AD5442ABCPZ-1-RL7 [ADI]

SERIAL INPUT LOADING, 1us SETTLING TIME, 16-BIT DAC, PDSO10, 3 X 3 MM, ROHS COMPLIANT, MO-220WEED, LFCSP-10;
AD5442ABCPZ-1-RL7
型号: AD5442ABCPZ-1-RL7
厂家: ADI    ADI
描述:

SERIAL INPUT LOADING, 1us SETTLING TIME, 16-BIT DAC, PDSO10, 3 X 3 MM, ROHS COMPLIANT, MO-220WEED, LFCSP-10

输入元件 光电二极管 转换器
文件: 总24页 (文件大小:429K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.7 V to 5.5 V, Serial-Input,  
Voltage-Output, 12-/16-Bit DAC  
AD5512A/AD5542A  
FEATURES  
12-/16-bit resolution  
FUNCTIONAL BLOCK DIAGRAM  
V
DD  
1 LSB INL  
11.8 nV/√Hz noise spectral density  
1 µs settling time  
1.1 nV-sec glitch energy  
0.05 ppm/°C temperature drift  
5 kV HBM ESD classification  
0.375 mW power consumption at 3 V  
2.7 V to 5.5 V single-supply operation  
R
FB  
R
FB  
INV  
V
REFF  
REFS  
R
INV  
16-BIT DAC  
OUT  
AGNDF  
AGNDS  
V
LOGIC  
CS  
16-BIT DAC LATCH  
CONTROL  
LOGIC  
LDAC  
SCLK  
DIN  
CLR  
LDAC  
functions  
Hardware  
and  
SERIAL INPUT REGISTER  
50 MHz SPI-/QSPI-/MICROWIRE-/DSP-compatible interface  
Power-on reset clears DAC output to midscale  
Available in 3 mm × 3 mm, 10-/16-lead LFCSP and  
16-lead TSSOP  
AD5512A/  
AD5542A  
CLR  
DGND  
Figure 1. 16-Lead TSSOP and 16-Lead LFCSP  
APPLICATIONS  
Automatic test equipment  
Precision source-measure instruments  
Data acquisition systems  
Medical and aerospace instrumentation  
Communication equipment  
GND  
10  
8
7
R
FB  
AD5542A-1  
R
FB  
INV  
V
R
INV  
1
2
6
16-BIT DAC  
REF  
OUT  
16-BIT DAC LATCH  
CS  
CLR  
5
3
4
CONTROL  
LOGIC  
SCLK  
DIN  
SERIAL INPUT REGISITER  
9
GENERAL DESCRIPTION  
V
DD  
The AD5512A/AD5542A are single, 12-/16-bit, serial input,  
unbuffered voltage output digital-to-analog converters (DAC)  
that operate from a single 2.7 V to 5.5 V supply. The DAC  
output range extends from 0 V to VREF and is guaranteed  
monotonic, providing 1 LSB INL accuracy at 16 bits without  
adjustment over the full specified temperature range of −40°C  
to +85°C (AD5542A) or −40°C to +125°C (AD5512A).  
Figure 2. 10-Lead LFCSP  
Table 1. Related Devices  
Part No. Description  
AD5040/AD5060 2.7 V to 5.5 V 14-/16-bit buffed output DACs  
2.7 V to 5.5 V 16-bit voltage output DACs  
18-/20-bit voltage output DACs  
16-bit 12 V/ 15 V bipolaꢀ output DAC  
4.5 V to 5.5 V, 12-/16-bit quad channel DAC  
16-bit, bipolaꢀ, voltage output DAC  
AD5541/AD5542  
AD5781/AD5791  
AD5570  
AD5024/AD5064  
AD5764  
Offering unbuffered outputs, the AD5512A/AD5542A achieve  
a 1 μs settling time with low offset errors ideal for high speed  
open loop control.  
The AD5512A/AD5542A incorporate a bipolar mode of operation  
PRODUCT HIGHLIGHTS  
that generates a  
VREF output swing. The AD5512A/AD5542A  
1. 16-bit performance without adjustment.  
2. 2.7 V to 5.5 V single supply operation.  
3. Low 11.8 nV/√Hz noise spectral density.  
4. Low 0.05 ppm/°C temperature drift.  
5. 3 mm × 3 mm LFCSP and TSSOP packaging.  
also include Kelvin sense connections for the reference and  
analog ground pins to reduce layout sensitivity.  
The AD5512A/AD5542A are available in a 16-lead LFCSP with  
the AD5542A also available in a 10-lead LFCSP and a 16-lead  
TSSOP. The AD5512A/AD5542A use a versatile 3-wire interface  
that is compatible with 50 MHz SPI, QSPI™, MICROWIRE™, and  
DSP interface standards.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2010-2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
AD5512A/AD5542A  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Unipolar Output Operation...................................................... 15  
Bipolar Output Operation......................................................... 16  
Output Amplifier Selection....................................................... 17  
Force Sense Amplifier Selection............................................... 17  
Reference and Ground............................................................... 17  
Power-On Reset.......................................................................... 17  
Power Supply and Reference Bypassing .................................. 17  
Applications Information .............................................................. 18  
Microprocessor Interfacing....................................................... 18  
AD5512A/AD5542A to ADSP-BF531 Interface .................... 18  
AD5512A/AD5542A to SPORT Interface .............................. 18  
AD5512A/AD5542A to 68HC11/68L11 Interface .................... 18  
AD5512A/AD5542A to ADSP-2101 Interface....................... 18  
AD5512A/AD5542A to MICROWIRE Interface .................. 18  
Layout Guidelines....................................................................... 19  
Galvanically Isolated Interface ................................................. 19  
Decoding Multiple DACs.......................................................... 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 21  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AD5512A....................................................................................... 3  
AD5542A....................................................................................... 4  
AC Characteristics........................................................................ 5  
Timing Characteristics ................................................................ 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ........................................... 10  
Terminology .................................................................................... 14  
Theory of Operation ...................................................................... 15  
Digital-to-Analog Section ......................................................... 15  
Serial Interface ............................................................................ 15  
REVISION HISTORY  
5/11—Rev. 0 to Rev. A  
Changes to Table 3, Power Dissipation Value and Endnote 1 .... 4  
Changes to Table 5............................................................................ 6  
Changes to Ordering Guide .......................................................... 21  
10/10—Revision 0: Initial Version  
Rev. A | Page 2 of 24  
 
