AD5542_15 [ADI]

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-Bit DACs;
AD5542_15
型号: AD5542_15
厂家: ADI    ADI
描述:

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-Bit DACs

文件: 总20页 (文件大小:382K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.7 V to 5.5 V, Serial-Input,  
Voltage-Output, 16-Bit DACs  
Data Sheet  
AD5541/AD5542  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
V
DD  
Full 16-bit performance  
8
3 V and 5 V single-supply operation  
Low 0.625 mW power dissipation  
1 µs settling time  
AD5541  
3
1
2
V
16-BIT DAC  
REF  
OUT  
AGND  
Unbuffered voltage output capable of driving 60 kΩ  
loads directly  
SPI-/QSPI-/MICROWIRE-compatible interface standards  
Power-on reset clears DAC output to 0 V (unipolar mode)  
5 kV HBM ESD classification  
4
6
16-BIT DAC LATCH  
CS  
DIN  
CONTROL  
LOGIC  
5
SCLK  
SERIAL INPUT REGISITER  
7
Low glitch: 1.1 nV-sec  
DGND  
Figure 1. AD5541  
V
APPLICATIONS  
DD  
14  
R
Digital gain and offset adjustment  
Automatic test equipment  
Data acquisition systems  
FB  
AD5542  
1
RFB  
R
INV  
13 INV  
6
REFF  
Industrial process control  
2
3
V
OUT  
16-BIT DAC  
5
7
REFS  
CS  
GENERAL DESCRIPTION  
AGNDF  
AGNDS  
The AD5541/AD5542 are single, 16-bit, serial input, voltage  
output digital-to-analog converters (DACs) that operate from  
a single 2.7 V to 5.5 V supply. The DAC output range extends  
16-BIT DAC LATCH  
4
LDAC 11  
CONTROL  
LOGIC  
SCLK  
DIN  
8
10  
SERIAL INPUT REGISITER  
from 0 V to VREF  
.
12  
The DAC output range extends from 0 V to VREF and is guaranteed  
monotonic, providing 1 LSB INL accuracy at 16 bits without  
adjustment over the full specified temperature range of −40°C to  
+85°C. Offering unbuffered outputs, the AD5541/AD5542  
achieve a 1 µs settling time with low power consumption and low  
offset errors. Providing a low noise performance of 11.8 nV/√Hz  
and low glitch, the AD5541/AD5542 is suitable for deployment  
across multiple end systems.  
DGND  
Figure 2. AD5542  
Table 1.  
Part No.  
AD5541A/AD5542A  
Description  
Single, 16-bit unbuffered nanoDAC™,  
1 LSB INL, LFCSP  
AD5024/AD5044/AD5064 Quad 12-/14-/16-bit nanoDAC,  
1 LSB INL, TSSOP  
AD5062  
AD5063  
Single, 16-bit nanoDAC, 1 LSB INL,  
SOT-23  
Single, 16-bit nanoDAC, 1 LSB INL,  
SOT-23  
The AD5542 can be operated in bipolar mode, which generates  
a
V
REF output swing. The AD5542 also includes Kelvin sense  
connections for the reference and analog ground pins to reduce  
layout sensitivity.  
PRODUCT HIGHLIGHTS  
The AD5541/AD5542 utilize a versatile 3-wire interface that is  
compatible with SPI, QSPI™, MICROWIRE™ and DSP interface  
standards. The AD5541/AD5542 are available in 8-lead and  
14-lead SOIC packages.  
1. Single-Supply Operation. The AD5541 and AD5542 are fully  
specified and guaranteed for a single 2.7 V to 5.5 V supply.  
2. Low Power Consumption. These parts consume typically  
0.625 mW with a 5 V supply and 0.375 mV at 3 V.  
3. 3-Wire Serial Interface.  
4. Unbuffered Output Capable of Driving 60 kΩ Loads. This  
reduces power consumption because there is no internal  
buffer to drive.  
5. Power-On Reset Circuitry.  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©1999–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
AD5541/AD5542  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Bipolar Output Operation......................................................... 12  
Output Amplifier Selection....................................................... 12  
Force Sense Amplifier Selection............................................... 12  
Reference and Ground............................................................... 12  
Power-On Reset.......................................................................... 13  
Power Supply and Reference Bypassing .................................. 13  
Microprocessor Interfacing........................................................... 14  
AD5541/AD5542 to ADSP-21xx Interface............................. 14  
AD5541/AD5542 to 68HC11/68L11 Interface....................... 14  
AD5541/AD5542 to MICROWIRE Interface ........................ 14  
AD5541/AD5542 to 80C51/80L51 Interface.......................... 14  
Applications Information .............................................................. 15  
Optocoupler Interface................................................................ 15  
Decoding Multiple AD5541/AD5542s.................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 7  
Terminology .................................................................................... 10  
Theory of Operation ...................................................................... 11  
Digital-to-Analog Section ......................................................... 11  
Serial Interface ............................................................................ 11  
Unipolar Output Operation...................................................... 11  
REVISION HISTORY  
3/12—Rev. E to Rev. F  
Change to Figure 19 ......................................................................... 9  
Changes to Ordering Guide .......................................................... 17  
Changes to Product Highlights .......................................................1  
Changes to Table 1.............................................................................3  
Changes to Table 3.............................................................................5  
Changes to Figure 16, Figure 17, and Figure 19....................... 8, 9  
Changes to Theory of Operations Section.................................. 11  
Changes to Microprocessor Interfacing Section ........................ 14  
Changes to Outline Dimensions .................................................. 16  
Changes to Ordering Guide.......................................................... 17  
3/11—Rev. D to Rev. E  
Changed +105°C to +85°C, General Description Section .......... 1  
2/11—Rev. C to Rev. D  
Changes to Features Section, General Description Section,  
Product Highlights Section ............................................................. 1  
Added Table 1; Renumbered Sequentially .................................... 1  
Added Output Noise Spectral Density Parameter and Output  
Noise Parameter, Table 2.................................................................. 3  
Changes to Ordering Guide .......................................................... 17  
8/08—Rev. A to Rev. B  
Updated Format..................................................................Universal  
Changes to Timing Characteristics Section...................................4  
Changes to Table 3.............................................................................5  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide.......................................................... 17  
4/10—Rev. B to Rev. C  
Changes to General Description Section ...................................... 1  
10/99—Rev. 0 to Rev. A  
Changes to Features List .................................................................. 1  
Rev. F | Page 2 of 20  
 
