AD5520JSTZ-REEL1 [ADI]

Per Pin Parametric Measurement Unit/Source Measure Unit; 每个引脚参数测量单元/源测量单元
AD5520JSTZ-REEL1
型号: AD5520JSTZ-REEL1
厂家: ADI    ADI
描述:

Per Pin Parametric Measurement Unit/Source Measure Unit
每个引脚参数测量单元/源测量单元

文件: 总24页 (文件大小:514K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Per Pin Parametric  
Measurement Unit/Source Measure Unit  
AD5520  
FEATURES  
GENERAL DESCRIPTION  
Force/measure functions  
FIMV, FVMI, FVMV, FIMI, FNMV  
Force/measure voltage range 11 V  
4 user programmable force/measure current ranges  
4 ꢀA, 40 ꢀA, 400 ꢀA, 4 mA (external resistors)  
2 user programmable extended current ranges  
Up to 6 mA without external driver  
Higher currents with external driver  
Clamp circuitry and window comparators on board  
Guard amplifier  
The AD5520 is a single-channel, per pin parametric measure-  
ment unit (PPMU) for use in semiconductor automatic  
test equipment. The part is also suited for use as a source  
measurement unit for instrumentation applications. It  
contains programmable modes to force a pin voltage and  
measure the corresponding current, or force a current and  
measure the voltage. The AD5520 can force/measure over a  
±±± ꢀ range or user-programmable currents up to ±mA  
with its on-board force amplifier. An external amplifier is  
required for wider current ranges. The device provides a force  
sense capability to ensure accuracy at the tester pin. A guard  
output is also available to drive the shield of a force/sense pair.  
The AD5520 is available in a 6ꢁ-lead LQFP package.  
64-lead LQFP package  
APPLICATIONS  
Automatic test equipment  
Per pin PMU, shared pin PMU, device power supply  
instrumentation  
Source measure, parametric measurement,  
precision measurement  
FUNCTIONAL BLOCK DIAGRAM  
AV  
EE  
AV  
CC  
AD5520  
FOH  
BW SELECT  
FOH3  
FOH2  
FOH1  
FOH0  
FIN  
MEASI5H  
CLAMP  
DETECT  
MEASI4H  
MEASI3H  
MEASI2H  
MEASI1H  
CLH  
CLL  
MEASI0H  
REFGND  
G = 16  
MEASIOUT  
MEASIL  
I
SENSE  
INST AMP  
GUARDIN  
GUARD  
V
MEASOUT  
SENSE  
G = 1  
INST AMP  
MEASVH  
MEASVL  
G = 1  
MEASVOUT  
COMPARATOR  
CPH  
CPOH  
AGND  
QM5  
LOGICS  
CPOL  
CPL  
QM4  
CPCK  
Figure 1.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices.Trademarks and registered trademarks are theproperty of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
 
AD5520  
TABLE OF CONTENTS  
Features .............................................................................................. ±  
Force Control Amplifier............................................................ ±5  
Comparator Function and Strobing ........................................ ±5  
Clamp Function.......................................................................... ±5  
High Current Ranges................................................................. ±5  
Circuit Operation ........................................................................... ±6  
Force ꢀoltage............................................................................... ±6  
Measure Current......................................................................... ±6  
Force Current.............................................................................. ±7  
Measure ꢀoltage ......................................................................... ±7  
Short Circuit Protection ............................................................ ±7  
Settling Time Considerations ....................................................... ±8  
PCB Layout and Power Supply Decoupling................................ ±9  
Typical Connection Circuit for the AD5520 .............................. 20  
Typical Application Circuit ........................................................... 2±  
Evaluation Board for the AD5520................................................ 22  
Outline Dimensions....................................................................... 2ꢁ  
Ordering Guide .......................................................................... 2ꢁ  
Applications....................................................................................... ±  
General Description......................................................................... ±  
Functional Block Diagram .............................................................. ±  
Specifications..................................................................................... 3  
Timing Characteristics..................................................................... 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ........................................... ±0  
Theory of Operation ...................................................................... ±3  
Interface ........................................................................................... ±ꢁ  
Standby Mode ............................................................................. ±ꢁ  
Force ꢀoltage or Force Current ................................................ ±ꢁ  
Measured Parameter .................................................................. ±ꢁ  
Current Ranges ........................................................................... ±ꢁ  
RS Selection.................................................................................. ±ꢁ  
REVISION HISTORY  
9/05—Rev. A to Rev. B  
10/03—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Changes to Features.......................................................................... ±  
Changes to Figure ±.......................................................................... ±  
Changes to Specifications................................................................ 3  
Changes to Force Current Section................................................ ±7  
Changes to Figure 26 ..................................................................... 20  
Updated Outline Dimensions....................................................... 2ꢁ  
Changes to Ordering Guide .......................................................... 2ꢁ  
Changes to Specifications.................................................................3  
Updated Ordering Guide .................................................................5  
9/03—Revision 0: Initial Version  
Rev. B | Page 2 of 24  
AD5520  
SPECIFICATIONS  
ACC = +±5 ꢀ ± 5%, AEE = −±5 ꢀ ± 5%, DꢀDD = 5 ꢀ ± ±0%, AGND = 0 , REFGND = 0 , DGND = 0 . All specifications 0°C to 70°C,  
unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ1  
Max  
Unit  
Test Conditions/Comments  
VOLTAGE FORCE MODE  
Force Control Output Voltage Range  
FOH Output Impedance  
FOH0  
±±±  
V
Ω
kΩ  
kΩ  
Ω
RLOAD = ±0 kΩ, CLOAD = 50 pF  
70  
2.5  
3
500  
60  
FOH±  
FOH2  
FOH3  
Ω
Input Offset Error  
Input Offset Error Temperature Coefficient  
Gain Error  
±±  
±±0  
±5  
mV  
μV/°C  
%
±
Clamp Current Error2  
CURRENT MEASURE/FORCE  
FOH0  
FOH±  
FOH2  
±±  
% FS  
of FIN  
Suggested values; set with external sense resistors  
MODE0, RS = ±25 kΩ  
MODE±, RS = ±2.5 kΩ  
MODE2, RS = ±2.5 kΩ  
MODE3, RS = ±25 Ω  
±4  
μA  
μA  
μA  
mA  
±40  
±400  
±4  
FOH3  
CURRENT MEASURE MODE  
High Sense Input Range, VMEASIxH  
Linearity3  
Input Bias Current  
Input Bias Current Drift±  
Output Offset Error  
±±±  
±0.0±  
±3  
V
% FSR  
nA  
pA/°C  
mV  
mV  
mV  
+±± V > VFOL > −±± V  
±±  
50  
±±00  
±±00  
±±00  
±±00  
MODE0 (±4 μA)  
MODE± (±40 μA)  
MODE2 (±400 μA)  
MODE3 (±4 mA)  
mV  
Output Offset Error Temperature Coefficient  
Gain Error  
Gain Error Temperature Coefficient4  
MEASIOUT Output Load Current  
CMRR  
±±0  
±0.±  
30  
±4  
95  
μV/°C  
%
ppm/°C  
mA  
±0.35  
Gain of ±6  
dB  
@ DC  
CURRENT FORCE MODE  
Input Offset Error  
Gain Error  
Clamp Voltage Error2  
±±0  
±
±±  
mV  
%
% FS  
with MODE0, MODE±, MODE2, MODE3  
of FIN  
VOLTAGE MEASURE MODE  
Differential Input Range  
Low Sense Input Voltage Range  
Linearity3  
Input Offset Error  
Input Offset Error Temperature Coefficient±  
Gain Error  
Gain Error Temperature Coefficient4  
Input Bias Current  
Input Bias Current Drift4  
MEASVOUT Output Load Current  
CMRR4  
±±±  
V
mV  
±±00  
MEASVL  
+0.005 % FSR  
+±± V > VMEASVH to VMEASVL > −±± V  
FIN = 0 V, measured @ MEASVOUT  
±5  
±±0  
±0.±5  
±3  
mV  
μV/°C  
%
ppm/°C  
nA  
pA/°C  
mA  
±±5  
±0.03  
2
±±  
50  
Gain of ±  
@ DC  
±4  
73  
dB  
Rev. B | Page 3 of 24  
 
