AD5555CRU-REEL7 [ADI]

Dual, Current-Output, Serial-Input, 16-/14-Bit DAC; 双通道,电流输出,串行输入, 16位/ 14位DAC
AD5555CRU-REEL7
型号: AD5555CRU-REEL7
厂家: ADI    ADI
描述:

Dual, Current-Output, Serial-Input, 16-/14-Bit DAC
双通道,电流输出,串行输入, 16位/ 14位DAC

转换器 数模转换器 光电二极管
文件: 总16页 (文件大小:922K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual, Current-Output,  
Serial-Input, 16-/14-Bit DAC  
AD5545/AD5555  
FUNCTIONAꢀ BꢀOCK DIAGRAM  
FEATURES  
V
A
V
B
REF  
REF  
16-bit resolution AD5545  
14-bit resolution AD5555  
1 ꢀSB DNꢀ monotonic  
2 ꢀSB INꢀ AD5545  
2 mA full-scale current 20ꢁ, with VREF = 10 V  
0.5 µs settling time  
2Q multiplying reference-input 4 MHz BW  
Zero or midscale power-up preset  
Zero or midscale dynamic reset  
3-wire interface  
16 OR 14  
V
DD  
R
I
A
FB  
D0..DX  
INPUT  
DAC A  
SDI  
A
DAC A  
DAC B  
OUT  
REGISTER  
REGISTER  
R
R
R
R
A
A
GND  
R
I
B
FB  
CS  
INPUT  
DAC B  
B
OUT  
EN  
REGISTER  
REGISTER  
CLK  
A
B
GND  
DAC A  
B
POWER-  
ON  
ADDR  
AD5545/  
AD5555  
DECODE  
RESET  
02918-0-001  
Compact TSSOP-16 package  
DGND  
RS MSB  
LDAC  
Figure 1.  
APPꢀICATIONS  
Automatic test equipment  
Instrumentation  
Digitally controlled calibration  
Industrial control PꢀCs  
Programmable attentuator  
PRODUCT OVERVIEW  
The AD5545/AD5555 are 16-bit/14-bit, current-output, digital-  
to-analog converters designed to operate from a single 5 V  
supply with bipolar output up to 15 V capability.  
An external reference is needed to establish the full-scale out-  
put-current. An internal feedback resistor (RFB) enhances the  
resistance and temperature tracking when combined with an  
external op amp to complete the I-to-V conversion.  
A serial data interface offers high speed, 3-wire microcontroller  
compatible inputs using serial data in (SDI), clock (CLK), and  
chip select ( ). Additional  
function allows simultane-  
CS  
LDAC  
ous update operation. The internal reset logic allows power-on  
preset and dynamic reset at either zero or midscale, depending  
on the state of the MSB pin.  
The AD5545/AD5555 are packaged in the compact TSSOP-16  
package and can be operated from –40°C to +85°C.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD5545/AD5555  
TABLE OF CONTENTS  
AD5545/AD5555—Electrical Characteristics .............................. 3  
Applications..................................................................................... 13  
Stability ........................................................................................ 13  
Positive Voltage Output ............................................................. 13  
Bipolar Output............................................................................ 13  
Programmable Current Source ................................................ 13  
DAC with Programmable Input Reference Range................ 14  
Outline Dimensions....................................................................... 16  
ESD Caution................................................................................ 16  
Ordering Guide .......................................................................... 16  
Absolute Maximum Ratings............................................................ 5  
Pin Configuration And Functional Descriptions......................... 6  
Typical Performance Characteristics ............................................. 9  
Circuit Operation ........................................................................... 11  
D/A Converter Section.............................................................. 11  
Serial Data Interface................................................................... 11  
Power-Up Sequence ................................................................... 12  
Layout and Power Supply Bypassing ....................................... 12  
Grounding ................................................................................... 12  
REVISION HISTORY  
Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
AD5545/AD5555  
AD5545/AD5555—ELECTRICAL CHARACTERISTICS  
Table 1. VDD = 5 V 1ꢀ0, IOUT = Virtual GND, GND = ꢀ V, VREF = 1ꢀ V, TA = Full Operating Tempearture Range,  
unless otherwise noted.  
Parameter  
Symbol  
Conditions  
5 V ꢀ10 Units  
STATIC PERFORMANCE1  
Resolution  
Resolution  
N
N
AD5545, 1 LSB = VREF/216 = 153 µV when VREF = 10 V  
AD5555, 1 LSB = VREF/214 = 610 µV when VREF = 10 V  
AD5545  
AD5555  
16  
14  
2
1
1
10  
20  
1/ 4  
Bits  
Bits  
Relative Accuracy  
Relative Accuracy  
Differential Nonlinearity  
Output Leakage Current  
Output Leakage Current  
Full-Scale Gain Error  
Full-Scale Temperature Coefficient2  
REFERENCE INPUT  
VREF Range  
INL  
INL  
DNL  
IOUT  
IOUT  
GFSE  
TCVFS  
LSB max  
LSB max  
LSB max  
nA max  
nA max  
mV typ/max  
ppm/°C typ  
Monotonic  
Data = 0x0000, TA = 25°C  
Data = 0x0000, TA = TA Max  
Data = Full Scale  
1
VREF  
RREF  
CREF  
–12/+12  
5
5
V min/V max  
kΩ typ3  
pF typ  
Input Resistance  
Input Capacitance2  
ANALOG OUTPUT  
Output Current  
Output Capacitance2  
IOUT  
COUT  
Data = Full Scale  
Code Dependent  
2
200  
mA typ  
pF typ  
LOGIC INPUTS AND OUTPUT  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance2  
INTERFACE TIMING2, 4  
Clock Input Frequency  
Clock Width High  
Clock Width Low  
CS to Clock Setup  
Clock to CS Hold  
Data Setup  
VIL  
VIH  
IIL  
0.8  
2.4  
10  
V max  
V min  
µA max  
pF max  
CIL  
10  
fCLK  
tCH  
tCL  
50  
10  
10  
0
MHz  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
tCSS  
tCSH  
tDS  
tDH  
tLDS  
10  
5
10  
5
Data Hold  
LDAC Setup  
Hold  
tLDH  
10  
10  
ns min  
ns min  
LDAC Width  
tLDAC  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Power Dissipation  
VDD Range  
IDD  
PDISS  
4.5/5.5  
10  
0.055  
0.006  
V min/V max  
µA max  
mW max  
ꢀ/ꢀ max  
Logic Inputs = 0 V  
Logic Inputs = 0 V  
∆VDD = 5ꢀ  
Power Supply Sensitivity  
PSS  
1 All static performance tests (except IOUT) are performed in a closed-loop system using an external precision OP1177 I-to-V converter amplifier. The AD5545 RFB terminal  
is tied to the amplifier output. Typical values represent average readings measured at 25°C.  
2 These parameters are guaranteed by design and not subject to production testing.  
3 All ac characteristic tests are performed in a closed-loop system using an O42 I-to-V converter amplifier.  
4 All input control signals are specified with tR = tF = 2.5 ns (10ꢀ to 90ꢀ of 3 V) and timed from a voltage level of 1.5 V.  
Rev. 0 | Page 3 of 16  
 
