AD5341BRU [ADI]

2.5 V to 5.5 V, 115 uA, Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs; 2.5 V至5.5 V , 115微安,并行接口单电压输出8位/ 10位/ 12位DAC
AD5341BRU
型号: AD5341BRU
厂家: ADI    ADI
描述:

2.5 V to 5.5 V, 115 uA, Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs
2.5 V至5.5 V , 115微安,并行接口单电压输出8位/ 10位/ 12位DAC

文件: 总20页 (文件大小:352K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 V to 5.5 V, 115 A, Parallel Interface  
Single Voltage-Output 8-/10-/12-Bit DACs  
a
AD5330/AD5331/AD5340/AD5341*  
FEATURES  
GENERAL DESCRIPTION  
AD5330: Single 8-Bit DAC in 20-Lead TSSOP  
The AD5330/AD5331/AD5340/AD5341 are single 8-, 10-, and  
AD5331: Single 10-Bit DAC in 20-Lead TSSOP  
AD5340: Single 12-Bit DAC in 24-Lead TSSOP  
AD5341: Single 12-Bit DAC in 20-Lead TSSOP  
Low Power Operation: 115 A @ 3 V, 140 A @ 5 V  
Power-Down to 80 nA @ 3 V, 200 nA @ 5 V via PD Pin  
2.5 V to 5.5 V Power Supply  
12-bit DACs. They operate from a 2.5 V to 5.5 V supply con-  
suming just 115 µA at 3 V, and feature a power-down mode that  
further reduces the current to 80 nA. These devices incorporate  
an on-chip output buffer that can drive the output to both  
supply rails, while the AD5330, AD5340, and AD5341 allow a  
choice of buffered or unbuffered reference input.  
Double-Buffered Input Logic  
The AD5330/AD5331/AD5340/AD5341 have a parallel interface.  
CS selects the device and data is loaded into the input registers  
on the rising edge of WR.  
Guaranteed Monotonic by Design Over All Codes  
Buffered/Unbuffered Reference Input Options  
Output Range: 0–VREF or 0–2 VREF  
Power-On Reset to Zero Volts  
Simultaneous Update of DAC Outputs via LDAC Pin  
Asynchronous CLR Facility  
Low Power Parallel Data Interface  
On-Chip Rail-to-Rail Output Buffer Amplifiers  
Temperature Range: –40؇C to +105؇C  
The GAIN pin allows the output range to be set at 0 V to VREF  
or 0 V to 2 × VREF  
.
Input data to the DACs is double-buffered, allowing simultaneous  
update of multiple DACs in a system using the LDAC pin.  
An asynchronous CLR input is also provided, which resets the  
contents of the Input Register and the DAC Register to all zeros.  
These devices also incorporate a power-on reset circuit that ensures  
that the DAC output powers on to 0 V and remains there until  
valid data is written to the device.  
APPLICATIONS  
Portable Battery-Powered Instruments  
Digital Gain and Offset Adjustment  
Programmable Voltage and Current Sources  
Programmable Attenuators  
The AD5330/AD5331/AD5340/AD5341 are available in Thin  
Shrink Small Outline Packages (TSSOP).  
Industrial Process Control  
AD5330 FUNCTIONAL BLOCK DIAGRAM  
(Other Diagrams Inside)  
V
V
DD  
REF  
POWER-ON  
RESET  
AD5330  
BUF  
DAC  
REGISTER  
INPUT  
REGISTER  
GAIN  
8-BIT  
DAC  
DB  
V
BUFFER  
7
.
OUT  
.
INTER-  
FACE  
LOGIC  
DB  
0
CS  
WR  
CLR  
RESET  
POWER-DOWN  
LOGIC  
LDAC  
GND  
PD  
*Protected by U.S. Patent Number 5,969,657; other patents pending.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
AD5330/AD5331/AD5340/AD5341–SPECIFICATIONS  
(VDD = 2.5 V to 5.5 V, VREF = 2 V. RL = 2 kto GND; CL = 200 pF to GND; all specifications TMIN to TMAX unless otherwise noted.)  
B Version2  
Parameter1  
Min  
Typ  
Max  
Unit  
Conditions/Comments  
DC PERFORMANCE3, 4  
AD5330  
Resolution  
8
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5331  
0.15  
0.02  
1
0.25  
Guaranteed Monotonic By Design Over All Codes  
Guaranteed Monotonic By Design Over All Codes  
Guaranteed Monotonic By Design Over All Codes  
Resolution  
10  
0.5  
0.05  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5340/AD5341  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
Offset Error  
4
0.5  
12  
2
0.2  
0.4  
0.15  
10  
10  
–12  
–5  
–60  
Bits  
LSB  
LSB  
% of FSR  
% of FSR  
mV  
16  
1
3
1
60  
Gain Error  
Lower Deadband5  
Upper Deadband  
Offset Error Drift6  
Gain Error Drift6  
DC Power Supply Rejection Ratio6  
Lower Deadband Exists Only if Offset Error Is Negative  
VDD = 5 V. Upper Deadband Exists Only if VREF = VDD  
60  
mV  
ppm of FSR/°C  
ppm of FSR/°C  
dB  
VDD = 10%  
DAC REFERENCE INPUT6  
VREF Input Range  
1
0.25  
VDD  
VDD  
V
V
Buffered Reference (AD5330, AD5340, and AD5341)  
Unbuffered Reference  
VREF Input Impedance  
>10  
180  
90  
MΩ  
kΩ  
kΩ  
dB  
Buffered Reference (AD5330, AD5340, and AD5341)  
Unbuffered Reference. Gain = 1, Input Impedance = RDAC  
Unbuffered Reference. Gain = 2, Input Impedance = RDAC  
Frequency = 10 kHz  
Reference Feedthrough  
–90  
OUTPUT CHARACTERISTICS6  
Minimum Output Voltage4, 7  
Maximum Output Voltage4, 7  
DC Output Impedance  
0.001  
VDD–0.001  
V min  
V max  
Rail-to-Rail Operation  
0.5  
25  
15  
2.5  
5
Short Circuit Current  
mA  
mA  
µs  
VDD = 5 V  
VDD = 3 V  
Power-Up Time  
Coming Out of Power-Down Mode. VDD = 5 V  
Coming Out of Power-Down Mode. VDD = 3 V  
µs  
LOGIC INPUTS6  
Input Current  
VIL, Input Low Voltage  
1
µA  
V
V
0.8  
0.6  
0.5  
VDD = 5 V 10%  
VDD = 3 V 10%  
VDD = 2.5 V  
V
VIH, Input High Voltage  
2.4  
2.1  
2.0  
V
V
V
VDD = 5 V 10%  
VDD = 3 V 10%  
VDD = 2.5 V  
Pin Capacitance  
3
pF  
POWER REQUIREMENTS  
VDD  
2.5  
5.5  
V
IDD (Normal Mode)  
VDD = 4.5 V to 5.5 V  
VDD = 2.5 V to 3.6 V  
DACs active and excluding load currents. Unbuffered  
Reference. VIH = VDD, VIL = GND.  
IDD increases by 50 µA at VREF > VDD – 100 mV.  
In Buffered Mode extra current is (5 + VREF/RDAC) µA,  
where RDAC is the resistance of the resistor string.  
140  
115  
250  
200  
µA  
µA  
IDD (Power-Down Mode)  
VDD = 4.5 V to 5.5 V  
VDD = 2.5 V to 3.6 V  
0.2  
0.08  
1
1
µA  
µA  
NOTES  
1See Terminology section.  
2Temperature range: B Version: –40°C to +105°C; typical specifications are at 25°C.  
3Linearity is tested using a reduced code range: AD5330 (Code 8 to 255); AD5331 (Code 28 to 1023); AD5340/AD5341 (Code 115 to 4095).  
4DC specifications tested with output unloaded.  
5This corresponds to x codes. x = Deadband voltage/LSB size.  
6Guaranteed by design and characterization, not production tested.  
7In order for the amplifier output to reach its minimum voltage, Offset Error must be negative. In order for the amplifier output to reach its maximum voltage, VREF = VDD and  
“Offset plus Gain” Error must be positive.  
Specifications subject to change without notice.  
–2–  
REV. 0  
AD5330/AD5331/AD5340/AD5341  
(VDD = 2.5 V to 5.5 V. RL = 2 kto GND; CL = 200 pF to GND; all specifications TMIN to TMAX  
unless otherwise noted.)  
AC CHARACTERISTICS1  
B Version3  
Parameter2  
Min  
Typ  
Max  
Unit  
Conditions/Comments  
REF = 2 V. See Figure 20  
Output Voltage Settling Time  
AD5330  
AD5331  
AD5340  
AD5341  
V
6
7
8
8
0.7  
6
0.5  
200  
–70  
8
9
10  
10  
µs  
1/4 Scale to 3/4 Scale Change (40 H to C0 H)  
1/4 Scale to 3/4 Scale Change (100 H to 300 H)  
1/4 Scale to 3/4 Scale Change (400 H to C00 H)  
1/4 Scale to 3/4 Scale Change (400 H to C00 H)  
µs  
µs  
µs  
V/µs  
nV-s  
nV-s  
kHz  
dB  
Slew Rate  
Major Code Transition Glitch Energy  
Digital Feedthrough  