AD5520  
Parameter  
AMPLIFIER SETTLING TIME4, 5  
Min  
Typ1  
Max  
Unit  
Test Conditions/Comments  
VSENSE Amp  
ISENSE Amp  
20  
±2  
μs  
μs  
to 0.2%  
to 0.2%  
LOOP SETTLING4, 5  
Settling to within 0.024% of 8 V step  
MODE0  
COMPIN2 = ±00 pF  
450  
285  
±70  
2
600  
390  
240  
2.5  
ꢀs  
ꢀs  
MODE±  
ꢀs  
MODE2, MODE3  
MODE0  
COMPIN± = ±000 pF  
ms  
±.8  
5.75  
50  
4.3  
±.28  
2.4  
ms  
MODE±, MODE2, MODE3  
MODE0, MODE±, MODE2, MODE3  
COMPIN2 = ±00 pF  
COMPIN± = ±000 pF  
COMPIN0 = 3000 pF  
COMPIN0 = 3000 pF  
SLEW RATE4, 5  
8.7  
ms  
mV/ꢀs  
mV/ꢀs  
mV/ꢀs  
COMPARATOR  
CPH, CPL Input Range  
Input Offset  
±±±  
±7  
V
mV  
VCPH > VCPL  
GUARD DRIVER  
Output Voltage  
±±±  
V
Output Impedance  
±30  
400  
±4  
Ω
Capacitive load only  
Output Offset Voltage  
mV  
mA  
ꢀs  
Load Current4  
Output Settling Time4  
0.5  
2
±00 pF capacitive load  
ANALOG REFERENCE INPUTS  
Force Control Input Range  
Force Control Input Impedance  
Clamp Control Input Range  
Clamp Control Input Impedance  
Comparator Threshold Input Range  
Comparator Threshold Input Impedance  
Input Capacitance4  
±±±  
±±±  
±±±  
V
MΩ  
V
MΩ  
V
MΩ  
pF  
±
±
VCLH > VCLL  
±
3
LEAKAGE CURRENT  
MEASIxx, MEASVx, MEASOUT Leakage  
ANALOG MEASUREMENT OUTPUTS  
Voltage Measure Output Impedance  
Current Measure Output Impedance  
Multiplexed Sense Output Impedance  
Input Capacitance  
±3  
±20  
nA  
2
3
±
Ω
Ω
kΩ  
MEASIxH, MEASVH, FOHx  
LOGIC INPUTS  
8
pF  
Input Current  
±±  
0.8  
ꢀA  
V
V
All digital inputs together  
Input Low Voltage, VINL  
Input High Voltage, VIHL  
Input Capacitance4  
2.0  
2.4  
3
pF  
LOGIC OUTPUTS  
4
Output Low Voltage, VOL  
Output High Voltage, VOH  
0.4  
V
V
ISINK = 2 mA  
ISOURCE = 2 mA  
4
Rev. B | Page 4 of 24  
AD5520  
Parameter  
Min  
Typ1  
Max  
Unit  
Test Conditions/Comments  
POWER REQUIREMENTS  
AVCC  
AVEE  
±4.25  
−±4.25 −±5  
±5  
±5.75  
+±5.75  
V
V
for specific performance6  
Power Supply Rejection Ratio, PSRR±  
FOH  
−25  
−±6  
−±5  
−55  
−±0  
90  
dB  
dB  
dB  
dB  
dB  
dB  
V
mA  
mA  
mA  
±00 kHz  
500 kHz  
± MHz  
±00 kHz  
500 kHz  
MEASOUT  
DC PSR  
DVDD  
IAVCC  
IAVEE  
IDVDD  
5
±2  
±2  
0.5  
Digital inputs at supply rails  
± Typical values are at 25°C and nominal supply, unless otherwise noted.  
2 Full-scale = ±± V.  
3 Full-scale range = 22 V.  
4 Guaranteed by design and characterization, but not subject to production test.  
5 Force control amplifier dominates slew rate and settling time.  
6 Operational with ±±2 V supplies, force/measure range is reduced to ±8.5 V.  
Rev. B | Page 5 of 24  
 