 
 
 
AD5545/AD5555  
Parameter  
Symbol  
Conditions  
5 V ꢀ10 Units  
AC CHARACTERISTICS  
Output Voltage Setting Time  
To ±±0.1 ꢀull Sꢁaleꢂ ꢃata ꢄ ꢅeꢆo Sꢁale to  
ꢀull Sꢁale to ꢅeꢆo Sꢁale  
VREꢀ ꢄ 5 V p-pꢂ ꢃata ꢄ ꢀull Sꢁale  
VREꢀ ꢄ ± Vꢂ ꢃata ꢄ ꢅeꢆo Sꢁale to Midsꢁale to ꢅeꢆo  
Sꢁale  
tS  
±05  
4
µs typ  
Refeꢆenꢁe Multiplying BW  
ꢃAC Glitꢁh Impulse  
BW  
Q
MHz typ  
nV-s typ  
7
ꢀeedthꢆough Eꢆꢆoꢆ  
ꢃata ꢄ ꢅeꢆo Sꢁaleꢂ VREꢀ ꢄ .±± mV ꢆmsꢂ  
f ꢄ . kHzꢂ Same Channel  
VOUT/VREꢀ  
–65  
dB  
ꢃigital ꢀeedthꢆough  
Total Haꢆmoniꢁ ꢃistoꢆtion  
Analog Cꢆosstalk  
CS ꢄ Logiꢁ High and fCLK ꢄ . MHz  
Q
7
nV-s typ  
dB typ  
THꢃ  
VREꢀ ꢄ 5 V p-pꢂ ꢃata ꢄ ꢀull Sꢁaleꢂ f ꢄ . kHz to .± kHz  
VREꢀB ꢄ ± Vꢂ Measuꢆe VOUTB with VREꢀA ꢄ 5 V p-p Sine  
Waveꢂ ꢃata ꢄ ꢀull Sꢁaleꢂ f ꢄ . kHz to .± kHz  
–85  
CTA  
eN  
–95  
.2  
dB typ  
Output Spot Noise Voltage  
f ꢄ . kHzꢂ BW ꢄ . Hz  
nV/√Hz  
Rev0 ± | Page 4 of .6  
AD5545/AD5555  
ABSOLUTE MAXIMUM RATINGS  
Table 2. AD5545/AD5555 Absolute Maximum Ratings  
Parameter  
Rating  
VDD to GND  
VREF to GND  
Logic Inputs to GND  
V(IOUT) to GND  
Input Current to Any Pin except Supplies  
Package Power Dissipation  
–0.3 V, +8 V  
–18 V, +18 V  
–0.3 V, +8 V  
–0.3 V, VDD + 0.3 V  
50 mA  
(TJ max – TA)/ θ  
JA  
Thermal Resistance θJA  
16-Lead TSSOP  
150°C/W  
150°C  
Maximum Junction Temperature (TJ max)  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature  
–40°C to +85°C  
–65°C to +150°C  
RU-16 (Vapor Phase, 60 sec)  
RU-16 (Infrared, 15 sec)  
215°C  
220°C  
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is  
not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Rev. 0 | Page 5 of 16  
 