Multiplying Bandwidth  
Total Harmonic Distortion  
1 LSB Change Around Major Carry  
VREF = 2 V 0.1 V p-p. Unbuffered Mode  
VREF = 2.5 V 0.1 V p-p. Frequency = 10 kHz  
NOTES  
1Guaranteed by design and characterization, not production tested.  
2See Terminology section.  
3Temperature range: B Version: –40°C to +105°C; typical specifications are at 25°C.  
Specifications subject to change without notice.  
TIMING CHARACTERISTICS1, 2, 3 (VDD = 2.5 V to 5.5 V, All specifications TMIN to TMAX unless otherwise noted.)  
Parameter  
Limit at TMIN, TMAX  
Unit  
Condition/Comments  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
0
0
20  
5
4.5  
5
5
4.5  
5
4.5  
20  
20  
50  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
CS to WR Setup Time  
CS to WR Hold Time  
WR Pulsewidth  
Data, GAIN, BUF, HBEN Setup Time  
Data, GAIN, BUF, HBEN Hold Time  
Synchronous Mode. WR Falling to LDAC Falling.  
Synchronous Mode. LDAC Falling to WR Rising.  
Synchronous Mode. WR Rising to LDAC Rising.  
Asynchronous Mode. LDAC Rising to WR Rising.  
Asynchronous Mode. WR Rising to LDAC Falling.  
LDAC Pulsewidth  
t9  
t10  
t11  
t12  
t13  
CLR Pulsewidth  
Time Between WR Cycles  
NOTES  
1Guaranteed by design and characterization, not production tested.  
2All input signals are specified with tr = tf = 5 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
3See Figure 1.  
t2  
t1  
CS  
t13  
t3  
WR  
t5  
t4  
DATA,  
GAIN,  
BUF,  
HBEN  
t8  
t6  
t7  
t9  
1
LDAC  
t10  
t11  
2
LDAC  
t12  
CLR  
NOTES:  
1
SYNCHRONOUS LDAC UPDATE MODE  
ASYNCHRONOUS LDAC UPDATE MODE  
2
Figure 1. Parallel Interface Timing Diagram  
–3–  
REV. 0  
AD5330/AD5331/AD5340/AD5341  
ABSOLUTE MAXIMUM RATINGS*  
(TA = 25°C unless otherwise noted)  
Reflow Soldering  
Peak Temperature . . . . . . . . . . . . . . . . . . . . . 220 +5/–0°C  
Time at Peak Temperature . . . . . . . . . . . . 10 sec to 40 sec  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Digital Input Voltage to GND . . . . . . . –0.3 V to VDD + 0.3 V  
Digital Output Voltage to GND . . . . . –0.3 V to VDD + 0.3 V  
Reference Input Voltage to GND . . . . –0.3 V to VDD + 0.3 V  
VOUT to GND . . . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Operating Temperature Range  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
Industrial (B Version) . . . . . . . . . . . . . . . –40°C to +105°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
TSSOP Package  
Power Dissipation . . . . . . . . . . . . . . . (TJ max – TA)/θJA mW  
θ
JA Thermal Impedance (20-Lead TSSOP) . . . . . 143°C/W  
JA Thermal Impedance (24-Lead TSSOP) . . . . . 128°C/W  
θ
θ
θ
JA Thermal Impedance (20-Lead TSSOP) . . . . . . 45°C/W  
JC Thermal Impedance (24-Lead TSSOP) . . . . . . 42°C/W  
ORDERING GUIDE  
Package  
Option  
Model  
Temperature Range  
Package Description  
AD5330BRU  
AD5331BRU  
AD5340BRU  
AD5341BRU  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
TSSOP (Thin Shrink Small Outline Package)  
TSSOP (Thin Shrink Small Outline Package)  
TSSOP (Thin Shrink Small Outline Package)  
TSSOP (Thin Shrink Small Outline Package)  
RU-20  
RU-20  
RU-24  
RU-20  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD5330/AD5331/AD5340/AD5341 features proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
AD5330/AD5331/AD5340/AD5341  
AD5330 FUNCTIONAL BLOCK DIAGRAM  
AD5330 PIN CONFIGURATION  
V
V
DD  
REF  
1
2
20  
19  
18  
DB  
BUF  
NC  
7
DB  
DB  
POWER-ON  
RESET  
6
AD5330  
3
V
REF  
OUT  
5
4
3
4
17 DB  
16 DB  
V
BUF  
8-BIT  
5
GND  
CS  
DAC  
REGISTER  
INPUT  
REGISTER  
AD5330  
GAIN  
TOP VIEW  
8-BIT  
DAC  
6
15  
DB  
DB  
V
2
BUFFER  
7
.
OUT  
(Not to Scale)  
.
INTER-  
FACE  
LOGIC  
DB  
0
7
14 DB  
13 DB  
WR  
1
8
GAIN  
CLR  
LDAC  
0
CS  
9
12  
11  
V
DD  
WR  
CLR  
10  
PD  
RESET  
POWER-DOWN  
LOGIC  
NC = NO CONNECT  
LDAC  
GND  
PD  
AD5330 PIN FUNCTION DESCRIPTIONS  
Pin  
No.  
Mnemonic  
Function  
1
2
BUF  
NC  
Buffer Control Pin. This pin controls whether the reference input to the DAC is buffered or unbuffered.  
No Connect.  
3
4
5
6
7
8
9
10  
11  
12  
VREF  
VOUT  
GND  
CS  
Reference Input.  
Output of DAC. Buffered output with rail-to-rail operation.  
Ground reference point for all circuitry on the part.  
Active Low Chip Select Input. This is used in conjunction with WR to write data to the parallel interface.  
Active Low Write Input. This is used in conjunction with CS to write data to the parallel interface.  
Gain Control Pin. This controls whether the output range from the DAC is 0–VREF or 0–2 VREF.  
Asynchronous active low control input that clears all input registers and DAC registers to zero.  
Active low control input that updates the DAC registers with the contents of the input registers.  
Power-Down Pin. This active low control pin puts the DAC into power-down mode.  
WR  
GAIN  
CLR  
LDAC  
PD  
VDD  
Power Supply Input. These parts can operate from 2.5 V to 5.5 V and the supply should be decoupled  
with a 10 µF capacitor in parallel with a 0.1 µF capacitor to GND.  
13–20  
DB0–DB7  
Eight Parallel Data Inputs. DB7 is the MSB of these eight bits.  
–5–  
REV. 0  
AD5330/AD5331/AD5340/AD5341  
AD5331 FUNCTIONAL BLOCK DIAGRAM  
AD5331 PIN CONFIGURATION  
V
V
DD  
REF  
1
2
20  
19  
18  
DB  
DB  
DB  
7
8
DB  
DB  
POWER-ON  
RESET  
6
5
9
AD5331  
3
V
REF  
OUT  
4
17 DB  
V
4
BUF  
10-BIT  
5
16 DB  
GND  
CS  
DAC  
REGISTER  
INPUT  
REGISTER  
3
AD5331  
TOP VIEW  
10-BIT  
DAC  
6
15  
DB  
DB  
V
9
.
2
BUFFER  
OUT  
(Not to Scale)  
.
INTER-  
FACE  
LOGIC  
DB  
0
7
14 DB  
WR  
1
8
13 DB  
GAIN  
CLR  
LDAC  
0
CS  
9
12  
11  
V
DD  
WR  
CLR  
10  
PD  
RESET  
POWER-DOWN  
LOGIC  
LDAC  
PD GND  
AD5331 PIN FUNCTION DESCRIPTIONS  
Pin  
No.  
Mnemonic  
Function  
1
2
3
4
5
6
7
DB8  
DB9  
VREF  
VOUT  
GND  
CS  
Parallel Data Input.  
Most Significant Bit of Parallel Data Input.  
Unbuffered Reference Input.  
Output of DAC. Buffered output with rail-to-rail operation.  
Ground reference point for all circuitry on the part.  
Active Low Chip Select Input. This is used in conjunction with WR to write data to the parallel interface.  
Active Low Write Input. This is used in conjunction with CS to write data to the parallel interface.  
WR  
8
9
10  
11  
12  
GAIN  
CLR  
LDAC  
PD  
Gain Control Pin. This controls whether the output range from the DAC is 0–VREF or 0–2 VREF  
Active low control input that clears all input registers and DAC registers to zero.  
Active low control input that updates the DAC registers with the contents of the input registers.  
Power-Down Pin. This active low control pin puts the DAC into power-down mode.  
Power Supply Input. These parts can operate from 2.5 V to 5.5 V and the supply should be decoupled  
.
VDD  
with a 10 µF capacitor in parallel with a 0.1 µF capacitor to GND.  
13–20  
DB0–DB7  
Eight Parallel Data Inputs.  
–6–  
REV. 0  
AD5330/AD5331/AD5340/AD5341  
AD5340 PIN CONFIGURATION  
AD5340 FUNCTIONAL BLOCK DIAGRAM  
V
V
DD  
REF  
1
2
24  
23  
22  
21  
20  
19  
