write mode (see Figure 4). Figure 34 shows  
the output stage of O1, which employs large P-channel and N-  
channel MOSFETs in push-pull configuration. As shown in  
Figure 34, the output is equal to VDD or VSS, and these logic  
outputs have adequate current driving capability to drive  
milliamperes of load.  
SHDN  
pin or  
Shutdown can be activated by strobing the  
programming the SD bit in the write mode instruction byte (see  
Table 2). If the RDAC Register 1 or RDAC Register 2 (AD5242  
only) is placed in shutdown mode by the software, SD bit, the  
part returns the wiper to its prior position when a new command  
is received.  
In addition, shutdown can be implemented with the device digital  
output, as shown in Figure 35. In this configuration, the device  
is shutdown during power-up but users are allowed to program  
the device. Thus, when O1 is programmed high, the device exits  
shutdown mode and responds to the new setting. This self-contained  
shutdown function allows absolute shutdown during power-up,  
which is crucial in hazardous environments, and it does not add  
extra components.  
V
DD  
M
P
1
2
O
1
IN  
O
1
SHDN  
O
DATA IN FRAME 2  
M
1
N
R
PD  
OF WRITE MODE  
V
SS  
Figure 34. Output Stage of Logic Output, O1  
SDA  
SCL  
Users can also activate O1 and O2 in the following three different  
ways without affecting the wiper settings:  
Figure 35. Shutdown by Internal Logic Output, O1  
340  
LOGIC  
1. Start, slave address byte, acknowledge, instruction byte  
with O1 and O2 specified, acknowledge, stop.  
2. Complete the write cycle with stop, then start, slave address  
byte, acknowledge, instruction byte with O1 and O2 specified,  
acknowledge, stop.  
V
SS  
Figure 36. ESD Protection of Digital Pins  
3. Do not complete the write cycle by not issuing the stop,  
then start, slave address byte, acknowledge, instruction  
byte with O1 and O2 specified, acknowledge, stop.  
A,B,W  
V
SS  
All digital inputs are protected with a series input resistor and  
the parallel Zener ESD structures shown in Figure 36. This  
Figure 37. ESD Protection of Resistor Terminals  
SHDN  
applies to the digital input pins, SDA, SCL, and  
.
Rev. C | Page 1ꢁ of 20  
 
 
 
 
 
AD5241/AD5242  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 38. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 39. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
Rev. C | Page 16 of 20  
 