Data Sheet  
AD5541/AD5542  
SPECIFICATIONS  
VDD = 2.7 V to 5.5 V, 2.5 V ≤ VREF ≤ VDD, AGND = DGND = 0 V. All specifications TA = TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Conditions  
STATIC PERFORMANCE  
Resolution  
16  
Bits  
Relative Accuracy (INL)  
0.5  
0.5  
0.5  
0.5  
1.0  
2.0  
4.0  
1.0  
1.5  
2
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
L, C grades  
B, J grades  
A grade  
Guaranteed monotonic  
J grade  
Differential Nonlinearity (DNL)  
Gain Error  
+0.5  
TA = 25°C  
3
LSB  
Gain Error Temperature Coefficient  
Unipolar Zero Code Error  
0.1  
0.3  
ppm/°C  
LSB  
LSB  
0.7  
1.5  
TA = 25°C  
Unipolar Zero Code Temperature Coefficient  
AD5542  
0.05  
ppm/°C  
Bipolar Resistor Matching  
1.000  
0.0015  
Ω/Ω  
%
RFB/RINV, typically RFB = RINV = 28 kΩ  
Ratio error  
0.0076  
Bipolar Zero Offset Error  
1
5
6
LSB  
LSB  
TA = 25°C  
Bipolar Zero Temperature Coefficient  
Bipolar Zero Code Offset Error  
0.2  
1
ppm/°C  
LSB  
5
6
5
6
TA = 25°C  
TA = 25°C  
LSB  
LSB  
LSB  
Bipolar Gain Error  
+1  
0.1  
Bipolar Gain Temperature Coefficient  
OUTPUT CHARACTERISTICS  
ppm/°C  
Output Voltage Range  
0
VREF − 1 LSB  
VREF − 1 LSB  
V
V
μs  
V/μs  
nV-sec  
nV-sec  
kΩ  
nV/√Hz  
µV p-p  
LSB  
Unipolar operation  
−VREF  
AD5542 bipolar operation  
To 1/2 LSB of FS, CL = 10 pF  
CL = 10 pF, measured from 0% to 63%  
1 LSB change around the major carry  
All 1s loaded to DAC, VREF = 2.5 V  
Tolerance typically 20%  
DAC code = 0x8400, frequency = 1 kHz  
0.1 Hz to 10 Hz  
ΔVDD 10%  
Output Voltage Settling Time  
Slew Rate  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
DAC Output Impedance  
Output Noise Spectral Density  
Output Noise  
Power Supply Rejection Ratio  
DAC REFERENCE INPUT  
Reference Input Range  
Reference Input Resistance2  
1
17  
1.1  
0.2  
6.25  
11.8  
0.134  
1.0  
VDD  
2.0  
9
7.5  
V
kΩ  
kΩ  
Unipolar operation  
AD5542, bipolar operation  
LOGIC INPUTS  
Input Current  
1
0.8  
μA  
V
V
pF  
V
Input Low Voltage, VINL  
Input High Voltage, VINH  
Input Capacitance3  
Hysteresis Voltage3  
REFERENCE 3  
2.4  
10  
0.15  
Reference −3 dB Bandwidth  
Reference Feedthrough  
Signal-to-Noise Ratio  
Reference Input Capacitance  
2.2  
1
92  
26  
26  
MHz  
mV p-p  
dB  
pF  
pF  
All 1s loaded  
All 0s loaded, VREF = 1 V p-p at 100 kHz  
Code 0x0000  
Code 0xFFFF  
Rev. F | Page 3 of 20  
 