AD5545/AD5555  
PIN CONFIGURATION AND FUNCTIONAL DESCRIPTIONS  
R
A
A
A
A
B
B
B
B
16 CLK  
15 LDAC  
14 MSB  
1
2
3
4
5
6
7
8
FB  
V
REF  
OUT  
I
AD5545/  
A
A
V
DD  
13  
12  
11  
10  
9
GND  
GND  
AD5555  
DGND  
CS  
TOP VIEW  
(Not to Scale)  
I
OUT  
V
RS  
REF  
R
SDI  
FB  
02918-0-002  
Figure 2. 16-Lead TSSOP  
Table 3. Pin Function Descriptions—16-Lead TSSOP  
Pin No.  
Mnemonic  
Function  
1
2
RFBA  
Establish voltage output for DAC A by connecting to external amplifier output.  
DAC A Reference Voltage Input Terminal. Establishes DAC A full-scale output voltage.  
Pin can be tied to VDD pin.  
VREF  
A
3
4
5
6
7
IOUT  
AGND  
AGND  
IOUT  
A
A
B
B
B
DAC A Current Output.  
DAC A Analog Ground.  
DAC B Analog Ground.  
DAC B Current Output.  
DAC B Reference Voltage Input Terminal. Establishes DAC B full-scale output voltage.  
Pin can be tied to VDD pin.  
VREF  
8
9
10  
RFBB  
SDI  
RS  
Establish voltage output for DAC B by connecting to external amplifier output.  
Serial Data Input. Input data loads directly into the shift register.  
RESET Pin, Active Low Input. Input registers and DAC registers are set to all 0s or  
midscale. Register Data = 0x0000 when MSB = 0. Register Data = 0x8000 for AD5545 and  
0x2000 for AD5555 when MSB = 1.  
11  
CS  
Chip Select, Active Low Input. Disables shift register loading when high. Transfers serial  
LDAC  
register data to the input register when CS/LDAC returns high. This does not affect  
operation.  
12  
13  
14  
DGND  
VDD  
MSB  
Digital Ground Pin.  
Positive Power Supply Input. Specified range of operation 5 V 10ꢀ or 3 V 10ꢀ.  
MSB bit sets output to either 0 or midscale during a RESET pulse (RS) or at system power-  
on. Output equals zero scale when MSB = 0 and midscale when MSB = 1. MSB pin can  
also be tied permanently to ground or VDD.  
15  
16  
LDAC  
CLK  
Load DAC Register Strobe, Level Sensitive Active Low. Transfers all input register data to  
DAC registers. Asynchronous active low input. See Table 4 and Table 5 for operation.  
Clock Input. Positive edge clocks data into shift register.  
Rev. 0 | Page 6 of 16  
 
AD5545/AD5555  
SDI  
A1  
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D1  
D0  
INPUT REG LD  
CLK  
tDS  
tDH  
tCH  
tCL  
CS  
tCSS  
tCSH  
LDAC  
tLDH  
tLDS  
tLDAC  
02918-0-003  
Figure 3. AD5545 18-Bit Data Word Timing Diagram  
SDI  
A1  
A0  
D13  
D12  
D11  
D10  
D09  
D08  
D1  
D0  
INPUT REG LD  
CLK  
tDS  
tDH  
tCH  
tCL  
CS  
tCSS  
tCSH  
LDAC  
tLDH  
tLDS  
tLDAC  
02918-0-004  
Figure 4. AD5555 16-Bit Data Word Timing Diagram  
Table 4. AD5545 Control Logic Truth Table  
CS  
CLK  
LDAC  
RS  
MSB  
Serial Shift Register Function  
Input Register Function  
DAC Register  
H
L
L
X
L
H
H
H
H
H
H
X
X
X
No Effect  
No Effect  
Shift Register Data  
Advanced One Bit  
Latched  
Latched  
Latched  
Latched  
Latched  
Latched  
+  
L
H
L
H
H
H
H
X
X
No Effect  
No Effect  
Latched  
Selected DAC Updated  
with Current SR Current  
Latched  
Latched  
+  
H
H
H
H
H
X
X
X
X
X
L
H
H
H
H
L
X
X
X
0
No Effect  
No Effect  
No Effect  
No Effect  
No Effect  
Latched  
Latched  
Latched  
Transparent  
Latched  
Latched  
+  
H
H
Latched Data = 0x0000  
Latched Data = 0x8000  
Latched Data = 0x0000  
Latched Data = 0x8000  
L
H
NOTES  
1. SR = Shift Register, + = Positive Logic Transition, and X = Don’t Care.  
2. At power-on, both the input register and the DAC register are loaded with all 0s.  
Rev. 0 | Page 7 of 16  
 