AD5520  
TIMING CHARACTERISTICS  
ACC = +±5 ꢀ ± 5%, AEE = −±5 ꢀ ± 5%, AGND = 0 , REFGND = 0 , DGND = 0 . All specifications 0°C to 70°C, unless otherwise  
noted.±, 2  
Table 2.  
DVDD  
Parameter  
5 V 10%  
0
3.3 V  
0
Unit  
Conditions/Comments  
t±  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ꢀs min  
ns min  
ns min  
ns min  
CS falling edge to STB falling edge setup time  
STB pulse width  
t2  
30  
200  
70  
t3  
40  
STB rising edge to CS rising edge setup time  
Data setup time  
CS falling edge to CPCK rising edge setup time  
CPCK pulse width  
CPCK to STB falling edge setup time  
STB rising edge to QMx, CLxDETECT valid  
STB rising edge to CPOH, CPOL valid  
Comparator setup time, MODE2, MODE3 settling  
Comparator hold time  
t4  
t5  
0
40  
550  
320  
450  
±50  
±00  
240  
±50  
±00  
320  
560  
320  
500  
800  
440  
240  
500  
440  
320  
t6  
t7  
t8  
t9  
t±0  
t±±  
t±2  
t±3  
Comparator output delay time  
Comparator strobe pulse width  
± See Figure 2.  
2 All input signals are specified with tr = tf = ± ns (±0% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
CS  
t1  
t2  
t3  
STB  
t4  
AMx, ACx, FSEL,  
MSEL, CPSEL  
t5  
t6  
t7  
CPCK  
t6  
t9  
QM4, QM5,  
CLHDETECT,  
CLLDETECT  
CPOL, CPOH  
Figure 2. Timing Diagram  
t11  
MEASVOUT  
OR MEASIOUT  
CPCK  
CPOH, CPOL  
t13  
t10  
t12  
Figure 3. Comparator Timing  
Rev. B | Page 6 of 24  
 
AD5520  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
AVCC to AVEE  
34 V  
AVCC to AGND  
−0.3 V, +±7 V  
AVEE to AGND  
+0.3 V, −±7 V  
DVDD  
−0.3 V to +6 V  
Digital Inputs to DGND  
Analog Inputs to AGND  
CLH to CLL  
−0.3 V to DVDD + 0.3 V  
AVCC + 0.3 V to AVEE – 0.3 V  
−0.3 V to +34 V  
−0.3 V to +34 V  
AVCC + 0.3 V to AVEE – 0.3 V  
CPH to CPL  
REFGND, DGND  
Operating Temperature Range  
Commercial (J Version)  
0°C to 70°C  
−65°C to +±50°C  
±50°C  
Storage Temperature Range  
Maximum Junction Temperature,  
(TJ max)  
Package Power Dissipation  
Thermal Impedance θJA  
(TJ max – TA)/θJA  
47.8°C /W  
300°C  
Lead Temperature  
(Soldering ±0 sec)  
IR Reflow, Peak Temperature  
220°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. B | Page 7 of 24  
 
AD5520  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
CPH  
AV  
EE_B  
PIN 1  
2
CPL  
MEASI5H  
MEASI4H  
FOH3  
3
4
DV  
DD  
CPOH  
CPOL  
5
MEASI3H  
FOH2  
6
CPCK  
AD5520  
TOP VIEW  
(Not to Scale)  
7
DGND  
CLHDETECT  
CLLDETECT  
QM4  
MEASI2H  
FOH1  
8
9
MEASI1H  
FOH0  
10  
11  
12  
13  
14  
15  
16  
QM5  
MEASI0H  
MEASIL  
MEASVH  
GUARD(NC)  
MEASVL  
MOE  
CS  
STB  
AC0  
AC1  
AV  
CC_G  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NC = NO CONNECT  
Figure 4. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Description  
±
2
3, ±8  
CPH  
CPL  
DVDD  
Upper Comparator Threshold Voltage Input, CPH > CPL.  
Lower Comparator Threshold Voltage Input, CPL < CPH.  
Digital Supply Voltage.  
4
5
CPOH  
CPOL  
Logic Output. When high, indicates MEASVOUT or MEASIOUT > CPH.  
Logic Output. When high, indicates MEASVOUT or MEASIOUT < CPL.  
6
7, ±7  
8
9
±0  
CPCK  
Logic Input. Used to initiate comparator sampling and update CPOH and CPOL.  
Digital Ground.  
Logic Output. When high, indicates upper clamp active. See the Clamp Function section.  
Logic Output. When high, indicates lower clamp active. See the Clamp Function section.  
Logic Output. When high, indicates current range Mode 4 is enabled. May be used to drive external relay or  
switch. See the High Current Ranges section.  
DGND  
CLHDETECT  
CLLDETECT  
QM4  
±±  
QM5  
Logic Output. When high, indicates current range Mode 5 is enabled. May be used to drive external relay or  
switch. See the High Current Ranges section.  
±2  
±3  
±4  
MOE  
CS  
Active Low MEASOUT Enable.  
Active Low Logic Input. The device is selected when this pin is low. See the Interface section.  
STB  
Active Low Logic Input. Used in conjunction with CPCK and CS to configure the device for different  
configurations. Rising edge of STB triggers sequence inputs. See the Interface section.  
±5  
±6  
±9  
20  
2±  
22  
AC0  
Logic Input. Used in conjunction with AC± to select one of three external compensation capacitors.  
See the Force Control Amplifier section.  
Logic Input. Used in conjunction with AC0 to select one of three external compensation capacitors.  
See the Force Control Amplifier section.  
Logic Input. Used in conjunction with AM± and AM0 to select one of six current ranges or to enable standby  
mode. See the Current Ranges section.  
Logic Input. Used in conjunction with AM2 and AM0 to select one of six current ranges or to enable standby  
mode. See the Current Ranges section.  
AC±  
AM2  
AM±  
AM0  
Logic Input. Used in conjunction with AM2 and AM± to select one of six current ranges or to enable standby  
mode. See the Current Ranges section.  
Logic Input. When high, device is in standby mode of operation. See the Standby Mode section.  
STANDBY  
Rev. B | Page 8 of 24  
 