AD5541/AD5542  
Data Sheet  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Conditions  
POWER REQUIREMENTS  
Digital inputs at rails  
VDD  
2.7  
5.5  
V
IDD  
125  
0.625  
150  
0.825  
μA  
mW  
Power Dissipation  
1 Temperature ranges are as follows: A, B, C versions: −40°C to +85°C; J, L versions: 0°C to 70°C.  
2 Reference input resistance is code-dependent, minimum at 0x8555.  
3 Guaranteed by design, not subject to production test.  
TIMING CHARACTERISTICS  
VDD = 2.7 V to 5.5 V 10%, VREF = 2.5 V, VINH = 3 V and 90% of VDD, VINL = 0 V and 10% of VDD, AGND = DGND = 0 V; −40°C < TA <  
+85°C, unless otherwise noted.  
Table 3.  
Parameter1, 2  
Limit  
25  
40  
20  
20  
10  
15  
30  
20  
15  
4
Unit  
Description  
fSCLK  
t1  
t2  
t3  
t4  
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
SCLK cycle frequency  
SCLK cycle time  
SCLK high time  
SCLK low time  
CS low to SCLK high setup  
CS high to SCLK high setup  
SCLK high to CS low hold time  
SCLK high to CS high hold time  
Data setup time  
Data hold time (VINH = 90% of VDD, VINL = 10% of VDD  
Data hold time (VINH = 3V, VINL = 0 V)  
LDAC pulse width  
t5  
t6  
t7  
t8  
t9  
t9  
t10  
t11  
t12  
)
7.5  
30  
30  
30  
CS high to LDAC low setup  
CS high time between active periods  
1 Guaranteed by design and characterization. Not production tested  
2 All input signals are specified with tR = tF = 1 ns/V and timed from a voltage level of (VINL + VINH)/2.  
t1  
SCLK  
t2  
t3  
t6  
t5  
t7  
t4  
CS  
t12  
t8  
t5  
DIN  
DB15  
t11  
t10  
LDAC*  
*AD5542 ONLY. CAN BE TIED PERMANENTLY LOW IF REQUIRED.  
Figure 3. Timing Diagram  
Rev. F | Page 4 of 20  
 
 
 
 
Data Sheet  
AD5541/AD5542  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 4.  
Parameter  
Rating  
VDD to AGND  
Digital Input Voltage to DGND  
VOUT to AGND  
−0.3 V to +6 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to +0.3 V  
10 mA  
AGND, AGNDF, AGNDS to DGND  
Input Current to Any Pin Except Supplies  
Operating Temperature Range  
Industrial (A, B, C Versions)  
Commercial (J, L Versions)  
Storage Temperature Range  
Maximum Junction Temperature (TJ max)  
Package Power Dissipation  
Thermal Impedance, θJA  
SOIC (R-8)  
ESD CAUTION  
−40°C to +85°C  
0°C to 70°C  
−65°C to +150°C  
150°C  
(TJ max – TA)/θJA  
149.5°C/W  
104.5°C/W  
SOIC (R-14)  
Lead Temperature, Soldering  
Peak Temperature1  
ESD2  
260°C  
5 kV  
1 As per JEDEC Standard 20.  
2 HBM Classification.  
Rev. F | Page 5 of 20  
 
 
 
 
 
AD5541/AD5542  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
8
7
6
5
V
DD  
OUT  
AD5541  
AGND  
REF  
CS  
DGND  
DIN  
TOP VIEW  
(Not to Scale)  
SCLK  
Figure 4. AD5541 Pin Configuration  
Table 5. AD5541 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
5
6
7
8
VOUT  
AGND  
REF  
Analog Output Voltage from the DAC.  
Ground Reference Point for Analog Circuitry.  
Voltage Reference Input for the DAC. Connect to an external 2.5 V reference. Reference can range from 2 V to VDD  
Logic Input Signal. The chip select signal is used to frame the serial data input.  
.
CS  
SCLK  
DIN  
DGND  
VDD  
Clock Input. Data is clocked into the input register on the rising edge of SCLK. Duty cycle must be between 40% and 60%.  
Serial Data Input. This device accepts 16-bit words. Data is clocked into the input register on the rising edge of SCLK.  
Digital Ground. Ground reference for digital circuitry.  
Analog Supply Voltage, 5 V 10%.  
RFB  
1
2
3
4
5
6
7
14 V  
DD  
V
13 INV  
OUT  
AGNDF  
12 DGND  
11 LDAC  
10 DIN  
AD5542  
TOP VIEW  
(Not to Scale)  
AGNDS  
REFS  
REFF  
CS  
9
8
NC  
SCLK  
NC = NO CONNECT  
Figure 5. AD5542 Pin Configuration  
Table 6. AD5542 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
RFB  
VOUT  
Feedback Resistor Pin. In bipolar mode, connect this pin to the external op amp output.  
Analog Output Voltage from the DAC.  
3
4
5
6
AGNDF  
AGNDS  
REFS  
REFF  
CS  
Ground Reference Point for Analog Circuitry (Force).  
Ground Reference Point for Analog Circuitry (Sense).  
Voltage Reference Input (Sense) for the DAC. Connect to an external 2.5 V reference. Reference can range from 2 V to VDD  
Voltage Reference Input (Force) for the DAC. Connect to an external 2.5 V reference. Reference can range from 2 V to VDD  
.
.
7
Logic Input Signal. The chip select signal is used to frame the serial data input.  
8
9
SCLK  
NC  
Clock Input. Data is clocked into the input register on the rising edge of SCLK. Duty cycle must be between 40% and 60%.  
No Connect.  
10  
11  
DIN  
LDAC  
Serial Data Input. This device accepts 16-bit words. Data is clocked into the input register on the rising edge of SCLK.  
LDAC Input. When this input is taken low, the DAC register is simultaneously updated with the contents of the  
input register.  
12  
13  
DGND  
INV  
Digital Ground. Ground reference for digital circuitry.  
Connected to the Internal Scaling Resistors of the DAC. Connect the INV pin to external op amps inverting input in  
bipolar mode.  
14  
VDD  
Analog Supply Voltage, 5 V 10%.  
Rev. F | Page 6 of 20  
 
