AD5392BSTZ-5 [ADI]

40-Channel, 3 V/5 V, Single-Supply 12-Bit, denseDAC; 40通道, 3 V / 5 V单电源,12位, denseDAC
AD5392BSTZ-5
型号: AD5392BSTZ-5
厂家: ADI    ADI
描述:

40-Channel, 3 V/5 V, Single-Supply 12-Bit, denseDAC
40通道, 3 V / 5 V单电源,12位, denseDAC

文件: 总40页 (文件大小:1170K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
40-Channel, 3 V/5 V, Single-Supply,  
12-Bit, denseDAC®  
Data Sheet  
AD5381  
FEATURES  
Guaranteed monotonic  
INTEGRATED FUNCTIONS  
Channel monitor  
Simultaneous output update via  
LDAC  
INL error: 1 LSB max  
On-chip 1.25 V/2.5 V, 10 ppm/°C reference  
Temperature range: –40°C to +85°C  
Rail-to-rail output amplifier  
Power-down  
Clear function to user-programmable code  
Amplifier boost mode to optimize slew rate  
User-programmable offset and gain adjust  
Toggle mode enables square wave generation  
Thermal monitors  
Package type: 100-lead LQFP (14 mm × 14 mm)  
User interfaces:  
APPLICATIONS  
Variable optical attenuators (VOAs)  
Parallel  
Serial (SPI®-/QSPI™-/MICROWIRE™-/DSP-compatible,  
featuring data readback)  
I2C®-compatible  
Level setting (ATE)  
Optical micro-electro-mechanical systems (MEMs)  
Control systems  
Robust 6.5 kV HBM and 2 kV FICDM ESD rating  
Instrumentation  
FUNCTIONAL BLOCK DIAGRAM  
DVDD (×3)  
DGND (×3)  
AVDD (×5)  
AGND (×5)  
DAC_GND (×5)  
REFGND  
REFOUT/REFIN SIGNAL_GND (×5)  
PD  
SER/PAR  
AD5381  
1.25V/2.5V  
REFERENCE  
FIFO EN  
CS/(SYNC/AD0)  
WR/(DCEN/AD1)  
SDO  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
INPUT  
REG0  
DAC  
REG0  
DAC 0  
VOUT0  
DB11/(DIN/SDA)  
12  
12  
m REG0  
c REG0  
DB10/(SCLK/SCL)  
FIFO  
+
STATE  
MACHINE  
+
2
DB9/(SPI/I C)  
R
R
R
R
R
R
R
R
DB8  
INTERFACE  
CONTROL  
LOGIC  
12  
INPUT  
REG1  
DAC  
REG1  
DAC 1  
DB0  
CONTROL  
LOGIC  
VOUT1  
VOUT2  
VOUT3  
VOUT4  
VOUT5  
VOUT6  
12  
12  
A5  
A0  
m REG1  
c REG1  
REG0  
REG1  
RESET  
BUSY  
CLR  
12  
INPUT  
REG6  
DAC  
REG6  
DAC 6  
POWER-ON  
RESET  
12  
12  
m REG6  
c REG6  
12  
INPUT  
REG7  
DAC  
REG7  
VOUT0………VOUT38  
DAC 7  
VOUT7  
VOUT8  
12  
12  
m REG7  
c REG7  
39-TO-1  
MUX  
VOUT38  
×5  
VOUT39/MON_OUT  
LDAC  
Figure 1.  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2004–2012 Analog Devices, Inc. All rights reserved.  
AD5381  
Data Sheet  
TABLE OF CONTENTS  
General Description......................................................................... 3  
Asynchronous Clear Function.................................................. 25  
Specifications..................................................................................... 4  
AD5381-5 Specifications............................................................. 4  
AD5381-3 Specifications............................................................. 6  
AC Characteristics........................................................................ 7  
Timing Characteristics..................................................................... 8  
Serial Interface Timing ................................................................ 8  
I2C Serial Interface Timing........................................................ 10  
Parallel Interface Timing........................................................... 11  
Absolute Maximum Ratings.......................................................... 13  
ESD Caution................................................................................ 13  
Pin Configuration and Function Descriptions........................... 14  
Terminology .................................................................................... 17  
Typical Performance Characteristics ........................................... 18  
Functional Description.................................................................. 21  
DAC Architecture—General..................................................... 21  
Data Decoding............................................................................ 21  
On-Chip Special Function Registers (SFR) ............................ 22  
SFR Commands.......................................................................... 22  
Hardware Functions....................................................................... 25  
Reset Function ............................................................................ 25  
and  
Functions...................................................... 25  
LDAC  
BUSY  
FIFO Operation in Parallel Mode............................................ 25  
Power-On Reset.......................................................................... 25  
Power-Down ............................................................................... 25  
Interfaces.......................................................................................... 26  
DSP-, SPI-, MICROWIRE-Compatible Serial Interfaces ..... 26  
I2C Serial Interface ..................................................................... 28  
Parallel Interface......................................................................... 30  
Microprocessor Interfacing....................................................... 31  
Application Information................................................................ 33  
Power Supply Decoupling ......................................................... 33  
Typical Configuration Circuit .................................................. 33  
Monitor Function....................................................................... 34  
Toggle Mode Function............................................................... 34  
Thermal Monitor Function....................................................... 34  
Optical Attenuators.................................................................... 35  
Utilizing FIFO............................................................................. 35  
Outline Dimensions....................................................................... 37  
Ordering Guide .......................................................................... 37  
REVISION HISTORY  
9/12—Rev. C to Rev. D  
8/05—Rev. A to Rev. B  
Changes to Product Title..................................................................1  
Changes to General Description Section and Table 1 ..................3  
Deleted Table 2; Renumbered Sequentially ...................................3  
Changes to Table 2.............................................................................3  
Changes to Specifications Section...................................................4  
Changes to Absolute Maximum Ratings Section....................... 13  
Changes to Figure 43...................................................................... 35  
Changes to Ordering Guide.......................................................... 37  
5/12—Rev. B to Rev. C  
Changes to Features.......................................................................... 1  
Changes to Table 3............................................................................ 4  
Changes to Table 4............................................................................ 6  
Changes to Output Voltage Settling Time and Slew Rate  
Parameters, Table 5........................................................................... 7  
Changes to t14, t17, and t19 Parameters, Table 6 .............................. 8  
Changes to Table 9.......................................................................... 13  
Changes to Figure 10, Figure 11, and Figure 14 ......................... 18  
Changes to Figure 16 to Figure 18 and Figure 20....................... 19  
Updated Outline Dimensions and Changes to Ordering Guide....37  
6/04—Data Sheet Changed from Rev. 0 to Rev. A  
Changes to Ordering Guide...........................................................36  
5/04—Revision 0: Initial Version  
Rev. D | Page 2 of 40  
Data Sheet  
AD5381  
GENERALDESCRIPTION  
The AD5381 is a complete, single-supply, 40-channel, 12-bit  
denseDAC® availablein a 100-lead LQFP package. All 40 channels  
have an on-chip outputamplifier with rail-to-rail operation.  
The AD5381 includes a programmableinternal 1.25 V/2.5 V,  
10 ppm/°C reference, an on-chip channel monitorfunction that  
multiplexes the analog outputs to a common MON_OUT pin  
for external monitoring, and an output amplifier boost mode,  
which allowsoptimization of the amplifierslew rate. The AD5381  
An input register followed bya DACregister providesdouble  
buffering, allowing the DACoutputsto be updated independ-  
ently or simultaneously using the  
input.  
LDAC  
Each channelhas a programmablegain and offset adjust  
register that allows the userto fully calibrate any DACchan-  
nel. Power consumption is typically 0.25mA/channel with  
boost mode disabled.  
contains a double-buffered parallelinterface featuring 20 ns  
WR  
pulse width, an SPI-/QSPI-/MICROWIRE-/DSP-compatible serial  
interface with interface speeds in excess of 30MHz, and an I2C-  
compatible interface that supports a 400kHzdata transfer rate.  
Table 1. Other Low Voltage Single-Supply DACs inProduct Family  
Linearity Error Package  
Model  
Resolution AVDD Range  
Output Channels  
(LSB)  
Description  
Package Option  
ST-100  
ST-100  
ST-100  
ST-100  
ST-100  
ST-100  
ST-52  
CP-64  
ST-52  
CP-64  
ST-52  
AD5380BSTZ-5  
AD5380BSTZ-3  
AD5382BSTZ-5  
AD5382BSTZ-3  
AD5383BSTZ-5  
AD5383BSTZ-3  
AD5390BSTZ-5  
AD5390BCPZ-5  
AD5390BSTZ-3  
AD5390BCPZ-3  
AD5391BSTZ-5  
AD5391BCPZ-5  
AD5391BSTZ-3  
AD5391BCPZ-3  
AD5392BSTZ-5  
AD5392BCPZ-5  
AD5392BSTZ-3  
AD5392BCPZ-3  
14 Bits  
14 Bits  
14 Bits  
14 Bits  
12 Bits  
12 Bits  
14 Bits  
14 Bits  
14 Bits  
14 Bits  
12 Bits  
12 Bits  
12 Bits  
12 Bits  
14 Bits  
14 Bits  
14 Bits  
14 Bits  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
2.7 V to 3.6 V  
40  
40  
32  
32  
32  
32  
16  
16  
16  
16  
16  
16  
16  
16  
8
4
4
100-Lead LQFP  
100-Lead LQFP  
100-Lead LQFP  
100-Lead LQFP  
100-Lead LQFP  
100-Lead LQFP  
52-Lead LQFP  
64-Lead LFCSP  
52-Lead LQFP  
64-Lead LFCSP  
52-Lead LQFP  
64-Lead LFCSP  
52-Lead LQFP  
64-Lead LFCSP  
52-Lead LQFP  
64-Lead LFCSP  
52-Lead LQFP  
64-Lead LFCSP  
4
4
1
1
3
3
4
4
1
1
1
1
3
CP-64  
ST-52  
CP-64  
ST-52  
8
8
8
3
4
4
CP-64  
ST-52  
CP-64  
Rev. D | Page 3 of 40  
 
AD5381  
Data Sheet  
SPECIFICATIONS  
AD5381-5 SPECIFICATIONS  
AVDD = 4.5 V to 5.5 V; DVDD = 2.7 V to 5.5 V, AGND = DGND = 0 V; external REFIN = 2.5 V; all specifications TMIN to TMAX  
unless otherwise noted.  
,
Table 2.  
Parameter  
AD5381-51  
Unit  
Test Conditions/Comments  
ACCURACY  
Output unloaded  
Resolution  
12  
1
1
Bits  
Relative Accuracy 2 (INL)  
Differential Nonlinearity (DNL)  
Zero-Scale Error  
Offset Error  
LSB max  
LSB max  
mV max  
Guaranteed monotonic over temperature  
Measured at Code 8 in the linear region  
4
4
mV max  
Offset Error TC  
Gain Error  
5
µV/°C typ  
% FSR max  
% FSR max  
ppm FSR/°C typ  
LSB max  
0.05  
0.06  
2
At 25°C  
TMIN to TMAX  
Gain Temperature Coefficient3  
DC Crosstalk3  
1
REFERENCE INPUT/OUTPUT  
Reference Input3  
1% for specified performance, AVDD = 2 × REFIN + 50  
mV  
Reference Input Voltage  
2.5  
V
DC Input Impedance  
Input Current  
1
MΩ min  
µA max  
Typically 100 MΩ  
Typically 30 nA  
10  
Reference Range  
Reference Output4  
1 to AVDD/2 V min/max  
Enabled via CR8 in the AD5381 control register,  
CR10 selects the reference voltage  
Output Voltage  
Reference TC  
2.495/2.505  
1.22/1.28  
10  
15  
800  
V min/max  
V min/max  
ppm/°C max  
ppm/°C max  
Ω typ  
At ambient, optimized for 2.5 V operation. CR10 = 1  
CR10 = 0  
Temperature Range: +25°C to +85°C  
Temperature Range: −40°C to +85°C  
Output Impedance  
OUTPUT CHARACTERISTICS3  
Output Voltage Range2  
Short-Circuit Current  
Load Current  
0/AVDD  
V min/max  
mA max  
mA max  
40  
1
Capacitive Load Stability  
RL = ∞  
200  
1000  
0.6  
pF max  
pF max  
Ω max  
RL = 5 kΩ  
DC Output Impedance  
MONITOR PIN  
Output Impedance  
Three-State Leakage Current  
LOGIC INPUTS (EXCEPT SDA/SCL)3  
VIH, Input High Voltage  
VIL, Input Low Voltage  
DVDD > 3.6 V  
1
100  
kΩ typ  
nA typ  
DVDD = 2.7 V to 5.5 V  
2
V min  
0.8  
0.6  
10  
10  
V max  
V max  
µA max  
pF max  
DVDD ≤ 3.6 V  
Input Current  
Total for all pins;TA = TMIN to TMAX  
Pin Capacitance  
Rev. D | Page 4 of 40  
 