AD5545/AD5555  
Table 5. AD5555 Control Logic Truth Table  
CS  
CLK  
LDAC  
RS  
MSB  
Serial Shift Register Function  
Input Register Function  
DAC Register  
H
L
L
X
L
H
H
H
H
H
H
X
X
X
No Effect  
No Effect  
Shift Register Data  
Advanced One Bit  
Latched  
Latched  
Latched  
Latched  
Latched  
Latched  
+  
L
H
L
H
H
H
H
X
X
No Effect  
No Effect  
Latched  
Selected DAC Updated  
with Current SR Current  
Latched  
Latched  
+  
H
H
H
H
H
X
X
X
X
X
L
H
H
H
H
L
X
X
X
0
No Effect  
No Effect  
No Effect  
No Effect  
No Effect  
Latched  
Latched  
Latched  
Transparent  
Latched  
Latched  
+  
H
H
Latched Data = 0x0000  
Latched Data = 0x2000  
Latched Data = 0x0000  
Latched Data = 0x2000  
L
H
NOTES  
1. SR = Shift Register, + = Positive Logic Transition, and X = Don’t Care.  
2. At power-on, both the input register and the DAC register are loaded with all 0s.  
Table 6. AD5545 Serial Input Register Data Format, Data Is Loaded in the MSB-First Format  
MSB  
LSB  
B0  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
line’s positive edge  
Bit Position  
Data Word  
B17  
A1  
B16  
A0  
B15  
D15  
B14  
D14  
B13  
D13  
B12  
D12  
B11  
D11  
B10  
D10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
Note that only the last 18 bits of data clocked into the serial register (Address + Data) are inspected when the  
CS  
returns to logic high. At this point, an internally generated load strobe transfers the serial register data contents (Bits D15–D0) to the  
decoded DAC input register address determined by Bits A1 and A0. Any extra bits clocked into the AD5545 shift register are ignored; only  
LDAC  
the last 18 bits clocked in are used. If double-buffered data is not needed, the  
pin can be tied logic low to disable the DAC registers.  
Table 7. AD5555 Serial Input Register Data Format, Data Is Loaded in the MSB-First Format  
MSB  
LSB  
B0  
D0  
Bit Position  
Data Word  
B15  
A1  
B14  
A0  
B13  
D13  
B12  
D12  
B11  
D11  
B10  
D10  
B9  
D9  
B8  
D8  
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
Note that only the last 16 bits of data clocked into the serial register (Address + Data) are inspected when the  
line’s positive edge  
CS  
returns to logic high. At this point, an internally generated load strobe transfers the serial register data contents (Bits D13–D0) to the  
decoded DAC input register address determined by Bits A1 and A0. Any extra bits clocked into the AD5555 shift register are ignored; only  
LDAC  
the last 16 bits clocked in are used. If double-buffered data is not needed, the  
pin can be tied logic low to disable the DAC registers.  
Table 8. Address Decode  
Aꢀ A1 DAC Decoded  
0
0
1
1
0
1
0
1
None  
DAC A  
DAC B  
DAC A and DAC B  
Rev. 0 | Page 8 of 16  
 
 
AD5545/AD5555  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
0.8  
0.6  
0.4  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
0248 4096  
6144  
8192 10240 12288 14336 16384  
CODE (Decimal)  
CODE (Decimal)  
02918-0-009  
02918-0-012  
Figure 5. AD5545 Integral Nonlinearity Error  
Figure 8. AD5555 Differential Nonlinearity Error  
1.0  
0.8  
1.5  
V
= 2.5V  
REF  
T
= 25°C  
A
1.0  
0.5  
0
0.6  
0.4  
0.2  
INL  
0
DNL  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
GE  
8192 16384 24576 32768 40960 49152 57344 65536  
2
4
6
8
10  
CODE (Decimal)  
SUPPLY VOLTAGE V (V)  
DD  
02918-0-010  
02918-0-013  
Figure 6. AD5545 Differential Nonlinearity Error  
Figure 9. Linearity Errors vs. VDD  
1.0  
0.8  
5
4
3
2
V
= 5V  
DD  
T
= 25°C  
A
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
1
0
2048 4096  
6144  
8192 10240 12288 14336 16384  
0
0.5  
1.0 1.5  
2.0  
2.5 3.0  
3.5  
4.0  
4.5 5.0  
LOGIC INPUT VOLTAGE V (V)  
CODE (Decimal)  
IH  
02918-0-014  
02918-0-011  
Figure 10. Supply Current vs. Logic Input Voltage  
Figure 7. AD5555 Integral Nonlinearity Error  
Rev. 0 | Page 9 of 16  
 