Data Sheet  
AD5541/AD5542  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.50  
0.50  
V
V
= 5V  
V
V
= 5V  
DD  
DD  
= 2.5V  
= 2.5V  
REF  
REF  
0.25  
0
0.25  
0
–0.25  
–0.50  
–0.25  
–0.50  
–0.75  
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
CODE  
CODE  
Figure 6. Integral Nonlinearity vs. Code  
Figure 9. Differential Nonlinearity vs. Code  
0.25  
0.75  
V
= 5V  
V
= 5V  
DD  
DD  
V
= 2.5V  
V
= 2.5V  
REF  
REF  
0
–0.25  
–0.50  
–0.75  
0.50  
0.25  
0
–0.25  
–1.00  
–0.50  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. Integral Nonlinearity vs. Temperature  
Figure 10. Differential Nonlinearity vs. Temperature  
0.50  
0.75  
V
T
= 5V  
V
= 2.5V  
DD  
= 25°C  
REF  
= 25°C  
T
A
A
0.25  
0
0.50  
0.25  
0
DNL  
DNL  
–0.25  
–0.50  
INL  
–0.25  
INL  
–0.75  
–0.50  
2
3
4
5
6
7
0
1
2
3
4
5
6
SUPPLY VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
Figure 8. Linearity Error vs. Supply Voltage  
Figure 11. Linearity Error vs. Reference Voltage  
Rev. F | Page 7 of 20  
 
 
 
AD5541/AD5542  
Data Sheet  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
0.15  
0.10  
0.05  
0
V
V
= 5V  
V
V
= 5V  
DD  
DD  
= 2.5V  
= 2.5V  
REF  
REF  
T
= 25°C  
T = 25°C  
A
A
–0.05  
–0.10  
–0.15  
–0.9  
–40  
25  
85  
–40  
25  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Gain Error vs. Temperature  
Figure 15. Zero-Code Error vs. Temperature  
2.0  
1.5  
1.0  
0.5  
0
132  
130  
128  
126  
124  
122  
120  
118  
116  
T
= 25°C  
V
V
= 5V  
A
DD  
= 2.5V  
REF  
T
= 25°C  
A
REFERENCE VOLTAGE  
V
= 5V  
DD  
SUPPLY VOLTAGE  
= 2.5V  
V
REF  
0
1
2
3
VOLTAGE (V)  
4
5
6
–40  
25  
85  
TEMPERATURE (°C)  
Figure 16. Supply Current vs. Reference Voltage or Supply Voltage  
Figure 13. Supply Current vs. Temperature  
200  
200  
V
V
= 5V  
DD  
= 2.5V  
REF  
180  
160  
140  
120  
100  
80  
T
= 25°C  
A
150  
100  
50  
60  
40  
20  
0
0
0
10,000 20,000 30,000 40,000 50,000 60,000 70,000  
CODE (Decimal)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
DIGITAL INPUT VOLTAGE (V)  
Figure 17. Reference Current vs. Code  
Figure 14. Supply Current vs. Digital Input Voltage  
Rev. F | Page 8 of 20  
Data Sheet  
AD5541/AD5542  
V
V
= 2.5V  
REF  
= 5V  
V
V
= 2.5V  
REF  
= 5V  
2µs/DIV  
DD  
= 25°C  
DD  
= 25°C  
T
A
T
A
CS (5V/DIV)  
100  
100  
DIN (5V/DIV)  
10pF  
50pF  
100pF  
200pF  
V
(50mV/DIV)  
OUT  
10  
10  
V
(0.5V/DIV)  
OUT  
2µs/DIV  
Figure 18. Digital Feedthrough  
Figure 20. Large Signal Settling Time  
1.236  
1.234  
1.232  
1.230  
1.228  
1.226  
1.224  
5
CS  
0
V
V
= 2.5V  
REF  
= 5V  
DD  
–5  
T
= 25°C  
A
100  
90  
• • • •  
V
(1V/DIV)  
OUT  
–10  
–15  
–20  
–25  
–30  
V
OUT  
V
(50mV/DIV)  
OUT  
GAIN = –216  
1LSB = 8.2mV  
10  
• • • •  
0%  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
0.5µs/DIV  
TIME (µs)  
Figure 19. Digital-to-Analog Glitch Impulse  
Figure 21. Small Signal Settling Time  
Rev. F | Page 9 of 20  
 