 
Data Sheet  
AD5381  
Parameter  
AD5381-51  
Unit  
Test Conditions/Comments  
LOGIC INPUTS (SDA, SCL ONLY)3  
VIH, Input High Voltage  
VIL, Input Low Voltage  
IIN, Input Leakage Current  
VHYST, Input Hysteresis  
CIN, Input Capacitance  
Glitch Rejection  
0.7 × DVDD  
0.3 × DVDD  
1
0.05 × DVDD V min  
8
V min  
SMBus compatible at DVDD < 3.6 V  
SMBus compatible at DVDD < 3.6 V  
V max  
µA max  
pF typ  
ns max  
50  
Input filtering suppresses noise spikes of less than50 ns  
LOGIC OUTPUTS (  
BUSY  
, SDO)3  
VOL, Output Low Voltage  
VOH, Output High Voltage  
VOL, Output Low Voltage  
0.4  
DVDD – 1  
0.4  
V max  
V min  
V max  
V min  
µA max  
pF typ  
DVDD = 5 V 10%, sinking 200 µA  
DVDD = 5 V 10%, sourcing 200 µA  
DVDD = 2.7 V to 3.6 V, sinking 200 µA  
DVDD = 2.7 V to 3.6 V, sourcing 200 µA  
SDO only  
VOH, Output High Voltage  
High Impedance Leakage Current  
High Impedance Output Capacitance  
LOGIC OUTPUT (SDA)3  
DVDD – 0.5  
1
5
SDO only  
VOL, Output Low Voltage  
0.4  
0.6  
1
V max  
V max  
µA max  
pF typ  
ISINK = 3 mA  
ISINK = 6 mA  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTS  
AVDD  
8
4.5/5.5  
2.7/5.5  
V min/max  
V min/max  
DVDD  
Power Supply Sensitivity3  
∆Midscale/∆ΑVDD  
AIDD  
–85  
0.375  
0.475  
1
dB typ  
mA/channel max  
mA/channel max  
mA max  
Outputs unloaded, boost off; 0.25 mA/channel typ  
Outputs unloaded, boost on.; 0.325 mA /channel typ  
VIH = DVDD, VIL = DGND  
DIDD  
AIDD (Power-Down)  
DIDD (Power-Down)  
Power Dissipation  
20  
20  
80  
µA max  
µA max  
mW max  
Typically 100 nA  
Typically 1 µA  
Outputs unloaded, boost off, AVDD = DVDD = 5 V  
1 AD5381-5 is calibrated using an external 2.5 V reference. Temperature range for all versions: –40°C to +85°C.  
2 Accuracy guaranteed from VOUT = 10 mV to AVDD – 50 mV.  
3 Guaranteed by characterization, not production tested.  
4 Default on the AD5381-5 is 2.5 V. Programmable to 1.25 V via CR10 in the AD5381 control register; operating the AD5381-5 with a 1.25 V reference will lead to  
degraded accuracy specifications.  
Rev. D | Page 5 of 40  
AD5381  
Data Sheet  
AD5381-3 SPECIFICATIONS  
AVDD = 2.7 V to 3.6 V; DVDD = 2.7 V to 5.5 V, AGND = DGND = 0 V; external REFIN = 1.25 V;  
all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter  
AD5381-31  
Unit  
Test Conditions/Comments  
ACCURACY  
Output unloaded  
Resolution  
12  
1
Bits  
LSB max  
Relative Accuracy2 (INL)  
Differential Nonlinearity (DNL)  
Zero-Scale Error  
Offset Error  
1
LSB max  
mV max  
Guaranteed monotonic over temperature  
Measured at Code 16 in the linear region  
4
4
mV max  
Offset Error TC  
Gain Error  
5
µV/°C typ  
% FSR max  
% FSR max  
ppm FSR/°C typ  
LSB max  
0.05  
0.1  
2
At 25 °C  
TMIN to TMAX  
Gain Temperature Coefficient3  
DC Crosstalk3  
1
REFERENCE INPUT/OUTPUT  
Reference Input3  
Reference Input Voltage  
DC Input Impedance  
Input Current  
1.25  
V
1% for specified performance  
Typically 100 MΩ  
Typically 30 nA  
1
MΩ min  
µA max  
V min/max  
10  
Reference Range  
Reference Output 4  
1 to AVDD/2  
Enabled via CR8 in the AD5381 control register  
CR10 selects the reference voltage.  
Output Voltage  
Reference TC  
1.245/1.255  
2.47/2.53  
10  
V min/max  
V min/max  
ppm/°C max  
ppm/°C max  
Ω typ  
At ambient; optimized for 1.25 V operation; CR10 = 0  
CR10 = 1  
Temperature Range: +25°C to +85°C  
Temperature Range: –40°C to +85°C  
15  
800  
Output Impedance  
OUTPUT CHARACTERISTICS3  
Output Voltage Range2  
Short-Circuit Current  
Load Current  
0/AVDD  
V min/max  
mA max  
mA max  
40  
1
Capacitive Load Stability  
RL = ∞  
RL = 5 kΩ  
200  
1000  
0.6  
pF max  
pF max  
Ω max  
DC Output Impedance  
MONITOR PIN  
Output Impedance  
Three-State Leakage Current  
LOGIC INPUTS (EXCEPT SDA/SCL)3  
VIH, Input High Voltage  
VIL, Input Low Voltage  
DVDD > 3.6  
1
100  
kΩ typ  
nA typ  
DVDD = 2.7 V to 3.6 V  
2
V min  
0.8  
0.6  
1
V max  
V max  
DVDD ≤ 3.6  
Input Current  
Pin Capacitance  
µA max  
pF max  
Total for all pins; TA = TMIN to TMAX  
10  
LOGIC INPUTS (SDA, SCL ONLY)3  
VIH, Input High Voltage  
VIL, Input Low Voltage  
IIN, Input Leakage Current  
VHYST, Input Hysteresis  
CIN, Input Capacitance  
Glitch Rejection  
0.7 × DVDD  
0.3 × DVDD  
V min  
V max  
µA max  
V min  
pF typ  
ns max  
SMBus compatible at DVDD < 3.6 V  
SMBus compatible at DVDD < 3.6 V  
1
0.05 × DVDD  
8
50  
Input filtering suppresses noise spikes of less than 50 ns  
Rev. D | Page 6 of 40  
 
Data Sheet  
AD5381  
Parameter  
AD5381-31  
Unit  
Test Conditions/Comments  
LOGIC OUTPUTS (  
, SDO)3  
BUSY  
VOL, Output Low Voltage  
VOH, Output High Voltage  
High Impedance Leakage Current  
High Impedance Output Capacitance  
LOGIC OUTPUT (SDA)3  
0.4  
V max  
V min  
µA max  
pF typ  
Sinking 200 µA  
Sourcing 200 µA  
SDO only  
DVDD – 0.5  
1
5
SDO only  
VOL, Output Low Voltage  
0.4  
0.6  
1
V max  
V max  
µA max  
pF typ  
ISINK = 3 mA  
ISINK = 6 mA  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTS  
AVDD  
8
2.7/3.6  
2.7/5.5  
V min/max  
V min/max  
DVDD  
Power Supply Sensitivity3  
∆Midscale/∆ΑVDD  
AIDD  
–85  
0.375  
0.475  
1
dB typ  
mA/channel max  
mA/channel max  
mA max  
Outputs unloaded, boost off; 0.25 mA/channel typ  
Outputs unloaded, boost on; 0.325 mA/channel typ  
VIH = DVDD, VIL = DGND  
DIDD  
AIDD (Power-Down)  
DIDD (Power-Down)  
Power Dissipation  
20  
20  
µA max  
µA max  
Typically 100 nA  
Typically 1 µA  
48  
mW max  
Outputs unloaded, boost off, AVDD = DVDD = 3 V  
1 AD5381-3 is calibrated using an external 1.25 V reference. Temperature range is –40°C to +85°C.  
2 Accuracy guaranteed from VOUT = 10 mV to AVDD – 50 mV.  
3 Guaranteed by characterization, not production tested.  
4 Default on the AD5381-3 is 1.25 V. Programmable to 2.5 V via CR10 in the AD5381 control register; operating the AD5381-3 with a 2.5 V reference will lead to degraded  
accuracy specifications and limited input code range.  
AC CHARACTERISTICS1  
AVDD = 4.5 V to 5.5 V or 2.7 V to 3.6 V; DVDD = 2.7V to 5.5V; AGND = DGND = 0V.  
Table 4.  
Parameter  
All  
Unit  
Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Output Voltage Settling Time  
1/4 scale to 3/4 scale change settling to 1 LSB  
3
µs typ  
8
µs max  
V/µs typ  
V/µs typ  
nV-s typ  
mV typ  
Slew Rate 2  
1.5  
2.5  
12  
15  
Boost mode off, CR9 = 0  
Boost mode on, CR9 = 1  
Digital-to-Analog Glitch Energy  
Glitch Impulse Peak Amplitude  
DAC-to-DAC Crosstalk  
Digital Crosstalk  
1
nV-s typ  
nV-s typ  
See Terminology section  
0.8  
0.1  
15  
40  
Digital Feedthrough  
Output Noise 0.1 Hz to 10 Hz  
nV-s typ  
µV p-p typ  
µV p-p typ  
Effect of input bus activity on DAC output under test  
External reference, midscale loaded to DAC  
Internal reference, midscale loaded to DAC  
Output Noise Spectral Density  
@ 1 kHz  
@ 10 kHz  
150  
100  
nV/√Hz typ  
nV/√Hz typ  
1 Guaranteed by design and characterization, not production tested.  
2 Slew rate can be programmed via the current boost control bit in the AD5381 control register.  
Rev. D | Page 7 of 40  
 
AD5381  
Data Sheet  
TIMING CHARACTERISTICS  
SERIAL INTERFACE TIMING  
DVDD = 2.7 V to 5.5 V; AVDD= 4.5 V to 5.5 V or 2.7 V to 3.6 V; AGND = DGND = 0 V;  
all specifications TMIN to TMAX, unless otherwise noted.  
Table 5.  
Parameter 1, 2, 3  
Limit at TMIN, TMAX  
Unit  
Description  
t1  
t2  
t3  
t4  
33  
13  
13  
13  
ns min  
ns min  
ns min  
ns min  
SCLK cycle time  
SCLK high time  
SCLK low time  
falling edge to SCLK falling edge setup time  
24th SCLK falling edge to  
SYNC  
4
falling edge  
t5  
13  
33  
10  
50  
ns min  
ns min  
ns min  
ns min  
SYNC  
low time  
4
Minimum  
Minimum  
Minimum  
t6  
SYNC  
SYNC  
SYNC  
high time  
high time in Readback mode  
t7  
t7A  
t8  
t9  
t10  
5
4.5  
30  
ns min  
ns min  
ns max  
Data setup time  
Data hold time  
24th SCLK falling edge to  
falling edge  
4
BUSY  
pulse width low (single channel update)  
t11  
670  
20  
20  
2
ns max  
ns min  
ns min  
µs max  
ns min  
ns min  
µs typ  
BUSY  
24th SCLK falling edge to  
4
falling edge  
t12  
LDAC  
pulse width low  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
LDAC  
BUSY  
BUSY  
LDAC  
rising edge to DAC output response time  
rising edge to falling edge  
0
LDAC  
falling edge to DAC output response time  
100  
3
DAC output settling time  
pulse width low  
CLR  
pulse activation time  
CLR  
20  
40  
ns min  
µs max  
5
t20  
t21  
20  
5
ns max  
ns min  
ns min  
SCLK rising edge to SDO valid  
5
SCLK falling edge to  
rising edge  
SYNC  
rising edge to SCLK rising edge  
5
t22  
8
SYNC  
SYNC  
rising edge to  
falling edge  
t23  
20  
ns min  
LDAC  
1 Guaranteed by design and characterization, not production tested.  
2 All input signals are specified with tr = tf = 5 ns (10% to 90% of VCC) and are timed from a voltage level of 1.2 V.  
3 See Figure 2, Figure 3, Figure 4, and Figure 5.  
4 Standalone mode only.  
5 Daisy-chain mode only.  
200µA  
I
OL  
V
V
(MIN) OR  
(MAX)  
OH  
OL  
TO OUTPUT PIN  
C
L
50pF  
I
200µA  
OH  
Figure 2. Load Circuit for Digital Output Timing  
Rev. D | Page 8 of 40  
 
 
 
 
Data Sheet  
AD5381  
t1  
24  
24  
SCLK  
t3  
t6  
t2  
t5  
t4  
SYNC  
DIN  
t7  
t8 t9  
DB0  
DB23  
t10  
t11  
t13  
BUSY  
t12  
t17  
1
LDAC  
t14  
VOUT1  
t15  
t13  
t17  
2
LDAC  
t16  
VOUT2  
t18  
CLR  
t19  
VOUT  
1
2
LDAC ACTIVE DURING BUSY.  
LDAC ACTIVE AFTER BUSY.  
Figure 3. Serial Interface Timing Diagram (Standalone Mode)  
SCLK  
24  
48  
t7A  
SYNC  
DIN  
DB23  
DB0  
DB23  
DB23  
DB0  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
NOP CONDITION  
DB0  
SDO  
UNDEFINED  
SELECTED REGISTER  
DATA CLOCKED OUT  
Figure 4. Serial Interface Timing Diagram (Data Readback Mode)  
t1  
SCLK  
24  
48  
t3  
t2  
t21  
t7  
t22  
t4  
SYNC  
DIN  
t8 t9  
DB23  
DB0 DB23  
DB0  
INPUT WORD FOR DAC N  
INPUT WORD FOR DAC N + 1  
t20  
DB23  
DB0  
SDO  
UNDEFINED  
INPUT WORD FOR DAC N  
t13  
t23  
LDAC  
Figure 5. Serial Interface Timing Diagram (Daisy-Chain Mode)  
Rev. D | Page 9 of 40  
 
 
 