AD5545/AD5555  
3.0  
2.5  
2.0  
CS  
0x5555  
0x8000  
1.5  
1.0  
0.5  
0xFFFF  
0x0000  
V
OUT  
0
10k  
100k  
1M  
CLOCK FREQUENCY (Hz)  
10M  
100M  
02918-0-018  
02918-0-015  
Figure 14. Settling Time  
Figure 11. Supply Current vs. Clock Frequency  
90  
V
V
= 5V ± 10%  
DD  
REF  
80  
70  
= 10V  
CS (5V/DIV)  
60  
50  
V
V
= 5V  
DD  
= 10V  
REF  
CODES 0x8000 0x7FFF  
40  
30  
20  
10  
V
(50mV/DIV)  
OUT  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5 5.0  
10  
100  
1k  
10k  
100k  
1M  
TIME (µs)  
FREQUENCY (Hz)  
02918-0-019  
02918-0-016  
Figure 15. Midscale Transition and Digital Feedthrough  
Figure 12. Power Supply Rejection Ration vs. Frequency  
REF LEVEL  
0.000dB  
/DIV  
MARKER 4 41 677.200Hz  
MAG (A/R) –2.939db  
12.000dB  
0xFFFF  
0x8000  
0x4000  
0x2000  
0x1000  
0x0800  
0x0400  
0x0200  
0x0100  
0x0080  
0x0040  
0x0020  
0x0010  
0x0008  
0x0004  
0x0002  
0x0001  
–12dB  
–24dB  
–36dB  
–48dB  
–60dB  
–72dB  
–84dB  
–96dB  
–108dB  
0x0000  
10  
100  
1k  
10k  
100k  
1M  
10M  
START 10.000Hz  
STOP 50 000 000.000Hz  
02918-0-017  
Figure 13. Reference Multiplying Bandwidth  
Rev. 0 | Page 10 of 16  
AD5545/AD5555  
CIRCUIT OPERATION  
5V  
V
IN  
The AD5545/AD5555 contain a 16-/14-bit, current-output,  
digital-to-analog converter, a serial-input register, and a DAC  
register. Both parts require a minimum of a 3-wire serial data  
V
2.500V  
OUT  
ADR03  
GND  
LDAC  
interface with additional  
update.  
for dual channel simultaneous  
V
DD  
R
R
R
R
I
A
FB  
V
A
REF  
2R  
2R  
2R  
R
5k  
D/A CONVERTER SECTION  
+3V  
S2  
S1  
A
The DAC architecture uses a current-steering R-2R ladder  
design. Figure 16 shows the typical equivalent DAC. The DAC  
contains a matching feedback resistor for use with an external  
I-to-V converter amplifier. The RFB pin is connected to the  
output of the external amplifier. The IOUT terminal is connected  
to the inverting input of the external amplifier. These DACs are  
designed to operate with both negative or positive reference  
voltages. The VDD power pin is used only by the logic to drive  
the DAC switches ON and OFF. Note that a matching switch is  
used in series with the internal 5 kΩ feedback resistor. If users  
attempt to measure the RFB value, power must be applied to VDD  
to achieve continuity. The VREF input voltage and the digital data  
(D) loaded into the corresponding DAC register, according to  
Equation 1 and Equation 2, determine the DAC output voltage.  
OUT  
V
CC  
V
OUT  
AD8628  
V
EE  
AD5545/AD5555  
LOAD  
–3V  
A
A
GND  
DIGITAL INTERFACE CONNECTIONS OMITTED FOR CLARITY:  
SWITCHES S1 AND S2 ARE CLOSED, V MUST BE POWERED  
02918-0-006  
DD  
Figure 17. Recommended System Connections  
SERIAꢀ DATA INTERFACE  
The AD5545/AD5555 use a minimum 3-wire ( , SDI, CLK)  
CS  
serial data interface for single channel update operation. With  
LDAC  
Table 4 as an example (AD5545), users can tie  
low and  
high, then pull low for an 18-bit duration. New serial data  
RS  
CS  
is then clocked into the serial-input register in an 18-bit data-  
word format with the MSB bit loaded first. Table 5 defines the  
truth table for the AD5555. Data is placed on the SDI pin and  
clocked into the register on the positive clock edge of CLK. For  
the AD5545, only the last 18-bits clocked into the serial register  
VOUT = VREF × D/65,536  
VOUT = VREF × D/16,384  
(1)  
(2)  
Note that the output full-scale polarity is the opposite of the  
REF polarity for dc reference voltages.  
will be interrogated when the  
pin is strobed high, transfer-  
CS  
V
ring the serial register data to the DAC register and updating  
the output. If the applied microcontroller outputs serial data in  
different lengths than the AD5545, such as 8-bit bytes, three  
right justified data bytes can be written to the AD5545. The  
AD5545 will ignore the six MSB and recognize the 18 LSB as  
valid data. After loading the serial register, the rising edge of  
V
DD  
R
R
R
V
R
REF  
FB  
2R  
2R  
2R  
R
5k  
S2  
S1  
I
OUT  
transfers the serial register data to the DAC register and  
CS  
GND  
updates the output; during the  
strobe, the CLK should not  
CS  
be toggled.  
DIGITAL INTERFACE CONNECTIONS OMITTED FOR CLARITY:  
If users want to program each channel separately but update  
SWITCHES S1 AND S2 ARE CLOSED, V MUST BE POWERED  
DD  
LDAC  
them simultaneously, they need to program  
and high  
RS  
02918-0-005  
initially, then pull low for an 18-bit duration and program  
CS  
Figure 16. Equivalent R-2R DAC Circuit  
DAC A with the proper address and data bits. is then pulled  
CS  
high to latch data to the DAC A register.At this time, the output is  
These DACs are also designed to accommodate ac reference  
input signals. The AD5545/AD5555 will accommodate input  
reference voltages in the range of –12 V to +12 V. The reference  
voltage inputs exhibit a constant nominal input-resistance value  
of 5 kΩ, 30ꢀ. The DAC output (IOUT) is code dependent,  
producing various output resistances and capacitances. When  
choosing an external amplifier, the user should take into  
account the variation in impedance generated by the  
AD5545/AD5555 on the amplifiers inverting input node. The  
feedback resistance in parallel with the DAC ladder resistance  
dominates output voltage noise.  
not updated. To load DAC B data, pull  
low for an 18-bit dura-  
CS  
tion and program DAC B with the proper address and data, then  
pull  
high to latch data to the DAC B register. Finally, pull  
CS  
LDAC  
low and then high to update both the DAC A and DAC B  
outputs simultaneously.  
Rev. 0 | Page 11 of 16  
 