AD5241/AD5242  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 40. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
10.00 (0.3937)  
9.80 (0.3858)  
9
8
16  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AC  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 41. 16-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-16)  
Dimensions shown in millimeters and (inches)  
Rev. C | Page 17 of 20  
AD5241/AD5242  
ORDERING GUIDE  
Model1, 2  
No. of Channels End-to-End RAB  
Temperature Range  
Package Description Package Option  
ADꢁ2ꢀ1BR10  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
10 kΩ  
10 kΩ  
10 kΩ  
10 kΩ  
10 kΩ  
10 kΩ  
10 kΩ  
10 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
1 MΩ  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
1ꢀ-Lead SOIC_N  
1ꢀ-Lead SOIC_N  
1ꢀ-Lead SOIC_N  
1ꢀ-Lead SOIC_N  
1ꢀ-Lead TSSOP  
1ꢀ-Lead TSSOP  
1ꢀ-Lead TSSOP  
1ꢀ-Lead TSSOP  
1ꢀ-Lead SOIC_N  
1ꢀ-Lead SOIC_N  
1ꢀ-Lead SOIC_N  
1ꢀ-Lead SOIC_N  
1ꢀ-Lead TSSOP  
1ꢀ-Lead TSSOP  
1ꢀ-Lead TSSOP  
1ꢀ-Lead TSSOP  
1ꢀ-Lead SOIC_N  
1ꢀ-Lead SOIC_N  
1ꢀ-Lead SOIC_N  
1ꢀ-Lead SOIC_N  
1ꢀ-Lead TSSOP  
1ꢀ-Lead TSSOP  
1ꢀ-Lead TSSOP  
R-1ꢀ  
ADꢁ2ꢀ1BR10-REEL7  
ADꢁ2ꢀ1BRZ10  
R-1ꢀ  
R-1ꢀ  
ADꢁ2ꢀ1BRZ10-RL7  
ADꢁ2ꢀ1BRU10  
ADꢁ2ꢀ1BRU10-REEL7  
ADꢁ2ꢀ1BRUZ10  
ADꢁ2ꢀ1BRUZ10-R7  
ADꢁ2ꢀ1BR100  
ADꢁ2ꢀ1BR100-REEL7  
ADꢁ2ꢀ1BRZ100  
ADꢁ2ꢀ1BRZ100-RL7  
ADꢁ2ꢀ1BRU100  
ADꢁ2ꢀ1BRU100-REEL7  
ADꢁ2ꢀ1BRUZ100  
ADꢁ2ꢀ1BRUZ100-R7  
ADꢁ2ꢀ1BR1M  
ADꢁ2ꢀ1BRZ1M  
ADꢁ2ꢀ1BRZ1M-REEL  
ADꢁ2ꢀ1BRU1M  
R-1ꢀ  
RU-1ꢀ  
RU-1ꢀ  
RU-1ꢀ  
RU-1ꢀ  
R-1ꢀ  
R-1ꢀ  
R-1ꢀ  
R-1ꢀ  
RU-1ꢀ  
RU-1ꢀ  
RU-1ꢀ  
RU-1ꢀ  
R-1ꢀ  
R-1ꢀ  
R-1ꢀ  
R-1ꢀ  
1 MΩ  
1 MΩ  
1 MΩ  
1 MΩ  
1 MΩ  
1 MΩ  
ADꢁ2ꢀ1BRU1M-REEL7  
ADꢁ2ꢀ1BRUZ1M  
ADꢁ2ꢀ1BRUZ1M-R7  
RU-1ꢀ  
RU-1ꢀ  
RU-1ꢀ  
ADꢁ2ꢀ2BR10  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
10 kΩ  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
–ꢀ0°C to +10ꢁ°C  
16-Lead SOIC_N  
16-Lead SOIC_N  
16-Lead SOIC_N  
16-Lead SOIC_N  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead SOIC_N  
16-Lead SOIC_N  
16-Lead SOIC_N  
16-Lead SOIC_N  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead SOIC_N  
16-Lead SOIC_N  
16-Lead SOIC_N  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
R-16  
ADꢁ2ꢀ2BR10-REEL7  
ADꢁ2ꢀ2BRZ10  
10 kΩ  
R-16  
10 kΩ  
R-16  
ADꢁ2ꢀ2BRZ10-REEL7  
ADꢁ2ꢀ2BRU10  
ADꢁ2ꢀ2BRU10-REEL7  
ADꢁ2ꢀ2BRUZ10  
ADꢁ2ꢀ2BRUZ10-RL7  
ADꢁ2ꢀ2BR100  
ADꢁ2ꢀ2BR100-REEL7  
ADꢁ2ꢀ2BRZ100  
ADꢁ2ꢀ2BRZ100-REEL7  
ADꢁ2ꢀ2BRU100  
ADꢁ2ꢀ2BRU100-REEL7  
ADꢁ2ꢀ2BRUZ100  
ADꢁ2ꢀ2BRUZ100-RL7  
ADꢁ2ꢀ2BR1M  
ADꢁ2ꢀ2BRZ1M  
ADꢁ2ꢀ2BRU1M  
ADꢁ2ꢀ2BRU1M-REEL7  
ADꢁ2ꢀ2BRUZ1M  
ADꢁ2ꢀ2BRUZ1M-REEL7  
EVAL-ADꢁ2ꢀ2EBZ  
10 kΩ  
10 kΩ  
10 kΩ  
10 kΩ  
R-16  
RU-16  
RU-16  
RU-16  
RU-16  
R-16  
R-16  
R-16  
R-16  
RU-16  
RU-16  
RU-16  
RU-16  
R-16  
R-16  
R-16  
RU-16  
RU-16  
RU-16  
10 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
1 MΩ  
1 MΩ  
1 MΩ  
1 MΩ  
1 MΩ  
1 MΩ  
Evaluation Board  
1 The ADꢁ2ꢀ1/ADꢁ2ꢀ2 die size is 69 mil × 78 mil, ꢁ,382 sq. mil. Contains 386 transistors for each channel. Patent Number ꢁ,ꢀ9ꢁ,2ꢀꢁ applies.  
2 Z = RoHS Compliant Part.  
Rev. C | Page 18 of 20  
 
AD5241/AD5242  
NOTES  
Rev. C | Page 19 of 20  
AD5241/AD5242  
NOTES  
©2001–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00926-0-12/09(C)  
Rev. C | Page 20 of 20  

相关型号:

AD5242BRZ100-REEL7

I2C-Compatible, 256-Position Digital Potentiometers
ADI

AD5242BRZ1M

I2C-Compatible, 256-Position Digital Potentiometers
ADI

AD5242_15

IC-Compatible, 256-Position Digital Potentiometers
ADI

AD5243

Dual 256-Position I2C Compatible Digital Potentiometer
ADI

AD5243BRM10

Dual 256-Position I2C Compatible Digital Potentiometer
ADI

AD5243BRM10-R2

IC 10K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO10, 3 X 4.90 MM, MO-187BA, MSOP-10, Digital Potentiometer
ADI

AD5243BRM10-RL7

Dual 256-Position I2C Compatible Digital Potentiometer
ADI

AD5243BRM100

Dual 256-Position I2C Compatible Digital Potentiometer
ADI

AD5243BRM100-R2

IC 100K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO10, 3 X 4.90 MM, MO-187BA, MSOP-10, Digital Potentiometer
ADI

AD5243BRM100-RL7

Dual 256-Position I2C Compatible Digital Potentiometer
ADI

AD5243BRM2.5

Dual 256-Position I2C Compatible Digital Potentiometer
ADI

AD5243BRM2.5-R2

IC 2.5K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO10, 3 X 4.90 MM, MO-187BA, MSOP-10, Digital Potentiometer
ADI