AD5512A/AD5542A  
SPECIFICATIONS  
AD5512A  
VDD = 2.7 V to 5.5 V, VLOGIC = 2.7 V to 5.5 V, VREF = 2.5 V, AGND = DGND = 0 V, −40°C < TA < +125°C, unless otherwise noted.  
Table 2.  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Condition  
STATIC PERFORMANCE  
Resolution  
12  
Bits  
Relative Accuracy (INL)  
Differential Nonlinearity (DNL)  
Gain Error  
Gain Error Temperature Coefficient  
Unipolar Zero-Code Error  
Unipolar Zero-Code Temperature Coefficient  
Bipolar Resistor Matching  
0.5  
0.5  
+0.5  
0.1  
0.03  
0.05  
1.0  
1.0  
2
LSB  
LSB  
LSB  
ppm/°C  
LSB  
ppm/°C  
Ω/Ω  
%
Guaranteed monotonic  
0.5  
1
RFB/RINV, typically RFB = RINV = 28 kΩ  
Ratio error  
0.02  
0.07  
0.2  
0.02  
0.07  
0.1  
±0.08  
2
Bipolar Zero Offset Error  
Bipolar Zero Temperature Coefficient  
Bipolar Zero-Code Offset Error  
Bipolar Gain Error  
Bipolar Gain Temperature Coefficient  
OUTPUT CHARACTERISTICS  
Output Voltage Range  
LSB  
ppm/°C  
LSB  
LSB  
ppm/°C  
0.5  
2
0
VREF − 1 LSB  
+VREF − 1 LSB  
V
V
Unipolar operation  
Bipolar operation  
Tolerance typically 20%  
ΔVDD 10%  
DAC code = 0x840 (AD5512A) or  
0x8400 (AD5542A), frequency = 1 kHz,  
unipolar mode  
−VREF  
DAC Output Impedance  
Power Supply Rejection Ratio  
Output Noise Spectral Density  
6.25  
11.8  
kΩ  
LSB  
nV/√Hz  
1.0  
Output Noise  
0.134  
μV p-p  
0.1 Hz to 10 Hz, unipolar mode  
DAC REFERENCE INPUT2  
Reference Input Range  
Reference Input Resistance3  
2.0  
9
7.5  
VDD  
V
kΩ  
kΩ  
pF  
pF  
Unipolar operation  
Bipolar operation  
Code 0x0000  
Reference Input Capacitance  
26  
26  
Code 0x3FFF  
LOGIC INPUTS  
Input Current  
Input Low Voltage, VINL  
Input High Voltage, VINH  
Input Capacitance2  
Hysteresis Voltage2  
POWER REQUIREMENTS  
VDD  
1
0.8  
μA  
V
V
pF  
V
VDD = 2.7 V to 5.5 V  
VDD = 2.7 V to 5.5 V  
2.4  
10  
0.15  
125  
2.7  
1.8  
5.5  
150  
5.5  
24  
V
µA  
V
µA  
mW  
All digital inputs at 0 V, VLOGIC, or VDD  
VIH = VLOGIC or VDD and VIL = GND  
IDD  
VLOGIC  
ILOGIC  
15  
1.5  
All digital inputs at 0 V, VLOGIC, or VDD  
Power Dissipation  
6.05  
1 Temperatures are as follows: A version −40°C to +125°C.  
2 Guaranteed by design, not subject to production test.  
3 Reference input resistance is code-dependent, minimum at 0x855.  
Rev. A | Page 3 of 24  
 
 
AD5512A/AD5542A  
AD5542A  
VDD = 2.7 V to 5.5 V, VLOGIC = 2.7 V to 5.5 V, VREF = 2.5 V, AGND = DGND = 0 V, −40°C < TA < +85°C, unless otherwise noted.  
Table 3.  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Condition  
STATIC PERFORMANCE  
Resolution  
Relative Accuracy (INL)  
16  
Bits  
LSB  
0.5  
1.0  
2.0  
1.0  
2
B grade  
A grade  
Guaranteed monotonic  
TA = 25°C  
Differential Nonlinearity (DNL)  
Gain Error  
0.5  
+0.5  
LSB  
LSB  
3
LSB  
Gain Error Temperature Coefficient  
Unipolar Zero-Code Error  
0.1  
0.3  
ppm/°C  
LSB  
LSB  
0.7  
1.5  
TA = 25°C  
Unipolar Zero-Code Temperature Coefficient  
Bipolar Resistor Matching  
0.05  
1.000  
0.0015  
ppm/°C  
Ω/Ω  
%
RFB/RINV, typically RFB = RINV = 28 kΩ  
Ratio error  
0.0076  
Bipolar Zero Offset Error  
1
5
6
LSB  
LSB  
TA = 25°C  
Bipolar Zero Temperature Coefficient  
Bipolar Zero-Code Offset Error  
0.2  
1
ppm/°C  
LSB  
LSB  
LSB  
LSB  
5
6
5
6
TA = 25°C  
TA = 25°C  
Bipolar Gain Error  
1
Bipolar Gain Temperature Coefficient  
OUTPUT CHARACTERISTICS  
Output Voltage Range  
0.1  
ppm/°C  
0
VREF − 1 LSB  
+VREF − 1 LSB  
V
V
Unipolar operation  
Bipolar operation  
Tolerance typically 20%  
ΔVDD 10%  
−VREF  
DAC Output Impedance  
Power Supply Rejection Ratio  
Output Noise Spectral Density  
6.25  
11.8  
kΩ  
LSB  
nV/√Hz  
1.0  
DAC code = 0x840 (AD5512A) or  
0x8400 (AD5542A), frequency = 1 kHz,  
unipolar mode  
Output Noise  
0.134  
μV p-p  
0.1 Hz to 10 Hz  
DAC REFERENCE INPUT2  
Reference Input Range  
Reference Input Resistance3  
2.0  
9
7.5  
VDD  
V
kΩ  
kΩ  
pF  
pF  
Unipolar operation  
Bipolar operation  
Code 0x0000  
Reference Input Capacitance  
26  
26  
Code 0xFFFF  
LOGIC INPUTS  
Input Current  
Input Low Voltage, VINL  
Input High Voltage, VINH  
Input Capacitance2  
Hysteresis Voltage2  
POWER REQUIREMENTS  
VDD  
1
0.8  
μA  
V
V
VDD = 2.7 V to 5.5 V  
VDD = 2.7 V to 5.5 V  
2.4  
10  
pF  
V
0.15  
125  
2.7  
1.8  
5.5  
150  
5.5  
V
µA  
V
All digital inputs at 0 V, VLOGIC, or VDD  
VIH = VLOGIC or VDD and VIL = GND  
IDD  
VLOGIC  
ILOGIC  
15  
0.625  
24  
0.825  
µA  
mW  
All digital inputs at 0 V, VLOGIC, or VDD  
Power Dissipation  
1 For 2.7 V ≤ VLOGIC ≤ 5.5 V, temperatures are as follows: A, B versions −40°C to +85°C.  
2 Guaranteed by design, not subject to production test.  
3 Reference input resistance is code-dependent, minimum at 0x8555.  
Rev. A | Page 4 of 24  
 