 
AD5545/AD5555  
Table 8 shows that each DAC A and DAC B can be individually  
loaded with a new data value. In addition, a common new data  
value can be loaded into both DACs simultaneously by setting Bit  
A1 = A0 = high. This command enables the parallel combination  
of both DACs, with IOUTA and IOUTB tied together, to act as one  
DAC with significant improved noise performance.  
LAYOUT AND POWER SUPPLY BYPASSING  
It is a good practice to employ compact, minimum lead length  
layout design. The input leads should be as direct as possible  
with a minimum conductor length. Ground paths should have  
low resistance and low inductance.  
Similarly, it is also good practice to bypass the power supplies  
with quality capacitors for optimum stability. Supply leads to the  
device should be bypassed with 0.01 µF to 0.1 µF disc or chip  
ceramic capacitors. Low ESR 1 µF to 10 µF tantalum or electro-  
lytic capacitors should also be applied at VDD to minimize any  
transient disturbance and to filter any low frequency ripple  
(see Figure 19). Users should not apply switching regulators for  
VDD due to the power supply rejection ratio degradation over  
frequency.  
ESD Protection Circuits  
All logic input pins contain back-biased ESD protection Zeners  
connected to digital ground (DGND) and VDD as shown in  
Figure 18.  
V
DD  
DIGITAL  
INPUTS  
5k  
DGND  
AD5545/  
AD5555  
02918-0-007  
V
V
DD  
DD  
Figure 18. Equivalent ESD Protection Circuits  
+
C2  
C1  
10µF 0.1µF  
A
X
GND  
POWER-UP SEQUENCE  
It is recommended to power-up VDD and ground prior to any  
reference voltages. The ideal power-up sequence is AGNDX,  
DGND, VDD, VREFX, and digital inputs. A noncompliance power-  
up sequence can elevate reference current, but the device will  
resume normal operation once VDD is powered.  
DGND  
02918-0-008  
Figure 19. Power Supply Bypassing and Grounding Connection  
GROUNDING  
The DGND and AGNDX pins of the AD5545/AD5555 refer to the  
digital and analog ground references. To minimize the digital  
ground bounce, the DGND terminal should be joined remotely  
at a single point to the analog ground plane (see Figure 19).  
Rev. 0 | Page 12 of 16  
 
 
 