18  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
9
8
7
6
5
4
10  
11  
POWER-ON  
RESET  
3
AD5340  
BUF  
4
V
REF  
OUT  
NC  
12-BIT  
AD5340  
TOP VIEW  
(Not to Scale)  
V
5
BUF  
DAC  
REGISTER  
INPUT  
REGISTER  
GAIN  
6
12-BIT  
DAC  
DB  
11  
.
V
7
BUFFER  
OUT  
GND  
CS  
3
2
1
0
.
INTER-  
FACE  
LOGIC  
DB  
0
8
17 DB  
16 DB  
15 DB  
14  
9
WR  
CS  
10  
11  
12  
GAIN  
CLR  
LDAC  
WR  
CLR  
V
DD  
RESET  
POWER-DOWN  
LOGIC  
13  
PD  
NC = NO CONNECT  
LDAC  
GND  
PD  
AD5340 PIN FUNCTION DESCRIPTIONS  
Pin  
No.  
Mnemonic  
Function  
1
2
3
4
5
6
DB10  
DB11  
BUF  
VREF  
VOUT  
NC  
Parallel Data Input.  
Most Significant Bit of Parallel Data Input.  
Buffer Control Pin. This pin controls whether the reference input to the DAC is buffered or unbuffered.  
Reference Input.  
Output of DAC. Buffered output with rail-to-rail operation.  
No Connect.  
7
8
9
10  
11  
12  
13  
14  
GND  
CS  
Ground reference point for all circuitry on the part.  
Active Low Chip Select Input. This is used in conjunction with WR to write data to the parallel interface.  
Active Low Write Input. This is used in conjunction with CS to write data to the parallel interface.  
Gain Control Pin. This controls whether the output range from the DAC is 0–VREF or 0–2 VREF.  
Asynchronous active low control input that clears all input registers and DAC registers to zero.  
Active low control input that updates the DAC registers with the contents of the input registers.  
Power-Down Pin. This active low control pin puts the DAC into power-down mode.  
WR  
GAIN  
CLR  
LDAC  
PD  
VDD  
Power Supply Input. These parts can operate from 2.5 V to 5.5 V and the supply should be decoupled  
with a 10 µF capacitor in parallel with a 0.1 µF capacitor to GND.  
15–24  
DB0–DB9  
10 Parallel Data Inputs.  
–7–  
REV. 0  
AD5330/AD5331/AD5340/AD5341  
AD5341 PIN CONFIGURATION  
AD5341 FUNCTIONAL BLOCK DIAGRAM  
V
V
DD  
REF  
1
2
20  
19  
18  
DB  
HBEN  
BUF  
7
BUF  
POWER-ON  
RESET  
AD5341  
DB  
DB  
6
5
GAIN  
V
3
REF  
DB  
7
.
.
HIGH BYTE  
REGISTER  
4
17 DB  
V
DAC  
REGISTER  
4
DB  
OUT  
0
12-BIT  
5
16 DB  
GND  
CS  
3
AD5341  
INTER-  
FACE  
LOGIC  
HBEN  
CS  
TOP VIEW  
6
15  
DB  
LOW BYTE  
REGISTER  
2
12-BIT  
DAC  
(Not to Scale)  
BUFFER  
V
OUT  
7
14 DB  
WR  
1
WR  
8
13 DB  
GAIN  
CLR  
LDAC  
0
RESET  
9
12  
11  
CLR  
LDAC  
V
DD  
POWER-DOWN  
LOGIC  
10  
PD  
GND  
PD  
AD5341 PIN FUNCTION DESCRIPTIONS  
Pin  
No.  
Mnemonic  
Function  
1
HBEN  
High Byte Enable Pin. This pin is used when writing to the device to determine if data is written  
to the high byte register or the low byte register.  
2
3
4
5
6
7
8
9
BUF  
VREF  
VOUT  
GND  
CS  
Buffer Control Pin. This pin controls whether the reference input to the DAC is buffered or unbuffered.  
Reference Input.  
Output of DAC. Buffered output with rail-to-rail operation.  
Ground reference point for all circuitry on the part.  
Active low Chip Select Input. This is used in conjunction with WR to write data to the parallel interface.  
Active Low Write Input. This is used in conjunction with CS to write data to the parallel interface.  
Gain Control Pin. This controls whether the output range from the DAC is 0–VREF or 0–2 VREF.  
Asynchronous active low control input that clears all input registers and DAC registers to zero.  
Active low control input that updates the DAC registers with the contents of the input registers.  
Power-Down Pin. This active low control pin puts the DAC into power-down mode.  
WR  
GAIN  
CLR  
LDAC  
PD  
10  
11  
12  
VDD  
Power Supply Input. These parts can operate from 2.5 V to 5.5 V and the supply should be decoupled  
with a 10 µF capacitor in parallel with a 0.1 µF capacitor to GND.  
13–20  
DB0–DB7  
Eight Parallel Data Inputs. DB7 is the MSB of these eight bits.  
–8–  
REV. 0  
AD5330/AD5331/AD5340/AD5341  
TERMINOLOGY  
RELATIVE ACCURACY  
For the DAC, Relative Accuracy or Integral Nonlinearity (INL)  
is a measure of the maximum deviation, in LSBs, from a straight  
line passing through the actual endpoints of the DAC transfer  
function. Typical INL versus Code plot can be seen in Figures  
5, 6, and 7.  
GAIN ERROR  
AND  
OFFSET ERROR  
OUTPUT  
VOLTAGE  
ACTUAL  
DIFFERENTIAL NONLINEARITY  
Differential Nonlinearity (DNL) is the difference between the  
measured change and the ideal 1 LSB change between any two  
adjacent codes. A specified differential nonlinearity of 1 LSB  
maximum ensures monotonicity. This DAC is guaranteed mono-  
tonic by design. Typical DNL versus Code plot can be seen in  
Figures 8, 9, and 10.  
IDEAL  
POSITIVE  
OFFSET  
DAC CODE  
GAIN ERROR  
This is a measure of the span error of the DAC (including any  
error in the gain of the buffer amplifier). It is the deviation in  
slope of the actual DAC transfer characteristic from the ideal  
expressed as a percentage of the full-scale range. This is illus-  
trated in Figure 2.  
Figure 3. Positive Offset Error and Gain Error  
GAIN ERROR  
AND  
OFFSET ERROR  
OFFSET ERROR  
This is a measure of the offset error of the DAC and the output  
amplifier. It is expressed as a percentage of the full-scale range.  
OUTPUT  
VOLTAGE  
ACTUAL  
IDEAL  
If the offset voltage is positive, the output voltage will still be  
positive at zero input code. This is shown in Figure 3. Because  
the DACs operate from a single supply, a negative offset cannot  
appear at the output of the buffer amplifier. Instead, there will  
be a code close to zero at which the amplifier output saturates  
(amplifier footroom). Below this code there will be a deadband  
over which the output voltage will not change. This is illustrated  
in Figure 4.  
NEGATIVE  
OFFSET  
DAC CODE  
POSITIVE  
GAIN ERROR  
DEADBAND CODES  
AMPLIFIER  
FOOTROOM  
(~1mV)  
NEGATIVE  
GAIN  
ERROR  
OUTPUT  
VOLTAGE  
ACTUAL  
NEGATIVE  
OFFSET  
IDEAL  
Figure 4. Negative Offset Error and Gain Error  
DAC CODE  
Figure 2. Gain Error  
–9–  
REV. 0  
AD5330/AD5331/AD5340/AD5341  
OFFSET ERROR DRIFT  
DIGITAL FEEDTHROUGH  
This is a measure of the change in Offset Error with changes in  
temperature. It is expressed in (ppm of full-scale range)/°C.  
Digital Feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital input pins of the  
device, but is measured when the DAC is not being written to  
(CS held high). It is specified in nV secs and is measured with a  
full-scale change on the digital input pins, i.e., from all 0s to all  
1s and vice versa.  
GAIN ERROR DRIFT  
This is a measure of the change in Gain Error with changes in  
temperature. It is expressed in (ppm of full-scale range)/°C.  
POWER-SUPPLY REJECTION RATIO (PSRR)  
MULTIPLYING BANDWIDTH  
This indicates how the output of the DAC is affected by changes in  
the supply voltage. PSRR is the ratio of the change in VOUT to a  
change in VDD for full-scale output of the DAC. It is measured  
in dBs. VREF is held at 2 V and VDD is varied 10%.  
The amplifiers within the DAC have a finite bandwidth. The  
Multiplying Bandwidth is a measure of this. A sine wave on the  