AD5381  
Data Sheet  
I2C SERIAL INTERFACE TIMING  
DVDD = 2.7 V to 5.5 V; AVDD = 4.5 V to 5.5 V or 2.7 V to 3.6 V; AGND = DGND = 0 V; all specifications TMIN to TMAX  
unless otherwise noted.  
,
Table 6.  
Parameter 1, 2  
Limit at TMIN, TMAX  
Unit  
Description  
FSCL  
t1  
400  
2.5  
0.6  
1.3  
0.6  
100  
0.9  
0
0.6  
0.6  
1.3  
300  
0
kHz max  
µs min  
µs min  
µs min  
µs min  
ns min  
µs max  
µs min  
µs min  
µs min  
µs min  
ns max  
ns min  
ns max  
ns min  
ns max  
ns min  
pF max  
SCL clock frequency  
SCL cycle time  
t2  
t3  
t4  
tHIGH, SCL high time  
tLOW, SCL low time  
tHD,STA, start/repeated start condition hold time  
tSU ,DAT, data setup time  
tHD,DAT, data hold time  
t5  
t6  
3
tHD,DAT, data hold time  
t7  
t8  
t9  
tSU ,STA, setup time for repeated start  
tSU ,STO, stop condition setup time  
tBUF, bus free time between a STOP and a START condition  
tR, rise time of SCL and SDA when receiving  
tR, rise time of SCL and SDA when receiving (CMOS compatible)  
tF, fall time of SDA when transmitting  
tF, fall time of SDA when receiving (CMOS compatible)  
tF, fall time of SCL and SDA when receiving  
tF, fall time of SCL and SDA when transmitting  
Capacitive load for each bus line  
t10  
t11  
300  
0
300  
20 + 0.1 Cb  
400  
4
Cb  
1 Guaranteed by design and characterization, not production tested.  
2 See Figure 6.  
3 A master device must provide a hold time of at least 300 ns for the SDA signal (referred to the VIH min of the SCL signal) in order to bridge the undefined region of  
SCL’s falling edge.  
4 Cb is the total capacitance, in pF, of one bus line. tR and tF are measured between 0.3 DVDD and 0.7 DVDD.  
SDA  
t9  
t3  
t10  
t11  
t4  
SCL  
t4  
t6  
t2  
t1  
t8  
t5  
t7  
START  
CONDITION  
REPEATED  
START  
STOP  
CONDITION  
CONDITION  
Figure 6. I2C-Compatible Serial Interface Timing Diagram  
Rev. D | Page 10 of 40  
 
 
 
Data Sheet  
AD5381  
PARALLEL INTERFACE TIMING  
DVDD = 2.7 V to 5.5 V; AVDD = 4.5 V to 5.5 V or 2.7 V to 3.6 V; AGND = DGND = 0 V; all specifications TMIN to TMAX  
unless otherwise noted.  
,
Table 7.  
Parameter 1, 2, 3  
Limit at TMIN, TMAX  
Unit  
Description  
REG0, REG1, address to  
rising edge setup time  
rising edge hold time  
t0  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
4.5  
4.5  
20  
20  
0
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns max  
ns min  
ns min  
ns max  
ns min  
ns min  
ns min  
µs typ  
ns min  
µsmax  
WR  
WR  
REG0, REG1, address to  
pulse width low  
CS  
pulse width low  
WR  
to  
falling edge setup time  
rising edge hold time  
rising edge setup time  
rising edge hold time  
CS WR  
to  
0
WR CS  
Data to  
4.5  
4.5  
20  
700  
30  
670  
30  
20  
100  
20  
0
WR  
Data to  
WR  
pulse width high  
WR  
Minimum  
4
cycle time (single-channel write)  
t9  
WR  
rising edge to  
4
falling edge  
t10  
WR  
BUSY  
pulse width low (single-channelupdate)  
4, 5  
t11  
BUSY  
rising edge to  
falling edge  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
WR  
LDAC  
pulse width low  
LDAC  
BUSY  
LDAC  
BUSY  
LDAC  
rising edge to DAC output response time  
rising edge to  
rising edge to  
rising edge  
falling edge  
WR  
LDAC  
falling edge to DAC output response time  
100  
8
DAC output settling time, boost mode off  
pulse width low  
CLR  
pulse activation time  
CLR  
20  
12  
1 Guaranteed by design and characterization, not production tested.  
2 All input signals are specified with tR = tR = 5 ns (10% to 90% of DVDD) and timed from a voltage level of 1.2 V.  
3 See Figure 7.  
4 See Figure 29.  
5 Measured with the load circuit of Figure 2.  
Rev. D | Page 11 of 40  
 
AD5381  
Data Sheet  
t0  
t1  
REG0, REG1, A5...A0  
t4  
t5  
t2  
CS  
t9  
t3  
t8  
WR  
t15  
t6  
t7  
DB11...DB0  
BUSY  
t10  
t11  
t13  
t12  
t18  
1
LDAC  
t14  
t16  
VOUT1  
2
LDAC  
t13  
t18  
t17  
VOUT2  
CLR  
t19  
t20  
VOUT  
1
2
LDAC ACTIVE DURING BUSY.  
LDAC ACTIVE AFTER BUSY.  
Figure 7. Parallel Interface Timing Diagram  
Rev. D | Page 12 of 40  
 
Data Sheet  
AD5381  
ABSOLUTEMAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.1  
Stresses abovethoselisted under AbsoluteMaximumRatings  
may cause permanent damageto the device. This is a stress  
rating only; functionaloperation of the device at these orany  
other conditions above thoselisted in the operationalsections  
of this specification is not implied. Exposure to absolute maxi-  
mum rating conditions for extendedperiodsmay affect device  
reliability.  
Table 8.  
Parameter  
Rating  
AVDD to AGND  
–0.3 V to +7 V  
DVDD to DGND  
–0.3 V to +7 V  
Digital Inputs to DGND  
SDA/SCL to DGND  
–0.3 V to DVDD + 0.3 V  
–0.3 V to +7 V  
Digital Outputs to DGND  
REFIN/REFOUT to AGND  
AGND to DGND  
–0.3 V to DVDD + 0.3 V  
–0.3 V to AVDD + 0.3 V  
–0.3 V to +0.3 V  
VOUTx to AGND  
–0.3 V to AVDD + 0.3 V  
–0.3 V to AVDD + 0.3 V  
Analog Inputs to AGND  
Operating Temperature Range  
Commercial (B Version)  
Storage Temperature Range  
JunctionTemperature (TJ MAX  
100-Lead LQFP Package  
θJAThermal Impedance  
Reflow Soldering  
–40°C to +85°C  
–65°C to +150°C  
150°C  
)
44°C/W  
230°C  
Peak Temperature  
Reflow Soldering (Pb-free)  
Peak Temperature  
260(0/-5)°C  
Time at Peak Temperature  
ESD  
10 sec to 40 sec  
HBM  
FICDM  
6.5 kV  
2 kV  
1 Transient currents of up to 100 mA will not cause SCR latch-up.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
this product features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
Rev. D | Page 13 of 40  
 
 
 
AD5381  
Data Sheet  
PIN CONFIGURATIONAND FUNCTION DESCRIPTIONS  
1
FIFO EN  
CLR  
VOUT24  
VOUT25  
VOUT26  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
RESET  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
NC  
NC  
PIN 1  
IDENTIFIER  
2
3
4
5
6
VOUT27  
SIGNAL_GND4  
DAC_GND4  
AGND4  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
AVDD4  
VOUT28  
VOUT29  
VOUT30  
REG0  
REG1  
VOUT23  
VOUT22  
VOUT21  
VOUT20  
AVDD3  
AGND3  
DAC_GND3  
SIGNAL_GND3  
VOUT19  
VOUT18  
VOUT17  
VOUT16  
AVDD2  
AGND2  
AD5381  
TOP VIEW  
(Not to Scale)  
VOUT31  
REFGND  
REFOUT/REFIN  
SIGNAL_GND1  
DAC_GND1  
AVDD1  
VOUT0  
VOUT1  
VOUT2  
VOUT3  
VOUT4  
AGND1  
54  
53  
52  
51  
NC = NO CONNECT  
Figure 8. 100-Lead LQFP Pin Configuration  
Table 9. Pin Function Descriptions  
Mnemonic  
Function  
Buffered Analog Outputs forChannel x. Each analogoutput is driven by a rail-to-rail output amplifier operating at a  
gain of 2. Each output is capable of driving an output load of5 kΩ to ground. Typical output impedance is 0.5 Ω.  
VOUTx  
Analog Ground Reference Points for Each Group of Eight Output Channels. All SIGNAL_GND pins are tied together  
internally and should be connected to the AGND plane as close as possible to the AD5381.  
Each group of eight channels contains a DAC_GND pin. This is the ground reference point for the internal 12-bit DAC.  
These pins shound be connected to the AGND plane.  
Analog Ground Reference Point. Each group of eight channels contains an AGND pin. All AGND pins should be  
connected externally to the AGND plane.  
SIGNAL_GND(1–5)  
DAC_GND(1–5)  
AGND(1–5)  
Analog Supply Pins. Each group of eight channels has a separate AVDD pin. These pins are shorted internallyand  
should be decoupled with a 0.1 µF ceramic capacitor and 10 µF tantalum capacitor. Operating range for the  
AD5381-5 is 4.5 V to 5.5 V; operating range for the AD5381-3 is 2.7 V to 3.6 V.  
AVDD(1–5)  
DGND  
DVDD  
Ground for All Digital Circuitry.  
Logic Power Supply. Guaranteed operating range is 2.7 V to 5.5 V. It is recommended that these pins be decoupled  
with a 0.1 µF ceramic and a 10 µF tantalum capacitors to DGND.  
REFGND  
Ground Reference Point for the Internal Reference.  
Rev. D | Page 14 of 40  
 