AD5545/AD5555  
circuit, the second amplifier, U4, provides a gain of +2, which  
increases the output span magnitude to 5 V. Biasing the external  
amplifier with a 2.5 V offset from the reference voltage results in a  
full 4-quadrant multiplying circuit. The transfer equation of this  
circuit shows that both negative and positive output voltages are  
created because the input data (D) is incremented from code zero  
APPLICATIONS  
STABILITY  
V
DD  
U1  
C1  
V
R
FB  
DD  
(VOUT = –2.5 V) to midscale (VOUT = 0 V) to full scale (VOUT  
+2.5 V).  
=
V
V
I
OUT  
REF  
REF  
V
O
AD8628  
GND  
VOUT  
VOUT  
=
=
(
(
D/32,768 –1  
)
×VREF  
×VREF  
(
AD5545  
AD5555  
)
(3)  
(4)  
AD5545/AD5555  
U2  
02918-0-020  
D/16,384 1  
)
(
)
Figure 20. Operational Compensation Capacitor for Gain Peaking Prevention  
For the AD5545, the external resistance tolerance becomes the  
dominant error that users should be aware of.  
In the I-to-V configuration, the IOUT of the DAC and the invert-  
ing node of the op amp must be connected as close as possible,  
and proper PCB layout techniques must be employed. Since  
every code change corresponds to a step function, gain peaking  
may occur if the op amp has limited GBP, and if there is exces-  
sive parasitic capacitance at the inverting node.  
R1  
R2  
10kΩ±0.01% 10kΩ±0.01%  
C2  
U4  
+5V  
+5V  
U1  
5kΩ±0.01%  
V
V+  
1/2  
O
An optional compensation capacitor, C1, can be added for sta-  
bility as shown in Figure 20. C1 should be found empirically, but  
20 pF is generally more than adequate for the compensation.  
R3  
ADR03  
AD8620  
C1  
V
R
FB  
V–  
DD  
5V  
V
V
I
OUT  
V
REF  
IN  
OUT  
–5V  
–2.5 < V < +2.5  
1/2  
GND  
GND  
AD8620  
O
POSITIVE VOLTAGE OUTPUT  
U3  
To achieve the positive voltage output, an applied negative  
reference to the input of the DAC is preferred over the output  
inversion through an inverting amplifier because of the resis-  
tors’ tolerance errors. To generate a negative reference, the  
reference can be level shifted by an op amp such that the VOUT  
and GND pins of the reference become the virtual ground and  
–2.5 V, respectively (see Figure 21).  
AD5545/AD5555  
U2  
02918-0-022  
Figure 22. Four-Quadrant Multiplying Application Circuit  
PROGRAMMABLE CURRENT SOURCE  
Figure 23 shows a versatile V-to-I conversion circuit using  
improved Howland Current Pump. In addition to the precision  
current conversion it provides, this circuit enables a bidirec-  
tional current flow and high voltage compliance. This circuit  
can be used in a 4 mA to 20 mA current transmitter with up to  
a 500 Ω of load. In Figure 23, it shows that if the resistor net-  
work is matched, the load current is  
+5V  
ADR03  
V
V
OUT IN  
U4  
+5V  
V+  
U1  
V
GND  
U3  
C1  
R
DD  
FB  
1/2  
I
V
OUT  
REF  
AD8620  
V
O
–2.5V  
1/2  
V–  
GND  
AD8628  
(
R2 + R3)  
–5V  
R1  
R3  
0 < V < +2.5  
AD5545/AD5555  
IL =  
× VREF × D  
(5)  
U2  
O
02918-0-021  
R3, in theory, can be made small to achieve the current needed  
within the U3 output current driving capability. This circuit is  
versatile such that the AD8510 can deliver 20 mA in both  
directions, and the voltage compliance approaches 15 V, which  
is mainly limited by the supply voltages of U3. However, users  
must pay attention to the compensation. Without C1, it can be  
shown that the output impedance becomes  
Figure 21. Positive Voltage Output Configuration  
BIPOLAR OUTPUT  
The AD5545/AD5555 is inherently a 2-quadrant multiplying  
D/A converter. It can easily set up for unipolar output opera-  
tion. The full-scale output polarity is the inverse of the reference  
input voltage.  
R1 R3  
(
)
R1+ R2  
R1 (R2 + R3  
)
In some applications, it may be necessary to generate the full  
4-quadrant multiplying capability or a bipolar output swing. This  
is easily accomplished by using an additional external amplifier,  
U4, configured as a summing amplifier (see Figure 22). In this  
ZO  
=
(6)  
R1(  
R2 + R3  
)
Rev. 0 | Page 13 of 16  
 
 
 