AD5520  
Pin No. Mnemonic  
Description  
23  
24  
25  
FSEL  
Logic Input. Force mode select. Used to select between current or voltage force operation. See the  
Force Voltage or Force Current section.  
Logic Input. Measure mode select. Used to connect MEASOUT to either MEASIOUT when high or MEASVOUT  
when low.  
Logic Input. Comparator select. Used to compare CPL, CPH to MEASVOUT when low, or to MEASIOUT when  
high. See the Comparator Function and Strobing section.  
MSEL  
CPSEL  
26  
27  
28  
29  
30  
3±  
32  
33  
34  
35  
36  
37  
38  
39  
40  
4±  
42  
43  
44  
45  
46  
47  
48  
49  
50  
5±  
52  
53  
54  
55  
56  
57, 59  
58  
60  
6±  
62  
63  
64  
AVEE  
AVCC  
AGND  
AVEE_G  
Most Negative Supply Voltage.  
Most Positive Supply Voltage.  
MEASx Input Ground.  
Most Negative Supply Voltage.  
Guard Output.  
No Connect.  
GUARD  
NC  
GUARDIN  
AVCC_G  
MEASVL  
GUARD(NC)  
MEASVH  
MEASIL  
MEASI0H  
FOH0  
MEASI±H  
FOH±  
MEASI2H  
FOH2  
MEASI3H  
FOH3  
MEASI4H  
MEASI5H  
AVEE_B  
Guard Input.  
Most Positive Supply Voltage.  
DUT Voltage Sense Inputs (Low Sense).  
No Connect.  
DUT Voltage Sense Inputs (High Sense).  
DUT Current Sense Inputs (Low Sense).  
DUT Current Sense Inputs (High Sense).  
Force Control Voltage Output.  
DUT Current Sense Inputs (High Sense).  
Force Control Voltage Output.  
DUT Current Sense Inputs (High Sense).  
Force Control Voltage Output.  
DUT Current Sense Inputs (High Sense).  
Force Control Voltage Output.  
DUT Current Sense Inputs (High Sense).  
DUT Current Sense Inputs (High Sense).  
Most Negative Supply Voltage.  
External Force Driver Control Voltage Output.  
Most Positive Supply Voltage.  
Compensation Capacitor 0 Output.  
Compensation Capacitor ± Output.  
Compensation Capacitor 2 Output.  
Compensation Capacitor 0 Input.  
Compensation Capacitor ± Input.  
Compensation Capacitor 2 Input.  
Analog Input/Output Reference Ground.  
Multiplexed DUT Voltage/Current Sense Output. See the Measured Parameter section.  
DUT Current Sense Output.  
FOH  
AVCC_B  
COMPOUT0  
COMPOUT±  
COMPOUT2  
COMPIN0  
COMPIN±  
COMPIN2  
REFGND  
MEASOUT  
MEASIOUT  
MEASVOUT  
FIN  
DUT Voltage Sense Output.  
Force Control Voltage Input.  
Upper Clamp Voltage Input CLH > CLL.  
Lower Clamp Voltage CLL < CLH.  
CLH  
CLL  
Rev. B | Page 9 of 24  
AD5520  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.0030  
0.0030  
0.0025  
0.0020  
V
V
= +15V  
= –15V  
V
V
= +15V  
= –15V  
DD  
DD  
SS  
SS  
MODE 3  
MODE 3  
0.0025  
0.0020  
0.0015  
0.0010  
0.0015  
0.0010  
0.0005  
0
0.0005  
0
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 5. Voltage Sense Amplifier Linearity vs. Temperature  
Figure 8. Current Sense Linearity vs. Temperature  
80  
140  
120  
V
V
T
= +15V  
= –15V  
= 25°C  
I
CMRR  
SENSE  
DD  
SS  
V
V
= +15V  
= –15V  
= 25°C  
DD  
SS  
70  
60  
50  
40  
A
T
A
100  
80  
60  
40  
30  
20  
20  
0
10  
0
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 6. Voltage Sense Amplifier CMRR vs. Frequency  
Figure 9. Current Sense Amplifier CMRR vs. Frequency  
10  
5
0
–5  
C
= 0.1nF  
0
COMP  
–10  
–20  
C
= 0.1nF  
COMP  
–10  
–15  
–20  
C
= 1.0nF  
COMP  
C
= 1.0nF  
COMP  
–30  
–40  
–25  
–30  
C
= 3.3nF  
10k  
COMP  
C
= 3.3nF  
10k  
COMP  
V
V
= +15V  
= –15V  
= 25°C  
V
V
= +15V  
= –15V  
–50  
–60  
DD  
SS  
DD  
SS  
–35  
–40  
T
T = 25°C  
A
A
100  
1k  
100k  
100  
1k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7. Force Amplifier Bandwidth, Mode 0 (4 μA)  
Figure 10. Force Amplifier Bandwidth, Mode 1 (40 μA)  
Rev. B | Page ±0 of 24  
 
AD5520  
0
0
V
V
= +15V  
= –15V  
= 25°C  
V
V
= +15V  
= –15V  
DD  
SS  
DD  
SS  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
T
T = 25°C  
A
A
C
= 0.1nF  
C
= 0.1nF  
COMP  
COMP  
C
= 1.0nF  
C
= 1.0nF  
COMP  
COMP  
C
= 3.3nF  
C
= 3.3nF  
COMP  
COMP  
–40  
–45  
–40  
–45  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
Figure 11. Force Amplifier Bandwidth, Mode 2 (400 μA)  
Figure 14. Force Amplifier Bandwidth, Mode 3 (4 mA)  
5
0
30  
20  
10  
0
V
V
= +15V  
= –15V  
= 25°C  
DD  
SS  
T
A
I
SENSE  
–5  
–10  
–15  
–20  
–25  
–30  
–10  
V
SENSE  
–20  
–30  
V
V
= +15V  
= –15V  
= 25°C  
DD  
SS  
–35  
–40  
T
A
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 12. Guard Amplifier Bandwidth  
Figure 15. Voltage Sense and Current Sense Amplifier Bandwidths  
20  
10  
0
V
V
= +15V  
= –15V  
= 25°C  
V
V
= +15V  
= –15V  
DD  
SS  
DD  
SS  
T
T = 25°C  
A
A
–5  
–10  
–15  
–20  
0
–10  
–20  
–30  
–40  
–50  
–60  
–25  
–30  
100k  
1M  
10M  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 13. Current Sense Amplifier AC PSRR  
Figure 16. Force Amplifier AC PSRR, Mode 3, CCOMP = 100 pF  
Rev. B | Page ±± of 24  
AD5520  
20  
16  
V
V
= +15V  
= –15V  
= 25°C  
DD  
SS  
14  
12  
10  
8
10  
T
A
V
CC  
0
–10  
–20  
–30  
–40  
6
4
V
2
DUT  
–50  
–60  
0
–2  
100k  
1M  
10M  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (Hz)  
TIME (ms)  
Figure 17. Voltage Sense Amplifier AC PSRR  
Figure 19. Power Up  
700  
9
8
7
6
5
4
COMPIN2 = 100pF  
COMPIN1 = 1000pF  
600  
500  
GUARD  
400  
300  
200  
COMPIN2 = 3000pF  
V
SENSE  
3
2
1
FOH  
100  
0
0
I
SENSE  
100  
–1  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008  
TIME (s)  
Figure 18. Noise Spectral Density  
Figure 20. Settling Time, Mode 2  
Rev. B | Page ±2 of 24  
AD5520  
THEORY OF OPERATION  
The AD5520 is a single-channel per pin parametric measure-  
ment unit (PPMU) for use in semiconductor automatic test  
equipment. It contains programmable modes to force a pin  
voltage and measure the corresponding current (FꢀMI), force  
current measure voltage (FIMꢀ), force current measure current  
(FIMI), force voltage measure voltage (FꢀMꢀ), and force  
nothing measure voltage (FNMꢀ). The PPMU can force or  
measure a voltage from −±± ꢀ to +±± . It can force or measure  
currents up to 6 mA using the internal amplifier, while the  
addition of an external amplifier enables higher current ranges.  
External resistors allow users to choose the optimum ranges for  
their needs.  
The AD5520 has an on-board window comparator that  
provides two bits of useful information, DUT too low or too  
high. Also provided on the chip is clamp circuitry that flags via  
CLHDETECT and CLLDETECT if the voltage applied to FIN  
or across the DUT exceeds the voltage applied to CLL and CLH.  
On-chip is clamp circuitry that clamps the output of the force  
amplifier if the voltage at MEASIOUT and MEASꢀOUT  
exceeds CLL or CLH.  
The device provides a force sense capability to ensure accuracy  
at the tester pin. A guard output is also available to drive the  
shield of a force/sense pair.  
Rev. B | Page ±3 of 24  
 