Data Sheet  
AD5381  
Mnemonic  
Function  
The AD5381 contains a common REFOUT/REFIN pin. When the internal reference is selected, this pin is the reference  
output. If the application requires an external reference, it can be applied to this pin and the internal reference can  
be disabled via the control register. The default for this pin is a reference input.  
REFOUT/REFIN  
This pin has a dual function. It acts as a buffered output for Channel 39 in default mode. However, when the monitor  
function is enabled, this pin acts as the output of a 39-to-1 channel multiplexer that can be programmed to  
multiplex one of Channels 0 to 38 to the MON_OUT pin. The MON_OUT pin’s output impedance is typically 500 Ω  
and is intended to drive a high input impedance like that exhibited by SAR ADC inputs.  
VOUT39/MON_OUT  
SER/  
PAR  
Interface Select Input. This pin allows the user to select whether the serial or parallel interface is used. If it is tied high,  
the serial interface mode is selected and Pin 97 ( /I2C) is used to determine if the interface mode is SPI or I2C.  
SPI  
Parallel interface mode is selected when SER/  
PAR  
is low.  
/(  
CS SYNC  
/AD0)  
In parallel interface mode, this pin acts as chip select input (level sensitive, active low). When low, the AD5381  
is selected.  
Serial Interface Mode. This is the frame synchronizationinput signal for the serialclock and data.  
I2C Mode. This pin acts as a hardware address pin used in conjunction with AD1 to determine the software address  
for the device on the I2C bus.  
/(DCEN/AD1)  
Multifunction Pin. In parallel interface mode, this pin acts as write enable. In serial interface mode, this pin acts as a  
daisy-chain enable in SPI mode and as a hardware address pin in I2C mode.  
WR  
Parallel Interface Write Input (edge sensitive). The rising edge of  
address bus inputs to write to the selected device registers.  
is used in conjunction with low, and the  
CS  
WR  
Serial Interface. Daisy-chain select input (level sensitive, active high). When high, this signal is used in conjunction  
with SER/ high to enable the SPI serial interface daisy-chain mode.  
PAR  
I2C Mode. This pin acts as a hardware address pin used in conjunction with AD0 to determine the software address  
for this device on the I2C bus.  
DB11–DB0  
A5–A0  
Parallel Data Bus. DB11 is the MSB and DB0 is the LSB of the input data-word onthe AD5381.  
Parallel Address Inputs. A5 to A0 are decoded to address one of the AD5381’s 40 input channels. Used in conjunction  
with the REG1 and REG0 pins to determine the destination register for the input data.  
In parallel interface mode, REG1 and REG0 are used in decoding the destination registers for the input data. REG1  
and REG0 are decoded to address the input data register, offset register, or gain register for the selected channel and  
are also used to decide the special function registers.  
REG1, REG0  
SDO/( /B)  
A
Serial Data Output in Serial Interface Mode. Three-stateable CMOS output. SDO can be used for daisy-chaining a  
number of devices together. Data is clocked out on SDO on the rising edge of SCLK, and is valid on the fallingedge  
of SCLK.  
When operating in parallel interface mode, this pin acts as the A or B data register select when writing data to the  
AD5381’s data registers with toggle mode selected (see the Toggle Mode Function section). In toggle mode, the  
LDAC is used to switch the output between the data contained in the A and B data registers. All DAC channels  
contain two data registers. In normal mode, Data Register A is the default for data transfers.  
Digital CMOS Output.  
goes low during internal calculations ofthe data (x2) loaded to the DAC data register.  
BUSY  
LDAC  
BUSY  
During this time, the user can continue writing new data to the x1, c, and m registers, but no further updates to the  
DAC registers and DAC outputs can take place. If  
is taken low while  
is low, this event is stored.  
also  
LDAC  
RESET  
BUSY  
pin is low. During this time, the interface is disabled andany  
BUSY  
goes low during power-on reset, and when the  
events on are ignored. A  
operation also brings low.  
BUSY  
LDAC  
CLR  
Load DAC Logic Input (Active Low). If  
registers are transferred to the DAC registers and the DAC outputs are updated. If  
active and internal calculations are taking place, the  
goes inactive. However any events on  
BUSY  
Asynchronous Clear Input. The  
with the data contained in the  
is taken low while  
is inactive (high), the contents of the input  
LDAC  
BUSY  
is taken low while  
is  
LDAC  
event is stored and the DAC registers are updated when  
BUSY  
LDAC  
during power-on reset or on  
are ignored.  
LDAC  
RESET  
input is falling edge sensitive. When is activated, all channels are updated  
CLR  
CLR  
CLR  
CLR  
code register.  
is low for a duration of35 µs while all channels are being  
BUSY  
updated with the code.  
CLR  
Asynchronous Digital Reset Input (Falling Edge Sensitive). The function ofthis pin is equivalent to that of the power-  
on reset generator. When this pin is taken low, the state machine initiates a reset sequence to digitally reset the x1,  
RESET  
m, c, and x2 registers to their default power-on values. This sequence typically takes270 µs. The falling edge of  
RESET  
is complete. While  
RESET BUSY  
initiates the  
is low, all interfaces are disabled and all  
process and  
goes low forthe duration, returning high when  
RESET  
BUSY  
pulses are ignored. When  
returns high, the part resumes normal  
LDAC  
BUSY  
operation and the status of the  
pin is ignored untilthe next falling edge is detected.  
RESET  
Rev. D | Page 15 of 40  
AD5381  
Data Sheet  
Mnemonic  
Function  
Power-Down (Level Sensitive, Active High). PD is used to place the device in low power mode, where the analog  
current consumption is reduced to 2 µA and the digital current consumption is reduced to 20 µA. In power-down  
mode, all internal analog circuitry is placed in low power mode, and the analog output is configured as a high  
impedance output or provides a 100 kΩ load to ground, depending on how the power-down mode is configured.  
The serial interface remains active during power-down.  
PD  
FIFO Enable (Level Sensitive, Active High). When connected to DVDD, the internal FIFO is enabled, allowing the user  
to write to the device at full speed. FIFO is only available in parallel interface mode. The status of the FIFO EN pin is  
sampled on power-up, and also followinga CLEAR or RESET, to determine if the FIFO is enabled. In either serial or  
I2C interface modes, the FIFO EN pin should be tied low.  
FIFO EN  
DB9/( /I2C)  
SPI  
Multifunction Input Pin. In parallel interface mode, this pin acts as DB9 of the parallel input data-word. In serial  
interface mode, this pin acts as serial interface mode select. When serial interface mode is selected (SER/  
= 1) and  
PAR  
this input is low, SPI mode is selected. In SPI mode, DB12 is the serial clock (SCLK) input and DB11 is the serial data  
(DIN) input.  
When serial interface mode is selected (SER/  
PAR  
= 1) and this input is high I2C Mode is selected.  
In this mode, DB12 is the serial clock (SCL) input and DB11 is the serial data (SDA) input.  
Multifunction Input Pin. In parallel interface mode, this pin acts as DB10 of the parallel input data-word. In serial  
interface mode, this pin acts as a serial clock input.  
Serial Interface Mode. In serial interface mode, data is clocked into the shift register on the fallingedge of SCLK.  
This operates at clock speeds up to 50 MHz.  
I2C Mode. In I2C mode, this pin performs the SCL function, clocking data into the device. The data transfer rate in  
I2C mode is compatible with both 100 kHz and 400 kHz operating modes.  
DB10/(SCLK/SCL)  
DB11/(DIN/SDA)  
Multifunction Data Input Pin. In parallel interface mode, this pin acts as DB11 of the parallel input data-word.  
Serial Interface Mode. In serial interface mode, this pin acts as the serial data input. Data must be valid on the falling  
edge of SCLK.  
I2C Mode. In I2C mode, this pin is the serial data pin (SDA) operating as an open-draininput/output.  
Rev. D | Page 16 of 40  
Data Sheet  
AD5381  
TERMINOLOGY  
Relative Accuracy  
DC Output Impedance  
Relative accuracy, or endpoint linearity, is a measure of the  
maximum deviation from a straight line passing through the  
endpoints of the DAC transfer function. It is measuredafter  
adjusting for zero-scale error and full-scale error, and is  
expressedin LSB.  
This is the effective output source resistance.It is dominated by  
package lead resistance.  
Output Voltage Settling Time  
This is the amount of time it takes for the output of a DAC to  
settle to a specified levelfor a ¼ to ¾ full-scale input change,  
and is measuredfrom the  
rising edge.  
Differential Nonlinearity  
BUSY  
Differentialnonlinearity is the difference betweenthe measured  
change and the ideal1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity.  
Digital-to-Analog Glitch Energy  
This is the amount of energy injected into the analog output at  
the major code transition. It is specified as the area of the glitch  
in nV-s. It is measuredby toggling the DAC registerdata  
between 0x7FF and 0x800.  
Zero-Scale Error  
Zero-scale error is the errorin the DAC output voltagewhen all  
0s are loaded into the DAC register. Ideally, with all0s loaded  
to the DAC and m = all 1s, c = 2n – 1  
DAC-to-DAC Crosstalk  
DAC-to-DACcrosstalkis the glitch impulse that appearsat the  
output of one DAC due to both the digitalchange and the  
subsequent analog output change at another DAC. The victim  
channel is loaded with midscale. DAC-to-DACcrosstalkis  
specified in nV-s.  
VOUT(Zero-Scale) = 0 V  
Zero-scale error is a measureof the difference between VOUT  
(actual) and VOUT (ideal), expressed in mV. It is mainly due to  
offsets in the output amplifier.  
Digital Crosstalk  
The glitch impulse transferred to the output of one converter  
due to a change in the DAC register code of another converter  
is defined as the digital crosstalk and is specified in nV-s.  
Offset Error  
Offset error is a measure of the differencebetween VOUT  
(actual) and VOUT (ideal) in the linear region of the transfer  
function, expressed in mV. Offset error is measured on the  
AD5381-5with Code 32loaded into the DAC register, and on  
the AD5381-3 with Code 64.  
Digital Feedthrough  
When the device is not selected, high frequency logicactivity  
on the device’s digital inputs can be capacitively coupled both  
across and through the device to show up as noise on the  
VOUT pins. It can also be coupled along the supply and  
ground lines. This noise is digital feedthrough.  
Gain Error  
Gain Error is specified in the linear region of the output range  
between VOUT= 10 mV and VOUT = AVDD – 50 mV. It is  
the deviation in slope of the DAC transfer characteristicfrom  
the idealand is expressedin %FSR with the DAC output  
unloaded.  
Output Noise Spectral Density  
This is a measure of internally generatedrandomnoise.  
Random noise is characterized as a spectraldensity (voltageper  
√Hertz). It is measured by loading allDACs to midscaleand  
measuring noise at the output. It is measured in nV/√Hz in a  
1 Hz bandwidth at 10 kHz.  
DC Crosstalk  
This is the dc change in the output levelof one DAC at  
midscale in response to a full-scale code (all 0s to all 1s, and  
vice versa)and output change of allother DACs.It is expressed  
in LSB.  
Rev. D | Page 17 of 40  
 
AD5381  
Data Sheet  
TYPICAL PERFORMANCECHARACTERISTICS  
1.00  
1.00  
0.75  
0.50  
0.25  
0
AVDD = 5V  
AVDD = 3V  
REFIN = 1.25V  
REFIN = 2.5V  
= 25°C  
0.75  
T
T = 25°C  
A
A
0.50  
0.25  
0
–0.25  
–0.50  
–0.75  
–1.00  
–0.25  
–0.50  
–0.75  
–1.00  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
INPUT CODE  
INPUT CODE  
Figure 9. Typical AD5381-5 INL Plot  
Figure 12. Typical AD5381-3 INL Plot  
1.254  
1.253  
1.252  
1.251  
1.250  
1.249  
1.248  
1.247  
1.246  
1.245  
2.510  
2.505  
2.500  
2.995  
2.990  
AVDD = DVDD = 3V  
V
= 1.25V  
REF  
= 25°C  
T
A
14ns/SAMPLE NUMBER  
1 LSB CHANGE AROUND MIDSCALE  
GLITCH IMPULSE = 5nV-s  
0
50 100 150 200 250 300 350 400 450 500 550  
SAMPLE NUMBER  
0
2
4
6
8
10  
12  
TIME (µs)  
Figure 13. AD5381-3 Glitch Impulse  
Figure 10. AD5381-5 Glitch Impulse  
LDAC  
LDAC  
VOUT  
VOUT  
AVDD = DVDD = 5V  
= 2.5V  
AVDD = DVDD = 5V  
VREF = 2.5V  
V
REF  
T
= 25°C  
A
T
= 25°C  
A
Figure 11. Slew Rate with Boost Off  
Figure 14. Slew Rate with Boost On  
Rev. D | Page 18 of 40  
 
Data Sheet  
AD5381  
14  
12  
10  
8
AVDD = 5.5V  
= 2.5V  
V
REF  
= 25°C  
T
A
AVDD = DVDD = 5V  
VREF = 2.5V  
T
= 25°C  
A
VDD  
6
4
VOUT  
2
8
9
10  
AI (mA)  
11  
DD  
Figure 15. AIDD Histogram with Boost Off  
Figure 18. Power-Up Transient  
40  
35  
30  
25  
20  
15  
10  
5
DVDD = 5.5V  
V
V
= DVDD  
= DGND  
= 25°C  
IH  
IL  
A
10  
8
T
6
4
2
0
0
–5.0 –4.0 –3.0 –2.0 –1.0  
0
1.0 2.0 3.0 4.0 5.0  
0.5  
0.6  
0.7  
DI  
0.8  
0.9  
1.0  
–4.5 –3.5 –2.5 –1.5 –0.5 0.5 1.5 2.5 3.5 4.5  
REFERENCE DRIFT (ppm/°C)  
(mA)  
DD  
Figure 19. REFOUT Temperature Coefficient  
Figure 16. DIDD Histogram  
PD  
BUSY  
VOUT  
VOUT  
AVDD = DVDD = 5V  
= 2.5V  
AVDD = DVDD = 5V  
= 2.5V  
V
REF  
V
REF  
T
= 25°C  
A
T
= 25°C  
A
Figure 20. Exiting Hardware Power-Down  
Figure 17. Exiting Soft Power-Down  
Rev. D | Page 19 of 40  
AD5381  
Data Sheet  
6
6
5
AVDD = DVDD = 3V  
= 1.25V  
FULL SCALE  
V
REF  
T
= 25°C  
5
4
A
AVDD = DVDD = 5V  
V
= 2.5V  
= 25°C  
3/4 SCALE  
REF  
T
4
A
3/4 SCALE  
FULL SCALE  
MIDSCALE  
3
3
MIDSCALE  
2
2
1/4 SCALE  
1
1
ZERO SCALE  
0
0
ZERO SCALE  
–5  
1/4 SCALE  
–1  
–1  
–40 –20 –10  
–5  
–2  
0
2
5
10  
20  
40  
–40 –20 –10  
–2  
0
2
5
10  
20  
–40  
CURRENT (mA)  
CURRENT (mA)  
Figure 21. AD5381-5 Output Amplifier Source and Sink Capability  
Figure 24. AD5381-3 Output Amplifier Source and Sink Capability  
0.20  
2.456  
AVDD = 5V  
AVDD = DVDD = 5V  
V
= 2.5V  
REF  
= 25°C  
V
T
= 2.5V  
REF  
= 25°C  
0.15  
0.10  
0.05  
0
T
A
2.455  
2.454  
2.453  
2.452  
2.451  
2.450  
2.449  
A
14ns/SAMPLE NUMBER  
ERROR AT ZERO SINKING CURRENT  
–0.05  
–0.10  
–0.15  
–0.20  
(VDD–VOUT) AT FULL-SCALE SOURCING CURRENT  
0
0.25  
0.50  
0.75  
I
1.00  
/I  
1.25  
1.50  
1.75  
2.00  
0
50 100 150 200 250 300 350 400 450 500 550  
SAMPLE NUMBER  
(mA)  
SOURCE SINK  
Figure 22. Headroom at Rails vs. Source/Sink Current  
Figure 25. Adjacent Channel DAC-to-DAC Crosstalk  
600  
500  
400  
300  
200  
100  
0
AVDD = 5V  
T
= 25°C  
A
REFOUT DECOUPLED  
WITH 100nF CAPACITOR  
AVDD = DVDD = 5V  
= 25°C  
T
A
DAC LOADED WITH MIDSCALE  
EXTERNAL REFERENCE  
Y AXIS = 5µV/DIV  
X AXIS = 100ms/DIV  
REFOUT = 2.5V  
REFOUT = 1.25V  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 23. REFOUT Noise Spectral Density  
Figure 26. 0.1 Hz to 10 Hz Noise Plot  
Rev. D | Page 20 of 40  
Data Sheet  
AD5381  
FUNCTIONALDESCRIPTION  
DAC ARCHITECTURE—GENERAL  
The complete transfer function for thesedevices can be  
represented as  
The AD5381 is a complete, single-supply, 40-channel voltage  
output DACthat offers12-bit resolution. The part is available  
in a 100-lead LQFPpackage and features both a paralleland  
a serial interface. This product includes an internal, software  
selectable, 1.25 V/2.5 V, 1 0 ppm/°C reference that can be used  
to drive the bufferedreference inputs; alternatively, an external  
referencecan be used to drive theseinputs. Internal/external  
referenceselection is via the CR8bit in the controlregister;  
CR10selects the referencemagnitude if the internalreference  
is selected. All channels have an on-chip output amplifier with  
rail-to-rail outputcapable of driving 5 kΩ in parallel with a  
200 pF load.  
VOUT = 2 × VREF × x2/2n  
where:  
x2 is the data-word loaded to the resistor string DAC. VREF  
is externally applied to the DACREFOUT/REFINpin. For  
specified performance, an externalreference voltageof 2.5 V is  
recommendedfor the AD5381-5, and 1.25 V for the AD5381-3.  
DATA DECODING  
The AD5381 contains a 12-bit data bus, DB11 to DB0. Depend-  
ing on the value of REG1 and REG0 (see Table 10), this data is  
loaded into the addressedDAC input registers, offset (c)  
registers, or gain (m)registers. The format data, offset (c), and  
gain (m) register contents are shown in Table 11 to Table 13.  
VREF  
AVDD  
×1 INPUT  
REG  
DAC  
REG  
12-BIT  
DAC  
Table 10. Register Selection  
INPUT DATA m REG ×2  
c REG  
VOUT  
REG1  
REG0  
Register Selected  
R
R
1
1
0
0
1
0
1
0
Input Data Register (x1)  
Offset Register (c)  
Gain Register (m)  
Special Function Registers (SFRs)  
Figure 27. Single-Channel Architecture  
Table 11. DAC Data Format(REG1 = 1, REG0 = 1)  
The architecture of a single DACchannelconsists ofa 12-bit  
resistor-string DACfollowed by an outputbuffer amplifier  
operating at a gain of 2. This resistor-string architecture  
guaranteesDAC monotonicity. The 12-bit binary digital code  
loaded to the DAC registerdetermines at whatnode on the  
string the voltage is tapped off beforebeing fed to the output  
amplifier. Each channelon these devices contains independent  
offset and gain control registers that allow theuser to digitally  
trim offset and gain. These registers give the userthe ability to  
calibrate out errors in the complete signal chain, including the  
DAC, using the internal m and cregisters, which hold the  
correction factors. Allchannels are double buffered, allow-  
DB11 to DB0  
DAC Output (V)  
2 VREF × (4095/4096)  
2 VREF × (4094/4096)  
2 VREF × (2049/4096)  
2 VREF × (2048/4096)  
2 VREF × (2047/4096)  
2 VREF × (1/4096)  
0
1111  
1111  
1000  
1000  
0111  
0000  
0000  
1111  
1111  
1110  
0001  
0000  
1111  
0001  
0000  
1111  
0000  
0000  
1111  
0000  
0000  
Table 12. Offset Data Format (REG1 = 1, REG0 = 0)  
DB11 to DB0  
Offset (LSB)  
+2048  
+2047  
+1  
1111  
1111  
1000  
1000  
0111  
0000  
0000  
1111  
1111  
0000  
0000  
1111  
1110  
0001  
0000  
1111  
0001  
0000  
ing synchronous updating of all channels using the  
pin.  
LDAC  
Figure 27 shows a blockdiagram of a single channelon the  
AD5381. The digital input transfer function for each DAC  
can be represented as  
0
1111  
0000  
0000  
–1  
–2047  
–2048  
x2 = [(m + 2)/ 2n × x1] + (c – 2n – 1  
)
where:  
Table 13. GainData Format(REG1 = 0, REG0 = 1)  
x2 = the data-wordloadedto the resistorstring DAC.  
x1 = the 12-bit data-wordwritten to the DACinput register.  
m = the gain coefficient (default is 0xFFE). The gain coefficient  
is written to the 11 most significant bits (DB11 to DB1), the LSB  
(DB0) of the data-word is a 0.  
n = DAC resolution (n = 12 for AD5381).  
c = the12-bit offset coefficient (default is 0x800).  
DB11 to DB0  
Gain Factor  
1111  
1011  
0111  
0011  
0000  
1111  
1111  
1111  
1110  
1110  
1110  
1110  
0000  
1
0.75  
0.5  
0.25  
0
1111  
0000  
Rev. D | Page 21 of 40  
 