reference (with full-scale code loaded to the DAC) appears on  
the output. The Multiplying Bandwidth is the frequency at which  
the output amplitude falls to 3 dB below the input.  
REFERENCE FEEDTHROUGH  
This is the ratio of the amplitude of the signal at the DAC output  
to the reference input when the DAC output is not being updated  
(i.e., LDAC is high). It is expressed in dBs.  
TOTAL HARMONIC DISTORTION  
This is the difference between an ideal sine wave and its attenuated  
version using the DAC. The sine wave is used as the reference  
for the DAC and the THD is a measure of the harmonics present  
on the DAC output. It is measured in dBs.  
MAJOR-CODE TRANSITION GLITCH ENERGY  
Major-Code Transition Glitch Energy is the energy of the  
impulse injected into the analog output when the DAC changes  
state. It is normally specified as the area of the glitch in nV secs  
and is measured when the digital code is changed by 1 LSB at  
the major carry transition (011 . . . 11 to 100 . . . 00 or 100 . . . 00  
to 011 . . . 11).  
–10–  
REV. 0  
Typical Performance Characteristics–  
AD5330/AD5331/AD5340/AD5341  
12  
3
1.0  
0.5  
T
= 25؇C  
A
T
= 25؇C  
T
V
= 25؇C  
A
A
V
DD  
= 5V  
V
= 5V  
= 5V  
8
DD  
DD  
2
1
4
0
0
–0.5  
–1.0  
0
1  
2  
3  
4  
8  
12  
0
4000  
1000  
2000  
3000  
0
50  
100  
150  
CODE  
200  
250  
200  
400  
CODE  
600  
800  
1000  
0
CODE  
Figure 5. AD5330 Typical INL Plot  
Figure 6. AD5331 Typical INL Plot  
Figure 7. AD5340 Typical INL Plot  
0.3  
1.0  
0.6  
T
= 25؇C  
T
V
= 25؇C  
T
V
= 25؇C  
A
A
A
V = 5V  
= 5V  
= 5V  
DD  
DD  
DD  
0.4  
0.2  
0.2  
0.5  
0
0.1  
0
0
0.1  
0.2  
0.4  
0.6  
0.5  
1.0  
0.2  
0.3  
0
50  
100  
150  
200  
250  
0
0
1000  
2000  
CODE  
3000  
4000  
200  
400  
600  
CODE  
800  
1000  
CODE  
Figure 8. AD5330 Typical DNL Plot  
Figure 9. AD5331 Typical DNL Plot  
Figure 10. AD5340 Typical DNL Plot  
1.00  
1.0  
1.00  
V
V
= 5V  
= 3V  
V
T
= 5V  
= 25؇C  
DD  
DD  
V
V
= 5V  
DD  
0.75  
0.50  
0.25  
0
0.75  
0.50  
REF  
A
= 2V  
REF  
0.5  
0.0  
MAX DNL MAX INL  
GAIN ERROR  
0.25  
MAX INL  
MAX DNL  
0.00  
MIN DNL  
MIN INL  
0.25  
0.50  
0.75  
1.00  
0.25  
0.50  
0.75  
MIN INL MIN DNL  
OFFSET ERROR  
0.5  
1.0  
1.00  
40  
0
40  
80  
120  
2
3
4
5
40  
0
40  
80  
120  
V
V  
TEMPERATURE ؇C  
REF  
TEMPERATURE ؇C  
Figure 11. AD5330 INL and DNL  
Error vs. VREF  
Figure 12. AD5330 INL Error and  
DNL Error vs. Temperature  
Figure 13. AD5330 Offset Error  
and Gain Error vs. Temperature  
–11–  
REV. 0  
AD5330/AD5331/AD5340/AD5341  
300  
250  
200  
150  
100  
0.2  
5
T
= 25؇C  
A
ؠ
T
V
= 25 C  
A
0.1  
V
= 2V  
5V SOURCE  
3V SOURCE  
REF  
= 2V  
REF  
4
V
V
= 5.5V  
= 3.6V  
DD  
GAIN ERROR  
0
0.1  
0.2  
0.3  
0.4  
3
2
1
0
DD  
OFFSET ERROR  
3V SINK  
50  
0
5V SINK  
0.5  
0.6  
ZERO-SCALE  
FULL-SCALE  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
DAC CODE  
V
Volts  
SINK/SOURCE CURRENT mA  
DD  
Figure 16. Supply Current vs. DAC  
Code  
Figure 15. VOUT Source and Sink  
Current Capability  
Figure 14. Offset Error and Gain  
Error vs. VDD  
1800  
0.5  
300  
T
= 25؇C  
A
T
= 25؇C  
T
= 25؇C  
A
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
A
0.4  
0.3  
0.2  
0.1  
0
200  
100  
0
V
= 5V  
DD  
V
= 3V  
DD  
0
1
2
3
4
5
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V Volts  
LOGIC  
V
Volts  
V
Volts  
DD  
DD  
Figure 19. Supply Current vs. Logic  
Input Voltage  
Figure 18. Power-Down Current vs.  
Supply Voltage  
Figure 17. Supply Current vs. Supply  
Voltage  
ؠ
ؠ
V
T
= 5V  
= 25؇C  
T
V
V
= 25 C  
= 5V  
T
V
V
= 25 C  
= 5V  
DD  
A
A
A
DD  
DD  
CH2  
CH1  
CLK  
= 2V  
= 2V  
REF  
REF  
CH1  
CH2  
CH1  
CH2  
V
DD  
V
A
OUT  
V
OUT  
V
A
PD  
OUT  
CH1 500mV, CH2 5V, TIME BASE = 1s/DIV  
CH1 2V, CH2 200mV, TIME BASE = 200s/DIV  
CH1 1V, CH2 5V, TIME BASE = 5s/DIV  
Figure 21. Power-On Reset to 0 V  
Figure 22. Exiting Power-Down to  
Midscale  
Figure 20. Half-Scale Settling (1/4 to  
3/4 Scale Code Change)  
–12–  
REV. 0  
AD5330/AD5331/AD5340/AD5341  
10  
0.917  
0.916  
0.915  
0.914  
0.913  
0.912  
0.911  
0.910  
0.909  
0.908  
0.907  
0.906  
0.905  
0.904  
0.903  
0
10  
20  
30  
V
= 3V  
DD  
V
= 5V  
DD  
40  
50  
60  
80 90 100 110 120 130 140 150 160 170 180 190 200  
0.01  
0.1  
1
10  
100  
1k  
10k  
250ns/DIV  
I
A  
DD  
FREQUENCY kHz  
Figure 23. IDD Histogram with V DD  
3 V and VDD = 5 V  
=
Figure 24. AD5340 Major-Code Tran-  
sition Glitch Energy  
Figure 25. Multiplying Bandwidth  
(Small-Signal Frequency Response)  
0.4  
V
= 5V  
DD  
T
= 25؇C  
A
0.2  
0
0.2  
0
1
2
3
4
5
V
Volts  
REF  
Figure 26. Full-Scale Error vs. VREF  
FUNCTIONAL DESCRIPTION  
where:  
The AD5330/AD5331/AD5340/AD5341 are single resistor-string  
DACs fabricated on a CMOS process with resolutions of 8, 10,  
12, and 12 bits, respectively. They are written to using a parallel  
interface. They operate from single supplies of 2.5 V to 5.5 V and  
the output buffer amplifiers offer rail-to-rail output swing. The  
AD5330, AD5340, and AD5341 have a reference input that may  
be buffered to draw virtually no current from the reference  
source. The reference input of the AD5331 is unbuffered. The  
devices have a power-down feature that reduces current con-  
sumption to only 80 nA @ 3 V.  
D = decimal equivalent of the binary code which is loaded to the  
DAC register:  
0–255 for AD5330 (8 Bits)  
0–1023 for AD5331 (10 Bits)  
0–4095 for AD5340/AD5341 (12 Bits)  
N = DAC resolution  
Gain = Output Amplifier Gain (1 or 2)  
V
REF  
Digital-to-Analog Section  
The architecture of one DAC channel consists of a reference  
buffer and a resistor-string DAC followed by an output buffer  
amplifier. The voltage at the VREF pin provides the reference  
voltage for the DAC. Figure 27 shows a block diagram of the  
DAC architecture. Since the input coding to the DAC is straight  
binary, the ideal output voltage is given by:  
REFERENCE  
BUFFER  
BUF  
GAIN  
INPUT  
REGISTER  
DAC  
REGISTER  
RESISTOR  
STRING  
V
OUT  
OUTPUT  
BUFFER AMPLIFIER  
D
2N  
VOUT = VREF  
×
× Gain  
Figure 27. Single DAC Channel Architecture  
–13–  
REV. 0  
AD5330/AD5331/AD5340/AD5341  
Resistor String  
PARALLEL INTERFACE  
The resistor string section is shown in Figure 28. It is simply a  
string of resistors, each of value R. The digital code loaded to  
the DAC register determines at what node on the string the  
voltage is tapped off to be fed into the output amplifier. The  
voltage is tapped off by closing one of the switches connecting  
the string to the amplifier. Because it is a string of resistors, it  
is guaranteed monotonic.  
The AD5330, AD5331, and AD5340 load their data as a single  
8-, 10-, or 12-bit word, while the AD5341 loads data as a low  
byte of eight bits and a high byte containing four bits.  
Double-Buffered Interface  
The AD5330/AD5331/AD5340/AD5341 DACs all have double-  
buffered interfaces consisting of an input register and a DAC  