AD5520  
INTERFACE  
The AD5520 PPMU is controlled via a number of digital inputs,  
which are discussed in detail in the following sections. All  
MEASURED PARAMETER  
MEASOUT is a muxed output that tracks the sensed parameter.  
MSEL (digital input) connects the MEASOUT to the output of  
the current sense amplifier or the voltage sense amplifier,  
depending on which is the measured parameter of interest.  
CS  
inputs are TTL-compatible.  
is used to select the device while  
(active low input) latches data available on the other digital  
inputs and updates any required digital outputs. The rising edge  
STB  
STB  
of  
triggers sequence inputs. The remaining digital inputs  
The MEASOUT pin is connected back to an ADC to allow the  
measured value to be converted to a digital code.  
control the function of the PMU. They also determine which  
measure mode the PMU is in, the compensation capacitor used,  
and the selected current range.  
Table 7. MEASOUT Connected to Voltage or Current  
MSEL  
Function  
STANDBY MODE  
Low  
High  
MEASOUT = DUT Voltage  
MEASOUT = DUT Current  
The AD5520 can be placed into standby mode via the standby  
logic input. In this mode, the force amplifier is disconnected  
from the force input (FIN). In addition, the switch in series with  
the force output pins (FOHx) is opened, and the current  
measure amplifier is disconnected from the sense resistors. The  
voltage measure amplifier is still connected across the DUT;  
therefore, DUT voltage measurements may still be made while  
in standby mode. Figure 2± shows the configuration of the  
PMU while in standby mode.  
The MEASOUT pin can also be made high impedance through  
the MOEB logic input.  
Table 8. MOEB Allows MEASOUT to Go High Impedance  
MOEB  
Function  
Low  
High  
Enable MEASOUT Output  
Hi-Z MEASOUT Output  
CURRENT RANGES  
Table 5. Standby Mode  
Standby  
A number of current ranges are possible with the AD5520. The  
AM0, AM±, and AM2 pins are digital inputs used to establish  
full-scale current range of the PMU.  
Function  
Low  
High  
Normal Force Mode  
Standby Mode  
Table 9. Selection of Current Range  
AM0 AM1 AM2 Function  
DAC  
Low  
High Low  
Low  
High High Low  
Low Low  
Low  
Low  
Low  
Current Range MODE0 (4 ꢀA)  
Current Range MODE± (40 ꢀA)  
Current Range MODE2 (400 ꢀA)  
Current Range MODE3 (4 mA)  
FIN  
FOHx  
High Low  
High Current Range MODE4  
MEASIHx  
MEASIL  
G = 16  
G = 1  
MEASIOUT  
MEASVOUT  
R
(External Buffer Mode)  
S
High Low  
High Current Range MODE5  
(External Buffer Mode)  
MEASVH  
MEASVL  
Low  
High High Standby (Same as STANDBY = High)  
DUT  
High High High Standby (Same as STANDBY = High)  
RS SELECTION  
Figure 21. PMU in Standby Mode  
The AD5520 is designed to ensure the voltage drop across each  
of the RS resistors is less than ±500 mꢀ when maximum current  
is flowing through them. To support other current ranges, these  
sense resistor values can be changed. The force amplifier can  
drive a maximum of 6 mA. It is not recommended to increase  
the maximum current above the nominal range.  
FORCE VOLTAGE OR FORCE CURRENT  
FSEL is an input that determines whether the PPMU forces a  
voltage or current.  
Table 6. FSEL Function  
FSEL Function  
Low  
Voltage Force and Current Clamp with MEASIOUT Voltage  
The two external current ranges use an external buffer to drive  
higher current. The example in Figure 26 uses ꢁ0 mA and  
±60 mA ranges. These ranges can be changed to suit user  
requirements for a high current range.  
High Current Force and Voltage Clamp with MEASVOUT Voltage  
Rev. B | Page ±4 of 24  
 
 
 
 
 
 
 