 
 
 
 
 
 
AD5381  
Data Sheet  
ON-CHIP SPECIAL FUNCTION REGISTERS (SFR)  
Soft CLR  
The AD5381 contains a number of special function registers  
(SFRs), as outlined in Table 14. SFRs are addressed with  
REG1 = REG0 = 0 and are decoded using Address Bits  
A5 to A0.  
REG1 = REG0 = 0, A5 to A0 = 000010  
DB11 to DB0= Dont Care  
Executing this instruction performs the CLR, which is func-  
tionally the same as that provided by the external pin. The  
DAC outputs areloaded with the data in the CLR code register.  
It takes 35 µs to fully execute the SOFT CLR, as indicated by the  
CLR  
Table 14. SFR Register Functions (REG1 = 0, REG0 = 0)  
R/  
A5 A4 A3 A2 A1 A0 Function  
W
low time.  
X
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
1
1
0
1
0
0
1
0
0
0
0
1
1
0
1
0
0
1
0
0
0
1
NOP (No Operation)  
Write CLR Code  
Soft CLR  
Soft Power-Down  
Soft Power-Up  
Control Register Write  
Control Register Read  
Monitor Channel  
Soft Reset  
BUSY  
Soft Power-Down  
REG1 = REG0 = 0, A5 to A0 = 001000  
DB11 to DB0= Dont Care  
Executing this instruction performs a global power-down  
feature that puts allchannels into a low powermodethat  
reduces the analog supply current to 2 µA max and the digi-  
tal current to 20 µA max. In power-down mode, the output  
amplifier can be configured as a high impedance output or  
provide a 100 kΩ load to ground. The contentsof all internal  
registers are retained in power-down mode. No registercan be  
written to while in power-down.  
SFR COMMANDS  
NOP (No Operation)  
REG1 = REG0 = 0, A5 to A0 = 000000  
Performs no operation but is usefulin serial readbackmodeto  
Soft Power-Up  
clock out data on DOUT for diagnosticpurposes.  
low during a NOP operation.  
pulses  
BUSY  
REG1 = REG0 = 0, A5 to A0 = 001001  
DB11 to DB0= Dont Care  
Write CLR Code  
This instruction is used to power up the output amplifiers and  
the internalreference. The time to exit power-down is 8µs.  
The hardware power-downand softwarefunction are internally  
combined in a digital OR function.  
REG1 = REG0 = 0, A5 to A0 = 000001  
DB11 to DB0= Contain the CLR data  
Bringing the  
line low or exercising the soft clear function  
CLR  
Soft RESET  
will load the contents of the DACregisters with the data con-  
tained in the user configurable CLR register, and will set  
VOUT0 to VOUT39 accordingly. This can be very useful for  
setting up a specific output voltage in a clear condition. It is also  
beneficial for calibration purposes; the user can load full scale  
or zero scale to the clear code register and then issue a hard-  
ware or software clear to load this code to allDACs, removing  
the need for individual writes to each DAC.Default on power-  
up is all zeros.  
REG1 = REG0 = 0, A5 to A0 = 001111  
DB11 to DB0= Dont Care  
This instruction is used to implement a softwarereset. All  
internalregisters arereset to their default values, which corre-  
spond to m at full scale and c at zero scale. The contents of the  
DAC registers arecleared, setting allanalog outputsto 0 V. The  
soft reset activation time is 135 µs.  
Rev. D | Page 22 of 40  
 
 
 
Data Sheet  
AD5381  
Table 15. Control Register Contents  
MSB  
LSB  
CR11  
Control Register Write/Read  
REG1 = REG0 = 0, A5 to A0 = 001100, R/ status determines  
CR10  
CR9  
CR8  
CR7  
CR6  
CR5  
CR4  
CR3  
CR2  
CR1  
CR0  
CR7= 0: Monitor Disabled (default on power-up). When the  
monitor is disabled, the MON_OUT pin assumes its normal  
DAC output function.  
W
if the operation is a write (R/ = 0) or a read (R/ = 1). DB11  
W
W
to DB0contains the controlregisterdata.  
CR6: Thermal Monitor Function. When enabled, this function  
is used to monitor the internaldie temperature of the AD5381.  
The thermalmonitorpowersdown the output amplifiers when  
the temperature exceeds130°C. This function can be used to  
protect the device in cases where power dissipation may be  
exceeded if a number of outputchannels aresimultaneously  
short-circuited. A soft power-up will re-enable the output  
amplifiers if the die temperature hasdroppedbelow 130°C.  
Control Register Contents  
CR11: Power-Down Status. This bit is used to configure the  
output amplifier state in power-down.  
CR11= 1. Amplifier output is high impedance (default on  
power-up).  
CR11 = 0. Amplifier output is 100 kΩ to ground.  
CR6= 1: Thermal MonitorEnabled.  
CR6= 0: Thermal MonitorDisabled (default on power-up).  
CR5: Dont Care.  
CR10: REF Select. This bit selects the operating internal  
referencefor the AD5381. CR10is programmed as follows:  
CR10= 1: Internalreference is 2.5V (AD5381-5 default), the  
recommendedoperating reference for AD5381-5.  
CR4 to CR0: Toggle Function Enable. This function allows the  
user to toggle the output between two codes loaded to the A  
and B registers for each DAC.ControlRegister Bits CR4to CR0  
are used to enable individual groups of eight channels for  
operation in toggle mode. A Logic1written to any bit enables  
CR10= 0: Internal reference is 1.25 V (AD5381-3default),  
the recommendedoperating reference for AD5381-3.  
CR9: Current Boost Control. This bit is used to boost the  
current in the output amplifier, thereby altering its slew rate.  
This bit is configured as follows:  
a group of channels; a Logic 0 disables a group.  
to toggle between the two registers.  
is used  
LDAC  
CR9= 1: Boost Mode On. This maximizes the bias current  
in the output amplifier, optimizing its slew rate but increasing  
the power dissipation.  
Table 16.  
CR Bit  
Group  
Channels  
32–39  
24–31  
16–23  
8–15  
CR4  
CR3  
CR2  
4
3
2
1
0
CR9= 0: Boost Mode Off (default on power-up). This  
reduces the bias current in the output amplifier and reduces  
the overallpower consumption.  
CR1  
CR0  
0–7  
CR8: Internal/ExternalReference. This bit determines if the  
DAC uses its internalreference or an externally applied  
reference.  
Channel Monitor Function  
REG1 = REG0 = 0, A5 to A0 = 001010  
CR8= 1: InternalReference Enabled. The reference output  
depends on data loaded to CR10.  
DB11–DB6= Contain data to address the monitoredchannel.  
A channel monitor function is providedon the AD5381. This  
feature, which consists of a multiplexeraddressed via the inter-  
face, allows any channeloutput to be routed to the MON_OUT  
pin for monitoring using an external ADC. In channel monitor  
mode, VOUT39becomes the MON_OUT pin, to which all  
monitored pins arerouted. The channel monitor function must  
be enabled in the controlregisterbeforeany channels arerouted  
to MON_OUT. On the AD5381, DB11 to DB6contain the  
channel address forthe monitored channel. Selecting Channel  
Address 63 three-states M ON _O UT.  
CR8= 0: ExternalReference Selected(defaulton power-up).  
CR7: Channel Monitor Enable(see Channel Monitor Function  
section).  
CR7= 1: Monitor Enabled. This enablesthe channel monitor  
function. After a write to the monitor channel in the SFR  
register, the selected channeloutput is routed to the  
MON_OUT pin. VOUT39operates at the MON_OUT pin.  
Rev. D | Page 23 of 40  
 
AD5381  
Data Sheet  
Table 17. AD5381 Channel Monitor Decoding  
REG1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
REG0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A3  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A2  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DB11  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
DB10  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
DB9  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
DB8  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
DB8  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
DB6  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
DB5–DB0  
MON_OUT  
VOUT0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
VOUT1  
VOUT2  
VOUT3  
VOUT4  
VOUT5  
VOUT6  
VOUT7  
VOUT8  
VOUT9  
VOUT10  
VOUT11  
VOUT12  
VOUT13  
VOUT14  
VOUT15  
VOUT16  
VOUT17  
VOUT18  
VOUT19  
VOUT20  
VOUT21  
VOUT22  
VOUT23  
VOUT24  
VOUT25  
VOUT26  
VOUT27  
VOUT28  
VOUT29  
VOUT30  
VOUT31  
VOUT32  
VOUT33  
VOUT34  
VOUT35  
VOUT36  
VOUT37  
VOUT38  
Undefined  
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
0
1
X
X
Undefined  
Three-State  
REG1 REG0A5 A4 A3 A2 A1 A0  
0
0
0
0
1
0
1
0
VOUT0  
VOUT1  
AD5381  
CHANNEL  
MONITOR  
DECODING  
VOUT39/MON_OUT  
VOUT37  
VOUT38  
CHANNEL ADDRESS  
DB11–DB6  
Figure 28. Channel Monitor Decoding  
Rev. D | Page 24 of 40  
 