register. DAC data, BUF, and GAIN inputs are written to the input  
register under control of the Chip Select (CS) and Write (WR).  
V
REF  
Access to the DAC register is controlled by the LDAC function.  
When LDAC is high, the DAC register is latched and the input  
register may change state without affecting the contents of the  
DAC register. However, when LDAC is brought low, the DAC  
register becomes transparent and the contents of the input register  
are transferred to it. The gain and buffer control signals are also  
double-buffered and are only updated when LDAC is taken low.  
R
R
R
TO OUTPUT  
AMPLIFIER  
Double-buffering is also useful where the DAC data is loaded in  
two bytes, as in the AD5341, because it allows the whole data  
word to be assembled in parallel before updating the DAC register.  
This prevents spurious outputs that could occur if the DAC  
register were updated with only the high byte or the low byte.  
R
R
These parts contain an extra feature whereby the DAC regis-  
ter is not updated unless its input register has been updated  
since the last time that LDAC was brought low. Normally,  
when LDAC is brought low, the DAC register is filled with the  
contents of the input register. In the case of the AD5330/AD5331/  
AD5340/AD5341, the part will only update the DAC register if  
the input register has been changed since the last time the DAC  
register was updated. This removes unnecessary crosstalk.  
Figure 28. Resistor String  
DAC Reference Input  
There is a reference input pin for the DAC. The reference input  
is buffered on the AD5330/AD5340/AD5341 but can be config-  
ured as unbuffered also. The reference input of the AD5331 is  
unbuffered. The buffered/unbuffered option is controlled by the  
BUF pin.  
Clear Input (CLR)  
CLR is an active low, asynchronous clear that resets the input and  
DAC registers.  
In buffered mode (BUF = 1), the current drawn from an external  
reference voltage is virtually zero as the impedance is at least  
10 M. The reference input range is 1 V to 5 V with a 5 V supply.  
Chip Select Input (CS)  
CS is an active low input that selects the device.  
In unbuffered mode (BUF = 0), the user can have a reference  
voltage as low as 0.25 V and as high as VDD since there is no  
restriction due to headroom and footroom of the reference ampli-  
fier. The impedance is still large at typically 180 kfor 0–VREF  
mode and 90 kfor 0–2 VREF mode. If there is an external  
buffered reference (e.g., REF192) there is no need to use the  
on-chip buffer.  
Write Input (WR)  
WR is an active low input that controls writing of data to the  
device. Data is latched into the input register on the rising edge  
of WR.  
Load DAC Input (LDAC)  
LDAC transfers data from the input register to the DAC register  
(and hence updates the outputs). Use of the LDAC function enables  
double-buffering of the DAC data, GAIN, and BUF. There  
are two LDAC modes:  
Output Amplifier  
The output buffer amplifier is capable of generating output  
voltages to within 1 mV of either rail. Its actual range depends  
on VREF, GAIN, the load on VOUT, and offset error.  
Synchronous Mode: In this mode the DAC register is updated  
after new data is read in on the rising edge of the WR input.  
LDAC can be tied permanently low or pulsed as in Figure 1.  
If a gain of 1 is selected (GAIN = 0), the output range is 0.001 V  
to VREF  
.
If a gain of 2 is selected (GAIN = 1), the output range is 0.001 V  
to 2 VREF. However, because of clamping, the maximum output  
is limited to VDD – 0.001 V.  
Asynchronous Mode: In this mode the outputs are not updated  
at the same time that the input register is written to. When LDAC  
goes low, the DAC register is updated with the contents of the  
input register.  
The output amplifier is capable of driving a load of 2 kto  
GND or VDD, in parallel with 500 pF to GND or VDD. The  
source and sink capabilities of the output amplifier can be seen  
in Figure 15.  
High-Byte Enable Input (HBEN)  
High-Byte Enable is a control input on the AD5341 only that  
determines if data is written to the high-byte input register or  
the low-byte input register.  
The slew rate is 0.7 V/µs with a half-scale settling time to  
0.5 LSB (at eight bits) of 6 µs with the output unloaded. See  
Figure 20.  
–14–  
REV. 0  
AD5330/AD5331/AD5340/AD5341  
The low data byte of the AD5341 consists of data bits 0 to 7 at  
data inputs DB0 to DB7, while the high byte consists of data  
bits 8 to 11 at data inputs DB0 to DB3 as shown in Figure 29.  
DB4 to DB7 are ignored during a high-byte write, but they may  
be used for data to set up the reference input as buffered/  
unbuffered, and buffer amplifier gain. See Figure 33.  
reduced when the DAC is not in use by putting it into power-  
down mode, which is selected by taking pin PD low.  
When the PD pin is high, the DAC works normally with a  
typical power consumption of 140 µA at 5 V (115 µA at 3 V).  
In power-down mode, however, the supply current falls to  
200 nA at 5 V (80 nA at 3 V) when the DAC is powered-down.  
Not only does the supply current drop, but the output stage is  
also internally switched from the output of the amplifier mak-  
ing it open-circuit. This has the advantage that the output is  
three-state while the part is in power-down mode and pro-  
vides a defined input condition for whatever is connected to  
the output of the DAC amplifier. The output stage is illus-  
trated in Figure 30.  
HIGH BYTE  
X
X
X
X
DB11 DB10 DB9 DB8  
LOW BYTE  
DB5 DB4  
DB2  
DB1 DB0  
DB7 DB6  
X = UNUSED BIT  
DB3  
Figure 29. Data Format for AD5341  
POWER-ON RESET  
The AD5330/AD5331/AD5340/AD5341 are provided with a  
power-on reset function, so that they power up in a defined state.  
The power-on state is:  
RESISTOR  
STRING DAC  
AMPLIFIER  
V
OUT  
POWER-DOWN  
CIRCUITRY  
• Normal Operation  
• Reference Input Unbuffered  
• 0 – VREF Output Range  
• Output Voltage Set to 0 V  
Figure 30. Output Stage During Power-Down  
The bias generator, the output amplifier, the resistor string,  
and all other associated linear circuitry are shut down when  
the power-down mode is activated. However, the contents  
of the registers are unaffected when in power-down. The time  
to exit power-down is typically 2.5 µs for VDD = 5 V and 5 µs  
when VDD = 3 V. This is the time from a rising edge on the  
PD pin to when the output voltage deviates from its power-  
down voltage. See Figure 22.  
Both input and DAC registers are filled with zeros and remain so  
until a valid write sequence is made to the device. This is  
particularly useful in applications where it is important to know  
the state of the DAC outputs while the device is powering up.  
POWER-DOWN MODE  
The AD5330/AD5331/AD5340/AD5341 have low power con-  
sumption, dissipating only 0.35 mW with a 3 V supply and  
0.7 mW with a 5 V supply. Power consumption can be further  
Table I. AD5330/AD5331/AD5340 Truth Table  
CLR  
LDAC  
CS  
WR  
Function  
1
1
0
1
1
1
1
1
X
1
0
0
1
X
1
X
01  
01  
X
No Data Transfer  