AD5520  
FORCE CONTROL AMPLIFIER  
CLAMP FUNCTION  
The force control amplifier requires external capacitors  
connected between the COMPOUTx and COMPINx pins.  
For stability with large capacitance at the DUT, the largest  
capacitance value (3000 pF) should be selected. The force  
control amplifier should always contribute the dominant  
pole in the control loop. Settling times increase with  
larger capacitances. ACx inputs select which external  
compensation capacitor is used.  
Clamp circuitry, which is also included on-chip, clamps the  
force amplifiers output if the voltage or current applied to the  
DUT exceeds the clamp levels, CLL and CLH. The clamp  
circuitry also comes into play in the event of a short or open  
circuit. When in force current range, the voltage clamps protect  
the DUT from an open circuit. Likewise, when forcing a voltage  
and a short circuit occurs, the current clamps protect the DUT.  
The clamps also function to protect the DUT if a transient  
voltage or current spike occurs when changing to a different  
operating mode, or when programming the device to a different  
current range.  
Table 10. AC0, AC1 Compensation Capacitor Selection  
AC0  
Low  
High  
Low  
AC1  
Low  
Low  
High  
Function  
Select External Compensation Capacitor 0  
Select External Compensation Capacitor ±  
Select External Compensation Capacitor 2  
The digital output flags, which indicate a clamp limit has been  
hit, are CLHDETECT for the upper clamp, and CLLDETECT  
output for the lower clamp.  
COMPARATOR FUNCTION AND STROBING  
Table 13. Clamp Detect Outputs  
The AD5520 has an on-board window comparator that  
provides two bits of useful information, DUT too low or  
DUT too high. CPSEL is the digital input that controls  
this function, selecting whether it should compare to the  
voltage sense or the current sense amplifier.  
CLHDETECT  
Function  
Low  
High  
Upper Clamp Inactive  
Upper Clamp Active  
Function  
CLLDETECT  
Low  
High  
Lower Clamp Inactive  
Lower Clamp Active  
Table 11. Comparator Function Select  
CPSEL  
Function  
Low  
High  
Compare CPL, CPH to MEASVOUT  
Compare CPL, CPH to MEASIOUT  
HIGH CURRENT RANGES  
With the use of an external high current amplifier, two high  
current ranges are possible. The current range values can be set  
as required in the application through appropriate selection of  
the sense resistors connected between MEASI5H, MEASIꢁH,  
and MEASIL. When one of these high current ranges (Mode ꢁ  
or Mode 5) is selected via the AMx control lines, the appro-  
priate QMꢁ or QM5 output is enabled. As a result, these outputs  
can be used to control relays connected in series with the high  
current amplifier, as shown in Figure 26.  
After CPSEL has selected which amplifier output is of interest,  
logic input CPCK is used to initiate comparator sampling and  
update the logic outputs CPOH and CPOL. This indicates  
whether the voltages at MEASIOUT or MEASꢀOUT have  
exceeded voltages set at CPL or CPH (thus providing DUT too  
STB  
high or DUT too low information). A rising edge on  
required to clock the CPOH and CPOL data out.  
is  
Table 12. CPCK Synchronous Logic Outputs  
Table 14. High Current Range Logic Outputs  
CPOH  
Function  
QM4  
High  
Low  
QM5  
Function  
Low  
High  
MEASVOUT or MEASIOUT < CPH MEASVOUT or  
MEASIOUT > CPH  
Low  
High  
Current Range Mode 4 Enable Output  
Current Range Mode 5 Enable Output  
CPOL  
Function  
Low  
High  
MEASVOUT or MEASIOUT > CPL MEASVOUT or  
MEASIOUT < CPL  
Rev. B | Page ±5 of 24  
 
 
 
 
 
AD5520  
CIRCUIT OPERATION  
FORCE VOLTAGE  
MEASURE CURRENT  
Most PMU measurements are performed while in force voltage  
and measure current modes; for example, when the device is  
used as a device power supply, or in continuity or leakage  
testing. In the force voltage mode, the voltage at analog input  
FIN is mapped directly to the voltage forced at the DUT.  
Figure 23 shows a simplified diagram of the PMU when in force  
voltage mode. The control loop consists of the force amplifier  
with the voltage sense amplifier making up the feedback path.  
Current flowing through the DUT is measured by sensing the  
current flowing through a selectable sense resistor, which is in  
series with the DUT. The current sense amplifier (Gain = ±6)  
generates a voltage at its output, which is proportional to the  
current flowing through the DUT. This voltage is compared to  
the CLL and CLH levels to ensure the clamp voltages have not  
When in force voltage and measure current modes, the  
maximum voltage applied to the input corresponds to the  
maximum current outputs. Figure 22 shows the transfer  
function when forcing a voltage.  
STB  
been exceeded. Strobing CPCK and  
provides information  
V
about the voltage level with respect to the comparator levels,  
CPH and CPL.  
DUT  
FIN  
R
S
DUT  
V
×
CLH  
R
× 16  
FOHx  
MEASIHx  
G = 16  
G = 1  
VFIN  
R
R
CLH  
CLL  
S
V
FIN  
MEASIL  
MEASVH  
R
S
DUT  
V
×
CLL  
DUT  
R
× 16  
VCLL  
VCLH  
MEASVL  
REFGNDI/V  
V
V
VMEASVOUT  
VMEASIOUT  
I
DUT  
V
V
> I  
< I  
× R × 16  
V
V
< I  
< I  
× R × 16  
V
V
> I  
> I  
× R × 16  
S
CLH  
CLL  
DUT  
DUT  
S
CLH  
CLL  
DUT  
DUT  
S
CLH  
CLL  
DUT  
DUT  
CONDITION  
OUTPUT  
× R × 16  
× R × 16  
× R × 16  
S
S
S
V
= V  
V
= V  
V
= V  
DUT CLL  
DUT  
FIN  
DUT  
CLH  
V
S
Figure 23. Force Voltage, Measure Current Mode  
CLH  
R
× 16  
V
CLH  
V
FIN  
V
CLH  
V
S
CLL  
R
× 16  
Figure 22. Force Voltage Transfer Function  
Rev. B | Page ±6 of 24  
 
 
 
AD5520  
FORCE CURRENT  
SHORT CIRCUIT PROTECTION  
In force current mode, the voltage at FIN is now converted to a  
current through the following relationship:  
The AD5520 is designed to withstand a direct short circuit on  
any of the amplifier outputs.  
Force Current = VFIN/(RSENSE × ±6)  
Figure 25 illustrates the transfer function of the current force  
mode.  
Figure 2ꢁ shows a simplified diagram of the PMU when in force  
current mode. The control loop consists of the force amplifier  
with the current sense amplifier making up the feedback path.  
In this case, voltage at the DUT is sensed across the voltage  
measure amplifier (Gain = ±) and presented at the MEASꢀOUT  
output.  
I
DUT  
V
R
CLH  
DUT  
FIN  
V
FIN  
FOHx  
MEASIHx  
V
CLL  
R
DUT  
G = 16  
G = 1  
VFIN  
R
R
CLH  
CLL  
S
MEASIL  
MEASVH  
DUT  
VCLL  
VCLH  
MEASVL  
REFGNDI/V  
V
DUT  
V
V
VMEASVOUT  
VMEASIOUT  
V
CLH  
V
V
> V  
< V  
V
V
< V  
< V  
V
V
> V  
> V  
CLH  
CLL  
DUT  
DUT  
CLH  
CLL  
DUT  
DUT  
CLH  
CLL  
DUT  
DUT  
CONDITION  
OUTPUT  
V
V
V
FIN  
CLH  
CLL  
I
=
I
=
I
DUT  
=
DUT  
DUT  
R
R
R
S
S
S
V
CLH  
V
Figure 24. Current Force, Voltage Measure Mode  
FIN  
V
CLH  
MEASURE VOLTAGE  
V
CLH  
A DUT voltage is tested via the voltage measure amplifier by a  
window comparator to ensure that CPH and CPL levels are not  
exceeded. In addition, the DUT voltage is automatically tested  
against the voltage levels at the clamp, and clamp flags are  
enabled if the DUT voltage exceeds either of the levels.  
Figure 25. Current Force Transfer Function  
Rev. B | Page ±7 of 24  
 