Data Sheet  
AD5381  
HARDWAREFUNCTIONS  
RESET FUNCTION  
FIFO OPERATION IN PARALLEL MODE  
Bringing the  
line low resets the contents of allinternal  
The AD5381 contains a FIFO to optimize operation when  
operating in parallelinterface mode. The FIFO Enable (level  
sensitive, active high)is used to enable the internalFIFO. When  
connected to DVDD, the internal FIFO is enabled, allowing the  
user to write to the device at fullspeed. FIFO is only available in  
parallel interface mode. The status of the FIFO EN pin is sam-  
RESET  
registers to their power-onreset state. Reset is a negative edge-  
sensitive input. The default corresponds to m at full-scale and  
to c at zero scale. The contents of the DACregistersarecleared,  
setting VOUT0to VOUT39 to 0 V. This sequence takes 270 µs.  
The falling edge of  
RESET  
low for the duration, returning high when  
initiates the resetprocess;  
goes  
BUSY  
is complete.  
pled on power-up, and after a  
or , to determine if  
CLR RESET  
RESET  
is low, all interfaces are disabledand allLDAC  
the FIFO is enabled. In either serialor I2C interface modes,  
FIFO EN should be tied low. Up to 128successive instructions  
can be written to the FIFO at maximum speedin parallel mode.  
When the FIFO is full, any further writes to the device are  
ignored. Figure 29 shows a comparison between FIFO mode  
and non-FIFO mode in terms ofchannelupdate time. Figure 29  
also outlines digital loading time.  
While  
BUSY  
pulses are ignored.When  
returns high, the part resumes  
BUSY  
normaloperation and the status of the  
until the next falling edge is detected.  
pin is ignored  
RESET  
ASYNCHRONOUS CLEAR FUNCTION  
Bringing the  
line low clears the contents of the DAC  
CLR  
25  
registers to the data contained in the user configurable CLR  
register and sets VOUT0to VOUT39 accordingly. This func-  
tion can be used in system calibrationto load zero-scale and  
full-scale to all channels. The execution time for a CLR is 35µs.  
WITHOUT FIFO  
20  
(CHANNEL UPDATE TIME)  
15  
AND  
FUNCTIONS  
LDAC  
BUSY  
is a digital CMOS output thatindicates the status of the  
BUSY  
10  
AD5381. The value of x2, the internaldata loaded to the DAC  
data register, is calculated each time the user writes newdata to  
the corresponding x1, c, or m registers. During the calculation  
WITH FIFO  
(CHANNEL UPDATE TIME)  
5
WITH FIFO  
(DIGITAL LOADING TIME)  
of x2, the  
output goeslow. While  
is low, the user  
BUSY  
BUSY  
can continue writing new data to the x1, m, or c registers, but  
no DAC outputupdatescan take place. The DACoutputsare  
0
1
4
7
10 13 16 19 22 25 28 31 34 37 40  
NUMBER OF WRITES  
updated by taking the  
input low. If  
goes low while  
LDAC  
LDAC  
event is stored and the DACoutputs  
Figure 29. Channel Update Rate (FIFO vs. NON-FIFO)  
is active, the  
BUSY  
LDAC  
BUSY  
input permanently low, in which case the DAC  
update immediatelyafter  
goes high. The user may hold  
POWER-ONRESET  
the  
LDAC  
outputs update immediately after  
The AD5381 contains a power-on reset generator and state  
machine. The power-on reset resetsallregisters to a predefined  
state and configures the analog outputsas high impedance.The  
pin goes low during the power-on reset sequencing, pre-  
venting data writes to the device.  
goes high.  
BUSY  
also goes low during power-on reset and when a falling edge is  
detected on the pin. During this time, allinterfaces are  
BUSY  
RESET  
disabled and any eventson  
BUSY  
are ignored.  
LDAC  
The AD5381 contains an extra featurewhereby a DAC register  
is not updated unless its x2register has been written to since  
POWER-DOWN  
The AD5381 contains a globalpower-down featurethat putsall  
channels into a low power modeand reduces the analog power  
consumption to 2 µA max and digital power consumption to  
20 µA max. In power-down mode, the output amplifier can be  
configured as a high impedance outputor can providea 100 kΩ  
load to ground. The contents ofallinternalregisters are retained  
in power-down mode. When exiting power-down,the settling  
time of the amplifier willelapse beforethe outputs settleto their  
correct values.  
the last time  
was brought low. Normally, when  
LDAC  
LDAC  
is brought low, the DAC registers arefilled with the contents  
of the x2 registers. However, the AD5381 will only update the  
DAC registerif the x2data has changed, thereby removing  
unnecessary digitalcrosstalk.  
Rev. D | Page 25 of 40  
 
 
 
 
 
 
 
 
AD5381  
Data Sheet  
INTERFACES  
The AD5381 contains both paralleland serialinterfaces.  
Furthermore, the serialinterface can be programmed to be  
either SPI-, DSP-, MICROWIRE-, or I2C-compatible. The  
Figure 3and Figure 5 show timing diagrams for a serialwrite  
to the AD5381 in standalone anddaisy-chain modes. The 24-bit  
data-word format for the serialinterface is shown in Table 18.  
SER/  
PAR  
pin selects paralleland serialinterface modes. In  
/B This pin selects whether the data write is to the A or B  
A
serial mode, the /I2C pin is used to select DSP-, SPI-,  
SPI  
register when toggle modeis enabled. With toggle disabled, this  
bit should be set to 0to select the A data register.  
MICROWIRE-, or I2C-interface mode.  
The devices use an internalFIFO memoryto allow high speed  
successive writes in parallelinterface mode. Theuser can con-  
tinue writing new data to the device while write instructions are  
R/ is the read or write controlbit.  
W
A5 to A0 are used to address the inputchannels.  
being executed. The  
signalindicates the current statusof  
BUSY  
REG1 and REG0 select the registerto which data is written,  
as shown in Table 10.  
the device, going low while instructions in the FIFO are being  
executed. In parallel mode,up to 128successive instructions  
can be written to the FIFO at maximum speed. When the FIFO  
is full, any further writes to the device areignored.  
DB11 to .DB0 contain the input data-word.  
X is a don’t care condition.  
To minimize both the power consumption of the device and the  
on-chip digital noise, the active interface only powersup fully  
when the device is being written to, that is, on the falling edge  
Standalone Mode  
By connecting the DCEN (daisy-chain enable) pin low, stand-  
alone mode is enabled. The serialinterface works with both a  
continuous and a noncontinuous serial clock. The first falling  
of  
or the falling edge of  
.
WR  
SYNC  
DSP-, SPI-, MICROWIRE-COMPATIBLE SERIAL  
INTERFACES  
The serialinterface can be operated with a minimum of three  
wires in standalone mode orfour wiresin daisy-chain mode.  
Daisy chaining allows many devices to be cascaded together to  
edge of  
starts the write cycle and resetsa counter that  
SYNC  
counts the number of serialclocks to ensure the correct number  
of bits are shifted into the serialshift register. Any further edges  
on  
, except for a falling edge, are ignored until 24 bits are  
SYNC  
clocked in. Once 24 bits are shifted in, the SCLK is ignored. In  
order for anotherserialtransfer to take place,the countermust  
be reset by the falling edge of  
increase system channel count. The SER/  
pin must be tied  
PAR  
high and the /I2C pin (Pin 97) should be tied low to enable  
SPI  
.
SYNC  
the DSP-/SPI-/MICROWIRE-compatible serial interface. In  
serialinterface mode, the user doesnot need to drivethe paral-  
lel input data pins. The serial interface’s control pins are  
, DIN, SCLK—Standard 3-wire interface pins.  
SYNC  
DCEN—Selects standalone mode or daisy-chain mode.  
SDO—Data out pin for Daisy-chain mode.  
Table 18. 40-Channel, 12-bitDAC Serial InputRegister Configuration  
MSB  
LSB  
X
A5  
A4  
A3  
A2  
A1  
A0  
REG1  
REG0  
DB11  
DB10  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
X
A/B  
R/W  
Rev. D | Page 26 of 40  
 
 
 
Data Sheet  
AD5381  
Daisy-Chain Mode  
Readback Mode  
Readbackmodeis invoked by settingthe R/ bit = 1 in the  
For systemsthat contain severaldevices, theSDO pin can be  
used to daisy-chain severaldevices together. This daisy-chain  
mode can be useful in system diagnostics and in reducing the  
number of serialinterfacelines.  
W
serial input register write. With R/ = 1, Bits A5 to A0, in  
W
association with Bits REG1 and REG0, select theregister tobe  
read. The remainingdata bitsin the write sequence are dont  
cares. Duringthe next SPIwrite,the data appearing on the  
SDO output willcontain thedata fromthe previously  
addressedregister.  
By connecting the DCEN (daisy-chain enable) pin high, daisy-  
chain mode is enabled. Thefirst falling edge of  
starts the  
SYNC  
write cycle. The SCLK is continuously applied to the input shift  
register when is low. If more than 24 clock pulses are  
SYNC  
For a read of a single register, the NOPcommandcan be used  
in clocking out the data from the selected register on SDO.  
Figure 30 shows the readbacksequence. For example, to read  
back the m register of Channel 0 on the AD5381, the following  
sequence shouldbe implemented. First, write 0x404XXX to the  
AD5381 input register. This configures the AD5381 for read  
mode with the m register of Channel 0selected. Notethat Data  
Bits DB11 to DB0are dont cares. Follow this with a second  
write, a NOPcondition, 0x000000.  
applied, the data ripplesout of the shift register and appears  
on the SDO line. This data is clocked out on the rising edge of  
SCLK and is valid on the falling edge. By connecting the SDO  
of the first device to the DIN input on the next device in the  
chain, a multidevice interface is constructed. Twenty-four clock  
pulses are requiredfor each device in the system.Therefore, the  
totalnumber of clockcycles must equal24N, where N is the  
totalnumber of AD538x devices in the chain.  
When the serialtransferto alldevices is complete,  
is  
During this write, the data from the m registeris clocked out on  
the DOUT line, that is, data clocked out will contain the data  
from the m register in Bit DB11 to Bit DB0, and the top 10bits  
contain the address information as previously written. In  
SYNC  
taken high. This latches the input data in each device in the  
daisy-chain and prevents further datafrombeing clocked  
into the input shift register.  
readbackmode,the  
signalmust frame the data. Data is  
SYNC  
If  
is taken high before 24 clocks are clocked into the part,  
SYNC  
clocked out on the rising edge of SCLK and is valid on the  
falling edge of the SCLK signal. If the SCLK idles high between  
the write and read operationsof a readbackoperation, the first  
this is considered a bad frameand the data is discarded.  
The serial clock can be either a continuous or a gated clock. A  
continuous SCLK sourcecan only be used if it can be arranged  
bit of data is clocked out on the falling edge of  
.
SYNC  
that  
is held low for the correct number of clock cycles. In  
SYNC  
gated clock mode, a burst clock containing the exact number of  
clock cycles must be used and  
must betaken high after  
SYNC  
the final clock to latch the data.  
SCLK  
SYNC  
24  
48  
DB23  
DB0  
DB23  
DB0  
DIN  
INPUT WORD SPECIFIES REGISTER TO BE READ  
NOP CONDITION  
DB23  
DB0  
DB23  
DB0  
SDO  
UNDEFINED  
SELECTED REGISTER DATA CLOCKED OUT  
Figure 30. Serial Readback Operation  
Rev. D | Page 27 of 40  
 
AD5381  
Data Sheet  
I2C SERIAL INTERFACE  
The AD5381 features an I2C-compatible 2-wire interface  
consisting of a serialdata line (SDA)and a serial clock line  
(SCL). SDA and SCL facilitate communication between the  
AD5381 and the master at ratesup to 400 kHz. Figure 6 shows  
the 2-wire interface timing diagrams that incorporate three  
different modes of operation. In selecting the I2C operating  
AD5381 Slave Addresses  
A bus masterinitiates communication with a slave device by  
issuing a START condition followed by the 7-bit slave address.  
When idle, the AD5381 waits for a START condition followed  
by its slave address. TheLSB of the addresswordis the Read/  
Write (R/ ) bit. The AD5381 is a receive only device; when  
W
mode, first configure serialoperating mode (SER/  
= 1)  
communicating with the AD5381, R/ = 0. After receiving the  
W
proper address 1010 1(AD1)(AD0), the AD5381 issues an ACK  
by pulling SDA low for one clock cycle.  
PAR  
and then select I2C mode by configuring the /I2C pin to a  
SPI  
Logic 1. The device is connected to the I2C bus as a slave device  
(that is, no clock is generated by the AD5381). The AD5381 has  
a 7-bit slave address 1010 1(AD1)(AD0). The 5MSB are hard-  
coded and the 2 LSB are determinedby the stateof the AD1  
and AD0 pins. The facility to hardware configure AD1and AD0  
allows four of these devices to be configured on the bus.  
The AD5381 has four different user programmable addresses  
determined by the AD1and AD0bits.  
Write Operation  
There are threespecificmodes in which data can be written to  
the AD5381 DAC.  
I2C Data Transfer  
One data bit is transferred during each SCL clock cycle. The  
data on SDA must remain stable during the high period of the  
SCL clock pulse. Changesin SDA while SCL is high are control  
signals that configure START and STOP conditions. Both SDA  
and SCL are pulled high by the externalpull-up resistors when  
the I2C bus is not busy.  
4-Byte Mode  
When writing to the AD5381 DACs, the user must begin  
with an address byte(R/ = 0) after which the DAC acknowl-  
W
edges that it is prepared to receive databy pulling SDA low.  
The address byteis followed by the pointer byte; this addresses  
the specific channel in the DAC to be addressed andis also  
acknowledged by the DAC. Twobytesof data are then written  
to the DAC, as shown in Figure 31. A STOPcondition follows.  
This allows the user to update a single channelwithin the  
AD5381 at any time and requires fourbytes of datato be  
transferred fromthe master.  
START and STOP Conditions  
A master device initiates communication by issuing a START  
condition. A START condition is a high-to-low transition on  
SDA with SCL high. A STOP condition is a low-to-high  
transition on SDA while SCL is high. A START condition  
from the mastersignals the beginning of a transmission to  
the AD5381. The STOPcondition frees the bus. If a repeated  
START condition (Sr) is generatedinsteadof a STOP condition,  
the bus remains active.  
3-Byte Mode  
In 3-byte mode,the user can update morethan one channel in a  
write sequence without having to write the device addressbyte  
each time. The device address byte is only required once;sub-  
sequent channelupdates requirethe pointer byteand the data  
bytes. In 3-byte mode, the userbegins with an address byte  
Repeated START Conditions  
A repeated START (Sr)condition may indicate a change of data  
direction on the bus. Sr can be used when the bus masteris  
writing to several I2C devices and wants to maintain controlof  
the bus.  
(R/ = 0), after which the DAC willacknowledge that it is pre-  
W
pared to receive databy pulling SDA low. The addressbyteis  
followed by the pointer byte. This addresses thespecificchannel  
in the DAC to be addressed and is also acknowledged by the  
DAC. This is then followed by the two databytes. REG1and  
REG0 determine the register to be updated.  
Acknowledge Bit (ACK)  
The acknowledge bit (ACK)is the ninth bit attached to any  
8-bit data-word. ACKis always generatedby the receiving  
device. The AD5381 devices generatean ACK whenreceiving  
an address or data by pulling SDA low during the ninth clock  
period. Monitoring ACK allowsfor detection of unsuccess-  
ful data transfers. An unsuccessfuldata transfer occurs if a  
receiving device is busy or if a system fault has occurred.  
In the event of an unsuccessful data transfer, the busmaster  
should reattempt communication.  
If a STOPcondition doesnot follow thedatabytes, another  
channel can be updated by sending a newpointerbyte followed  
by the data bytes. Thismode only requires threebytes tobe  
sent to updateany channel oncethe device hasbeen initially  
addressed, andreduces the software overhead in updating the  
AD5381 channels.A STOP condition atany time exitsthis mode.  
Figure 32 showsa typical configuration.  
Rev. D | Page 28 of 40  
 