AD5512A/AD5542A  
AC CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, VLOGIC = 2.7 V to 5.5 V, 2.5 V ≤ VREF ≤ VDD, AGND = D GN D = 0 V, −40°C < TA < +125°C, unless otherwise noted.  
Table 4.  
Parameter  
Min Typ  
Max Unit  
Test Condition  
Output Voltage Settling Time  
Slew Rate  
Digital-to-Analog Glitch Impulse  
Reference −3 dB Bandwidth  
Reference Feedthrough  
Digital Feedthrough  
Signal-to-Noise Ratio  
Spurious Free Dynamic Range  
Total Harmonic Distortion  
To 1/2 LSB of FS, CL = 10 pF  
CL = 10 pF, measured from 0% to 63%  
1 LSB change around major carry  
All 1s loaded  
1
μs  
V/µs  
nV-sec  
MHz  
17  
1.1  
2.2  
1
0.2  
92  
80  
74  
mV p-p All 0s loaded, VREF = 1 V p-p at 100 kHz  
nV-sec  
dB  
dB  
dB  
Digitally generated sine wave at 1 kHz  
DAC code = 0x3FFF (AD5512A) or 0xFFFF (AD5542A), frequency 10 kHz,  
VREF = 2.5 V ± 1 V p-p  
Rev. A | Page 5 of 24  
 
AD5512A/AD5542A  
TIMING CHARACTERISTICS  
VDD = 5 V, 2.5 V ≤ VREF ≤ VDD, VINH = 90% of VLOGIC, VINL = 10% of VLOGIC, AGND = DGND = 0 V, unless otherwise noted.  
Table 5.  
Parameter1, 2 Limit 1.8 ≤ VLOGIC ≤ 2.7 V3 Limit 2.7 V ≤ VLOGIC ≤ 5.5 V4  
Unit  
Description  
fSCLK  
t1  
t2  
14  
70  
35  
35  
5
50  
20  
10  
10  
5
MHz max SCLK cycle frequency  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns  
SCLK cycle time  
SCLK high time  
t3  
SCLK low time  
t4  
CS low to SCLK high setup  
CS high to SCLK high setup  
SCLK high to CS low hold time  
SCLK high to CS high hold time  
Data setup time  
t5  
5
5
t6  
5
5
t7  
10  
35  
5
5
t8  
10  
4
t9  
Data hold time (VINH = 90% of VDD, VINL = 10% of VDD)  
Data hold time (VINH = 3 V, VINL = 0 V)  
LDAC pulsewidth  
t9  
5
5
t10  
t11  
t12  
t13  
20  
10  
15  
15  
20  
10  
15  
15  
CS high to LDAC low setup  
CS high time between active periods  
CLR pulsewidth  
1 Guaranteed by design and characterization, not production tested.  
2 All input signals are specified with tR = tF = 1 ns/V and timed from a voltage level of (VINL + VINH)/2.  
3 −40°C < TA < +105°C.  
4 −40°C < TA < +125°C.  
t1  
SCLK  
t2  
t3  
t6  
t5  
t7  
t4  
CS  
t12  
t8  
t9  
1
DB15  
DB11  
DIN  
2
t11  
t10  
LDAC  
t13  
CLR  
NOTES  
1. FOR AD5542A = DB15.  
2. FOR AD5512A = DB11.  
Figure 3. Timing Diagram  
Rev. A | Page 6 of 24  
 
 
AD5512A/AD5542A  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 6.  
Parameter  
Rating  
VDD to AGND  
Digital Input Voltage to DGND  
VOUT to AGND  
−0.3 V to +6 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to +0.3 V  
10 mA  
AGNDF, AGNDS to DGND  
Input Current to Any Pin Except Supplies  
Operating Temperature Range  
AD5512A Industrial (A Version)  
AD5542A Industrial (A, B Versions)  
Storage Temperature Range  
Maximum Junction Temperature (TJ max)  
Package Power Dissipation  
Thermal Impedance, θJA  
TSSOP (RU-16)  
ESD CAUTION  
−40°C to +125°C  
−40°C to +85°C  
−65°C to +150°C  
150°C  
(TJ max − TA)/θJA  
113°C/W  
73°C/W  
74°C/W  
LFCSP (CP-16-22)  
LFCSP (CP-10-9)  
Lead Temperature, Soldering  
Peak Temperature1  
ESD2  
260°C  
5 kV  
1 As per JEDEC Standard 20.  
2 HBM classification.  
Rev. A | Page 7 of 24  
 
 
AD5512A/AD5542A  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
REF  
CS  
1
2
3
4
5
10 GND  
9
8
7
6
V
DD  
V
1
2
3
4
12 DGND  
11 LDAC  
10 CLR  
OUT  
AD5542A-1  
TOP VIEW  
Not to Scale  
SCLK  
DIN  
R
FB  
AGNDF  
AGNDS  
REFS  
TOP  
VIEW  
INV  
CLR  
V
OUT  
9
DIN  
NOTES  
NC = NO CONNECT  
(Not to Scale)  
1. THE EXPOSED PADDLE SHOULD BE  
TIED TO THE POINT OF LOWEST  
POTENTIAL, IN THIS CASE, GND.  
Figure 4. AD5512A/AD5542A 16-Lead LFCSP Pin Configuration  
Figure 5. AD5542A-1 10-Lead LFCSP Pin Configuration  
Table 7. AD5512A/AD5542A Pin Function Descriptions  
Pin No.  
16-Lead  
LFCSP  
10-Lead  
LFCSP  
Mnemonic  
VOUT  
AGNDF  
AGNDS  
REFS  
Description  
1
2
3
4
6
Analog Output Voltage from the DAC.  
Ground Reference Point for Analog Circuitry (Force).  
Ground Reference Point for Analog Circuitry (Sense).  
Voltage Reference Input (Sense) for the DAC. Connect to an external 2.5 V reference. Reference can  
range from 2 V to VDD.  
5
REFF  
Voltage Reference Input (Force) for the DAC. Connect to an external 2.5 V reference. Reference can  
range from 2 V to VDD.  
6
7
8
2
CS  
Logic Input Signal. The chip select signal is used to frame the serial data input.  
No Connect.  
Clock Input. Data is clocked into the input register on the rising edge of SCLK. Duty cycle must be  
between 40% and 60%.  
Serial Data Input. This device accepts 16-bit words. Data is clocked into the input register on the  
rising edge of SCLK.  
Asynchronous Clear Input. The CLR input is falling edge sensitive. When CLR is low, all LDAC pulses  
are ignored. When CLR is activated, the DAC register is cleared to the model selectable midscale.  
NC  
SCLK  
3
4
5
9
DIN  
CLR  
10  
11  
LDAC  
LDAC Input. When this input is taken low, the DAC register is simultaneously updated with the  
contents of the input register.  
12  
13  
DGND  
INV  
Digital Ground. Ground reference for digital circuitry.  
Connection to the Internal Scaling Resistors of the DAC. Connect the INV pin to the external op  
amps inverting input in bipolar mode.  
7
14  
15  
16  
VLOGIC  
VDD  
RFB  
Logic Power Supply.  
Analog Supply Voltage, 5 V 10%.  
Feedback Resistor Pin. In bipolar mode, connect this pin to the external op amp output.  
Voltage Reference Input for the DAC. Connect this pin to an external 2.5 V reference. Reference can  
range from 2 V to VDD.  
9
8
1
REF  
10  
GND  
Ground.  
EPAD  
Exposed Pad The exposed pad should be tied to the point of lowest potential, in this case, GND.  
Rev. A | Page 8 of 24  
 