 
AD5520  
SETTLING TIME CONSIDERATIONS  
Fast throughput is a key requirement in automatic test  
equipment because it relates directly to the cost of manufac-  
turing the DUT; thus reducing the time required to make a  
measurement is of greatest importance. When taking  
measurements using a PMU, the limiting factor is usually the  
time it takes the output to settle to the required accuracy so a  
measurement can be taken. DUT capacitance, measurement  
accuracy, and the design of the PMU are the major contributors  
to this time.  
When selecting a faster settling time, there is a trade-off.  
A small compensation value results in faster settling, but  
may incur penalties in overshoots or ringing at the DUT.  
Compensation capacitor selection should be optimized to  
ensure minimum overshoots while still giving decent settling  
time performance.  
While careful selection of the compensation capacitor is  
required to minimize the settling time, another factor can  
greatly contribute to the overall settling of the loop if the  
feedback loop is broken in some manner, and the force control  
amplifier goes to either the positive or negative rails. There is a  
finite amount of time required for the amplifier to recover from  
this condition, typically 85 μs, which adds to the settling of the  
loop. Ensuring that the force control amplifier never goes into  
saturation is the best solution. This solution can be helped by  
putting the device into standby mode any time the operating  
mode or range selection is changed. In addition, ensure that the  
selected output range can supply the required current needed by  
the DUT.  
Figure 26 shows a simplified block diagram of the AD5520  
PMU. In brief, the device consists of a force control amplifier,  
access to a number of selectable sense resistors, a voltage  
measure instrumentation amplifier, and a current measure  
instrumentation amplifier. To optimize the performance of the  
device, there are also nodes provided where external compensa-  
tion capacitors are added. As mentioned, making an accurate  
measurement in the fastest time while avoiding overshoots and  
ringing is the key requirement in any automatic test equipment  
(ATE) system. Doing so provides challenges, however. The  
external compensation capacitors set up different settling times  
or bandwidths on the force control amplifier, and while one  
compensation capacitor value may suit one range, it may not  
suit other ranges. To optimize measurement performance and  
speed, differences in signal behavior on each range and  
frequency of use of each range need to be taken into account.  
Rev. B | Page ±8 of 24  
 
AD5520  
PCB LAYOUT AND POWER SUPPLY DECOUPLING  
In any circuit where accuracy is important, careful considera-  
tion to the power supply and the ground return layout helps to  
ensure the rated performance. The printed circuit board on  
which the AD5520 is mounted should be designed so that the  
analog and digital sections are separated and confined to  
certain areas of the board. If the PMU is in a system where  
multiple devices require an AGND-to-DGND connection, the  
connection should be made at one point only. The star ground  
point should be established as close as possible to the device.  
Fast switching signals, such as clocks, should be shielded with  
digital ground to avoid radiating noise to other parts of the  
board and should never be run near the reference inputs.  
Avoid crossover of digital and analog signals. Traces on  
opposite sides of the board should run at right angles to each  
other. This reduces the effects of feedthrough through the  
board. A microstrip technique is by far the best but not always  
possible with a double-sided board. In this technique, the  
component side of the board is dedicated to the ground plane  
while signal traces are placed on the solder side.  
This PMU should have ample supply bypassing of ±0 μF in  
parallel with 0.± μF on the supply and should be located as close  
as possible to the package, ideally right up against the device. The  
0.± μF capacitor should have low effective series resistance (ESR)  
and effective series inductance (ESI), such as the common  
ceramic types that provide a low impedance path to ground at  
high frequencies, to handle transient currents due to internal  
logic switching. Low ESR (± μF to ±0 μF) tantalum or electrolytic  
capacitors should also be applied at the supplies to minimize  
transient disturbance and filter out low frequency ripple.  
It is good practice to use compact, minimum lead length PCB  
layout design. Leads to the input should be as short as possible  
to minimize IR drops and stray inductance.  
Rev. B | Page ±9 of 24  
 
AD5520  
TYPICAL CONNECTION CIRCUIT FOR THE AD5520  
Figure 26 shows the AD5520 as connected in a typical applica-  
tion. The external components required are three compensation  
capacitors and six sense resistors, depending on the number of  
ranges required. If high current ranges >6 mA are required, an  
external amplifier must be used with relays (or some form of  
high current switch) to switch in the different current ranges to  
the DUT. Other components are also required to make the  
PMU function.  
The PMU requires a number of discrete voltage levels: five DAC  
levels for each PMU used in the system, two levels each for the  
comparator and clamps, and one voltage level for the AD5520  
force input voltage. To use the information measured at the  
DUT, an ADC such as the AD7665 (a ±6-bit ADC), must be  
connected to the MEASOUT pin to convert the measured  
current or voltage to digital for analysis.  
3000pF  
1000pF  
100pF  
+15V –15V  
AV  
AV  
CC  
EE  
AD5520  
AD815  
FOH  
BW SELECT  
RELAY  
FOH3  
FOH2  
FOH1  
FOH0  
FIN  
FORCE  
AMPLIFIER  
11.5V  
3.126Ω  
MEASI5H  
CLAMP  
DETECT  
MEASI4H  
MEASI3H  
MEASI2H  
12.5Ω  
125Ω  
CLH  
CLL  
MEASI1H  
MEASI0H  
1.25kΩ  
12.5kΩ  
REFGND  
125kΩ  
G = 16  
MEASIOUT  
MEASIL  
I
SENSE  
INST AMP  
GUARDIN  
GUARD  
MEASOUT  
V
G = 1  
SENSE  
±11V  
INST AMP  
MEASVH  
MEASVL  
G = 1  
DUT  
MEASVOUT  
COMPARATOR  
CPH  
AGND  
QM5  
100mV  
CPOH  
LOGICS  
QM4  
CPOL  
CPL  
CPCK  
Figure 26. Typical Configuration of the AD5520 as Used in an ATE Circuit  
Rev. B | Page 20 of 24  
 