Data Sheet  
AD5381  
SCL  
1
0
1
0
1
AD1  
AD0  
R/W  
0
0
A5  
A4  
A3  
A2  
A1  
A0  
SDA  
START COND  
BY MASTER  
ACK BY  
AD538x  
MSB  
ACK BY  
AD538x  
ADDRESS BYTE  
POINTER BYTE  
SCL  
SDA  
REG1 REG0  
MSB  
LSB  
MSB  
LSB  
ACK BY  
AD538x  
ACK BY  
AD538x  
STOP  
COND  
BY  
MOST SIGNIFICANT BYTE  
LEAST SIGNIFICANT BYTE  
MASTER  
Figure 31. 4-Byte AD5381, I2C Write Operation  
SCL  
SDA  
1
0
1
0
1
AD1  
AD0  
R/W  
0
0
A5  
A4  
A3  
A2  
A1  
A0  
START COND  
BY MASTER  
ACK BY  
AD538x  
MSB  
ACK BY  
AD538x  
ADDRESS BYTE  
POINTER BYTE FOR CHANNEL "N"  
SCL  
SDA  
REG1 REG0  
MSB  
LSB  
MSB  
LSB  
ACK BY  
AD538x  
ACK BY  
AD538x  
MOST SIGNIFICANT DATA BYTE  
LEAST SIGNIFICANT DATA BYTE  
DATA FOR CHANNEL "N"  
SCL  
SDA  
0
0
A5  
A4  
A3  
A2  
A1  
A0  
MSB  
ACK BY  
AD538x  
POINTER BYTE FOR CHANNEL "NEXT CHANNEL"  
SCL  
SDA  
REG1 REG0  
MSB  
LSB  
MSB  
LSB  
ACK BY  
AD538x  
ACK BY STOP COND  
AD538x BY MASTER  
MOST SIGNIFICANT DATA BYTE  
LEAST SIGNIFICANT DATA BYTE  
DATA FOR CHANNEL "NEXT CHANNEL"  
Figure 32. 3-Byte AD5381, I2C Write Operation  
Rev. D | Page 29 of 40  
 
 
AD5381  
Data Sheet  
2-Byte Mode  
PARALLEL INTERFACE  
Following initialization of 2-byte mode, the usercan update  
channels sequentially. The device address byte is only required  
once and the pointer address pointeris configured for auto-  
increment or burst mode.  
The SER/  
PAR  
pin must be tied low to enable the parallel  
interface and disable the serialinterfaces.Figure 7shows the  
timing diagram for a parallelwrite. The parallelinterface is  
controlled by the following pins.  
The user must begin with an addressbyte(R/ = 0), after  
W
Pin  
CS  
Active low device select pin.  
Pin  
which the DAC acknowledges that it is preparedto receive  
data by pulling SDA low. The addressbyteis followed by a  
specific pointer byte (0xFF)that initiates the burst mode of  
operation. The address pointer initializes to Channel 0, the data  
following the pointer is loaded to Channel 0, and the address  
pointer automatically incrementsto the next address.  
WR  
On the rising edge of  
to Pin A0 are latched; data present on the data bus is loaded into  
the selected input registers.  
, with low, the addresseson Pin A5  
WR CS  
REG0, REG1 Pins  
The REG0 and REG1 bits in the data byte determinewhich  
register will be updated. In this mode, following the initializa-  
tion, only the two data bytes are required to updatea channel.  
The channeladdressautomatically increments fromAddress 0  
to Channel 39 and then returns to the normal 3-byte mode of  
operation. This modeallows transmission of datato all  
channels in one block and reduces the software overhead in  
configuring all channels. A STOP condition at any time exits  
this mode. Toggle mode is not supported in 2-byte mode.  
Figure 33 shows a typical configuration.  
The REG0 and REG1 pins determine the destination registerof  
the data being written to the AD5381. See Table 10.  
Pin A5 to Pin A0  
Each of the 40 DAC channels can be individually addressed.  
Pin DB11 to Pin DB0  
The AD5381 accepts a straight 12-bit parallel word on DB11 to  
DB0, where DB11 is the MSB and DB0is the LSB.  
SCL  
SDA  
1
0
1
0
1
AD1  
AD0  
R/W  
A7 = 1 A6 = 1 A5 = 1 A4 = 1 A3 = 1 A2 = 1 A1 = 1 A0 = 1  
START COND  
BY MASTER  
ACK BY  
CONVERTER  
MSB  
ACK BY  
CONVERTER  
ADDRESS BYTE  
POINTER BYTE  
SCL  
SDA  
REG1 REG0 MSB  
LSB  
MSB  
LSB  
ACK BY  
AD538x  
ACK BY  
AD538x  
MOST SIGNIFICANT DATA BYTE  
LEAST SIGNIFICANT DATA BYTE  
CHANNEL 0 DATA  
SCL  
SDA  
REG1 REG0 MSB  
LSB  
MSB  
LSB  
ACK BY  
ACK BY  
CONVERTER  
CONVERTER  
MOST SIGNIFICANT DATA BYTE  
LEAST SIGNIFICANT DATA BYTE  
CHANNEL 1 DATA  
SCL  
SDA  
REG1 REG0 MSB  
LSB  
MSB  
LSB  
ACK BY  
ACK BY  
STOP  
CONVERTER  
CONVERTER COND  
MOST SIGNIFICANT DATA BYTE  
LEAST SIGNIFICANT DATA BYTE  
BY  
MASTER  
CHANNEL N DATA FOLLOWED BY STOP  
Figure 33. 2-Byte, 12C Write Operation  
Rev. D | Page 30 of 40  
 
 
Data Sheet  
AD5381  
MICROPROCESSOR INTERFACING  
Parallel Interface  
When data is being transmitted to the AD5381, the  
line  
SYNC  
The AD5381 can be interfaced to a variety of 16-bit microcon-  
trollers or DSPprocessors. Figure 35 shows the AD5381 family  
interfaced to a generic16-bit microcontroller/DSPprocessor.  
The lower address lines fromthe processor areconnected to A0  
to A5 on the AD5381. The upper address lines aredecoded to  
is taken low (PC7). Data appearing on the MOSIoutput is valid  
on the falling edge of SCK. Serialdata from the MC68HC11 is  
transmitted in 8-bit bytes with only eight falling clock edges  
occurring in the transmit cycle.  
DVDD  
MC68HC11  
AD5381  
provide a  
,
signal for the AD5381. The fast interface  
CS LDAC  
SER/PAR  
RESET  
timing of the AD5381 allows direct interface to a wide variety  
of microcontrollersand DSPs, as shown in Figure 35.  
MISO  
MOSI  
SCK  
PC7  
SDO  
DIN  
AD5381 to MC68HC11  
SCLK  
SYNC  
The serialperipheralinterface (SPI)on the MC68HC11is  
configured for master mode (MSTR = 1), clock polarity bit  
(CPOL) = 0, and the clock phase bit (CPHA)= 1. The SPI is  
configured by writing to the SPI controlregister (SPCR)—see  
the MC68HC11 user manual. SCK of the MC68HC11 drives the  
SCLK of the AD5381, the MOSIoutput drivesthe serialdata  
line (DIN) of the AD5381, and the MISO input is driven from  
DOUT. The SYNC signal is derived from a port line (PC7).  
2
SPI/I C  
Figure 34. AD5381-to-MC68HC11 Interface  
µCONTROLLER/  
DSP PROCESSOR  
AD5381  
1
D15  
REG1  
REG0  
D11  
DATA  
BUS  
D0  
D0  
CS  
UPPER BITS OF  
ADDRESS BUS  
ADDRESS  
DECODE  
LDAC  
A5  
A4  
A5  
A4  
A3  
A2  
A1  
A0  
WR  
A3  
A2  
A1  
A0  
R/W  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 35. AD5381-to-Parallel Interface  
Rev. D | Page 31 of 40  
 
 
AD5381  
Data Sheet  
DVDD  
8XC51  
AD5381 to PIC16C6x/7x  
AD5381  
SER/PAR  
The PIC16C6x/7x synchronous serial port (SSP) is configured  
as an SPI master with the ClockPolarity Bit = 0. This is done  
by writing to the synchronousserial port control register  
(SSPCON). See the PIC16/17 microcontroller user manual.  
RESET  
RxD  
SDO  
DIN  
TxD  
P1.1  
SCLK  
SYNC  
In this example I/O, Port RA1is being used to pulse  
SYNC  
2
and enable the serialport of the AD5381. This microcontroller  
transfers only eight bits of dataduring each serialtransfer  
operation; therefore,threeconsecutiveread/write operations  
may be needed depending on the mode. Figure 36 showsthe  
connection diagram.  
SPI/I C  
Figure 37. AD5381-to-8051 Interface  
AD5381 to ADSP-2101/ADSP-2103  
Figure 38 shows a serialinterface between the AD5381 and the  
ADSP-2101/ADSP-2103. The ADSP-2101/ADSP-2103 should  
be set up to operate in SPORT transmit alternateframing mode.  
The ADSP-2101/ADSP-2103 SPORT is programmedthrough  
the SPORT controlregisterand configuredas follows: internal  
clock operation, active low framing, and 16-bit word length.  
Transmission is initiated by writing a word to the Tx register  
after the SPORT has been enabled.  
DVDD  
PIC16C6X/7X  
AD5381  
SER/PAR  
RESET  
SDI/RC4  
SDO/RC5  
SCK/RC3  
RA1  
SDO  
DIN  
SCLK  
SYNC  
2
SPI/I C  
Figure 36. AD5381-to-PIC16C6x/7x Interface  
DVDD  
ADSP-2101/  
AD5381  
ADSP-2103  
SER/PAR  
AD5381 to 8051  
RESET  
The AD5381 requires a clocksynchronized to the serialdata.  
The 8051 serialinterface must thereforebe operated in Mode 0.  
In this mode, serialdata enters and exits through RxD, and a  
shift clock is output on TxD. Figure 37 shows howthe 8051 is  
connected to the AD5381. Because the AD5381 shifts data out  
on the rising edge of the shift clock and latches data in on the  
falling edge, the shift clock must be inverted.The AD5381  
requires its data to be MSBfirst. Since the 8051outputs the  
LSB first, the transmit routine must take this into account.  
DR  
DT  
SDO  
DIN  
SCK  
TFS  
RFS  
SCLK  
SYNC  
2
SPI/I C  
Figure 38. AD5381-to-ADSP-2101/ADSP-2103 Interface  
Rev. D | Page 32 of 40  
 
 
 