AD5512A/AD5542A  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
R
V
DD  
FB  
V
V
LOGIC  
OUT  
AGNDF  
INV  
AD5542A  
TOP VIEW  
(Not to Scale)  
AGNDS  
REFS  
REFF  
NC  
DGND  
LDAC  
CLR  
DIN  
CS  
SCLK  
NC = NO CONNECT  
Figure 6. AD5542A 16-Lead TSSOP Pin Configuration  
Table 8. AD5542A Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
5
RFB  
VOUT  
AGNDF  
AGNDS  
REFS  
Feedback Resistor Pin. In bipolar mode, connect this pin to the external op amp output.  
Analog Output Voltage from the DAC.  
Ground Reference Point for Analog Circuitry (Force).  
Ground Reference Point for Analog Circuitry (Sense).  
Voltage Reference Input (Sense) for the DAC. Connect to an external 2.5 V reference. Reference can range from  
2 V to VDD.  
6
REFF  
Voltage Reference Input (Force) for the DAC. Connect to an external 2.5 V reference. Reference can range from  
2 V to VDD.  
7
8
9
NC  
CS  
No Connect.  
Logic Input Signal. The chip select signal is used to frame the serial data input.  
SCLK  
Clock Input. Data is clocked into the input register on the rising edge of SCLK. Duty cycle must be between 40%  
and 60%.  
10  
11  
DIN  
CLR  
Serial Data Input. This device accepts 16-bit words. Data is clocked into the input register on the rising edge of SCLK.  
Asynchronous Clear Input. The CLR input is falling edge sensitive. When CLR is low, all LDAC pulses are ignored.  
When CLR is activated, the DAC register is cleared to the model selectable midscale.  
12  
LDAC  
LDAC Input. When this input is taken low, the DAC register is simultaneously updated with the contents of the  
input register.  
13  
14  
DGND  
INV  
Digital Ground. Ground reference for digital circuitry.  
Connection to the Internal Scaling Resistors of the DAC. Connect the INV pin to the external op amps inverting  
input in bipolar mode.  
15  
16  
VLOGIC  
VDD  
Logic Power Supply.  
Analog Supply Voltage, 5 V 10%.  
Rev. A | Page 9 of 24  
AD5512A/AD5542A  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.50  
0.50  
V
V
= 5V  
V
V
= 5V  
DD  
DD  
= 2.5V  
= 2.5V  
REF  
REF  
0.25  
0
0.25  
0
–0.25  
–0.50  
–0.25  
–0.50  
–0.75  
0
8192 16,384 24,576 32,768 40,960 49,152 57,344 65,536  
CODE  
0
8192 16,384 24,576 32,768 40,960 49,152 57,344 65,536  
CODE  
Figure 7. AD5542A Integral Nonlinearity vs. Code  
Figure 10. AD5542A Differential Nonlinearity vs. Code  
0.25  
0.75  
V
V
= 5V  
V
= 5V  
DD  
DD  
= 2.5V  
V
= 2.5V  
REF  
REF  
0
–0.25  
–0.50  
–0.75  
0.50  
0.25  
0
–0.25  
–1.00  
–0.50  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 8. AD5542A Integral Nonlinearity vs. Temperature  
Figure 11. AD5542A Differential Nonlinearity vs. Temperature  
0.50  
0.75  
V
T
= 5V  
V
T
= 2.5V  
DD  
= 25°C  
REF  
= 25°C  
A
A
0.25  
0
0.50  
0.25  
0
DNL  
DNL  
–0.25  
–0.50  
INL  
–0.25  
INL  
–0.75  
–0.50  
2
3
4
5
6
7
0
1
2
3
4
5
6
SUPPLY VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
Figure 9. AD5542A Linearity Error vs. Supply Voltage  
Figure 12. AD5542A Linearity Error vs. Reference Voltage  
Rev. A | Page 10 of 24  
 
 
 