 
AD5520  
TYPICAL APPLICATION CIRCUIT  
Figure 27 shows the AD5520 as in an ATE system. This device  
can used as a per pin parametric unit in order to speed up the  
rate at which testing can be done. It can also be used as a DUT  
power supply, as shown in the application circuit.  
The flexible function of the AD5520 also makes it suited for use  
in instrumentation applications such as source measure units.  
Source measure units are programmable instruments capable of  
sourcing and measuring voltage or current simultaneously. The  
AD5520 provides a more integrated solution in such  
equipment.  
The central PMU shown in the block diagram (Figure 27) is  
usually a highly accurate PMU and is shared among a number  
of pins in the tester. In general, many discrete levels are required  
in an ATE system for the pin drivers, comparators, clamps, and  
active loads. DAC devices, such as the AD5379, offer a highly  
integrated solution for a number of these levels. The AD5379 is  
a dense ꢁ0-channel DAC designed with high channel  
requirements, such as ATE.  
CENTRAL PMU  
DAC  
GUARD AMP  
PPMU  
DAC  
ADC  
VCH  
DAC  
ADC  
VTERM  
DAC  
VH  
TIMING DATA  
MEMORY  
DEVICE UNDER  
TEST (DUT)  
DAC  
RELAYS  
50Ω COAX  
TIMING  
GENERATOR  
DLL, LOGIC  
FORMATTER  
DE-SKEW  
DRIVER  
VL  
VCL  
GUARD  
AMP  
DAC  
DAC  
DAC  
GND SENSE  
DEVICE POWER  
SUPPLIES  
VTH  
VTL  
DAC  
COMPARE  
MEMORY  
FORMATTER  
DE-SKEW  
COMP  
ADC  
DAC  
ACTIVE LOAD  
IOL  
DAC  
DAC  
VCOM  
DAC  
IOH  
Figure 27. Typical Application ATE Circuit  
Rev. B | Page 2± of 24  
 
 
AD5520  
EVALUATION BOARD FOR THE AD5520  
A full-featured evaluation kit is available for the AD5520. It  
includes an evaluation board with direct hookup via a 36-way  
Centronics connector to a PC. PC-based software to control the  
AD5520 is also part of the evaluation kit. The evaluation board  
schematic is shown in Figure 28.  
Both AGND and DGND inputs are provided on the board. The  
AGND and DGND planes are connected at one location close  
to the AD5520. It is recommended not to connect AGND and  
DGND elsewhere in the system to avoid ground loop problems.  
REFGND is routed back to AGND at the power block to  
maintain a clean ground reference for accurate measurements.  
Note that ꢀDD and ꢀSS must provide sufficient headroom for the  
force and measure voltage range. In addition to the supply  
voltages for the evaluation board, it is necessary to provide the  
voltage levels for the clamp, comparator, and the force input  
pins (CLL, CLH, CPL, CPH, and FIN). SMB connections are  
provided for these voltage inputs. To use the evaluation board, it  
is also necessary to provide a DUT connected via the gold pins.  
Each supply is decoupled to the relevant ground plane with  
±0 μF and 0.± μF capacitors. The device supply pin is again  
decoupled with a ±0 μF and 0.± μF capacitor pair to the relevant  
ground plane.  
Care should be taken when replacing devices to ensure that the  
pins line up correctly with the PCB pads.  
Rev. B | Page 22 of 24  
 
AD5520  
R L 2  
– G Y 6 L H A R E  
R L 1  
R 7  
R 6  
– G Y 6 L H A R E  
Ω 4 1 2 . R 5 ,  
Ω
1 2 4 R 4 ,  
Ω
2 4 k 1 . R 3 ,  
Ω 4 k 1 2 . R 2 ,  
Ω
1 2 4 R k 1 ,  
D [ 0 : 7 ]  
Figure 28. Evaluation Board Schematic  
Rev. B | Page 23 of 24  
 
AD5520  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
0.75  
0.60  
0.45  
12.00  
BSC SQ  
1.60  
MAX  
64  
49  
48  
1
PIN 1  
10.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.08 MAX  
COPLANARITY  
16  
33  
32  
0.15  
0.05  
SEATING  
PLANE  
17  
VIEW A  
0.27  
0.22  
0.17  
0.50  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BCD  
Figure 29. 64-Lead Low Profile Quad Flat Package [LQFP]  
(ST-64-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD5520JST  
AD5520JST-REEL  
AD5520JSTZ-REEL±  
EVAL-AD5520EB  
Temperature Range  
0°C to 70°C  
0°C to 70°C  
Package Description  
Package Option  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
Evaluation Board and Software  
ST-64-2  
ST-64-2  
ST-64-2  
0°C to 70°C  
± Z = Pb-free part.  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C03701-0-9/05(B)  
Rev. B | Page 24 of 24  
 
 

相关型号:

AD5522

Quad Parametric Measurement Unit With Integrated 16-Bit Level Setting DACs
ADI

AD5522JSVD

Quad Parametric Measurement Unit With Integrated 16-Bit Level Setting DACs
ADI

AD5522JSVDZ

Quad Parametric Measurement Unit With Integrated 16-Bit Level Setting DACs
ADI

AD5522JSVUZ

Quad Parametric Measurement Unit With Integrated 16-Bit Level Setting DACs
ADI

AD5522_07

Quad Parametric Measurement Unit With Integrated 16-Bit Level Setting DACs
ADI

AD5522_08

Quad Parametric Measurement Unit with Integrated 16-Bit Level Setting DACs
ADI

AD5523JCPZ

Quad Parametric Measurement Unit With Integrated 16-Bit Level Setting DACs
ADI

AD5530

Serial Input, Voltage Output 12-/14-Bit DACs
ADI

AD5530BRU

Serial Input, Voltage Output 12-/14-Bit DACs
ADI

AD5530BRU-REEL

Serial Input, Voltage Output 12-/14-Bit Digital-to-Analog Converters
ADI

AD5530BRU-REEL7

Serial Input, Voltage Output 12-/14-Bit Digital-to-Analog Converters
ADI

AD5530BRUZ-REEL

SERIAL INPUT LOADING, 20us SETTLING TIME, 12-BIT DAC, PDSO16, LEAD FREE, MO-153AB, TSSOP-16
ADI