 
AD5541/AD5542  
TERMINOLOGY  
Data Sheet  
Digital-to-Analog Glitch Impulse  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy or INL is a measure of the  
maximum deviation, in LSBs, from a straight line passing  
through the endpoints of the DAC transfer function. A typical  
INL vs. code plot can be seen in Figure 6.  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-sec  
and is measured when the digital input code is changed by  
1 LSB at the major carry transition. A plot of the digital-to-  
analog glitch impulse is shown in Figure 19.  
Differential Nonlinearity (DNL)  
DNL is the difference between the measured change and the  
ideal 1 LSB change between any two adjacent codes. A specified  
differential nonlinearity of 1 LSB maximum ensures mono-  
tonicity. Figure 9 illustrates a typical DNL vs. code plot.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC, but it is measured when the DAC output is not updated.  
Gain Error  
CS  
is held high while the CLK and DIN signals are toggled. It  
Gain error is the difference between the actual and ideal analog  
output range, expressed as a percent of the full-scale range.  
It is the deviation in slope of the DAC transfer characteristic  
from ideal.  
is specified in nV-sec and is measured with a full-scale code  
change on the data bus, that is, from all 0s to all 1s and vice  
versa. A typical plot of digital feedthrough is shown in  
Figure 18.  
Gain Error Temperature Coefficient  
Power Supply Rejection Ratio (PSRR)  
Gain error temperature coefficient is a measure of the change  
in gain error with changes in temperature. It is expressed in  
ppm/°C.  
PSRR indicates how the output of the DAC is affected by changes  
in the power supply voltage. Power-supply rejection ratio is  
quoted in terms of percent change in output per percent change  
in VDD for full-scale output of the DAC. VDD is varied by 10%.  
Zero Code Error  
Zero code error is a measure of the output error when zero code  
is loaded to the DAC register.  
Reference Feedthrough  
Reference feedthrough is a measure of the feedthrough from the  
REF input to the DAC output when the DAC is loaded with all  
Zero Code Temperature Coefficient  
V
This is a measure of the change in zero code error with a change  
in temperature. It is expressed in mV/°C.  
0s. A 100 kHz, 1 V p-p is applied to VREF. Reference feedthrough  
is expressed in mV p-p.  
Rev. F | Page 10 of 20  
 
Data Sheet  
AD5541/AD5542  
THEORY OF OPERATION  
The AD5541/AD5542 are single, 16-bit, serial input, voltage  
output DACs. They operate from a single supply ranging from  
2.7 V to 5.5 V and consume typically 125 µA with a supply of  
5 V. Data is written to these devices in a 16-bit word format,  
via a 3- or 4-wire serial interface. To ensure a known power-up  
state, these parts are designed with a power-on reset function.  
In unipolar mode, the output is reset to 0 V; in bipolar mode,  
the AD5542 output is set to −VREF. Kelvin sense connections for  
the reference and analog ground are included on the AD5542.  
SERIAL INTERFACE  
The AD5541/AD5542 are controlled by a versatile 3- or 4-wire  
serial interface that operates at clock rates up to 25 MHz and is  
compatible with SPI, QSPI, MICROWIRE, and DSP interface  
standards. The timing diagram is shown in Figure 3. Input data  
CS  
is framed by the chip select input, . After a high-to-low  
CS  
transition on , data is shifted synchronously and latched into  
the input register on the rising edge of the serial clock, SCLK.  
Data is loaded MSB first in 16-bit words. After 16 data bits have  
been loaded into the serial input register, a low-to-high transition  
DIGITAL-TO-ANALOG SECTION  
CS  
on  
can be loaded to the part only while  
LDAC  
transfers the contents of the shift register to the DAC. Data  
The DAC architecture consists of two matched DAC sections.  
A simplified circuit diagram is shown in Figure 22. The DAC  
architecture of the AD5541/AD5542 is segmented. The four  
MSBs of the 16-bit data-word are decoded to drive 15 switches,  
E1 to E15. Each switch connects one of 15 matched resistors to  
either AGND or VREF. The remaining 12 bits of the data-word  
drive switches S0 to S11 of a 12-bit voltage mode R-2R ladder  
network.  
CS  
is low.  
function that allows the DAC latch  
LDAC CS  
The AD5542 has an  
to be updated asynchronously by bringing  
LDAC  
low after  
should be maintained high while data is written  
LDAC  
goes high.  
to the shift register. Alternatively,  
nently low to update the DAC synchronously. With  
can be tied perma-  
LDAC  
tied  
CS  
permanently low, the rising edge of loads the data to the DAC.  
R
R
V
OUT  
UNIPOLAR OUTPUT OPERATION  
2R  
2R  
S0  
2R . . . . .  
S1 . . . . .  
2R  
2R  
E1  
2R . . . . .  
E2 . . . . .  
2R  
E15  
These DACs are capable of driving unbuffered loads of 60 kΩ.  
Unbuffered operation results in low supply current, typically  
300 μA, and a low offset error. The AD5541 provides a unipolar  
output swing ranging from 0 V to VREF. The AD5542 can be  
configured to output both unipolar and bipolar voltages. Figure 23  
shows a typical unipolar output voltage circuit. The code table  
for this mode of operation is shown in Table 7.  
S11  
V
REF  
FOUR MSBs DECODED  
INTO 15 EQUAL SEGMENTS  
12-BIT R-2R LADDER  
Figure 22. DAC Architecture  
5V  
2.5V  
With this type of DAC configuration, the output impedance  
is independent of code, while the input impedance seen by  
the reference is heavily code dependent. The output voltage is  
dependent on the reference voltage, as shown in the following  
equation:  
10µF  
0.1µF  
0.1µF  
SERIAL  
INTERFACE  
V
REF(REFF*) REFS*  
DD  
AD820/  
OP196  
CS  
VREF × D  
UNIPOLAR  
OUTPUT  
DIN  
AD5541/AD5542  
OUT  
VOUT  
where:  
=
2N  
SCLK  
LDAC*  
EXTERNAL  
OP AMP  
DGND  
AGND  
D is the decimal data-word loaded to the DAC register.  
N is the resolution of the DAC.  
*AD5542 ONLY.  
Figure 23. Unipolar Output  
For a reference of 2.5 V, the equation simplifies to the following:  
Table 7. Unipolar Code Table  
DAC Latch Contents  
2.5 × D  
VOUT  
=
65,536  
MSB  
LSB  
Analog Output  
VREF × (65,535/65,536)  
VREF × (32,768/65,536) = ½ VREF  
VREF × (1/65,536)  
0 V  
1111 1111 1111 1111  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
This gives a VOUT of 1.25 V with midscale loaded and 2.5 V with  
full-scale loaded to the DAC.  
The LSB size is VREF/65,536.  
Rev. F | Page 11 of 20  
 