 
AD5545/AD5555  
If the resistors are perfectly matched, ZO is infinite, which is  
desirable, and the resistors behave as an ideal current source.  
On the other hand, if they are not matched, ZO can be either  
positive or negative. The latter can cause oscillation. As a result,  
C1 is needed to prevent the oscillation. For critical applications,  
C1 could be found empirically but typically falls in the range of  
a few pF.  
R
WB and RWA are digital potentiometer 128-step programmable  
resistances and are given by  
DC  
128  
RWB  
RAB  
(8)  
(9)  
128 DC  
RWA  
RWB  
RAB  
128  
DC  
(10)  
V
DD  
RWA 128 DC  
U1  
V
where DC = Digital Potentiometer Digital Code in Decimal  
R
FB  
DD  
(0 ≤ DC ≤ 127).  
I
V
V
REF  
R1'  
R2'  
OUT  
REF  
150k15kΩ  
GND  
AD8628  
By putting Equations 7 through 10 together, the following  
results:  
C1  
10pF  
AD5545/AD5555  
U2  
V
DD  
R3'  
DC  
128 DC  
50Ω  
U3  
1+  
V+  
AD8510  
VREF AB =VREF  
×
(11)  
DA  
2N  
DC  
V–  
1−  
×
R3  
128 DC  
50Ω  
V
SS  
V
L
Table 9 shows a few examples of VREFAB of the 14-bit AD5555.  
R1  
R2  
150kΩ  
15kΩ  
Table 9. VREFABvs. DB and DC of the AD5555  
I
LOAD  
L
DC  
DA  
VREFAB  
0
X
VREF  
32  
32  
64  
64  
96  
96  
0
1.33 VREF  
1.6 VREF  
2 VREF  
4 VREF  
4 VREF  
02918-0-023  
8192  
0
8192  
0
Figure 23. Programmable Current Source with Bidirectional  
Current Control and High Voltage Compliance Capabilities  
DAC WITH PROGRAMMABLE INPUT  
REFERENCE RANGE  
8192  
–8 VREF  
Since high voltage references can be costly, users may consider  
using one of the DACs, a digital potentiometer, and a low  
voltage reference to form a single-channel DAC with a  
programmable input reference range. This approach optimizes  
the programmable range as well as facilitates future system  
upgrades with just software changes. Figure 24 shows this  
implementation. VREFABis in the feedback network, therefore,  
The output of DAC B is, therefore,  
DB  
VOB = −VREF AB  
(12)  
2N  
where DB is the DAC B digital code in decimal.  
The accuracy of VREFAB will be affected by the matching of the  
input and feedback resistors and, therefore, a digital potenti-  
ometer is used for U4 because of its inherent resistance  
matching. The AD7376 is a 30 V or 15 V, 128-step digital  
potentiometer. If 15 V or 7.5 V is adequate for the application,  
a 256-step AD5260 digital potentiometer can be used instead.  
RWB  
RWA  
DA RWB  
VREF AB =VREF × 1+  
VREF_AB  
×
×
(7)  
2N  
RWA  
where:  
VREFAB = Reference Voltage of VREFA and VREF  
REF = External Reference Voltage  
B
V
DA = DAC A Digital Code in Decimal  
N = Number of Bits of DAC  
Rev. 0 | Page 14 of 16  
 
 
AD5545/AD5555  
+5V  
C1  
+15V  
R
A
V
FB  
DD  
I
A
OUT  
V+  
U4  
A
B
V
A
REF  
U1A  
A
OP4177  
V–  
AD7376  
A
W
GND  
C2  
+15V  
2
2.2p  
–15V  
U2A  
U3  
V
IN  
3
5
6
OP4177  
TEMP TRIM  
AD5555  
V
V
REF_AB  
REF  
V
OUT  
GND  
4
U2C  
ADR03  
C3  
R
B
FB  
POT  
I
B
OUT  
V
B
O
V
B
REF  
OP4177  
U1B  
A
B
GND  
U2B  
02918-0-024  
Figure 24. DAC with Programmable Input Reference Range  
Rev. 0 | Page 15 of 16  
AD5545/AD5555  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
COPLANARITY  
0.65  
BSC  
SEATING  
PLANE  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153AB  
Figure 25. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)—Dimensions shown in millimeters  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Outline  
AD5545/AD5555 Products  
AD5545BRU*  
AD5545BRU–REEL7  
AD5555CRU  
INL LSB  
±±  
±±  
±1  
±1  
DNL LSB  
±1  
±1  
±1  
±1  
RES (Bits)  
Qty  
96  
1000  
96  
16  
16  
14  
14  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
TSSOP-16  
TSSOP-16  
TSSOP-16  
TSSOP-16  
RU–16  
RU–16  
RU–16  
RU–16  
AD5555CRU–REEL7  
1000  
*The AD5545/AD5555 contain 3131 transistors. The die size measures 71 mil. × 96 mil., 6816 sq. mil.  
© 2003 Analog Devices, Inc. All rights reserved. Trademarks and regis-  
tered trademarks are the property of their respective companies.  
C02918-0-7/03(0)  
Rev. 0 | Page 16 of 16  
 

相关型号:

AD5555CRUZ

Dual, Current-Output, Serial-Input, 16-/14-Bit DACs
ADI

AD5555CRUZ-REEL7

Dual, Current-Output, Serial-Input, 16-/14-Bit DACs
ADI

AD5556

Dual 8-,10-,12-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5556CRU

Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI

AD5556CRU-REEL7

Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI

AD5556CRUZ

Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with Four-Quadrant Resistors
ADI

AD5557

Dual Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI

AD5557CRU

Dual Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI

AD5557CRU-R7

IC PARALLEL, WORD INPUT LOADING, 0.5 us SETTLING TIME, 14-BIT DAC, PDSO38, MO-153BD-1, TSSOP-38, Digital to Analog Converter
ADI

AD5557CRU-REEL7

Dual Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI

AD5557CRUZ

Dual-Current Output, Parallel Input, 16-/14-Bit Multiplying DACs
ADI

AD5560

1.2 A Programmable Device Power Supply with Integrated 16-Bit Level Setting DACs
ADI