AD5512A/AD5542A  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
0.15  
0.10  
0.05  
0
V
V
= 5V  
V
= 5V  
DD  
DD  
= 2.5V  
V
= 2.5V  
REF  
REF  
T
= 25°C  
T = 25°C  
A
A
–0.05  
–0.10  
–0.15  
–40  
25  
85  
–40  
25  
TEMPERATURE (°C)  
85  
TEMPERATURE (°C)  
Figure 13. AD5512A/AD5542A Gain Error vs. Temperature  
Figure 16. AD5512A/AD5542A Zero-Code Error vs. Temperature  
2.0  
132  
T
= 25°C  
A
V
V
= 5V  
DD  
= 2.5V  
REF  
130  
128  
126  
124  
122  
120  
118  
116  
T
= 25°C  
A
1.5  
1.0  
0.5  
0
REFERENCE VOLTAGE  
= 5V  
V
DD  
SUPPLY VOLTAGE  
= 2.5V  
V
REF  
0
1
2
3
VOLTAGE (V)  
4
5
6
–40  
25  
85  
TEMPERATURE (°C)  
Figure 17. AD5512A/AD5542A Supply Current vs. Reference Voltage or  
Supply Voltage  
Figure 14. AD5512A/AD5542A Supply Current vs. Temperature  
200  
200  
180  
160  
140  
120  
100  
80  
V
V
= 5V  
DD  
= 2.5V  
REF  
T
= 25°C  
A
150  
100  
50  
60  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
0
10,000 20,000 30,000 40,000 50,000 60,000 70,000  
CODE (Decimal)  
DIGITAL INPUT VOLTAGE (V)  
Figure 15. AD5512A/AD5542A Supply Current vs. Digital Input Voltage  
Figure 18. AD5512A/AD5542A Reference Current vs. Code  
Rev. A | Page 11 of 24  
AD5512A/AD5542A  
V
V
= 2.5V  
REF  
= 5V  
V
V
= 2.5V  
REF  
= 5V  
DD  
= 25°C  
DD  
= 25°C  
T
A
T
A
100  
100  
90  
V
(1V/DIV)  
DIN (5V/DIV)  
OUT  
90  
V
(50mV/DIV)  
OUT  
V
(50mV/DIV)  
OUT  
GAIN = –216  
1LSB = V  
N
/(2 )–1  
10  
0
10  
0
REF  
2µs/DIV  
0.5µs/DIV  
Figure 19. AD5512A/AD5542A Digital Feedthrough  
Figure 22. AD5512A/AD5542A Small Signal Settling Time  
5
1.236  
1.234  
1.232  
1.230  
1.228  
1.226  
1.224  
5
+125°C  
+25°C  
–55°C  
CS  
0
4
3
2
–5  
–10  
–15  
–20  
–25  
–30  
V
OUT  
1
0
90  
100  
110  
120  
–0.5  
0
0.5  
TIME (ns)  
1.0  
1.5  
2.0  
I
SUPPLY (µA)  
DD  
Figure 20. AD5512A/AD5542A Digital-to-Analog Glitch Impulse  
Figure 23. AD5512A/AD5542A Analog Supply Current Histogram  
6
5
4
3
2
+125°C  
+25°C  
–55°C  
V
V
= 2.5V  
REF  
= 5V  
2µs/DIV  
DD  
= 25°C  
T
A
CS (5V/DIV)  
100  
90  
10pF  
50pF  
100pF  
200pF  
1
0
10  
0
V
(0.5V/DIV)  
15  
16  
17  
18  
19  
OUT  
I
AT RAILS (µA)  
LOGIC  
Figure 21. AD5512A/AD5542A Large Signal Settling Time  
Figure 24. AD5512A/AD5542A Digital Supply Current Histogram  
Rev. A | Page 12 of 24  
 
 
AD5512A/AD5542A  
40  
20  
10  
V
V
T
= 5V  
= 5V  
= 25°C  
DD  
V
V
= 5V  
DD  
REF  
= 2.5V  
REF  
A
T
= 25°C  
A
DATA = 0x0000  
0
5
–20  
–40  
–60  
0
–80  
–5  
–100  
0
20  
40  
60  
80  
100  
120  
0
10,000 20,000 30,000 40,000 50,000 60,000 70,000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 25. AD5512A/AD5542A 0.1 Hz to 10 Hz Output Noise  
Figure 28. AD5512A/AD5542A Total Harmonic Distortion  
40  
35  
30  
25  
20  
15  
10  
V
V
= 5V  
DD  
= 2.5V  
0
–10  
–20  
–30  
–40  
REF  
T
= 25°C  
A
10  
5
V
V
= 5V  
DD  
–50  
–60  
= 2.5V ± 0.2V  
REF  
0
600  
700  
800  
900  
1000  
1100  
1200  
1300  
1400  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 26. AD5512A/AD5542A Noise Spectral Density vs. Frequency,1 kHz  
Figure 29. AD5512A/AD5542A Multiplying Bandwidth  
14  
12  
10  
8
6
4
V
V
= 5V  
DD  
2
= 2.5V  
REF  
T
= 25°C  
A
0
9600  
9700  
9800  
9900 10,000 10,100 10,200 10,300 10,400  
FREQUENCY (Hz)  
Figure 27. AD5512A/AD5542A Noise Spectral Density vs. Frequency, 10 kHz  
Rev. A | Page 13 of 24  
AD5512A/AD5542A  
TERMINOLOGY  
Digital-to-Analog Glitch Impulse  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy or INL is a measure of the  
maximum deviation, in LSBs, from a straight line passing  
through the endpoints of the DAC transfer function. A typical  
INL vs. code plot is shown in Figure 7.  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-sec  
and is measured when the digital input code is changed by  
1 LSB at the major carry transition. A digital-to-analog glitch  
impulse plot is shown in Figure 20.  
Differential Nonlinearity (DNL)  
DNL is the difference between the measured change and the  
ideal 1 LSB change between any two adjacent codes. A specified  
differential nonlinearity of 1 LSB maximum ensures mono-  
tonicity. A typical DNL vs. code plot is shown in Figure 10.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC, but it is measured when the DAC output is not updated.  
Gain Error  
CS  
is held high while the SCLK and DIN signals are toggled. It  
Gain error is the difference between the actual and ideal analog  
output range, expressed as a percent of the full-scale range.  
It is the deviation in slope of the DAC transfer characteristic  
from ideal.  
is specified in nV-sec and is measured with a full-scale code  
change on the data bus, that is, from all 0s to all 1s and vice  
versa. A typical digital feedthrough plot is shown in Figure 19.  
Power Supply Rejection Ratio (PSRR)  
Gain Error Temperature Coefficient  
PSRR indicates how the output of the DAC is affected by changes  
in the power supply voltage. The power supply rejection ratio is  
quoted in terms of percent change in output per percent change  
in VDD for full-scale output of the DAC. VDD is varied by 10%.  
Gain error temperature coefficient is a measure of the change  
in gain error with changes in temperature. It is expressed in  
ppm/°C.  
Zero-Code Error  
Zero-code error is a measure of the output error when zero  
code is loaded to the DAC register.  
Reference Feedthrough  
Reference feedthrough is a measure of the feedthrough from the  
V
REF input to the DAC output when the DAC is loaded with all 0s.  
Zero-Code Temperature Coefficient  
A 100 kHz, 1 V p-p is applied to VREF. Reference feedthrough is  
This is a measure of the change in zero-code error with a  
change in temperature. It is expressed in mV/°C.  
expressed in mV p-p.  
Rev. A | Page 14 of 24  
 