 
 
 
 
 
 
AD5541/AD5542  
Data Sheet  
Assuming a perfect reference, the unipolar worst-case output  
voltage can be calculated from the following equation:  
Assuming a perfect reference, the worst-case bipolar output  
voltage can be calculated from the following equation:  
D
[
(
)
(
)
(
)
]
VOUT UNI + VOS 2 + RD VREF 1 + RD  
VOUT-UNI  
=
×
(
VREF + VGE + VZSE + INL  
)
VOUT-BIP  
=
216  
1 +  
(
2 + RD  
)
A
where:  
OUT−UNI is unipolar mode worst-case output.  
D is code loaded to DAC.  
REF is reference voltage applied to the part.  
GE is gain error in volts.  
where:  
V
V
V
V
OUT-BIP is the bipolar mode worst-case output.  
OUT−UNI is the unipolar mode worst-case output.  
OS is the external op amp input offset voltage.  
RD is the RFB and RINV resistor matching error.  
A is the op amp open-loop gain.  
V
V
V
ZSE is zero scale error in volts.  
INL is integral nonlinearity in volts.  
OUTPUT AMPLIFIER SELECTION  
BIPOLAR OUTPUT OPERATION  
For bipolar mode, a precision amplifier should be used and  
supplied from a dual power supply. This provides the VREF  
output. In a single-supply application, selection of a suitable op  
amp may be more difficult as the output swing of the amplifier  
does not usually include the negative rail, in this case, AGND.  
This can result in some degradation of the specified performance  
unless the application does not use codes near zero.  
With the aid of an external op amp, the AD5542 can be confi-  
gured to provide a bipolar voltage output. A typical circuit of  
such operation is shown in Figure 24. The matched bipolar  
offset resistors, RFB and RINV, are connected to an external op  
amp to achieve this bipolar output swing, typically RFB = RINV  
28 kΩ. Table 8 shows the transfer function for this output  
operating mode. Also provided on the AD5542 are a set of  
Kelvin connections to the analog ground inputs.  
=
The selected op amp needs to have a very low-offset voltage (the  
DAC LSB is 38 μV with a 2.5 V reference) to eliminate the need  
for output offset trims. Input bias current should also be very  
low because the bias current, multiplied by the DAC output  
impedance (approximately 6 kΩ), adds to the zero code error.  
Rail-to-rail input and output performance is required. For fast  
settling, the slew rate of the op amp should not impede the  
settling time of the DAC. Output impedance of the DAC is  
constant and code-independent, but to minimize gain errors,  
the input impedance of the output amplifier should be as high  
as possible. The amplifier should also have a 3 dB bandwidth of  
1 MHz or greater. The amplifier adds another time constant to  
the system, hence increasing the settling time of the output. A  
higher 3 dB amplifier bandwidth results in a shorter effective  
settling time of the combined DAC and amplifier.  
+5V +2.5V  
10µF  
0.1µF  
0.1µF  
+5V  
RFB  
SERIAL  
INTERFACE  
V
REFF REFS  
R
DD  
R
FB  
CS  
INV  
DIN  
INV  
UNIPOLAR  
OUTPUT  
OUT  
SCLK  
LDAC  
AD5541/AD5542  
–5V  
EXTERNAL  
OP AMP  
DGND AGNDF AGNDS  
Figure 24. Bipolar Output (AD5542 Only)  
Table 8. Bipolar Code Table  
DAC Latch Contents  
MSB  
LSB  
Analog Output  
FORCE SENSE AMPLIFIER SELECTION  
1111 1111 1111 1111  
1000 0000 0000 0001  
1000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0000  
+VREF × (32,767/32,768)  
+VREF × (1/32,768)  
0 V  
−VREF × (1/32,768)  
−VREF × (32,768/32,768) = −VREF  
Use single-supply, low-noise amplifiers. A low-output impedance  
at high frequencies is preferred because the amplifiers need to  
be able to handle dynamic currents of up to 20 mA.  
REFERENCE AND GROUND  
Because the input impedance is code-dependent, the reference  
pin should be driven from a low impedance source. The AD5541/  
AD5542 operate with a voltage reference ranging from 2 V to  
V
DD. References below 2 V result in reduced accuracy. The full-  
scale output voltage of the DAC is determined by the reference.  
Table 7 and Table 8 outline the analog output voltage or partic-  
ular digital codes. For optimum performance, Kelvin sense  
connections are provided on the AD5542.  
If the application does not require separate force and sense  
lines, tie the lines close to the package to minimize voltage  
drops between the package leads and the internal die.  
Rev. F | Page 12 of 20  
 
 
 
 
 
