AD5405YCPZ-REEL [ADI]

Dual 12-Bit, High Bandwidth, Multiplying DAC with 4 Quadrant Resistors and Parallel Interface;
AD5405YCPZ-REEL
型号: AD5405YCPZ-REEL
厂家: ADI    ADI
描述:

Dual 12-Bit, High Bandwidth, Multiplying DAC with 4 Quadrant Resistors and Parallel Interface

转换器
文件: 总25页 (文件大小:863K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 12-Bit, High Bandwidth, Multiplying DAC with  
4-Quadrant Resistors and Parallel Interface  
Data Sheet  
AD5405  
FEATURES  
GENERAL DESCRIPTION  
The AD54051 is a CMOS, 12-bit, dual-channel, current output  
10 MHz multiplying bandwidth  
On-chip 4-quadrant resistors allow flexible output ranges  
INL of 1 LSB  
40-lead LFCSP package  
digital-to-analog converter (DAC). This device operates from a  
2.5 V to 5.5 V power supply, making it suited to battery-powered  
and other applications.  
2.5 V to 5.5 V supply operation  
10 V reference input  
21.3 MSPS update rate  
Extended temperature range: −40°C to +125°C  
4-quadrant multiplication  
Power-on reset  
0.5 μA typical current consumption  
Guaranteed monotonic  
As a result of manufacturing with a CMOS submicron process the  
device offers excellent 4-quadrant multiplication characteristics,  
with large signal multiplying bandwidths of up to 10 MHz.  
The applied external reference input voltage (VREF) determines  
the full-scale output current. An integrated feedback resistor (RFB)  
provides temperature tracking and full-scale voltage output when  
combined with an external I to V precision amplifier. This device  
also contains the 4-quadrant resistors necessary for bipolar  
operation and other configuration modes.  
Readback function  
APPLICATIONS  
This DAC uses data readback, allowing the user to read the  
contents of the DAC register via the DB pins. On power-up, the  
internal register and latches fill with 0s, and the DAC outputs  
are at zero scale.  
Portable battery-powered applications  
Waveform generators  
Analog processing  
Instrumentation applications  
Programmable amplifiers and attenuators  
Digitally controlled calibration  
Programmable filters and oscillators  
Composite video  
The AD5405 has a 6 mm × 6 mm, 40-lead LFCSP package.  
1 U.S. Patent Number 5,689,257.  
Ultrasound  
Gain, offset, and voltage trimming  
FUNCTIONAL BLOCK DIAGRAM  
V
A
R1A  
R3A  
R2_3A  
R2A  
REF  
R3  
2R  
R2  
2R  
R1  
2R  
RFB  
2R  
AD5405  
V
R
A
DD  
FB  
DATA  
INPUTS  
DB0  
I
1A  
2A  
OUT  
INPUT  
BUFFER  
12-BIT  
R-2R DAC A  
LATCH  
DB11  
I
OUT  
DAC A/B  
CONTROL  
LOGIC  
CS  
R/W  
I
I
1B  
2B  
OUT  
12-BIT  
R-2R DAC B  
LATCH  
OUT  
LDAC  
R
B
FB  
POWER-ON  
RESET  
GND  
CLR  
R1  
2R  
RFB  
2R  
R3  
2R  
R2  
2R  
R3B  
R2_3B  
R2B  
V
B R1B  
REF  
Figure 1.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2004–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD5405* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
REFERENCE MATERIALS  
Solutions Bulletins & Brochures  
Digital to Analog Converters ICs Solutions Bulletin  
Multiplying DACs Flexible Building Blocks  
EVALUATION KITS  
AD5405 Evaluation Board  
DESIGN RESOURCES  
AD5405 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
DOCUMENTATION  
Application Notes  
• AN-1085: Multiplying DACs—AC/Arbitrary Reference  
Applications  
AN-137: A Digitally Programmable Gain and Attenuation  
Amplifier Design  
DISCUSSIONS  
View all AD5405 EngineerZone Discussions.  
AN-320A: CMOS Multiplying DACs and Op Amps Combine  
to Build Programmable Gain Amplifier, Part 1  
AN-320B: CMOS Multiplying DACs and Op Amps Combine  
to Build Programmable Gain Amplifiers, Part 2  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
AN-912: Driving a Center-Tapped Transformer with a  
Balanced Current-Output DAC  
TECHNICAL SUPPORT  
Data Sheet  
Submit a technical question or find your regional support  
number.  
AD5405: Dual 12-Bit, High Bandwidth, Multiplying DAC  
with 4-Quadrant Resistors and Parallel Interface Data  
Sheet  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD5405  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Circuit Operation....................................................................... 14  
Single-Supply Applications ....................................................... 15  
Adding Gain................................................................................ 15  
Divider or Programmable Gain Element................................ 16  
Reference Selection .................................................................... 16  
Amplifier Selection .................................................................... 16  
Parallel Interface......................................................................... 18  
Microprocessor Interfacing....................................................... 18  
PCB Layout and Power Supply Decoupling ........................... 19  
Overview of the AD5424 to AD5547 Devices............................ 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Terminology .................................................................................... 13  
General Description....................................................................... 14  
DAC Section................................................................................ 14  
REVISION HISTORY  
1/16—Rev. B to Rev. C  
7/05—Rev. 0 to Rev. A  
Changed Pin DAC A/B to DAC /B ...............................Universal  
Deleted Positive Output Voltage Section and Figure 35............ 15  
Changes to Adding Gain Section ................................................. 15  
Changes to ADSP-21xx Processors to AD5405 Interface Section  
Title, ADSP-BF504 to ADSP-BF592 Device Family to AD5405  
Interface Section Title, and Figure 39 Caption........................... 19  
Deleted Evaluation Board for the DACs Section and Power  
Supplies for the Evaluation Board Section.................................. 19  
Changes to Table 10........................................................................ 22  
Updated Outline Dimensions....................................................... 23  
Changes to Ordering Guide .......................................................... 23  
A
Changes to Features List...................................................................1  
Changes to Specifications.................................................................3  
Changes to Timing Characteristics.................................................5  
Change to Absolute Maximum Ratings .........................................6  
Change to Figure 7 and Figure 8 .....................................................8  
Change to Figure 12 ..........................................................................9  
Change to Figure 26 Through Figure 28..................................... 11  
Changes to General Description Section .................................... 14  
Change to Figure 31 ....................................................................... 14  
Changes to Table 5 Through Table 10 ......................................... 14  
Changes to Figure 34 and Figure 35 ............................................ 15  
Changes to Figure 36 and Figure 37 ............................................ 16  
Changes to Microprocessor Interfacing Section ........................ 18  
Added Figure 38 Through Figure 40 ........................................... 18  
Change to Power Supplies for the Evaluation Board Section... 19  
Updated Outline Dimensions....................................................... 23  
Changes to Ordering Guide.......................................................... 23  
12/09—Rev. A to Rev. B  
Changes to Figure 1.......................................................................... 1  
Changes to Table 2 and Figure 2..................................................... 5  
Changes to Table 4 and Figure 4..................................................... 7  
Updated Outline Dimensions....................................................... 23  
Changes to Ordering Guide .......................................................... 23  
7/04—Revision 0: Initial Version  
Rev. C | Page 2 of 24  
 