AD5512A/AD5542A  
THEORY OF OPERATION  
The AD5512A/AD5542A are single, 12-/16-bit, serial input,  
voltage output DACs. They operate from a single supply  
ranging from 2.7 V to 5 V and consume typically 125 µA  
with a supply of 5 V. Data is written to these devices in a  
12-bit (AD5512A) or 16-bit (AD5542A) word format, via a  
3- or 4-wire serial interface. To ensure a known power-up  
state, these parts are designed with a power-on reset function.  
In unipolar mode, the output is reset to midscale; in bipolar  
mode, the output is set to 0 V. Kelvin sense connections for the  
reference and analog ground are included on the AD5512A/  
AD5542A.  
SERIAL INTERFACE  
The AD5512A/AD5542A are controlled by a versatile 3- or 4-  
wire serial interface that operates at clock rates of up to 50 MHz  
and is compatible with SPI, QSPI, MICROWIRE, and DSP  
interface standards. The timing diagram is shown in Figure 3.  
CS  
Input data is framed by the chip select input, . After a high-  
CS  
to-low transition on , data is shifted synchronously and  
latched into the input register on the rising edge of the serial  
clock, SCLK. Data is loaded MSB first in 12-bit (AD5512A)  
or 16-bit (AD5542A) words. After 12 (AD5512A) or 16  
(AD5542A) data bits have been loaded into the serial input  
DIGITAL-TO-ANALOG SECTION  
CS  
register, a low-to-high transition on transfers the contents  
of the shift register to the DAC. Data can be loaded to the part  
The DAC architecture consists of two matched DAC sections.  
A simplified circuit diagram is shown in Figure 30. The DAC  
architecture of the AD5512A/AD5542A is segmented. The four  
MSBs of the 16-bit (AD5542A)/12-bit (AD5512A) data-word  
are decoded to drive 15 switches, E1 to E15. Each switch  
CS  
only while  
The AD5512A/AD5542A have an  
the DAC latch to be updated asynchronously by bringing  
CS LDAC  
is low.  
LDAC  
function that allows  
LDAC  
should be maintained high while  
LDAC  
low after  
data is written to the shift register. Alternatively,  
tied permanently low to update the DAC synchronously. With  
LDAC CS  
goes high.  
connects one of 15 matched resistors to either AGND or VREF  
The remaining 12 bits of the data-word drive the S0 to S11  
switches of a 12-bit voltage mode R-2R ladder network.  
.
can be  
tied permanently low, the rising edge of loads the data to  
R
R
V
OUT  
the DAC.  
2R  
2R  
S0  
2R . . . . .  
S1 . . . . .  
2R  
2R  
E1  
2R . . . . .  
E2 . . . . .  
2R  
E15  
UNIPOLAR OUTPUT OPERATION  
These DACs are capable of driving unbuffered loads of 60 kΩ.  
Unbuffered operation results in low supply current, typically  
300 μA, and a low offset error. The AD5512A/AD5542A  
S11  
V
REF  
provide a unipolar output swing ranging from 0 V to VREF  
.
FOUR MSBs DECODED  
INTO 15 EQUAL SEGMENTS  
12-BIT R-2R LADDER  
The AD5512A/AD5542A can be configured to output both  
unipolar and bipolar voltages. Figure 31 shows a typical  
unipolar output voltage circuit. The code table for this  
mode of operation is shown in Table 9.  
Figure 30. DAC Architecture  
With this type of DAC configuration, the output impedance  
is independent of code, while the input impedance seen by  
5V  
2.5V  
the reference is heavily code dependent. The output voltage is  
dependent on the reference voltage, as shown in the following  
equation:  
10µF  
0.1µF  
0.1µF  
VREF × D  
SERIAL  
INTERFACE  
V
REFF  
REFS  
VOUT  
where:  
=
DD  
2N  
AD820/  
OP196  
CS  
UNIPOLAR  
OUTPUT  
DIN  
AD5512A/  
AD5542A  
V
OUT  
SCLK  
LDAC  
D is the decimal data-word loaded to the DAC register.  
N is the resolution of the DAC.  
EXTERNAL  
OP AMP  
DGND AGNDF AGNDS  
For a reference of 2.5 V, the equation simplifies to the following:  
Figure 31. Unipolar Output  
2.5 × D  
Table 9. AD5542A Unipolar Code Table  
DAC Latch Contents  
VOUT  
=
65,536  
MSB  
LSB  
Analog Output  
VREF × (65,535/65,536)  
VREF × (32,768/65,536) = ½ VREF  
VREF × (1/65,536)  
0 V  
This gives a VOUT of 1.25 V with midscale loaded, and 2.5 V  
with full scale loaded to the DAC.  
1111 1111 1111 1111  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
The LSB size is VREF/65,536.  
Rev. A | Page 15 of 24  
 
 
 
 
 
 
 
AD5512A/AD5542A  
2.5 V reference and the AD8628 low offset and zero-drift  
reference buffer.  
Assuming a perfect reference, the unipolar worst-case output  
voltage can be calculated from the following equation:  
D
Table 10. AD5542A Bipolar Code Table  
DAC Latch Contents  
VOUTUNI  
=
×
(
VREF + VGE + VZSE + INL  
)
2N  
MSB  
LSB  
Analog Output  
where:  
OUT−UNI is the unipolar mode worst-case output.  
D is the code loaded to DAC.  
1111 1111 1111 1111  
1000 0000 0000 0001  
1000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0000  
+VREF × (32,767/32,768)  
+VREF × (1/32,768)  
0 V  
−VREF × (1/32,768)  
−VREF × (32,768/32,768) = −VREF  
V
N is the resolution of the DAC.  
V
V
V
REF is the reference voltage applied to the part.  
GE is the gain error in volts.  
ZSE is the zero-scale error in volts.  
Assuming a perfect reference, the worst-case bipolar output  
voltage can be calculated from the following equation:  
INL is the integral nonlinearity in volts.  
BIPOLAR OUTPUT OPERATION  
[(VOUT+ VOS )(2 + RD) VREF (1 + RD)]  
UNI  
V OUTBIP  
=
With the aid of an external op amp, the AD5512A/AD5542A  
can be configured to provide a bipolar voltage output. A typical  
circuit is shown in Figure 32. The matched bipolar offset resistors,  
RFB and RINV, are connected to an external op amp to achieve  
this bipolar output swing, typically RFB = RINV = 28 kΩ. Table 10  
shows the transfer function for this output operating mode.  
Also provided on the AD5542A are a set of Kelvin connections  
to the analog ground inputs. The example includes the ADR421  
1 + (2 + RD)  
A
where:  
VOUT−BIP is the bipolar mode worst-case output  
VOUT−UNI is the unipolar mode worst-case output.  
VOS is the external op amp input offset voltage.  
RD is the RFB and RINV resistor matching error.  
A is the op amp open-loop gain.  
+5V +2.5V  
10µF  
0.1µF  
0.1µF  
R
+5V  
FB  
SERIAL  
INTERFACE  
V
REFF REFS  
DD  
R
FB  
V
CS  
INV  
OUT  
DIN  
R
INV  
BIPOLAR  
OUTPUT  
AD5512A/  
AD5542A  
SCLK  
LDAC  
–5V  
EXTERNAL  
OP AMP  
DGND AGNDF AGNDS  
Figure 32. Bipolar Output  
Rev. A | Page 16 of 24  
 
 
 