 
Data Sheet  
AD5541/AD5542  
POWER-ON RESET  
POWER SUPPLY AND REFERENCE BYPASSING  
The AD5541/AD5542 have a power-on reset function to ensure  
that the output is at a known state on power-up. On power-up,  
the DAC register contains all 0s until the data is loaded from  
the serial register. However, the serial register is not cleared on  
power-up, so its contents are undefined. When loading data  
initially to the DAC, 16 bits or more should be loaded to prevent  
erroneous data appearing on the output. If more than 16 bits are  
loaded, the last 16 are kept, and if less than 16 bits are loaded,  
bits remain from the previous word. If the AD5541/AD5542  
need to be interfaced with data shorter than 16 bits, the data  
should be padded with 0s at the LSBs.  
For accurate high-resolution performance, it is recommended  
that the reference and supply pins be bypassed with a 10 μF  
tantalum capacitor in parallel with a 0.1 μF ceramic capacitor.  
Rev. F | Page 13 of 20  
 
 
AD5541/AD5542  
Data Sheet  
MICROPROCESSOR INTERFACING  
Microprocessor interfacing to the AD5541/AD5542 is via a  
serial bus that uses standard protocol that is compatible with  
DSP processors and microcontrollers. The communications  
channel requires a 3- or 4-wire interface consisting of a clock  
signal, a data signal and a synchronization signal. The  
AD5541/AD5542 require a 16-bit data-word with data valid on  
the rising edge of SCLK. The DAC update can be done  
automatically when all the data is clocked in or it can be done  
AD5541/AD5542 TO MICROWIRE INTERFACE  
Figure 27 shows an interface between the AD5541/AD5542  
and any MICROWIRE-compatible device. Serial data is shifted  
out on the falling edge of the serial clock and into the AD5541/  
AD5542 on the rising edge of the serial clock. No glue logic is  
required because the DAC clocks data into the input shift  
register on the rising edge.  
LDAC  
under control of the  
(AD5542 only).  
CS  
SO  
CS  
AD5541/  
AD5542*  
MICROWIRE*  
DIN  
AD5541/AD5542 TO ADSP-21XX INTERFACE  
SCLK  
SCLK  
Figure 25 shows a serial interface between the AD5541/AD5542  
and the ADSP-21xx. The ADSP-21xx should be set to operate in  
the SPORT transmit alternate framing mode. The ADSP-21xx are  
programmed through the SPORT control register and should be  
configured as follows: internal clock operation, active low  
framing, 16-bit word length. Transmission is initiated by  
writing a word to the Tx register after the SPORT has been  
enabled. As the data is clocked out on each rising edge of the  
serial clock, an inverter is required between the DSP and the  
DAC, because the AD5541/AD5542 clock data in on the falling  
edge of the SCLK.  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 27. AD5541/AD5542 to MICROWIRE Interface  
AD5541/AD5542 TO 80C51/80L51 INTERFACE  
A serial interface between the AD5541/AD5542 and the 80C51/  
80L51 microcontroller is shown in Figure 28. TxD of the micro-  
controller drives the SCLK of the AD5541/AD5542, and RxD  
drives the serial data line of the DAC. P3.3 is a bit programmable  
CS  
pin on the serial port that is used to drive  
.
The 80C51/80L51 provide the LSB first, whereas the AD5541/  
AD5542 expects the MSB of the 16-bit word first. Care should  
be taken to ensure the transmit routine takes this into account.  
FO  
TFS  
LDAC**  
CS  
AD5541/  
AD5542*  
ADSP-21xx  
When data is to be transmitted to the DAC, P3.3 is taken low.  
Data on RxD is valid on the falling edge of TxD, so the clock  
must be inverted as the DAC clocks data into the input shift  
register on the rising edge of the serial clock. The 80C51/80L51  
transmit data in 8-bit bytes with only eight falling clock edges  
occurring in the transmit cycle. As the DAC requires a 16-bit  
word, P3.3 must be left low after the first eight bits are transferred,  
DT  
DIN  
SCLK  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
**AD5542 ONLY.  
Figure 25. AD5541/AD5542 to ADSP-21xx Interface  
AD5541/AD5542 TO 68HC11/68L11 INTERFACE  
LDAC  
and brought high after the second byte is transferred.  
on  
Figure 26 shows a serial interface between the AD5541/AD5542  
and the 68HC11/68L11 microcontroller. SCK of the 68HC11/  
68L11 drives the SCLK of the DAC, and the MOSI output drives  
the AD5542 can also be controlled by the 80C51/ 80L51 serial  
port output by using another bit programmable pin, P3.4.  
CS  
the serial data line serial DIN. The  
signal is driven from one  
P3.4  
P3.3  
RxD  
TxD  
LDAC**  
of the port lines. The 68HC11/68L11 is configured for master  
mode: MSTR = 1, CPOL = 0, and CPHA = 0. Data appearing  
on the MOSI output is valid on the rising edge of SCK.  
80C51/  
80L51*  
CS  
AD5541/  
AD5542*  
DIN  
SCLK  
PC6  
PC7  
LDAC**  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
**AD5542 ONLY.  
68HC11/  
68L11*  
CS  
AD5541/  
AD5542*  
Figure 28. AD5541/AD5542 to 80C51/80L51 Interface  
MOSI  
SCK  
DIN  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
**AD5542 ONLY.  
Figure 26. AD5541/AD5542 to 68HC11/68L11 Interface  
Rev. F | Page 14 of 20  
 
 
 
 
 
 
 
 
 