Data Sheet  
AD5381  
APPLICATION INFORMATION  
externally from eitheran ADR421 or ADR431 2.5 V reference.  
Suitable externalreferences for the AD5381-3include the  
ADR280 1.2 V reference. The reference should be decoupledat  
the REFOUT/REFIN pin of the device with a 0.1 µF capacitor.  
POWER SUPPLY DECOUPLING  
In any circuit where accuracy is important, careful considera-  
tion of the power supply and ground return layout helps to  
ensure the ratedperformance. The printed circuit board on  
which the AD5381 is mounted should be designed so that the  
analog and digitalsections are separatedand confined to  
certain areas of the board. If the AD5381 is in a system where  
multiple devices requirean AGND-to-DGND connection, the  
connection should be made at onepoint only, a star ground  
point established as close to the device as possible.  
AVDD  
0.1µF  
DVDD  
10µF  
0.1µF  
ADR431/  
ADR421  
AVDD  
DVDD  
VOUT0  
REFOUT/REFIN  
For supplies with multiple pins (AVDD, DVDD), these pins  
should be tied together. TheAD5381 should haveample supply  
bypassing of 10 µF in parallel with 0.1 µF on each supply,  
located as close to the package as possibleand ideally right  
up against the device. The 10µF capacitors are the tantalum  
bead type. The 0.1 µF capacitor should havelow effective series  
resistance (ESR) and effective series inductance (ESI), like the  
common ceramictypes that providea low impedance path to  
ground at high frequencies, to handletransient currents dueto  
internal logic switching.  
0.1µF  
AD5381-5  
REFGND  
VOUT39  
DGND  
DAC_GND SIGNAL_GND AGND  
Figure 39. Typical Configuration with External Reference  
Figure 40 shows a typical configuration when using the internal  
reference. On power-up, the AD5381 defaults to an external  
reference; therefore, the internalreference needs to be config-  
ured and turned on via a write to the AD5381 controlregister.  
ControlRegister Bit CR10 allows the user to choosethe  
referencevalue; Bit CR8is used to select the internalreference.  
It is recommended to use the 2.5 V reference when AVDD =  
5 V, and the 1.25 V reference when AVDD= 3V.  
The power supplylines of the AD5381 should use as largea  
trace as possible to providelow impedance paths and reduce  
the effects of glitches on the power supply line. Fast switching  
signals such as clocks should be shielded with digitalground  
to avoid radiating noise to other partsof the board, andshould  
never be run near the reference inputs.A ground line routed  
between the DIN and SCLK lines will help reduce crosstalk  
between them(this is not required on a multilayerboard  
because therewillbe a separate ground plane, butseparat-  
ing the lines will help). It is essential to minimize noise on  
the REFOUT/REFIN line.  
AVDD  
0.1µF  
DVDD  
10µF  
0.1µF  
Avoid crossover of digitaland analog signals. Traceson  
opposite sides of the board should run at right angles to  
each other. This reduces the effects of feedthrough through  
the board. A micro-strip technique is by far the best, but is  
not always possible with a double-sided board. In this tech-  
nique, the component side of the boardis dedicated to the  
ground plane while signaltraces are placed on the solder side.  
AVDD  
DVDD  
VOUT0  
REFOUT/REFIN  
0.1µF  
AD5381  
REFGND  
VOUT39  
DGND  
DAC_GND SIGNAL_GND AGND  
TYPICAL CONFIGURATION CIRCUIT  
Figure 39 shows a typicalconfiguration for the AD5381-5  
when configured for use with an externalreference. In the  
circuit shown, all AGND, SIGNAL_GND, and DAC_GND pins  
are tied together to a common AGND. AGNDand DGNDare  
connected togetherat the AD5381 device. On power-up, the  
AD5381 defaults to externalreference operation. All AVDD  
lines are connected together and driven from the same5V  
source. It is recommended to decoupleclose to the device  
with a 0.1 µF ceramicand a 10 µF tantalum capacitor. In this  
application, the referencefor the AD5381-5 is provided  
Figure 40. Typical Configuration with Internal Reference  
Digital connections have been omitted forclarity. The AD5381  
contains an internal power-on reset circuit with a 10 ms brown-  
out time. If the power supply ramp rate exceeds10ms, the user  
should reset the AD5381 as part of the initialization process to  
ensure the calibration datais loaded correctly into the device.  
Rev. D | Page 33 of 40  
 
 
 
 
 
AD5381  
Data Sheet  
Note that B registers can only be loadedwhen toggle mode is  
enabled. The sequence of events whenconfiguring the AD5381  
for toggle mode is  
MONITOR FUNCTION  
The AD5381 channel monitor function consists of a multiplexer  
addressedvia the interface, allowing any channel output to be  
routed to this pin for monitoring using an external ADC. In  
channel monitor mode, VOUT39 becomes the MON_OUTpin,  
to which all monitoredsignals are routed. The channel monitor  
function must be enabled in the control register before any  
channels are routed to MON_OUT. Table 17 contains the  
decoding information required to route anychannel to  
MON_OUT.Selecting Channel Address 63 three-states  
MON_OUT.Figure 41 shows a typical monitoring circuit  
implemented using a 12-bit SAR ADC in a 6-lead SOT-23  
package. The controller output port selects the channelto be  
monitored, and the input port readsthe converteddata from  
the ADC.  
1. Enable toggle mode for the required channels via the  
controlregister.  
2. Load data to the A registers.  
3. Load data to the B registers.  
4. Apply  
.
LDAC  
is used to switch between the A and B registers in  
LDAC  
determining the analog output. Thefirst  
configuresthe  
LDAC  
output to reflect data in the A registers. This modeofferssignif-  
icant advantages if the user wants to generatea square waveat  
the output of all 40 channels, as might be required to drive a  
liquid crystal-based variableopticalattenuator.  
In this case, the user writes to the controlregister and enables  
the toggle function by setting CR4to CR2= 0, thus enabling the  
five groups of eight for toggle modeoperation. The user must  
LDAC  
the output values to reflect the data in the A and B registers.  
AVDD  
then load data to all40 A and B registers. Toggling  
sets  
DIN  
VOUT0  
SYNC  
SCLK  
OUTPUT PORT  
The frequency of the  
square waveoutput.  
determines the frequency of the  
LDAC  
VDD  
CS  
AD5381  
AD7476  
VOUT39/MON_OUT  
VIN  
SCLK  
INPUT PORT  
Toggle mode is disabled via the controlregister. The first  
LDAC  
SDATA  
following the disabling of the toggle mode will update the out-  
puts with the data contained in the A registers.  
GND  
CONTROLLER  
AGND  
VOUT38  
THERMAL MONITOR FUNCTION  
DAC_GND SIGNAL_GND  
The AD5381contains a temperature shutdown function to  
protect the chip if multiple outputs areshorted. The short-  
circuit current of each output amplifier is typically 40 mA.  
Operating the AD5381 at 5 V leads to a power dissipation of  
200 mW per shorted amplifier. Withfive channels shorted, this  
leads to an extra watt of powerdissipation. Forthe 100-lead  
LQFP, the θJA is typically 44°C/W.  
Figure 41. Typical Channel Monitoring Circuit  
TOGGLE MODE FUNCTION  
The toggle mode function allows an output signalto be gener-  
ated using the  
controlsignalthat switches between two  
LDAC  
DAC data registers. This function is configured using the SFR  
controlregister as follows. A write with REG1 = REG0 = 0 and  
A5 to A0 = 001100 specifies a control register write. The toggle  
mode function is enabled in groups of eight channels using Bit  
CR4to Bit CR0in the controlregister. See the AD5381 control  
register description. Figure 42 shows a blockdiagram of toggle  
mode implementation. Each of the 40DAC channels on the  
AD5381 contain an A and B data register.  
The thermalmonitoris enabledby the user via CR6in the  
controlregister. The outputamplifiers on the AD5381 are  
automatically powered down if the die temperatureexceeds  
approximately 130°C. After a thermalshutdown hasoccurred,  
the user can re-enable the part by executing a soft power-up if  
the temperature has droppedbelow130°C or by turning off the  
thermalmonitorfunction via the controlregister.  
Rev. D | Page 34 of 40  
 
 
 
 
Data Sheet  
AD5381  
DATA  
REGISTER  
A
DAC  
REGISTER  
VOUT  
12-BIT DAC  
DATA  
REGISTER  
B
INPUT  
DATA REGISTER  
INPUT  
LDAC  
CONTROL INPUT  
A/B  
Figure 42. Toggle Mode Function  
UTILIZING FIFO  
OPTICAL ATTENUATORS  
The AD5381FIFO mode optimizes totalsystemupdate rates  
in applications where a largenumber of channels needto be  
updated. FIFO modeis only available when parallelinterface  
mode is selected. The FIFO EN pin is used to enable the FIFO.  
The status of FIFO EN is sampled during the initialization  
sequence. Therefore,the FIFO statuscan only be changed by  
resetting the device.  
Based on its high channel count, high resolution, monotonic  
behavior, and high levelof integration,the AD5381 is ideally  
targeted at opticalattenuation applications used in dynamic  
gain equalizers, variable opticalattenuators (VOAs), and optical  
add-drop multiplexers(OADMs). In these applications, each  
wavelength is individually extracted using an arrayed wave  
guide; its power is monitoredusing a photodiode, transimped-  
ance amplifier and ADC in a closed-loop controlsystem. The  
AD5381 controls the opticalattenuator for each wavelength,  
ensuring that the power is equalized in allwavelengthsbefore  
being multiplexed ontothe fiber. This preventsinformation loss  
and saturation fromoccurring at amplification stages further  
along the fiber.  
In a telescope that provides for the cancel-lation of atmospheric  
distortion, for example, a large numberof channels need to be  
updated in a short period of time. In such systems, as manyas  
400 channels need to be updated within 40 µs. Four-hundred  
channels require the useof 10 AD5381s. With FIFO mode  
enabled, the data writecycle time is 40 ns; therefore, each group  
consisting of 40 channels can be fully loaded in 1.6 µs. In FIFO  
mode, a completegroupof 40chan-nels will update in 14.4 µs.  
The time taken to update all 400 channels is  
14.4 µs + 9 × 1.6 µs = 28.8 µs.  
Figure 44 shows the FIFO operation scheme.  
ADD  
DROP  
PORTS  
PORTS  
OPTICAL  
SWITCH  
PHOTODIODES  
11  
12  
ATTENUATOR  
DWDM  
IN  
DWDM  
OUT  
ATTENUATOR  
FIBRE  
AWG FIBRE  
AWG  
1n–1  
1n  
ATTENUATOR  
ATTENUATOR  
TIA/LOG AMP  
(AD8304/AD8305)  
ADG731  
(40:1 MUX)  
N:1 MULTIPLEXER  
AD5381,  
40-CHANNEL,  
12-BIT DAC  
AD7671  
(0V TO 5V, 1MSPS)  
CONTROLLER  
16-BIT ADC  
Figure 43. OADM Using the AD5381 as Part of an Optical Attenuator  
Rev. D | Page 35 of 40  
 
 
 
AD5381  
Data Sheet  
GROUP A  
CHNLS 0–39 CHNLS 40–79  
GROUP B  
GROUP C  
CHNLS  
GROUP D  
CHNLS  
GROUP E  
CHNLS  
GROUP F  
CHNLS  
GROUP G  
CHNLS  
GROUP H  
CHNLS  
GROUP I  
CHNLS  
GROUP J  
CHNLS  
80–119  
120–159  
160–199  
200–239  
240–279  
280–319  
320–359  
360–399  
FIFO DATA LOAD  
GROUP A  
FIFO DATA LOAD  
GROUP B  
FIFO DATA LOAD  
GROUP J  
1.6µs  
1.6µs  
1.6µs  
OUTPUT UPDATE  
TIME FOR GROUP A  
OUTPUT UPDATE  
TIME FOR GROUP J  
14.4µs  
14.4µs  
OUTPUT UPDATE  
TIME FOR GROUP B  
14.4µs  
TIME TO UPDATE 400 CHANNELS = 28.8µs  
Figure 44. Using FIFO Mode 400 Channels Updated in Under 30 µs  
Rev. D | Page 36 of 40  
 
Data Sheet  
AD5381  
OUTLINEDIMENSIONS  
16.20  
16.00 SQ  
15.80  
1.60 MAX  
0.75  
0.60  
0.45  
100  
1
76  
75  
PIN 1  
14.20  
14.00 SQ  
13.80  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.08  
COPLANARITY  
25  
51  
50  
0.15  
0.05  
26  
SEATING  
PLANE  
0.27  
0.22  
0.17  
VIEW A  
0.50  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BED  
Figure 45. 100-Lead Low Profile Quad Flat Package [LQFP]  
(ST-100-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Output  
Channels  
Linearity  
Error (LSB)  
Package  
Description  
Package  
Option  
Model1  
Resolution  
AVDD Range  
AD5381BSTZ-3  
AD5381BSTZ-3-REEL  
AD5381BSTZ-5  
AD5381BSTZ-5-REEL  
EVAL-AD5380EBZ  
12 Bits  
12 Bits  
12 Bits  
12 Bits  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
2.7 V to 3.6 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
4.5 V to 5.5 V  
40  
40  
40  
40  
1
1
1
1
100-Lead LQFP  
100-Lead LQFP  
100-Lead LQFP  
100-Lead LQFP  
Evaluation Kit  
ST-100-1  
ST-100-1  
ST-100-1  
ST-100-1  
1 Z = RoHS Compliant Part.  
Rev. D | Page 37 of 40  
 
 
 
AD5381  
NOTES  
Data Sheet  
Rev. D | Page 38 of 40  
Data Sheet  
NOTES  
AD5381  
Rev. D | Page 39 of 40  
AD5381  
NOTES  
Data Sheet  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2004–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03732-0-9/12(D)  
Rev. D | Page 40 of 40  

相关型号:

AD5392_15

8-/16-Channel, 3 V/5 V, Serial Input, Single-Supply, 12-/14-Bit Voltage Output
ADI

AD5398

120 mA, Current Sinking, 10-Bit, I2C DAC
ADI

AD5398A

120 mA, Current Sinking, 10-Bit, I2C DAC
ADI

AD5398A-WAFER

120 mA, Current Sinking, 10-Bit, I2C DAC
ADI

AD5398ABCBZ-REEL

120 mA, Current Sinking, 10-Bit, I2C DAC
ADI

AD5398ABCBZ-REEL7

120 mA, Current Sinking, 10-Bit, I2C DAC
ADI

AD5398ABCPZ-U2

120 mA, Current Sinking, 10-Bit, I<sup>2</sup>C DAC
ADI

AD5398BCBZ-REEL7

IC SERIAL INPUT LOADING, 250 us SETTLING TIME, 10-BIT DAC, BGA9, LEAD FREE, WLCSP-9, Digital to Analog Converter
ADI

AD5398BCPZ-REEL

120 mA, Current Sinking, 10-Bit, I2C DAC
ADI

AD5398BCPZ-REEL7

120 mA, Current Sinking, 10-Bit, I2C DAC
ADI

AD5398BCPZ-WP

120 mA, Current Sinking, 10-Bit, I2C DAC
ADI

AD5398ZCSURF

SERIAL INPUT LOADING, 250us SETTLING TIME, 10-BIT DAC, UUC8, LEAD FREE, DIE-8
ADI