No Data Transfer  
Clear All Registers  
Load Input Register  
Load Input Register and DAC Register  
Update DAC Register  
X
X
0
0
X
X = don’t care.  
Table II. AD5341 Truth Table  
CLR  
LDAC  
CS  
WR  
HBEN  
Function  
1
1
0
1
1
1
1
1
1
1
X
1
1
0
0
0
1
X
1
X
01  
01  
01  
01  
X
X
X
X
0
1
0
No Data Transfer  
No Data Transfer  
Clear All Registers  
Load Low-Byte Input Register  
Load High-Byte Input Register  
Load Low-Byte Input Register and DAC Register  
Load High-Byte Input Register and DAC Register  
Update DAC Register  
X
X
0
0
0
0
X
1
X
X = don’t care.  
–15–  
REV. 0  
AD5330/AD5331/AD5340/AD5341  
SUGGESTED DATABUS FORMATS  
APPLICATIONS INFORMATION  
In most applications GAIN and BUF are hard-wired. However,  
if more flexibility is required, they can be included in a databus.  
This enables you to software program GAIN, giving the option  
of doubling the resolution in the lower half of the DAC range.  
In a bused system, GAIN and BUF may be treated as data inputs  
since they are written to the device during a write operation and  
take effect when LDAC is taken low. This means that the refer-  
ence buffers and the output amplifier gain of multiple DAC  
devices can be controlled using common GAIN and BUF lines.  
Typical Application Circuits  
The AD5330/AD5331/AD5340/AD5341 can be used with a  
wide range of reference voltages, especially if the reference inputs  
are configured to be unbuffered, in which case the devices offer  
full, one-quadrant multiplying capability over a reference range  
of 0.25 V to VDD. More typically, these devices may be used with a  
fixed, precision reference voltage. Figure 34 shows a typical  
setup for the devices when using an external reference connected to  
the unbuffered reference inputs. If the reference inputs are unbuf-  
fered, the reference input range is from 0.25 V to VDD, but if the  
on-chip reference buffers are used, the reference range is reduced.  
Suitable references for 5 V operation are the AD780 and REF192.  
For 2.5 V operation, a suitable external reference would be the  
AD589, a 1.23 V bandgap reference.  
In the case of the AD5330 this means that the databus must be  
wider than eight bits. The AD5331 and AD5340 databuses must  
be at least 10 and 12 bits wide respectively and are best suited  
to a 16-bit databus system.  
Examples of data formats for putting GAIN and BUF on a 16-  
bit databus are shown in Figure 31. Note that any unused bits  
above the actual DAC data may be used for BUF and GAIN.  
DAC devices can be controlled using common GAIN and  
BUF lines.  
V
= 2.5V TO 5.5V  
DD  
10F  
0.1F  
AD5330  
V
IN  
X
X
X
X
X
DB6  
DB7  
DB5  
BUF GAIN  
BUF GAIN  
X
X
X
X
X
DB4 DB3 DB2 DB1 DB0  
V
DD  
EXT  
REF  
V
V
REF  
OUT  
AD5331  
V
OUT  
DB9 DB8 DB7 DB6 DB5  
DB0  
DB0  
DB4 DB3 DB2 DB1  
GND  
AD5330/AD5331/  
AD5340/AD5341  
AD5340  
DB10 DB9 DB8 DB7 DB6 DB5 DB3 DB2 DB1  
DB4  
BUF GAIN  
X
X
DB11  
AD780/REF192  
WITH V = 5V  
DD  
X = UNUSED BIT  
GND  
OR  
Figure 31. GAIN and BUF Data on a 16-Bit Bus  
AD589 WITH V = 2.5V  
DD  
The AD5341 is a 12-bit device that uses byte load, so only four  
bits of the high byte are actually used as data. Two of the unused  
bits can be used for GAIN and BUF data by connecting them  
to the GAIN and BUF inputs; e.g., Bits 6 and 7, as shown in  
Figures 32 and 33.  
Figure34. AD5330/AD5331/AD5340/AD5341Using  
External Reference  
Driving VDD From the Reference Voltage  
If an output range of zero to VDD is required, the simplest solu-  
tion is to connect the reference inputs to VDD. As this supply may  
not be very accurate, and may be noisy, the devices may be  
powered from the reference voltage, for example using a 5 V  
reference such as the ADM663 or ADM666, as shown in  
Figure 35.  
8-BIT  
DATA BUS  
DATA  
INPUTS  
DB DB  
6
7
BUF  
AD5341  
GAIN  
LDAC  
CLR  
CS  
6V TO 16V  
WR  
10F  
0.1F  
HBEN  
V
IN  
Figure 32. AD5341 Data Format for Byte Load with GAIN  
and BUF Data on 8-Bit Bus  
ADM663/ADM666  
SENSE  
V
DD  
In this case, the low byte is written first in a write operation  
with HBEN = 0. Bits 6 and 7 of DAC data will be written into  
GAIN and BUF registers but will have no effect. The high byte  
is then written. Only the lower four bits of data are written into the  
DAC high byte register, so Bits 6 and 7 can be GAIN and BUF  
data.  
V
V
OUT(2)  
REF  
V
OUT  
VSET  
SHDN  
GND  
0.1F  
AD5330/AD5331/  
AD5340/AD5341  
GND  
LDAC is used to update the DAC, GAIN and BUF values.  
HIGH BYTE  
Figure 35. Using an ADM663/ADM666 as Power and Refer-  
encetoAD5330/AD5331/AD5340/AD5341  
BUF GAIN  
X
X
DB11 DB10 DB9 DB8  
LOW BYTE  
DB5 DB4  
DB2  
DB7 DB6  
DB3  
DB1 DB0  
X = UNUSED BIT  
Figure 33. AD5341 with GAIN and BUF Data on 8-Bit Bus  
–16–  
REV. 0  
AD5330/AD5331/AD5340/AD5341  
Bipolar Operation Using the AD5330/AD5331/AD5340/AD5341  
The AD5330/AD5331/AD5340/AD5341 have been designed  
for single supply operation, but bipolar operation is achievable  
using the circuit shown in Figure 36. The circuit shown has been  
configured to achieve an output voltage range of –5 V < VO <  
+5 V. Rail-to-rail operation at the amplifier output is achievable  
using an AD820 or OP295 as the output amplifier.  
The 74HC139 is used as a 2- to 4-line decoder to address any  
of the DACs in the system. To prevent timing errors, the enable  
input should be brought to its inactive state while the coded  
address inputs are changing state. Figure 37 shows a diagram of a  
typical setup for decoding multiple devices in a system. Once  
data has been written sequentially to all DACs in a system, all the  
DACs can be updated simultaneously using a common LDAC  
line. A common CLR line can also be used to reset all DAC  
outputs to zero.  
The output voltage for any input code can be calculated as  
follows:  
VO = [(1 + R4/R3) × (R2/(R1 + R2) × (2 × VREF × D/2N)] – R4 × VREF/R3  
AD5330/AD5331/  
AD5340/AD5341  
where:  
D is the decimal equivalent of the code loaded to the DAC, N is  
DAC resolution and VREF is the reference voltage input.  
HBEN*  
WR  
LDAC  
CLR  
CS  
HBEN  
WR  
LDAC  
CLR  
DATA  
INPUTS  
With:  
VREF = 2.5 V  
R1 = R3 = 10 kΩ  
AD5330/AD5331/  
AD5340/AD5341  
R2 = R4 = 20 kand VDD = 5 V.  
V
OUT = (10 × D/2N) – 5  
HBEN*  
WR  
DATA  
INPUTS  
LDAC  
CLR  
CS  
V
= 5V  
V
DD  
DD  
R4  
20k⍀  
V
CC  
1G  
1A  
1B  
10F  
0.1F  
ENABLE  
1Y0  
1Y1  
1Y2  
+5V  
AD5330/AD5331/  
AD5340/AD5341  
R3  
10k⍀  
CODED  
ADDRESS  
74HC139  
DGND  
HBEN*  
V
؎5V  
IN  
WR  
DATA  
INPUTS  
V
DD  
EXT  
V
LDAC  
CLR  
CS  
V
1Y3  
REF  
REF  
OUT  
5V  
0.1F  
AD5330/AD5331/  
AD5340/AD5341  
GND  
R1  
10k⍀  
V
OUT  
AD5330/AD5331/  
AD5340/AD5341  
AD780/REF192  
WITH V = 5V  
R2  
20k⍀  
DD  
OR  
HBEN*  
WR  
GND  
AD589 WITH V = 2.5V  
DD  
DATA  
INPUTS  
LDAC  
CLR  
CS  
Figure 36. Bipolar Operation using the AD5330/AD5331/  
AD5340/AD5341  
*AD5341 ONLY  
Figure 37. Decoding Multiple DAC Devices  
Decoding Multiple AD5330/AD5331/AD5340/AD5341  
The CS pin on these devices can be used in applications to decode  
a number of DACs. In this application, all DACs in the system  
receive the same data and WR pulses, but only the CS to one of  
the DACs will be active at any one time, so data will only be  
written to the DAC whose CS is low. If multiple AD5341s are  
being used, a common HBEN line will also be required to  
determine if the data is written to the high-byte or low-byte  
register of the selected DAC.  
–17–  
REV. 0  
AD5330/AD5331/AD5340/AD5341  
Programmable Current Source  
Power Supply Bypassing and Grounding  
Figure 38 shows the AD5330/AD5331/AD5340/AD5341 used  
as the control element of a programmable current source. In this  
example, the full-scale current is set to 1 mA. The output volt-  
age from the DAC is applied across the current setting resistor  
of 4.7 kin series with the 470 adjustment potentiometer,  
which gives an adjustment of about 5%. Suitable transistors to  
place in the feedback loop of the amplifier include the BC107  
and the 2N3904, which enable the current source to operate  
from a minimum VSOURCE of 6 V. The operating range is deter-  
mined by the operating characteristics of the transistor. Suitable  
amplifiers include the AD820 and the OP295, both having rail-  
to-rail operation on their outputs. The current for any digital  
input code and resistor value can be calculated as follows:  
In any circuit where accuracy is important, careful consideration  
of the power supply and ground return layout helps to ensure  
the rated performance. The printed circuit board on which the  
AD5330/AD5331/AD5340/AD5341 is mounted should be  
designed so that the analog and digital sections are separated,  
and confined to certain areas of the board. If the device is in a  
system where multiple devices require an AGND-to-DGND  
connection, the connection should be made at one point only.  
The star ground point should be established as closely as pos-  
sible to the device. The AD5330/AD5331/AD5340/AD5341  
should have ample supply bypassing of 10 µF in parallel with  
0.1 µF on the supply located as close to the package as pos-  
sible, ideally right up against the device. The 10 µF capacitors  
are the tantalum bead type. The 0.1 µF capacitor should have  
low Effective Series Resistance (ESR) and Effective Series Induc-  
tance (ESI), like the common ceramic types that provide a low  
impedance path to ground at high frequencies to handle tran-  
sient currents due to internal logic switching.  
D
I = G × VREF  
×
mA  
(2N × R)  
Where:  
G is the gain of the buffer amplifier (1 or 2)  
The power supply lines of the device should use as large a trace  
as possible to provide low impedance paths and reduce the effects  
of glitches on the power supply line. Fast switching signals such  
as clocks should be shielded with digital ground to avoid radiat-  
ing noise to other parts of the board, and should never be run  
near the reference inputs. Avoid crossover of digital and ana-  
log signals. Traces on opposite sides of the board should run  
at right angles to each other. This reduces the effects of feed-  
through through the board. A microstrip technique is by far  
the best, but not always possible with a double-sided board. In  
this technique, the component side of the board is dedicated to  
ground plane while signal traces are placed on the solder side.  
D is the digital equivalent of the digital input code  
N is the DAC resolution (8, 10, or 12 bits)  
R is the sum of the resistor plus adjustment potentiometer in kΩ  
V
= 5V  
DD  
10F  
0.1F  
0.1F  
V
SOURCE  
V
IN  
LOAD  
5V  
V
DD  
EXT  
REF  
V
V
V
REF  
OUT  
OUT  
AD820/  
OP295  
AD5330/AD5331/  
AD5340/AD5341  
GND  
AD780/REF192  
WITH V = 5V  
4.7k⍀  
470⍀  
DD  
GND  
Figure 38. Programmable Current Source  
–18–  
REV. 0  
AD5330/AD5331/AD5340/AD5341  
Table III. Overview of AD53xx Parallel Devices  
Part No.  
Resolution DNL  
VREF Pins  
Settling Time  
Additional Pin Functions  
Package  
Pins  
SINGLES  
AD5330  
AD5331  
AD5340  
AD5341  
BUF  
GAIN  
HBEN  
CLR  
8
0.25  
0.5  
1.0  
1.0  
1
1
1
1
6 µs  
7 µs  
8 µs  
8 µs  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
20  
20  
24  
20  
10  
12  
12  
DUALS  
AD5332  
AD5333  
AD5342  
AD5343  
8
0.25  
0.5  
1.0  
1.0  
2
2
2
1
6 µs  
7 µs  
8 µs  
8 µs  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
20  
24  
28  
20  
10  
12  
12  
QUADS  
AD5334  
AD5335  
AD5336  
AD5344  
8
0.25  
0.5  
0.5  
1.0  
2
2
4
4
6 µs  
7 µs  
7 µs  
8 µs  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
24  
24  
28  
28  
10  
10  
12  
Table IV. Overview of AD53xx Serial Devices  
Part No.  
Resolution  
No. of DACs  
DNL  
Interface  
Settling Time  
Package  
Pins  
SINGLES  
AD5300  
AD5310  
AD5320  
8
10  
12  
1
1
1
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
4 µs  
6 µs  
8 µs  
SOT-23, MicroSOIC  
SOT-23, MicroSOIC  
SOT-23, MicroSOIC  
6, 8  
6, 8  
6, 8  
AD5301  
AD5311  
AD5321  
8
10  
12  
1
1
1
0.25  
0.5  
1.0  
2-Wire  
2-Wire  
2-Wire  
6 µs  
7 µs  
8 µs  
SOT-23, MicroSOIC  
SOT-23, MicroSOIC  
SOT-23, MicroSOIC  
6, 8  
6, 8  
6, 8  
DUALS  
AD5302  
AD5312  
AD5322  
8
10  
12  
2
2
2
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
6 µs  
7 µs  
8 µs  
MicroSOIC  
MicroSOIC  
MicroSOIC  
8
8
8
AD5303  
AD5313  
AD5323  
8
10  
12  
2
2
2
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
6 µs  
7 µs  
8 µs  
TSSOP  
TSSOP  
TSSOP  
16  
16  
16  
QUADS  
AD5304  
AD5314  
AD5324  
8
10  
12  
4
4
4
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
6 µs  
7 µs  
8 µs  
MicroSOIC  
MicroSOIC  
MicroSOIC  
10  
10  
10  
AD5305  
AD5315  
AD5325  
8
10  
12  
4
4
4
0.25  
0.5  
1.0  
2-Wire  
2-Wire  
2-Wire  
6 µs  
7 µs  
8 µs  
MicroSOIC  
MicroSOIC  
MicroSOIC  
10  
10  
10  
AD5306  
AD5316  
AD5326  
8
10  
12  
4
4
4
0.25  
0.5  
1.0  
2-Wire  
2-Wire  
2-Wire  
6 µs  
7 µs  
8 µs  
TSSOP  
TSSOP  
TSSOP  
16  
16  
16  
AD5307  
AD5317  
AD5327  
8
10  
12  
4
4
4
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
6 µs  
7 µs  
8 µs  
TSSOP  
TSSOP  
TSSOP  
16  
16  
16  
Visit our web-page at http://www.analog.com/support/standard_linear/selection_guides/AD53xx.html  
–19–  
REV. 0  
AD5330/AD5331/AD5340/AD5341  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
20-Lead Thin Shrink Small Outline Package TSSOP  
(RU-20)  
0.260 (6.60)  
0.252 (6.40)  
20  
11  
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
1
10  
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
8؇  
0؇  
0.0256 (0.65)  
BSC  
0.0118 (0.30)  
0.0075 (0.19)  
0.028 (0.70)  
0.020 (0.50)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
24-Lead Thin Shrink Small Outline Package TSSOP  
(RU-24)  
0.311 (7.90)  
0.303 (7.70)  
24  
13  
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
1
12  
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
8؇  
0؇  
0.0256 (0.65) 0.0118 (0.30)  
0.028 (0.70)  
0.020 (0.50)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
BSC  
0.0075 (0.19)  
–20–  
REV. 0  

相关型号:

AD5341BRU-REEL

2.5 V to 5.5 V, 115 μA, Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5341BRU-REEL7

2.5 V to 5.5 V, 115 μA, Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5341BRUZ

2.5V to 5.5V, 115&#181;A Parallel Interface Single Voltage Output 12-Bit DAC
ADI

AD5341BRUZ-REEL

暂无描述
ADI

AD5341BRUZ-REEL1

2.5 V to 5.5 V, 115 μA, Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5341BRUZ-REEL7

2.5V to 5.5V, 115&#181;A Parallel Interface Single Voltage Output 12-Bit DAC
ADI

AD5341BRUZ-REEL71

2.5 V to 5.5 V, 115 μA, Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5341BRUZ1

2.5 V to 5.5 V, 115 μA, Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5342

2.5 V to 5.5 V, 115 uA, Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5342BRU

2.5 V to 5.5 V, 230uA, Parallel Interface Dual Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5342BRU-REEL

DUAL, PARALLEL, WORD INPUT LOADING, 8us SETTLING TIME, 12-BIT DAC, PDSO28, PLASTIC, TSSOP-28
ADI

AD5342BRU-REEL7

IC DUAL, PARALLEL, WORD INPUT LOADING, 8 us SETTLING TIME, 12-BIT DAC, PDSO28, TSSOP-28, Digital to Analog Converter
ADI