Data Sheet  
AD5541/AD5542  
APPLICATIONS INFORMATION  
OPTOCOUPLER INTERFACE  
DECODING MULTIPLE AD5541/AD5542s  
The digital inputs of the AD5541/AD5542 are Schmitt-triggered so  
that they can accept slow transitions on the digital input lines.  
This makes these parts ideal for industrial applications where it  
may be necessary to isolate the DAC from the controller via  
optocouplers. Figure 29 illustrates such an interface.  
CS  
pin of the AD5541/AD5542 can be used to select one of  
The  
a number of DACs. All devices receive the same serial clock and  
CS  
serial data, but only one device receives the  
signal at any one  
time. The DAC addressed is determined by the decoder. There is  
some digital feedthrough from the digital input lines. Using a  
burst clock minimizes the effects of digital feedthrough on the  
analog signal channels. Figure 30 shows a typical circuit.  
5V  
REGULATOR  
0.1µF  
POWER  
10µF  
AD5541/AD5542  
SCLK  
CS  
V
V
DD  
DD  
DD  
OUT  
DIN  
DIN  
V
DD  
10kΩ  
SCLK  
V
DD  
SCLK  
SCLK  
ENABLE  
AD5541/AD5542  
EN  
CS  
V
CODED  
ADDRESS  
AD5541/AD5542  
V
DECODER  
DGND  
OUT  
DIN  
10kΩ  
SCLK  
CS  
CS  
V
OUT  
AD5541/AD5542  
V
CS  
V
OUT  
DIN  
10kΩ  
SCLK  
DIN  
DIN  
GND  
AD5541/AD5542  
CS  
V
OUT  
Figure 29. AD5541/AD5542 in an Optocoupler Interface  
DIN  
SCLK  
Figure 30. Addressing Multiple AD5541/AD5542s  
Rev. F | Page 15 of 20  
 
 
 
 
 
AD5541/AD5542  
Data Sheet  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 31. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 32. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
Rev. F | Page 16 of 20  
 
Data Sheet  
AD5541/AD5542  
ORDERING GUIDE  
Model1  
INL  
1 LSB  
DNL  
1 LSB  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
Evaluation Board  
Package Option  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
AD5541CR  
AD5541CRZ  
AD5541CRZ-REEL7  
AD5541LR  
AD5541LR-REEL7  
AD5541LRZ  
AD5541LRZ-REEL7  
AD5541BR  
AD5541BRZ  
AD5541BRZ-REEL  
AD5541JR  
AD5541JR-REEL7  
AD5541JRZ  
AD5541JRZ-REEL7  
AD5541AR  
AD5541AR-REEL7  
AD5541ARZ  
AD5541ARZ-REEL7  
AD5542CR  
AD5542CR-REEL7  
AD5542CRZ  
AD5542CRZ-REEL7  
AD5542LR  
AD5542LRZ  
AD5542BR  
AD5542BRZ  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
2 LSB  
2 LSB  
2 LSB  
2 LSB  
2 LSB  
2 LSB  
2 LSB  
4 LSB  
4 LSB  
4 LSB  
4 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
2 LSB  
2 LSB  
2 LSB  
2 LSB  
2 LSB  
2 LSB  
2 LSB  
4 LSB  
4 LSB  
4 LSB  
4 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1.5 LSB  
1.5 LSB  
1.5 LSB  
1.5 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
1.5 LSB  
1.5 LSB  
1.5 LSB  
1.5 LSB  
1 LSB  
1 LSB  
1 LSB  
1 LSB  
0°C to 70°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
0°C to 70°C  
R-8  
R-8  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
0°C to 70°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
AD5542BRZ-REEL7  
AD5542JR  
AD5542JR-REEL7  
AD5542JRZ  
AD5542JRZ-REEL7  
AD5542AR  
AD5542AR-REEL7  
AD5542ARZ  
0°C to 70°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
AD5542ARZ-REEL7  
EVAL-AD5541/42EBZ  
1 Z = RoHS Compliant Part.  
Rev. F | Page 17 of 20  
 
AD5541/AD5542  
NOTES  
Data Sheet  
Rev. F | Page 18 of 20  
Data Sheet  
NOTES  
AD5541/AD5542  
Rev. F | Page 19 of 20  
 
AD5541/AD5542  
NOTES  
Data Sheet  
©1999–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07557-0-3/12(F)  
Rev. F | Page 20 of 20  

相关型号:

AD5543

Current Output/ Serial Input, 16-/14-Bit DAC
ADI

AD5543BR

Current Output/ Serial Input, 16-/14-Bit DAC
ADI

AD5543BRM

Current Output/ Serial Input, 16-/14-Bit DAC
ADI

AD5543BRM-REEL7

Current Output/Serial Input, 16-/14-Bit DACs
ADI

AD5543BRMZ

Current Output/Serial Input, 16-/14-Bit DACs
ADI

AD5543BRMZ-REEL7

Current Output/Serial Input, 16-/14-Bit DACs
ADI

AD5543BRZ

Current Output/Serial Input, 16-/14-Bit DACs
ADI

AD5543CRMZ

Current Output/Serial Input, 16-/14-Bit DACs
ADI

AD5543CRMZ-REEL7

Current Output/Serial Input, 16-/14-Bit DACs
ADI

AD5543CRZ

IC SERIAL INPUT LOADING, 0.5 us SETTLING TIME, 16-BIT DAC, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8, Digital to Analog Converter
ADI

AD5543CRZ-REEL7

IC SERIAL INPUT LOADING, 0.5 us SETTLING TIME, 16-BIT DAC, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8, Digital to Analog Converter
ADI

AD5543_12

Current Output/Serial Input, 16-/14-Bit DACs
ADI