AD5512A/AD5542A  
REFERENCE AND GROUND  
OUTPUT AMPLIFIER SELECTION  
Because the input impedance is code-dependent, the refer-  
ence pin should be driven from a low impedance source. The  
AD5512A/AD5542A operate with a voltage reference ranging  
from 2 V to VDD. References below 2 V result in reduced accuracy.  
The full-scale output voltage of the DAC is determined by the  
reference. Table 9 and Table 10 outline the analog output voltage  
or particular digital codes. For optimum performance, Kelvin  
sense connections are provided on the AD5512A/AD5542A.  
For bipolar mode, a precision amplifier should be used and  
supplied from a dual power supply. This provides the VREF  
output. In a single-supply application, selection of a suitable op  
amp may be more difficult because the output swing of the ampli-  
fier does not usually include the negative rail, in this case,  
AGND. This can result in some degradation of the specified  
performance unless the application does not use codes near zero.  
The selected op amp must have a very low-offset voltage (the  
DAC LSB is 38 μV for the AD5542A with a 2.5 V reference)  
to eliminate the need for output offset trims. Input bias current  
should also be very low because the bias current, multiplied by  
the DAC output impedance (approximately 6 kΩ), adds to the  
zero-code error. Rail-to-rail input and output performance is  
required. For fast settling, the slew rate of the op amp should  
not impede the settling time of the DAC. Output impedance  
of the DAC is constant and code-independent, but to minimize  
gain errors, the input impedance of the output amplifier should  
be as high as possible. The amplifier should also have a 3 dB  
bandwidth of 1 MHz or greater. The amplifier adds another  
time constant to the system, thus increasing the settling time  
of the output. A higher 3 dB amplifier bandwidth results in a  
shorter effective settling time of the combined DAC and amplifier.  
If the application doesn’t require separate force and sense lines,  
tie the lines close to the package to minimize voltage drops  
between the package leads and the internal die.  
POWER-ON RESET  
The AD5512A/AD5542A have a power-on reset function to  
ensure that the output is at a known state on power-up. On  
power-up, the DAC register contains all 0s until the data is  
loaded from the serial register. However, the serial register is  
not cleared on power-up; therefore, its contents are undefined.  
When loading data initially to the DAC, 16 bits or more should  
be loaded to prevent erroneous data appearing on the output.  
If more than 16 bits are loaded, the last 16 are kept, and if less  
than 16 bits are loaded, bits remain from the previous word.  
If the AD5512A/AD5542A must be interfaced with data shorter  
than 16 bits, the data should be padded with 0s at the LSBs.  
FORCE SENSE AMPLIFIER SELECTION  
Use single-supply, low-noise amplifiers. A low-output impedance  
at high frequencies is preferred because the amplifiers must be  
able to handle dynamic currents of up to 20 mA.  
POWER SUPPLY AND REFERENCE BYPASSING  
For accurate high-resolution performance, it is recommended  
that the reference and supply pins be bypassed with a 10 μF  
tantalum capacitor in parallel with a 0.1 μF ceramic capacitor.  
Rev. A | Page 17 of 24  
 
 
 
 
 
AD5512A/AD5542A  
APPLICATIONS INFORMATION  
MICROPROCESSOR INTERFACING  
AD5512A/AD5542A TO 68HC11/68L11 INTERFACE  
Microprocessor interfacing to the AD5512A/AD5542A is via  
a serial bus that uses standard protocol that is compatible with  
DSP processors and microcontrollers. The communications  
channel requires a 3- or 4-wire interface consisting of a clock  
signal, a data signal, and a synchronization signal. The  
AD5512A/AD5542A require a 16-bit data-word with data  
valid on the rising edge of SCLK. The DAC update can be  
done automatically when all the data is clocked in, or it can  
Figure 35 shows a serial interface between the AD5512A/  
AD5542A and the 68HC11/68L11 microcontroller. SCK of  
the 68HC11/68L11 drives the SCLK of the DAC, and the  
CS  
MOSI output drives the serial data line serial DIN. The  
signal is driven from one of the port lines. The 68HC11/68L11 is  
configured for master mode: MSTR = 1, CPOL = 0, and CPHA =  
0. Data appearing on the MOSI output is valid on the rising  
edge of SCK.  
LDAC  
be done under the control of the  
.
PC6  
PC7  
LDAC  
CS  
AD5512A/AD5542A TO ADSP-BF531 INTERFACE  
68HC11/  
68L11*  
AD5512A/  
MOSI  
SCK  
DIN  
AD5542A*  
The SPI interface of the AD5512A/AD5542A is designed to be  
easily connected to industry-standard DSPs and micro-  
controllers. Figure 33 shows how the AD5512A/AD5542A  
can be connected to the Analog Devices, Inc., Blackfin® D SP.  
The Blackfin has an integrated SPI port that can be connected  
directly to the SPI pins of the AD5512A/AD5542A.  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 35. AD5512A/AD5542A to 68HC11/68L11 Interface  
AD5512A/AD5542A TO ADSP-2101 INTERFACE  
Figure 36 shows a serial interface between the AD5512A/  
AD5542A and the ADSP-2101. The ADSP-2101 should be  
set to operate in the SPORT transmit alternate framing mode.  
The ADSP-2101 is programmed through the SPORT control  
register and should be configured as follows: internal clock  
operation, active low framing, 16-bit word length. Transmission  
is initiated by writing a word to the Tx register after the SPORT  
has been enabled. As the data is clocked out on each rising edge  
of the serial clock, an inverter is required between the DSP and  
the DAC, because the AD5512A/AD5542A clock data in on the  
falling edge of the SCLK.  
AD5512A/  
AD5542A  
SPISELx  
SCK  
CS  
SCLK  
DIN  
MOSI  
ADSP-BF531  
PF9  
LDAC  
Figure 33. AD5512A/AD5542A to ADSP-BF531 Interface  
AD5512A/AD5542A TO SPORT INTERFACE  
The Analog Devices ADSP-BF527 has one SPORT serial port.  
Figure 34 shows how one SPORT interface can be used to  
control the AD5512A/AD5542A.  
FO  
TFS  
LDAC  
CS  
AD5512A/  
ADSP-2101  
DT  
DIN  
AD5542A*  
AD5512A/  
AD5542A  
SCLK  
SCLK  
SPORT_TFS  
SPORT_TSCK  
SPORT_DTO  
CS  
SCLK  
DIN  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 36. AD5512A/AD5542A to ADSP-2101 Interface  
AD5512A/AD5542A TO MICROWIRE INTERFACE  
ADSP-BF527  
GPIO0  
LDAC  
Figure 37 shows an interface between the AD5512A/AD5542A  
and any MICROWIRE-compatible device. Serial data is shifted  
out on the falling edge of the serial clock and into the AD5512A/  
AD5542A on the rising edge of the serial clock. No glue logic  
is required because the DAC clocks data into the input shift  
register on the rising edge.  
Figure 34. AD5512A/AD5542A to ADSP-BF527 Interface  
CS  
SO  
CS  
AD5512A/  
AD5542A*  
MICROWIRE*  
DIN  
SCLK  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 37. AD5512A/AD5542A to MICROWIRE Interface  
Rev. A | Page 18 of 24  
 