Data Sheet  
AD5405  
SPECIFICATIONS  
VDD = 2.5 V to 5.5 V, VREF = 10 V, IOUT2 = 0 V. Temperature range for Y version: −40°C to +125°C. All specifications TMIN to TMAX, unless  
otherwise noted. DC performance is measured with OP177, and ac performance is measured with AD8038, unless otherwise noted.  
Table 1.1  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Guaranteed monotonic  
STATIC PERFORMANCE  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
Gain Error  
12  
1
Bits  
LSB  
−1/+2 LSB  
25  
mV  
Gain Error Temperature Coefficient  
Bipolar Zero-Code Error  
Output Leakage Current  
5
ppm FSR/°C  
25  
1
15  
mV  
nA  
nA  
Data = 0x0000, TA = 25°C, IOUT  
Data = 0x0000, TA = −40°C to +125°C, IOUT1  
1
REFERENCE INPUT  
Reference Input Range  
VREFA, VREFB Input Resistance  
VREFA to VREFB Input Resistance  
Mismatch  
10  
10  
1.6  
V
kΩ  
%
8
13  
2.5  
Input resistance TC = −50 ppm/°C  
Typ = 25°C, max = 125°C  
R1, RFB Resistance  
R2, R3 Resistance  
R2 to R3 Resistance Mismatch  
Input Capacitance  
Code 0  
17  
17  
20  
20  
25  
25  
kΩ  
kΩ  
%
Input resistance TC = −50 ppm/°C  
Input resistance TC = −50 ppm/°C  
Typ = 25°C, max = 125°C  
0.06 0.18  
3.5  
3.5  
pF  
pF  
Code 4095  
DIGITAL INPUTS/OUTPUT  
Input High Voltage, VIH  
1.7  
1.7  
V
V
VDD = 3.6 V to 5.5 V  
VDD = 2.5 V to 3.6 V  
Input Low Voltage, VIL  
Output High Voltage, VOH  
Output Low Voltage, VOL  
0.8  
0.7  
V
V
V
V
V
V
µA  
pF  
VDD = 2.7 V to 5.5 V  
VDD = 2.5 V to 2.7 V  
VDD = 4.5 V to 5.5 V, ISOURCE = 200 µA  
VDD = 2.5 V to 3.6 V, ISOURCE = 200 µA  
VDD = 4.5 V to 5.5 V, ISINK = 200 µA  
VDD = 2.5 V to 3.6 V, ISINK = 200 µA  
VDD − 1  
VDD − 0.5  
0.4  
0.4  
1
Input Leakage Current, IIL  
Input Capacitance  
4
10  
DYNAMIC PERFORMANCE  
Reference Multiplying BW  
Output Voltage Settling Time  
10  
MHz  
VREF = 3.5 V p-p, DAC loaded all 1s  
RLOAD = 100 Ω, CLOAD = 15 pF, VREF = 10 V  
DAC latch alternately loaded with 0s and 1s  
Measured to 1 mV of FS  
Measured to 4 mV of FS  
Measured to 16 mV of FS  
Digital Delay  
10% to 90% Settling Time  
Digital-to-Analog Glitch Impulse  
Multiplying Feedthrough Error  
80  
35  
30  
20  
15  
3
120  
70  
60  
40  
30  
ns  
ns  
ns  
ns  
ns  
nV-sec  
Interface time delay  
Rise and fall times  
1 LSB change around major carry, VREF = 0 V  
DAC latch loaded with all 0s, VREF = 3.5 V  
1 MHz  
10 MHz  
DAC latches loaded with all 0s  
DAC latches loaded with all 1s  
70  
48  
17  
30  
dB  
dB  
pF  
pF  
Output Capacitance  
12  
25  
Rev. C | Page 3 of 24  
 
AD5405  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Digital Feedthrough  
1
nV-sec  
Feedthrough to DAC output with CS high and  
alternate loading of all 0s and all 1s  
At 1 kHz  
VREF = 3. 5 V p-p, all 1s loaded, f = 1 kHz  
Clock = 10 MHz, VREF = 3.5 V  
Output Noise Spectral Density  
Analog THD  
Digital THD  
25  
81  
nV/√Hz  
dB  
100 kHz fOUT  
50 kHz fOUT  
61  
66  
dB  
dB  
SFDR Performance (Wideband)  
Clock = 10 MHz  
500 kHz fOUT  
VREF = 3.5 V  
55  
63  
65  
dB  
dB  
dB  
100 kHz fOUT  
50 kHz fOUT  
Clock = 25 MHz  
500 kHz fOUT  
100 kHz fOUT  
50  
60  
62  
dB  
dB  
dB  
50 kHz fOUT  
SFDR Performance (Narrow Band)  
Clock = 10 MHz  
500 kHz fOUT  
VREF = 3.5 V  
73  
80  
87  
dB  
dB  
dB  
100 kHz fOUT  
50 kHz fOUT  
Clock = 25 MHz  
500 kHz fOUT  
100 kHz fOUT  
70  
75  
80  
dB  
dB  
dB  
50 kHz fOUT  
Intermodulation Distortion  
f1 = 40 kHz, f2 = 50 kHz  
f1 = 40 kHz, f2 = 50 kHz  
POWER REQUIREMENTS  
Power Supply Range  
IDD  
VREF = 3.5 V  
Clock = 10 MHz  
Clock = 25 MHz  
72  
65  
dB  
dB  
2.5  
5.5  
0.7  
10  
0.001  
V
µA  
µA  
%/%  
TA = 25°C, logic inputs = 0 V or VDD  
TA = −40°C to +125°C, logic inputs = 0 V or VDD  
∆VDD = 5%  
0.5  
Power Supply Sensitivity  
1 Guaranteed by design and characterization, not subject to production test.  
Rev. C | Page 4 of 24  
Data Sheet  
AD5405  
TIMING CHARACTERISTICS  
All input signals are specified with tr = tf = 1 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. VDD = 2.5 V to 5.5 V,  
REF = 10 V, IOUT2 = 0 V, temperature range for Y version: −40°C to +125°C. All specifications TMIN to TMAX, unless otherwise noted.  
V
Table 2.1  
Parameter  
Limit at TMIN, TMAX  
Unit  
Test Conditions/Comments  
Write Mode  
t1  
0
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns typ  
ns typ  
ns typ  
ns typ  
R/W to CS setup time  
R/W to CS hold time  
CS low time  
t2  
0
t3  
10  
10  
0
6
0
t4  
t5  
t6  
t7  
Address setup time  
Address hold time  
Data setup time  
Data hold time  
R/W high to CS low  
CS min high time  
t8  
5
t9  
7
t14  
10  
12  
10  
10  
CS rising to LDAC falling time  
LDAC pulse width  
t15  
t16  
CS rising to LDAC rising time  
LDAC falling to CS rising time  
t17  
Data Readback Mode  
t10  
t11  
t12  
0
0
5
35  
5
ns typ  
ns typ  
ns typ  
ns max  
ns typ  
ns max  
MSPS  
Address setup time  
Address hold time  
Data access time  
t13  
Bus relinquish time  
10  
21.3  
Update Rate  
Consists of CS min high time, CS low time, and output voltage settling time  
1 Guaranteed by design and characterization, not subject to production test.  
t8  
t2  
t2  
t1  
R/W  
CS  
t9  
t3  
t4  
t11  
t10  
t5  
DACA/DACB  
DATA  
t6  
t12  
t13  
t7  
DATA VALID  
DATA VALID  
t14  
t15  
LDAC1  
LDAC2  
t17  
t16  
1ASYNCHRONOUS LDAC UPDATE MODE.  
2SYNCHRONOUS LDAC UPDATE MODE.  
Figure 2. Timing Diagram  
I
200  
µ
A
OL  
V
+ V  
2
TO  
OUTPUT  
PIN  
OH (MIN)  
OL (MAX)  
C
50pF  
L
I
200  
µ
A
OH  
Figure 3. Load Circuit for Data Timing Specifications  
Rev. C | Page 5 of 24  
 
AD5405  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Transient currents of up to 100 mA do not cause SCR latch-up.  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 3.  
Parameter  
Rating  
VDD to GND  
VREFA, VREFB, RFBA, RFBB to GND  
IOUT1, IOUT2 to GND  
Logic Inputs and Output1  
Operating Temperature Range  
Automotive (Y Version)  
Storage Temperature Range  
Junction Temperature  
−0.3 V to +7 V  
−12 V to +12 V  
−0.3 V to +7 V  
−0.3 V to VDD + 0.3 V  
ESD CAUTION  
−40°C to +125°C  
−65°C to +150°C  
150°C  
40-lead LFCSP, θJA Thermal Impedance  
Lead Temperature, Soldering (10 sec)  
30°C/W  
300°C  
Infrared (IR) Reflow, Peak Temperature  
(<20 sec)  
235°C  
1
LDAC CS  
W
Overvoltages at DBx,  
,
, and R/ are clamped by internal diodes.  
Rev. C | Page 6 of 24  
 
 
 
Data Sheet  
AD5405  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
R1A  
R2A  
R2_3A  
1
2
3
4
5
6
7
8
9
30 R1B  
29 R2B  
28 R2_3B  
27 R3B  
R3A  
AD5405  
V
A
26 V  
25 V  
B
REF  
REF  
DD  
DGND  
LDAC  
DAC A/B  
NIC  
TOP VIEW  
(Not to Scale)  
24 CLR  
23 R/W  
22 CS  
DB11 10  
21 DB0  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED.  
2. EXPOSED PAD MUST BE CONNECTED TO GROUND.  
Figure 4. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1 to 4  
R1A, R2B,  
R2_3B, R3A  
DAC A 4-Quadrant Resistors. Allow a number of configuration modes, including bipolar operation with  
minimum of external components.  
5, 26  
6
7
VREFA, VREF  
DGND  
LDAC  
B
DAC Reference Voltage Input Terminals.  
Digital Ground Pin.  
Load DAC Input. Allows asynchronous or synchronous updates to the DAC output. The DAC is  
asynchronously updated when this signal goes low. Alternatively, if this line is held permanently low, an  
automatic or synchronous update mode is selected whereby the DAC is updated on the rising edge of CS.  
8
A
Selects DAC A or B. Low selects DAC A, and high selects DAC B.  
DAC /B  
9, 34 to 37  
10 to 21  
22  
NIC  
DB11 to DB0  
CS  
Not internally connected.  
Parallel Data Bits 11 through 0.  
Chip Select Input. Active low. Used in conjunction with R/W to load parallel data to the input latch or to  
read data from the DAC register. Edge sensitive; when pulled high, the DAC data is latched.  
Read/Write. When low, used in conjunction with CS to load parallel data. When high, used in conjunction  
with CS to read back contents of DAC register.  
23  
R/W  
24  
CLR  
VDD  
Active Low Control Input. Clears DAC output and input and DAC registers.  
25  
Positive Power Supply Input. These devices can be operated from a supply of 2.5 V to 5.5 V.  
27 to 30  
R3B, R2_3B,  
R2B, R1B  
DAC B 4-Quadrant Resistors. Allow a number of configuration modes, including bipolar operation with a  
minimum of external components.  
31, 40  
32  
RFBB, RFBA  
IOUT2B  
External Amplifier Output.  
DAC A Analog Ground. This pin typically ties to the analog ground of the system, but can be biased to  
achieve single-supply operation.  
33  
38  
39  
IOUT1B  
IOUT1A  
IOUT2A  
DAC B Current Outputs.  
DAC A Current Outputs.  
DAC A Analog Ground. This pin typically ties to the analog ground of the system, but can be biased to  
achieve single-supply operation.  
EPAD  
Exposed pad must be connected to ground.  
Rev. C | Page 7 of 24  
 
AD5405  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
–0.40  
–0.45  
–0.50  
–0.55  
–0.60  
–0.65  
–0.70  
T
V
= 25°C  
= 5V  
A
T
V
V
= 25°C  
A
0.8  
DD  
= 10V  
REF  
= 5V  
DD  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
MIN DNL  
0
0
2
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
2
3
4
5
6
7
8
9
10  
CODE  
REFERENCE VOLTAGE  
Figure 8. Differential Nonlinearity (DNL) vs. Reference Voltage  
Figure 5. Integral Nonlinearity (INL) vs. Code (12-Bit DAC)  
5
1.0  
0.8  
T
V
V
= 25°C  
A
4
3
= 10V  
REF  
= 5V  
V
= 5V  
DD  
DD  
0.6  
2
0.4  
1
0.2  
0
0
V
= 2.5V  
DD  
–1  
–2  
–3  
–4  
–5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
= 10V  
REF  
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
CODE  
Figure 6. DNL vs. Code (12-Bit DAC)  
Figure 9. Gain Error vs. Temperature  
0.6  
0.5  
8
7
6
5
4
3
2
1
0
T
= 25°C  
A
0.4  
MAX INL  
0.3  
V
= 5V  
DD  
0.2  
T
V
= 25°C  
= 5V  
A
0.1  
DD  
0
MIN INL  
–0.1  
–0.2  
–0.3  
V
= 3V  
DD  
V
= 2.5V  
DD  
3
4
5
6
7
8
9
10  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.5  
1.0  
REFERENCE VOLTAGE  
INPUT VOLTAGE (V)  
Figure 7. INL vs. Reference Voltage  
Figure 10. Supply Current vs. Logic Input Voltage  
Rev. C | Page 8 of 24  
 
Data Sheet  
AD5405  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
0
–6  
T
= 25°C  
ALL ON  
DB11  
DB10  
DB9  
DB8  
DB7  
A
LOADING  
ZS TO FS  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–66  
–72  
–78  
–84  
–90  
–96  
–102  
I
I
1 V = 5V  
DD  
OUT  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
1 V = 3V  
DD  
OUT  
T
V
= 25°C  
DD  
= ±3.5V  
= 1.8pF  
A
= 5V  
V
REF  
C
ALL OFF  
COMP  
AMP = AD8038  
1
10  
100  
1k  
10k  
100k  
1M 10M 100M  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 14. Reference Multiplying Bandwidth vs. Frequency and Code  
Figure 11. IOUT1 Leakage Current vs. Temperature  
0.2  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= 5V  
DD  
0
–0.2  
–0.4  
ALL 0s  
ALL 1s  
V
= 2.5V  
DD  
ALL 1s  
ALL 0s  
T
V
V
C
= 25°C  
A
–0.6  
–0.8  
= 5V  
DD  
= ±3.5V  
REF  
= 1.8pF  
COMP  
AMP = AD8038  
1
10 100  
1k  
10k  
100k  
1M  
10M  
100M  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 12. Supply Current vs. Temperature  
Figure 15. Reference Multiplying Bandwidth—All 1s Loaded  
14  
12  
10  
8
3
T
V
= 25°C  
A
T
= 25°C  
A
= 5V  
DD  
LOADING ZS TO FS  
V
= 5V  
DD  
0
–3  
–6  
–9  
6
V
V
= 3V  
DD  
DD  
4
V
V
V
V
V
= ±2V, AD8038 C 1.47pF  
C
REF  
REF  
REF  
REF  
REF  
= 2.5V  
= ±2V, AD8038 C 1pF  
C
= ±0.15V, AD8038 C 1pF  
C
2
= ±0.15V, AD8038 C 1.47pF  
C
= ±3.51V, AD8038 C 1.8pF  
C
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 13. Supply Current vs. Update Rate  
Figure 16. Reference Multiplying Bandwidth vs. Frequency  
and Compensation Capacitor  
Rev. C | Page 9 of 24  
AD5405  
Data Sheet  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
0.045  
0x7FF TO 0x800  
T
V
= 25°C  
= 0V  
T = 25°C  
A
A
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0
V
= 3V  
REF  
AMP = AD8038  
= 1.8pF  
DD  
V
= 5V  
V
= 3.5V p-p  
DD  
REF  
C
COMP  
V
= 3V  
DD  
0x800 TO 0x7FF  
= 3V  
V
DD  
–0.005  
–0.010  
V
= 5V  
DD  
0
20  
40  
60  
80  
100 120 140 160 180 200  
TIME (ns)  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 17. Midscale Transition, VREF = 0 V  
Figure 20. THD and Noise vs. Frequency  
–1.68  
–1.69  
–1.70  
–1.71  
–1.72  
–1.73  
–1.74  
–1.75  
–1.76  
–1.77  
100  
80  
60  
40  
20  
0
T
V
= 25°C  
= 3.5V  
A
0x7FF TO 0x800  
= 5V  
MCLK = 1MHz  
REF  
AMP = AD8038  
= 1.8pF  
V
DD  
C
COMP  
MCLK = 200kHz  
MCLK = 0.5MHz  
V
= 3V  
DD  
V
= 5V  
V
DD  
= 3V  
DD  
T
V
= 25°C  
= 3.5V  
A
REF  
AMP = AD8038  
0x800 TO 0x7FF  
20 40 60  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
80  
100 120 140 160 180 200  
TIME (ns)  
fOUT (kHz)  
Figure 21. Wideband SFDR vs. fOUT Frequency  
Figure 18. Midscale Transition, VREF = 3.5 V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
0
T
V
= 25°C  
A
= 3V  
DD  
AMP = AD8038  
MCLK = 5MHz  
MCLK = 10MHz  
–20  
–40  
–60  
–80  
–100  
–120  
FULL SCALE  
ZERO SCALE  
MCLK = 25MHz  
T
V
= 25°C  
= 3.5V  
A
REF  
AMP = AD8038  
1
100  
1k  
10k  
100k  
1M  
10M  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (kHz)  
10  
FREQUENCY (Hz)  
Figure 22. Wideband SFDR vs. fOUT Frequency  
Figure 19. Power Supply Rejection Ratio vs. Frequency  
Rev. C | Page 10 of 24  
Data Sheet  
AD5405  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
T
V
= 25°C  
DD  
T = 25°C  
A
DD  
AMP = AD8038  
65k CODES  
A
= 5V  
V
= 3V  
AMP = AD8038  
65k CODES  
0
2
4
6
8
10  
12  
250 300 350 400 450 500 550 600 650 700 750  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
Figure 23. Wideband SFDR, fOUT = 100 kHz, Clock = 25 MHz  
Figure 26. Narrow-Band Spectral Response, fOUT = 500 kHz, Clock = 25 MHz  
20  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
V
= 25°C  
DD  
T = 25°C  
A
DD  
AMP = AD8038  
65k CODES  
A
= 5V  
V
= 3V  
AMP = AD8038  
65k CODES  
0
–20  
–40  
–60  
–80  
–100  
–120  
50  
60  
70  
80  
90  
100 110 120 130 140 150  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (kHz)  
FREQUENCY (MHz)  
Figure 27. Narrow-Band SFDR, fOUT = 100 kHz, Clock = 25 MHz  
Figure 24. Wideband SFDR, fOUT = 500 kHz, Clock = 10 MHz  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
T
V
= 25°C  
DD  
T
V
= 25°C  
DD  
A
A
= 3V  
= 5V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
AMP = AD8038  
65k CODES  
AMP = AD8038  
65k CODES  
70  
75  
80  
85  
90  
95  
100 105 110 115 120  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (kHz)  
FREQUENCY (MHz)  
Figure 28. Narrow-Band IMD, fOUT = 90 kHz, 100 kHz, Clock = 10 MHz  
Figure 25. Wideband SFDR, fOUT = 50 kHz, Clock = 10 MHz  
Rev. C | Page 11 of 24  
AD5405  
Data Sheet  
300  
250  
200  
150  
100  
50  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
T
= 25°C  
T
V
= 25°C  
DD  
A
A
ZERO SCALE LOADED TO DAC  
MIDSCALE LOADED TO DAC  
FULL SCALE LOADED TO DAC  
AMP = AD8038  
= 5V  
AMP = AD8038  
65k CODES  
0
–100  
0
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
50  
100  
150  
200  
250  
300  
350  
400  
FREQUENCY (kHz)  
Figure 29. Wideband IMD, fOUT = 90 kHz, 100 kHz, Clock = 25 MHz  
Figure 30. Output Noise Spectral Density  
Rev. C | Page 12 of 24  
Data Sheet  
AD5405  
TERMINOLOGY  
Relative Accuracy (Endpoint Nonlinearity)  
Multiplying Feedthrough Error  
A measure of the maximum deviation from a straight line  
passing through the endpoints of the DAC transfer function. It  
is measured after adjusting for zero and full scale and is normally  
expressed in LSBs or as a percentage of the full-scale reading.  
The error due to capacitive feedthrough from the DAC  
reference input to the DAC IOUT1 terminal when all 0s are  
loaded to the DAC.  
Digital Crosstalk  
Differential Nonlinearity  
The glitch impulse transferred to the outputs of a DAC in  
response to a full-scale code change (all 0s to all 1s, or vice  
versa) in the input register of another DAC. It is expressed in  
nV-sec.  
The difference in the measured change and the ideal 1 LSB change  
between two adjacent codes. A specified differential nonlinearity of  
−1 LSB maximum over the operating temperature range ensures  
monotonicity.  
Analog Crosstalk  
Gain Error (Full-Scale Error)  
A measure of the output error between an ideal DAC and the  
actual device output. For this DAC, ideal maximum output is  
The glitch impulse transferred to the output of one DAC due to  
a change in the output of another DAC. It is measured by  
loading one of the input registers with a full-scale code change  
(all 0s to all 1s, or vice versa) while keeping LDAC high and  
then pulsing LDAC low and monitoring the output of the DAC  
whose digital code has not changed. The area of the glitch is  
expressed in nV-sec.  
V
REF − 1 LSB. The gain error of the DAC is adjustable to zero  
with an external resistance.  
Output Leakage Current  
The current that flows into the DAC ladder switches when they  
are turned off. For the IOUT1 terminal, it can be measured by  
loading all 0s to the DAC and measuring the IOUT1 current.  
Minimum current flows into the IOUT2 line when the DAC is  
loaded with all 1s.  
Channel to Channel Isolation  
The portion of input signal from a DAC reference input that  
appears at the output of the other DAC. It is expressed in decibels.  
Total Harmonic Distortion (THD)  
Output Capacitance  
Capacitance from IOUT1 or IOUT2 to AGND.  
The DAC is driven by an ac reference. The ratio of the rms sum  
of the harmonics of the DAC output to the fundamental value is  
the THD. Usually only the lower-order harmonics are included,  
such as the second to the fifth harmonics.  
Output Current Settling Time  
The amount of time for the output to settle to a specified level  
for a full-scale input change. For this device, it is specified with  
a 100 Ω resistor to ground.  
2
2
2
2
V2 + V3 + V4 + V5  
THD = 20 log  
V1  
Digital-to-Analog Glitch Impulse  
Intermodulation Distortion (IMD)  
The amount of charge injected from the digital inputs to the  
analog output when the inputs change state. This is typically  
specified as the area of the glitch in either pA-sec or nV-sec,  
depending on whether the glitch is measured as a current or  
voltage signal.  
The DAC is driven by two combined sine wave references  
of frequencies fa and fb. Distortion products are produced  
at sum and difference frequencies of mfa nfb, where m, n = 0,  
1, 2, 3 ... Intermodulation terms are those for which m or n is  
not equal to 0. The second-order terms include (fa + fb) and  
(fa − fb), and the third-order terms are (2fa + fb), (2fa − fb),  
(f + 2fa + 2fb), and (fa − 2fb). IMD is defined as  
Digital Feedthrough  
When the device is not selected, high frequency logic activity  
on the device’s digital inputs is capacitively coupled through the  
device and produces noise on the IOUT pins and, subsequently,  
on the following circuitry. This noise is digital feedthrough.  
(rms sum of the sum and diff distortion products)  
IMD = 20 log  
rms amplitude of the fundamental  
Compliance Voltage Range  
The maximum range of (output) terminal voltage for which the  
device provides the specified characteristics.  
Rev. C | Page 13 of 24  
 
AD5405  
Data Sheet  
GENERAL DESCRIPTION  
When an output amplifier is connected in unipolar mode, the  
output voltage is given by  
DAC SECTION  
The AD5405 is a 12-bit, dual-channel, current-output DAC  
consisting of a standard inverting R-2R ladder configuration.  
Figure 31 shows a simplified diagram for a single channel of the  
AD5405. The feedback resistor RFBA has a value of 2R. The value of  
R is typically 10 kΩ (with a minimum of 8 kΩ and a maximum  
of 13 kΩ). If IOUT1A and IOUT2A are kept at the same potential, a  
constant current flows into each ladder leg, regardless of digital  
input code. Therefore, the input resistance presented at VREFA is  
always constant.  
VOUT = −VREF × D 2n  
where:  
D is the fractional representation, in the range of 0 to 4,095, of  
the digital word loaded to the DAC.  
n is the resolution of the DAC.  
With a fixed 10 V reference, the circuit shown in Figure 32 gives  
a unipolar 0 V to −10 V output voltage swing. When VIN is an ac  
signal, the circuit performs 2-quadrant multiplication.  
R
R
R
V
REFA  
Table 5 shows the relationship between digital code and the  
expected output voltage for unipolar operation.  
2R  
S1  
2R  
S2  
2R  
S3  
2R  
2R  
S12  
R
R
A
FB  
I
I
Table 5. Unipolar Code  
OUT1A  
OUT2A  
Digital Input  
Analog Output (V)  
−VREF (4,095/4,096)  
−VREF (2,048/4,096) = −VREF/2  
−VREF (1/4,096)  
DAC DATA LATCHES  
AND DRIVERS  
1111 1111 1111  
1000 0000 0000  
0000 0000 0001  
0000 0000 0000  
Figure 31. Simplified Ladder Configuration  
Access is provided to the VREF, RFB, IOUT1, and IOUT2 terminals of  
the DAC, making the device extremely versatile and allowing it  
to be configured for several operating modes, such as unipolar  
output, bipolar output, or single-supply mode.  
−VREF (0/4,096) = 0  
Bipolar Operation  
In some applications, it may be necessary to generate full  
4-quadrant multiplying operation or a bipolar output swing.  
This can be easily accomplished by using another external  
amplifier, as shown in Figure 33.  
CIRCUIT OPERATION  
Unipolar Mode  
Using a single operational amplifier, this DAC can easily be  
configured to provide 2-quadrant multiplying operation or a  
unipolar output voltage swing, as shown in Figure 32.  
V
DD  
R1A  
R
2R  
FB  
R1  
2R  
R
A
FB  
R2A  
C1  
V
IN  
I
I
1A  
2A  
R2  
2R  
OUT  
V
DD  
R1A  
AD5405  
A1  
R2_3A  
R3A  
OUT  
12-Bit DAC A  
R
R1  
2R  
R
FB  
2R  
V
= –V TO +V  
IN IN  
OUT  
R
A
FB  
R3  
2R  
A1  
C1  
R2A  
I
1A  
2A  
OUT  
AGND  
R2  
2R  
V
A
AD5405  
GND  
REF  
A1  
I
12-Bit DAC A  
R
OUT  
R2_3A  
AGND  
V
= 0V TO –V  
IN  
OUT  
AGND  
R3  
2R  
NOTES  
1. SIMILAR CONFIGURATION FOR DAC B.  
R3A  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
AGND  
AGND  
V
A
REF  
GND  
Figure 33. Bipolar Operation (4-Quadrant Multiplication)  
When in bipolar mode, the output voltage is given by  
VOUT = (VREF ×D 2n 1 ) VREF  
where:  
AGND  
NOTES  
1. SIMILAR CONFIGURATION FOR DAC B.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 32. Unipolar Operation  
D is the fractional representation, in the range of 0 to 4095, of  
the digital word loaded to the DAC.  
n is the number of bits.  
When VIN is an ac signal, the circuit performs 4-quadrant  
multiplication.  
Table 6 shows the relationship between the digital code and the  
expected output voltage for bipolar operation.  
Rev. C | Page 14 of 24  
 
 
 
 
 
 
 
Data Sheet  
AD5405  
Note that VIN is limited to low voltages because the switches in the  
DAC ladder no longer have the same source drain drive voltage.  
As a result, their on resistance differs and degrades the integral  
linearity of the DAC. Also, VIN must not go negative by more  
than 0.3 V, or an internal diode turns on, causing the device to  
exceed the maximum ratings. In this type of application, the full  
range of multiplying capability of the DAC is lost.  
Table 6. Bipolar Code  
Digital Input  
Analog Output (V)  
+VREF (4,095/4,096)  
0
−VREF (4,095/4,096)  
−VREF (4,096/4,096)  
1111 1111 1111  
1000 0000 0000  
0000 0000 0001  
0000 0000 0000  
Stability  
ADDING GAIN  
In the I-to-V configuration, the IOUT of the DAC and the inverting  
node of the operational amplifier must be connected as close as  
possible, and proper printed circuit board (PCB) layout techniques  
must be used. Because every code change corresponds to a step  
function, gain peaking may occur if the operational amplifier has  
limited gain bandwidth product (GBP) and there is excessive  
parasitic capacitance at the inverting node. This parasitic cap-  
acitance introduces a pole into the open-loop response, which can  
cause ringing or instability in the closed-loop applications circuit.  
In applications where the output voltage must be greater than VIN,  
gain can be added with an additional external amplifier, or it can be  
achieved in a single stage. Consider the effect of temperature  
coefficients of the thin film resistors of the DAC. Simply placing  
a resistor in series with the RFB resistor causes mismatches in the  
temperature coefficients, resulting in larger gain temperature  
coefficient errors. Instead, the circuit of Figure 35 shows the  
recommended method for increasing the gain of the circuit. R1,  
R2, and R3 can have similar temperature coefficients, but they need  
not match the temperature coefficients of the DAC. This  
approach is recommended in circuits where gains of greater than  
1 are required. Note that RFB R2//R3 and a gain error percentage  
of 100 × (R2//R3)/RFB must be taken into consideration.  
An optional compensation capacitor, C1, can be added in parallel  
with RFBA for stability, as shown in Figure 32 and Figure 33. Too  
small a value of C1 can produce ringing at the output, whereas  
too large a value can adversely affect the settling time. C1 can be  
found empirically, but 1 pF to 2 pF is generally adequate for the  
compensation.  
V
DD  
C
1
V
R
A
FB  
SINGLE-SUPPLY APPLICATIONS  
Voltage Switching Mode of Operation  
DD  
R
1
I
1A  
2A  
OUT  
V
12-BIT  
DAC  
V
A
IN  
V
OUT  
REF  
I
OUT  
R
R
3
2
Figure 34 shows the DAC operating in the voltage switching  
mode. The reference voltage, VIN, is applied to the IOUT1A pin,  
GND  
GAIN = R2 + R3  
R2  
IOUT2A is connected to AGND, and the output voltage is available at  
R1 = R2R3  
R2 + R3  
NOTES  
1. SIMILAR CONFIGURATION FOR DAC B.  
the VREFA terminal. In this configuration, a positive reference  
voltage results in a positive output voltage, making single-supply  
operation possible. The output from the DAC is voltage at a  
constant impedance (the DAC ladder resistance). Therefore, an  
operational amplifier is necessary to buffer the output voltage.  
The reference input no longer sees a constant input impedance,  
but one that varies with code. Therefore, the voltage input must  
be driven from a low impedance source.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 35. Increasing Gain of Current Output DAC  
V
DD  
R
R
1
2
R
A
V
FB  
DD  
V
I
I
1A  
IN  
OUT  
V
OUT  
V
A
REF  
2A  
OUT  
GND  
NOTES  
1. SIMILAR CONFIGURATION FOR DAC B.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 34. Single-Supply Voltage-Switching Mode  
Rev. C | Page 15 of 24  
 
 
 
 
 
AD5405  
Data Sheet  
DIVIDER OR PROGRAMMABLE GAIN ELEMENT  
REFERENCE SELECTION  
Current steering DACs are very flexible and lend themselves to  
many applications. If this type of DAC is connected as the feedback  
element of an operational amplifier and RFBA is used as the  
input resistor, as shown in Figure 36, the output voltage is  
inversely proportional to the digital input fraction, D.  
When selecting a reference for use with the AD5405 and other  
devices in this series of current output DACs, pay attention to the  
reference’s output voltage temperature coefficient specification.  
This parameter not only affects the full-scale error, but also can  
affect the linearity (INL and DNL) performance. The reference  
temperature coefficient must be consistent with the system  
accuracy specifications. For example, an 8-bit system required to  
hold its overall specification to within 1 LSB over the temperature  
range 0°C to 50°C dictates that the maximum system drift with  
temperature must be less than 78 ppm/°C. A 12-bit system with  
the same temperature range to overall specification within 2 LSBs  
requires a maximum drift of 10 ppm/°C. Choosing a precision  
reference with low output temperature coefficient minimizes  
this error source. Table 7 lists some references available from  
Analog Devices, Inc., that are suitable for use with this range of  
current output DACs.  
For D = 1 − 2−n, the output voltage is  
VOUT = VIN D = VIN  
(
12n  
)
V
DD  
V
IN  
R
A
V
FB  
DD  
I
1A  
OUT  
V
A
REF  
I
2A  
OUT  
GND  
AMPLIFIER SELECTION  
V
OUT  
The primary requirement for the current steering mode is an  
amplifier with low input bias currents and low input offset voltage.  
Because of the code dependent output resistance of the DAC, the  
input offset voltage of an operational amplifier is multiplied by the  
variable gain of the circuit. A change in this noise gain between  
two adjacent digital fractions produces a step change in the output  
voltage due to the amplifiers input offset voltage. This output  
voltage change is superimposed on the desired change in output  
between the two codes and gives rise to a differential linearity  
error, which, if large enough, could cause the DAC to be  
nonmonotonic.  
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 36. Current Steering DAC Used as a Divider or  
Programmable Gain Element  
As D is reduced, the output voltage increases. For small values of  
the digital fraction D, it is important to ensure that the amplifier  
does not saturate and that the required accuracy is met. For  
example, an 8-bit DAC driven with the binary code 0x10 (0001  
0000)—that is, 16 decimal—in the circuit of Figure 36 can cause  
the output voltage to be 16 times VIN. However, if the DAC has a  
linearity specification of 0.5 LSB, D can have a weight in the range  
of 15.5/256 to 16.5/256 so that the possible output voltage is in  
the range of 15.5 VIN to 16.5 VIN—an error of 3%, even though  
the DAC itself has a maximum error of 0.2%.  
The input bias current of an operational amplifier also generates  
an offset at the voltage output as a result of the bias current flowing  
in the feedback resistor, RFB. Most operational amplifiers have input  
bias currents low enough to prevent significant errors in 12-bit  
applications.  
DAC leakage current is also a potential error source in divider  
circuits. The leakage current must be counterbalanced by an  
opposite current supplied from the operational amplifier through  
the DAC. Because only a fraction, D, of the current into the  
Common-mode rejection of the operational amplifier is  
important in voltage switching circuits, because it produces a  
code dependent error at the voltage output of the circuit. Most  
operational amplifiers have adequate common-mode rejection  
for use at 12-bit resolution.  
V
REF terminal is routed to the IOUT1 terminal, the output voltage  
changes as follows:  
Provided that the DAC switches are driven from true wideband,  
low impedance sources (VIN and AGND), they settle quickly.  
Consequently, the slew rate and settling time of a voltage-switching  
DAC circuit is determined largely by the output operational  
amplifier. To obtain minimum settling time in this configuration,  
minimize capacitance at the VREF node (the voltage output node  
in this application) of the DAC. This is done by using low input  
capacitance buffer amplifiers and careful board design.  
Output Error Voltage Due to DAC Leakage = (Leakage × R)/D  
where R is the DAC resistance at the VREF terminal.  
For a DAC leakage current of 10 nA, R = 10 kΩ, and a gain (that  
is, 1/D) of 16, the error voltage is 1.6 mV.  
Most single-supply circuits include ground as part of the analog  
signal range, which in turn requires an amplifier that can handle  
rail-to-rail signals. Analog Devices offers a wide range of single-  
supply amplifiers, as listed in Table 8 and Table 9.  
Rev. C | Page 16 of 24  
 
 
 
 
Data Sheet  
AD5405  
Table 7. Suitable Analog Devices Precision References  
Part No. Output Voltage (V)  
Initial Tolerance (%)  
Temp Drift (ppm/°C)  
ISS (mA)  
Output Noise (µV p-p) Package  
ADR01  
ADR01  
ADR02  
ADR02  
ADR03  
ADR03  
ADR06  
ADR06  
ADR431  
ADR435  
ADR391  
ADR395  
10  
10  
5
0.05  
0.05  
0.06  
0.06  
0.10  
0.10  
0.10  
0.10  
0.04  
0.04  
0.16  
0.10  
3
9
3
9
3
9
3
9
3
3
9
9
1
1
1
1
1
1
1
1
0.8  
0.8  
0.12  
0.12  
20  
20  
10  
10  
6
SOIC-8  
TSOT-23, SC70  
SOIC-8  
TSOT-23, SC70  
SOIC-8  
TSOT-23, SC70  
SOIC-8  
TSOT-23, SC70  
SOIC-8  
SOIC-8  
TSOT-23  
TSOT-23  
5
2.5  
2.5  
3
3
2.5  
5
6
10  
10  
3.5  
8
5
8
2.5  
5
Table 8. Suitable Analog Devices Precision Operational Amplifiers  
0.1 Hz to 10 Hz  
Noise (µV p-p)  
Part No.  
OP97  
OP1177  
AD8551  
AD8603  
AD8628  
Supply Voltage (V)  
2 to 20  
2.5 to 15  
2.7 to 5  
1.8 to 6  
2.7 to 6  
VOS (Max) (µV)  
IB (Max) (nA)  
Supply Current (µA)  
Package  
25  
60  
5
50  
5
0.1  
2
0.05  
0.001  
0.1  
0.5  
0.4  
1
2.3  
0.5  
600  
500  
975  
50  
SOIC-8  
MSOP, SOIC-8  
MSOP, SOIC-8  
TSOT  
850  
TSOT, SOIC-8  
Table 9. Suitable Analog Devices High Speed Operational Amplifiers  
Part No.  
AD8065  
AD8021  
AD8038  
AD9631  
Supply Voltage (V)  
BW at ACL (MHz)  
Slew Rate (V/µs)  
VOS (Max) (µV) IB (Max) (nA)  
Package  
5 to 24  
2.5 to 12  
3 to 12  
145  
490  
350  
320  
180  
120  
425  
1,300  
1,500  
1,000  
3,000  
10,000  
6,000  
10,500  
750  
SOIC-8, SOT-23, MSOP  
SOIC-8, MSOP  
SOIC-8, SC70-5  
SOIC-8  
3 to 6  
7,000  
Rev. C | Page 17 of 24  
 
 
 
AD5405  
Data Sheet  
8xC51 to AD5405 Interface  
PARALLEL INTERFACE  
Figure 38 shows the interface between the AD5405 and the  
8xC51 family of DSPs. To facilitate external data memory access,  
the address latch enable (ALE) mode is enabled. The low byte of  
the address is latched with this output pulse during access to the  
external memory. AD0 to AD7 are the multiplexed low order  
addresses and data bus; they require strong internal pull-ups when  
emitting 1s. During access to external memory, A8 to A15 are  
the high order address bytes. Because these ports are open  
drained, they also require strong internal pull-ups when  
emitting 1s.  
Data is loaded into the AD5405 in a 12-bit parallel word format.  
Control lines and R/ allow data to be written to or read from  
CS  
W
the DAC register. A write event takes place when  
and R/  
W
CS  
are brought low, data available on the data lines fills the shift  
register, and the rising edge of latches the data and transfers  
CS  
the latched data-word to the DAC register. The DAC latches are  
not transparent; therefore, a write sequence must consist of a  
falling and rising edge on  
to ensure that data is loaded into  
CS  
the DAC register and that its analog equivalent is reflected on  
the DAC output. A read event takes place when R/ is held high  
W
A8 TO A15  
ADDRESS BUS  
and is brought low. Data is loaded from the DAC register, goes  
CS  
back into the input register, and is output onto the data line, where  
it can be read back to the controller for verification or diagnostic  
purposes. The input and DAC registers of these devices are not  
AD54051  
1
8051  
ADDRESS  
DECODER  
transparent; therefore, a falling and rising edge of  
is required  
CS  
CS  
to load each data-word.  
WR  
R/W  
MICROPROCESSOR INTERFACING  
ADSP-21xx Processors to AD5405 Interface  
DB0 TO DB11  
8-BIT  
LATCH  
ALE  
Figure 37 shows the AD5405 interfaced to the ADSP-21xx series  
of DSPs as a memory-mapped device. A single wait state may be  
necessary to interface the AD5405 to the ADSP-21xx, depending  
on the clock speed of the DSP. The wait state can be programmed  
via the data memory wait state control register of the ADSP-21xx  
(see the ADSP-21xx family user manual for details).  
AD0 TO AD7  
DATA BUS  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 38. 8xC51 to AD5405 Interface  
ADSP-BF504 to ADSP-BF592 Device Family to AD5405  
Interface  
ADDR TO  
ADRR  
0
ADDRESS BUS  
13  
Figure 39 shows a typical interface between the AD5405 and the  
ADSP-BF504 to ADSP-BF592 family of DSPs. The asynchronous  
memory write cycle of the processor drives the digital inputs of  
AD54051  
1
ADSP-21xx  
ADDRESS  
DECODER  
DMS  
WR  
the DAC. The  
x line is actually four memory select lines.  
CS  
AMS  
Internal ADDR lines are decoded into  
3–0; these lines are  
AMS  
R/W  
then inserted as chip selects. The rest of the interface is a  
standard handshaking operation.  
DB0 TO DB11  
ADDR TO  
1
ADDRESS BUS  
ADRR  
19  
DATA 0 TO  
DATA 23  
DATA BUS  
AD54051  
1
ADSP-BF5xx  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
ADDRESS  
DECODER  
AMSx  
CS  
Figure 37. ADSP-21xx to AD5405 Interface  
AWE  
R/W  
DB0 TO DB11  
DATA 0 TO  
DATA 23  
DATA BUS  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 39. ADSP-BF504 to ADSP-BF592 Device Family to AD5405 Interface  
Rev. C | Page 18 of 24  
 
 
 
 
 
Data Sheet  
AD5405  
Components, such as clocks, that produce fast switching signals  
must be shielded with digital ground to avoid radiating noise to  
other parts of the board, and they must never run near the  
reference inputs.  
PCB LAYOUT AND POWER SUPPLY DECOUPLING  
In any circuit where accuracy is important, careful consideration of  
the power supply and ground return layout helps to ensure the  
rated performance. The PCB on which the AD5405 is mounted  
must be designed so the analog and digital sections are separated  
and confined to certain areas of the board. If the DAC is in a system  
where multiple devices require an AGND to DGND connection,  
the connection must be made at one point only. The star ground  
point must be established as close as possible to the device.  
Avoid crossover of digital and analog signals. Traces on  
opposite sides of the board must run at right angles to each  
other. This reduces the effects of feedthrough on the board.  
A microstrip technique is by far the best, but its use is not  
always possible with a double-sided board. In this technique,  
the component side of the board is dedicated to the ground  
plane, and signal traces are placed on the soldered side.  
These DACs must have ample supply bypassing of 10 µF in parallel  
with 0.1 µF on the supply located as close as possible to the  
package, ideally right up against the device. The 0.1 µF capacitor  
must have low effective series resistance (ESR) and low effective  
series inductance (ESI), like the common ceramic types of cap-  
acitors that provide a low impedance path to ground at high  
frequencies, to handle transient currents due to internal logic  
switching. Low ESR 1 µF to 10 µF tantalum or electrolytic  
capacitors must also be applied at the supplies to minimize  
transient disturbance and filter out low frequency ripple.  
It is good practice to use compact, minimum lead length PCB  
layout design. Leads to the input must be as short as possible to  
minimize IR drops and stray inductance.  
The PCB metal traces between VREF and RFB must also be  
matched to minimize gain error. To maximize high frequency  
performance, the I-to-V amplifier must be located as close as  
possible to the device.  
Figure 40. Schematic of AD5405 Evaluation Board  
Rev. C | Page 19 of 24  
 
AD5405  
Data Sheet  
Figure 41. Component Side Artwork  
Figure 42. Silkscreen—Component Side View (Top Layer)  
Rev. C | Page 20 of 24  
Data Sheet  
AD5405  
Figure 43. Solder Side Artwork  
Rev. C | Page 21 of 24  
AD5405  
Data Sheet  
OVERVIEW OF THE AD5424 TO AD5547 DEVICES  
Table 10.  
Part No.  
AD5424  
AD5426  
AD5428  
AD5429  
AD5450  
AD5432  
AD5433  
AD5439  
AD5440  
AD5451  
AD5443  
AD5444  
AD5415  
AD5405  
AD5445  
AD5447  
AD5449  
AD5452  
AD5446  
AD5453  
AD5553  
AD5556  
AD5555  
AD5557  
AD5543  
AD5546  
AD5545  
AD5547  
Resolution  
No. DACs  
INL (LSB)  
Interface  
Parallel  
Serial  
Parallel  
Serial  
Serial  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Serial  
Serial  
Serial  
Parallel  
Parallel  
Parallel  
Serial  
Serial  
Serial  
Serial  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Parallel  
Package1  
RU-16, CP-20  
RM-10  
RU-20  
Features  
8
1
1
2
2
1
1
1
2
2
1
1
1
2
2
2
2
2
1
1
1
1
1
2
2
1
1
2
2
0.25  
0.25  
0.25  
0.25  
0.25  
0.5  
0.5  
0.5  
0.5  
0.25  
1
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
8
8
8
8
RU-10  
UJ-8  
RM-10  
RU-20, CP-20  
RU-16  
10  
10  
10  
10  
10  
12  
12  
12  
12  
12  
12  
12  
12  
14  
14  
14  
14  
14  
14  
16  
16  
16  
16  
RU-24  
UJ-8  
RM-10  
RM-8  
0.5  
1
1
RU-24  
10 MHz BW, 50 MHz serial  
CP-40-9  
RU-20, CP-20  
RU-24  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
1
1
1
0.5  
1
2
1
RU-16  
UJ-8, RM-8  
RM-8  
UJ-8, RM-8  
RM-8  
RU-28  
10 MHz BW, 50 MHz serial  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
1
1
1
RM-8  
RU-38  
2
2
RM-8  
RU-28  
2
2
RU-16  
RU-38  
1 RU = TSSOP, CP = LFCSP, RM = MSOP, UJ = TSOT.  
Rev. C | Page 22 of 24  
 
 
Data Sheet  
AD5405  
OUTLINE DIMENSIONS  
6.10  
6.00 SQ  
5.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
31  
30  
40  
1
0.50  
BSC  
4.25  
4.10 SQ  
3.95  
EXPOSED  
PAD  
21  
20  
10  
11  
0.45  
0.40  
0.35  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WJJD.  
Figure 44. 40-Lead Lead Frame Chip Scale Package [LFCSP]  
6 mm × 6 mm Body and 0.75 Package Height  
(CP-40-9)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Resolution INL (LSB) Temperature Range  
Package Description  
Package Option  
CP-40-9  
CP-40-9  
AD5405YCPZ  
AD5405YCPZ–REEL  
12  
12  
1
1
1
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
40-Lead Lead Frame Chip Scale Package [LFCSP]  
40-Lead Lead Frame Chip Scale Package [LFCSP]  
40-Lead Lead Frame Chip Scale Package [LFCSP]  
AD5405YCPZ–REEL7 12  
CP-40-9  
1 Z = RoHS Compliant Part  
Rev. C | Page 23 of 24  
 
 
AD5405  
NOTES  
Data Sheet  
©2004–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04463-0-1/16(C)  
Rev. C | Page 24 of 24  

相关型号:

AD5405YCPZ-REEL7

Dual 12-Bit, High Bandwidth, Multiplying DAC with 4 Quadrant Resistors and Parallel Interface
ADI

AD540J

Analog IC
ETC

AD540JH

IC OP-AMP, Operational Amplifier
ADI

AD540JH/+

IC OP-AMP, Operational Amplifier
ADI

AD540K

Analog IC
ETC

AD540KH

IC OP-AMP, Operational Amplifier
ADI

AD540S

Analog IC
ETC

AD540SH

IC OP-AMP, Operational Amplifier
ADI

AD5410

Single Channel, 16-Bit, Serial Input, Current Source DAC
ADI

AD5410ACPZ

Single Channel, 16-Bit, Serial Input, Current Source DAC
ADI

AD5410ACPZ-REEL7

SERIAL INPUT LOADING, 40 us SETTLING TIME, 12-BIT DAC, QCC40, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD-2, LFCSP-40
ROCHESTER

AD5410ACPZ-REEL7

Single-Channel, 12-Bit, Serial Input, 4 mA to 20 mA, Current Source DAC, HART Connectivity
ADI