 
 
 
 
 
 
 
 
 
 
 
AD5512A/AD5542A  
LAYOUT GUIDELINES  
DECODING MULTIPLE DACS  
In any circuit where accuracy is important, careful consider-  
ation of the power supply and ground return layout helps to  
ensure the rated performance. Design the printed circuit board  
(PCB) on which the AD5512A/AD5542A is mounted so that  
the analog and digital sections are separated and confined to  
certain areas of the board. If the AD5512A/AD5542A are in a  
system where multiple devices require an analog ground-to-  
digital ground connection, make the connection at one point  
only. Establish the star ground point as close as possible to the  
device.  
CS  
pin of the AD5512A/AD5542A can be used to select  
The  
one of a number of DACs. All devices receive the same serial  
CS  
clock and serial data, but only one device receives the  
at any one time. The DAC addressed is determined by the  
signal  
decoder. There is some digital feedthrough from the digital  
input lines. Using a burst clock minimizes the effects of digital  
feedthrough on the analog signal channels. Figure 39 shows a  
typical circuit.  
AD5512A/  
SCLK  
AD5542A  
CS  
V
OUT  
OUT  
OUT  
OUT  
The AD5512A/AD5542A should have ample supply bypassing  
of 10 μF in parallel with 0.1 μF on each supply located as close  
to the package as possible, ideally right up against the device.  
The 10 μF capacitors are the tantalum bead type. The 0.1 μF  
capacitor should have low effective series resistance (ESR)  
and low effective series inductance (ESI), such as the common  
ceramic types, which provide a low impedance path to ground  
at high frequencies to handle transient currents due to internal  
logic switching.  
DIN  
DIN  
V
DD  
SCLK  
ENABLE  
AD5512A/  
AD5542A  
EN  
CS  
CODED  
ADDRESS  
V
DECODER  
DGND  
DIN  
SCLK  
AD5512A/  
AD5542A  
CS  
V
GALVANICALLY ISOLATED INTERFACE  
DIN  
SCLK  
In many process control applications, it is necessary to provide  
an isolation barrier between the controller and the unit being  
controlled to protect and isolate the controlling circuitry  
from any hazardous common-mode voltages that may occur.  
iCoupler® products from Analog Devices provide voltage  
isolation in excess of 2.5 kV. The serial loading structure  
of the AD5512A/AD5542A makes the parts ideal for isolated  
interfaces because the number of interface lines is kept to a  
minimum. Figure 38 shows a 4-channel isolated interface to  
the AD5512A/AD5542A using an ADuM1400. For further  
information, visit http://www.analog.com/icouplers.  
AD5512A/  
AD5542A  
CS  
V
DIN  
SCLK  
Figure 39. Addressing Multiple DACs  
ADuM14001  
CONTROLLER  
V
V
V
V
V
V
V
V
IA  
IB  
IC  
ID  
OA  
OB  
OC  
OD  
TO  
SERIAL  
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
SCLK  
CLOCK IN  
TO  
DIN  
SERIAL  
DATA OUT  
TO  
CS  
SYNC OUT  
LOAD DAC  
OUT  
TO  
LDAC  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 38. Isolated Interface  
Rev. A | Page 19 of 24  
 
 
 
 
 
AD5512A/AD5542A  
OUTLINE DIMENSIONS  
3.10  
3.00 SQ  
2.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.50  
BSC  
1
4
12  
EXPOSED  
PAD  
1.75  
1.60 SQ  
1.45  
9
8
5
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.  
Figure 40. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
3 mm × 3 mm Body, Very Very Thin Quad  
(CP-16-22)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 41. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
Rev. A | Page 20 of 24  
 
AD5512A/AD5542A  
2.48  
2.38  
2.23  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
6
10  
PIN 1 INDEX  
AREA  
EXPOSED  
PAD  
1.74  
1.64  
1.49  
0.50  
0.40  
0.30  
5
1
PIN 1  
INDICATOR  
TOP VIEW  
BOTTOM VIEW  
(R 0.15)  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 42. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-10-9)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Power On  
Reset to Code  
1 LSB Midscale  
Model1  
INL  
1 LSB  
DNL  
Package Description  
16-Lead LFCSP  
16-Lead LFCSP  
Package Option Branding  
AD5512AACPZ-REEL7  
AD5512AACPZ-500RL7  
AD5542ABRUZ  
AD5542ABRUZ-REEL7  
AD5542AARUZ  
AD5542AARUZ-REEL7  
AD5542ABCPZ-REEL7  
AD5542AACPZ-REEL7  
AD5442ABCPZ-1-RL7  
AD5542ABCPZ-500RL7  
EVAL-AD5542ASDZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +125°C  
CP-16-22  
CP-16-22  
RU-16  
DFQ  
DFQ  
1 LSB  
1 LSB  
1 LSB  
2 LSB  
2 LSB  
1 LSB  
2 LSB  
1 LSB  
1 LSB  
1 LSB Midscale  
1 LSB Midscale  
1 LSB Midscale  
1 LSB Midscale  
1 LSB Midscale  
1 LSB Midscale  
1 LSB Midscale  
1 LSB Midscale  
1 LSB Midscale  
16-Lead TSSOP  
16-Lead TSSOP  
RU-16  
16-Lead TSSOP  
RU-16  
16-Lead TSSOP  
RU-16  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
10-Lead LFCSP_WQ  
16-Lead LFCSP  
CP-16-22  
CP-16-22  
CP-10-9  
CP-16-22  
DFL  
DFK  
DFM  
DFL  
AD5541A Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. A | Page 21 of 24  
 
AD5512A/AD5542A  
NOTES  
Rev. A | Page 22 of 24  
AD5512A/AD5542A  
NOTES  
Rev. A | Page 23 of 24  
AD5512A/AD5542A  
NOTES  
©2010-2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09199-0-5/11(A)  
Rev. A | Page 24 of 24  

相关型号:

AD5443

Dual 8-,10-,12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443BRM

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443BRM-REEL7

IC IC,D/A CONVERTER,SINGLE,12-BIT,CMOS,TSSOP,10PIN, Digital to Analog Converter
ADI

AD5443YRM

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443YRM-REEL

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443YRM-REEL7

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443YRMZ

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443YRMZ-REEL

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5443YRMZ-REEL7

8-/10-/12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5444

Dual 8-,10-,12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5444YRM

12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5444YRM-REEL

12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI