AD5672RBRUZ [ADI]

Octal, 12-/16-Bit nanoDAC with ppm/°C Reference, SPI Interface;
AD5672RBRUZ
型号: AD5672RBRUZ
厂家: ADI    ADI
描述:

Octal, 12-/16-Bit nanoDAC with ppm/°C Reference, SPI Interface

光电二极管 转换器
文件: 总34页 (文件大小:865K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Octal, 12-/16-Bit nanoDAC+ with  
2 ppm/°C Reference, SPI Interface  
Data Sheet  
AD5672R/AD5676R  
FEATURES  
GENERAL DESCRIPTION  
High performance  
The AD5672R/AD5676R are low power, octal, 12-/16-bit buffered  
voltage output digital-to-analog converters (DACs). They include  
a 2.5 V, 2 ppm/°C internal reference (enabled by default) and a  
gain select pin giving a full-scale output of 2.5 V (gain = 1) or  
5 V (gain = 2). The devices operate from a single 2.7 V to 5.5 V  
supply and are guaranteed monotonic by design. The AD5672R/  
AD5676R are available in a 20-lead TSSOP and in a 20-lead LFCSP  
and incorporate a power-on reset circuit and a RSTSEL pin that  
ensures that the DAC outputs power up to zero scale or midscale  
and remain there until a valid write. The AD5672R/AD5676R  
contain a power-down mode, reducing the current consumption to  
1 µA typical while in power-down mode.  
High relative accuracy (INL): 3 LSB maximum at 16 bits  
Total unadjusted error (TUE): 0.14% of FSR maximum  
Offset error: 1.5 mV maximum  
Gain error: 0.06% of FSR maximum  
Low drift 2.5 V reference: 2 ppm/°C typical  
Wide operating ranges  
−40°C to +125°C temperature range  
2.7 V to 5.5 V power supply range  
Easy implementation  
User selectable gain of 1 or 2 (GAIN pin/gain bit)  
1.8 V logic compatibility  
50 MHz SPI with readback or daisy chain  
Robust 2 kV HBM and 1.5 kV FICDM ESD rating  
20-lead, RoHS-compliant TSSOP and LFCSP  
Table 1. Octal nanoDAC+® Devices  
Interface  
Reference  
16-Bit  
12-Bit  
SPI  
Internal  
AD5676R  
AD5676  
AD5675R  
AD5672R  
Not applicable  
AD5671R  
APPLICATIONS  
Optical transceivers  
External  
Internal  
I2C  
Base station power amplifiers  
Process control (PLC input/output cards)  
Industrial automation  
PRODUCT HIGHLIGHTS  
1. High Relative Accuracy (INL).  
AD5672R (12-bit): 1 LSB maximum.  
AD5676R (16-bit): 3 LSB maximum.  
2. Low Drift, 2.5 V On-Chip Reference.  
Data acquisition systems  
FUNCTIONAL BLOCK DIAGRAM  
V
V
V
REFOUT  
LOGIC  
DD  
AD5672R/AD5676R  
2.5V  
REF  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
DAC  
STRING  
DAC 0  
INPUT  
V
V
V
V
V
V
V
V
0
1
2
3
4
5
6
7
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
REGISTER  
REGISTER  
DAC  
REGISTER  
STRING  
DAC 1  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC 2  
INPUT  
REGISTER  
SCLK  
DAC  
REGISTER  
STRING  
DAC 3  
INPUT  
REGISTER  
SYNC  
SDI  
DAC  
REGISTER  
STRING  
DAC 4  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC 5  
INPUT  
REGISTER  
SDO  
DAC  
REGISTER  
STRING  
DAC 6  
INPUT  
REGISTER  
LDAC  
DAC  
REGISTER  
STRING  
DAC 7  
INPUT  
REGISTER  
RESET  
GAIN POWER-DOWN  
POWER-ON  
RESET  
×1/×2  
LOGIC  
RSTSEL  
GAIN  
GND  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD5672R/AD5676R  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Write and Update Commands.................................................. 26  
Daisy-Chain Operation ............................................................. 26  
Readback Operation .................................................................. 27  
Power-Down Operation............................................................ 27  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AD5672R Specifications.............................................................. 3  
AD5676R Specifications.............................................................. 5  
AC Characteristics........................................................................ 7  
Timing Characteristics ................................................................ 8  
Daisy-Chain and Readback Timing Characteristics ............... 9  
Absolute Maximum Ratings.......................................................... 11  
Thermal Resistance .................................................................... 11  
ESD Caution................................................................................ 11  
Pin ConfigurationS and Function Descriptions......................... 12  
Typical Performance Characteristics ........................................... 13  
Terminology .................................................................................... 22  
Theory of Operation ...................................................................... 24  
Digital-to-Analog Converter .................................................... 24  
Transfer Function ....................................................................... 24  
DAC Architecture....................................................................... 24  
Serial Interface ............................................................................ 25  
Standalone Operation................................................................ 26  
REVISION HISTORY  
LDAC  
Load DAC (Hardware  
Pin)........................................... 28  
LDAC  
Mask Register ................................................................. 28  
RESET  
Hardware Reset (  
) .......................................................... 29  
Reset Select Pin (RSTSEL) ........................................................ 29  
Amplifier Gain Selection on LFCSP........................................ 29  
Internal Reference Setup ........................................................... 29  
Solder Heat Reflow..................................................................... 29  
Long-Term Temperature Drift ................................................. 29  
Thermal Hysteresis .................................................................... 30  
Applications Information .............................................................. 31  
Power Supply Recommendations............................................. 31  
Microprocessor Interfacing....................................................... 31  
AD5672R/AD5676R to ADSP-BF531 Interface..................... 31  
AD5672R/AD5676R to SPORT Interface............................... 31  
Layout Guidelines....................................................................... 31  
Galvanically Isolated Interface ................................................. 32  
Outline Dimensions....................................................................... 33  
Ordering Guide .......................................................................... 34  
11/15—Rev. A to Rev. B  
Added Amplifier Gain Selection on LFCSP Section ................. 29  
Updated Outline Dimensions....................................................... 33  
Changes to Ordering Guide.......................................................... 34  
Added 20-Lead LFCSP.......................................................Universal  
Change to Features ........................................................................... 1  
Changed TA = −40°C to +125°C to TMIN to TMAX.......................... 7  
Changes to Table 7 .......................................................................... 11  
Added Thermal Resistance Section and Table 8; Renumbered  
Sequentially ..................................................................................... 11  
Added Figure 7; Renumbered Sequentially ................................ 12  
Changes to Table 9.......................................................................... 12  
Changes to Transfer Function Section, Internal Reference  
Section, and Output Amplifiers Section...................................... 24  
Changes to Table 10 ....................................................................... 25  
Changes to Write to and Update DAC Channel n (Independent  
2/15—Rev. 0 to Rev. A  
Added AD5672R Specifications Section ........................................3  
Changes to Table 2.............................................................................3  
Added AD5676R Specifications Section and Table 3;  
Renumbered Sequentially ................................................................5  
RESET  
Change to  
Pulse Activation Parameter, Table 5 ...............8  
Change to Terminology Section................................................... 22  
Changes to Transfer Function Section and Output Amplifiers  
Section.............................................................................................. 24  
of  
) Section ............................................................................ 26  
LDAC  
RESET  
Changes to Hardware Reset (  
) Section............................ 29  
Changes to Readback Operation Section.................................... 27  
LDAC  
Changes to Ordering Guide.......................................................... 33  
Changes to  
Mask Register Section and Table 15............ 28  
10/14—Revision 0: Initial Version  
Changes to Reset Select Pin (RSTSEL) Section, Internal  
Reference Setup Section, Table 17, and Table 18........................ 29  
Rev. B | Page 2 of 34  
 
Data Sheet  
AD5672R/AD5676R  
SPECIFICATIONS  
AD5672R SPECIFICATIONS  
VDD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ 5.5 V, RL = 2 kΩ, CL = 200 pF, all specifications TA = −40°C to +125°C, unless otherwise noted.  
Table 2.  
Parameter  
STATIC PERFORMANCE1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Resolution  
Relative Accuracy (INL)  
12  
Bits  
LSB  
LSB  
LSB  
LSB  
mV  
mV  
mV  
0.12  
1
1
0.1  
0.1  
1.6  
2
Gain = 1  
Gain = 2  
Gain = 1  
Gain = 2  
Gain = 1 or gain = 2  
Gain = 1  
Gain = 2  
0.12  
0.01  
0.01  
Differential Nonlinearity (DNL)  
Zero Code Error  
Offset Error  
0.8  
−0.75  
−0.1  
−0.018  
−0.013  
+0.04  
−0.02  
0.03  
0.006  
1
1.5  
0.14  
Full-Scale Error  
Gain Error  
TUE  
% of FSR Gain = 1  
% of FSR Gain = 2  
% of FSR Gain = 1  
% of FSR Gain = 2  
% of FSR Gain = 1  
% of FSR Gain = 2  
µV/°C  
0.07  
0.12  
0.06  
0.18  
0.14  
Offset Error Drift2  
DC Power Supply Rejection Ratio (PSRR)2  
DC Crosstalk2  
0.25  
2
3
mV/V  
µV  
µV/mA  
µV  
DAC code = midscale, VDD = 5 V 10%  
Due to single channel, full-scale output change  
Due to load current change  
2
Due to powering down (per channel)  
OUTPUT CHARACTERISTICS2  
Output Voltage Range  
0
0
2.5  
5
V
V
Gain = 1  
Gain = 2  
Output Current Drive  
Capacitive Load Stability  
15  
mA  
nF  
2
RL = ∞  
10  
nF  
kΩ  
µV/mA  
RL = 1 kΩ  
Resistive Load3  
Load Regulation  
1
183  
177  
VDD = 5 V 10%, DAC code = midscale,  
−30 mA ≤ IOUT ≤ +30 mA  
VDD = 3 V 10%, DAC code = midscale,  
−20 mA ≤ IOUT ≤ +20 mA  
µV/mA  
Short-Circuit Current4  
Load Impedance at Rails5  
Power-Up Time  
40  
25  
2.5  
mA  
µs  
Exiting power-down mode, VDD = 5 V  
REFERENCE OUTPUT  
Output Voltage6  
Reference Temperature Coefficient7, 8  
Output Impedance2  
Output Voltage Noise2  
Output Voltage Noise Density2  
2.4975  
2.5025  
5
V
2
0.04  
13  
ppm/°C  
µV p-p  
nV/√Hz  
See the Terminology section  
0.1 Hz to 10 Hz  
240  
At ambient temperature, f = 10 kHz, CL = 10 nF,  
gain = 1 or 2  
At ambient temperature  
At ambient temperature  
VDD ≥ 3 V  
At ambient temperature  
After 1000 hours at 125°C  
First cycle  
Load Regulation Sourcing2  
Load Regulation Sinking2  
Output Current Load Capability2  
Line Regulation2  
Long-Term Stability/Drift2  
Thermal Hysteresis2  
29  
74  
20  
43  
12  
125  
25  
µV/mA  
µV/mA  
mA  
µV/V  
ppm  
ppm  
ppm  
Additional cycles  
Rev. B | Page 3 of 34  
 
 
AD5672R/AD5676R  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LOGIC INPUTS2  
Input Current  
Input Voltage  
Low, VINL  
1
µA  
Per pin  
0.3 × VLOGIC  
V
High, VINH  
0.7 × VLOGIC  
V
Pin Capacitance  
LOGIC OUTPUTS (SDO)2  
Output Voltage  
Low, VOL  
3
4
pF  
0.4  
V
V
pF  
ISINK = 200 μA  
ISOURCE = 200 μA  
High, VOH  
VLOGIC − 0.4  
Floating State Output Capacitance  
POWER REQUIREMENTS  
VLOGIC  
1.8  
5.5  
1
V
ILOGIC  
µA  
µA  
µA  
µA  
V
Power-on, −40°C to +105°C  
Power-on, −40°C to +125°C  
Power-down, −40°C to +105°C  
Power-down, −40°C to +125°C  
Gain = 1  
1.3  
0.5  
1.3  
5.5  
5.5  
VDD  
2.7  
VREF + 1.5  
V
Gain = 2  
IDD  
VIH = VDD, VIL = GND, VDD = 2.7 V to 5.5 V  
Internal reference off, −40°C to +85°C  
Internal reference on, −40°C to +85°C  
Internal reference off  
Normal Mode9  
1.1  
1.8  
1.1  
1.8  
1
1
1
1
1
1.26  
2.0  
1.3  
2.1  
1.7  
1.7  
2.5  
2.5  
5.5  
5.5  
mA  
mA  
mA  
mA  
µA  
µA  
µA  
µA  
µA  
µA  
Internal reference on  
All Power-Down Modes10  
Tristate to 1 kΩ, −40°C to +85°C  
Power down to 1 kΩ, −40°C to +85°C  
Tristate, −40°C to +105°C  
Power down to 1 kΩ, −40°C to +105°C  
Tristate to 1 kΩ, −40°C to +125°C  
Power down to 1 kΩ, −40°C to +125°C  
1
1 DC specifications tested with the outputs unloaded, unless otherwise noted. Upper dead band = 10 mV and exists only when VREF = VDD with gain = 1, or when VREF/2 =  
V
DD with gain = 2. Linearity calculated using a reduced code range of 12 to 4080.  
2 Guaranteed by design and characterization; not production tested.  
3 Together, Channel 0, Channel 1, Channel 2, and Channel 3 can source/sink 40 mA. Similarly, together, Channel 4, Channel 5, Channel 6, and Channel 7 can source/sink  
40 mA up to a junction temperature of 125°C.  
4 VDD = 5 V. The devices include current limiting intended to protect the devices during temporary overload conditions. Junction temperature can be exceeded during  
current limit. Operation above the specified maximum operation junction temperature may impair device reliability.  
5 When drawing a load current at either rail, the output voltage headroom with respect to that rail is limited by the 25 Ω typical channel resistance of the output  
devices. For example, when sinking 1 mA, the minimum output voltage = 25 Ω × 1 mA = 25 mV.  
6 Initial accuracy presolder reflow is 750 µV; output voltage includes the effects of preconditioning drift. See the Internal Reference Setup section.  
7 Reference is trimmed and tested at two temperatures and is characterized from −40°C to +125°C.  
8 Reference temperature coefficient calculated as per the box method. See the Terminology section for further information.  
9 Interface inactive. All DACs active. DAC outputs unloaded.  
10 All DACs powered down.  
Rev. B | Page 4 of 34  
 
Data Sheet  
AD5672R/AD5676R  
AD5676R SPECIFICATIONS  
VDD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ 5.5 V, RL = 2 kΩ, CL = 200 pF, all specifications TA = −40°C to +125°C, unless otherwise noted.  
Table 3.  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
STATIC PERFORMANCE1  
Min  
Max  
Min  
Max  
Unit  
Test Conditions/Comments  
Resolution  
16  
16  
Bits  
Relative Accuracy (INL)  
1.8  
1.7  
8
8
1.8  
1.7  
3
3
LSB  
LSB  
Gain = 1  
Gain = 2  
Differential Nonlinearity (DNL)  
0.7  
1
0.7  
1
LSB  
Gain = 1  
0.5  
1
0.5  
1
LSB  
Gain = 2  
Zero Code Error  
Offset Error  
0.8  
3
0.8  
1.6  
2
1.5  
mV  
mV  
mV  
Gain = 1 or gain = 2  
Gain = 1  
Gain = 2  
Gain = 1  
Gain = 2  
Gain = 1  
Gain = 2  
Gain = 1  
Gain = 2  
−0.75  
−0.1  
−0.018  
−0.013  
+0.04  
−0.02  
0.03  
0.006  
1
6
4
0.28  
0.14  
0.24  
0.12  
0.3  
−0.75  
−0.1  
−0.018  
−0.013  
+0.04  
−0.02  
0.03  
0.006  
1
Full-Scale Error  
Gain Error  
0.14  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
µV/°C  
mV/V  
0.07  
0.12  
0.06  
0.18  
0.14  
TUE  
0.25  
Offset Error Drift2  
DC Power Supply Rejection  
0.25  
0.25  
DAC code = midscale, VDD  
5 V 10%  
Due to single channel, full-scale  
output change  
=
Ratio (PSRR)2  
DC Crosstalk2  
2
2
µV  
3
2
3
2
µV/mA  
µV  
Due to load current change  
Due to powering down (per channel)  
OUTPUT CHARACTERISTICS2  
Output Voltage Range  
0
0
2.5  
5
0
0
2.5  
5
V
V
Gain = 1  
Gain = 2  
Output Current Drive  
Capacitive Load Stability  
15  
15  
mA  
nF  
2
2
RL = ∞  
10  
10  
nF  
kΩ  
µV/mA  
RL = 1 kΩ  
Resistive Load3  
Load Regulation  
1
1
183  
177  
183  
177  
VDD = 5 V 10%, DAC code =  
midscale, −30 mA ≤ IOUT ≤ +30 mA  
VDD = 3 V 10%, DAC code =  
µV/mA  
midscale, −20 mA ≤ IOUT ≤ +20 mA  
Short-Circuit Current4  
Load Impedance at Rails5  
Power-Up Time  
40  
25  
2.5  
40  
25  
2.5  
mA  
µs  
Exiting power-down mode, VDD = 5 V  
REFERENCE OUTPUT  
Output Voltage6  
2.4975  
2.5025 2.4975  
20  
2.5025  
5
V
Reference Temperature  
5
2
ppm/°C  
See the Terminology section  
0.1 Hz to 10 Hz  
Coefficient7, 8  
Output Impedance2  
0.04  
13  
240  
0.04  
13  
240  
Output Voltage Noise2  
Output Voltage Noise Density2  
µV p-p  
nV/√Hz  
At ambient temperature, f = 10 kHz,  
CL = 10 nF, gain = 1 or 2  
At ambient temperature  
At ambient temperature  
VDD ≥ 3 V  
Load Regulation Sourcing2  
Load Regulation Sinking2  
29  
74  
20  
29  
74  
20  
µV/mA  
µV/mA  
mA  
Output Current Load  
Capability2  
Line Regulation2  
43  
12  
125  
25  
43  
12  
125  
25  
µV/V  
ppm  
ppm  
ppm  
At ambient temperature  
After 1000 hours at 125°C  
First cycle  
Long-Term Stability/Drift2  
Thermal Hysteresis2  
Additional cycles  
Rev. B | Page 5 of 34  
 
AD5672R/AD5676R  
Data Sheet  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
LOGIC INPUTS2  
Input Current  
Input Voltage  
Low, VINL  
Min  
Max  
Min  
Max  
Unit  
Test Conditions/Comments  
1
1
µA  
Per pin  
0.3 ×  
VLOGIC  
0.3 ×  
VLOGIC  
V
High, VINH  
0.7 ×  
VLOGIC  
0.7 ×  
VLOGIC  
V
Pin Capacitance  
LOGIC OUTPUTS (SDO)2  
Output Voltage  
Low, VOL  
3
4
3
4
pF  
0.4  
0.4  
V
V
ISINK = 200 μA  
ISOURCE = 200 μA  
High, VOH  
VLOGIC  
0.4  
VLOGIC  
0.4  
Floating State Output  
Capacitance  
pF  
POWER REQUIREMENTS  
VLOGIC  
ILOGIC  
1.8  
5.5  
1
1.8  
5.5  
1
V
µA  
µA  
µA  
µA  
V
Power-on, −40°C to +105°C  
Power-on, −40°C to +125°C  
Power-down, −40°C to +105°C  
Power-down, −40°C to +125°C  
Gain = 1  
1.3  
0.5  
1.3  
5.5  
5.5  
1.3  
0.5  
1.3  
5.5  
5.5  
VDD  
2.7  
VREF + 1.5  
2.7  
VREF + 1.5  
V
Gain = 2  
IDD  
VIH = VDD, VIL = GND, VDD = 2.7 V to 5.5 V  
Internal reference off, −40°C to +85°C  
Internal reference on, −40°C to +85°C  
Internal reference off  
Normal Mode9  
1.1  
1.8  
1.1  
1.8  
1
1
1
1
1.26  
2.0  
1.3  
2.1  
1.7  
1.7  
2.5  
2.5  
1.1  
1.8  
1.1  
1.8  
1
1
1
1
1.26  
2.0  
1.3  
2.1  
1.7  
1.7  
2.5  
2.5  
mA  
mA  
mA  
mA  
µA  
µA  
µA  
µA  
Internal reference on  
All Power-Down Modes10  
Tristate to 1 kΩ, −40°C to +85°C  
Power down to 1 kΩ, −40°C to +85°C  
Tristate, −40°C to +105°C  
Power down to 1 kΩ, −40°C to  
+105°C  
1
1
5.5  
5.5  
1
1
5.5  
5.5  
µA  
µA  
Tristate to 1 kΩ, −40°C to +125°C  
Power down to 1 kΩ, −40°C to +125°C  
1 DC specifications tested with the outputs unloaded, unless otherwise noted. Upper dead band = 10 mV and exists only when VREF = VDD with gain = 1, or when VREF/2 =  
V
DD with gain = 2. Linearity calculated using a reduced code range of 256 to 65,280.  
2 Guaranteed by design and characterization; not production tested.  
3 Together, Channel 0, Channel 1, Channel 2, and Channel 3 can source/sink 40 mA. Similarly, together, Channel 4, Channel 5, Channel 6, and Channel 7 can source/sink  
40 mA up to a junction temperature of 125°C.  
4 VDD = 5 V. The devices include current limiting intended to protect the devices during temporary overload conditions. Junction temperature can be exceeded during  
current limit. Operation above the specified maximum operation junction temperature may impair device reliability.  
5 When drawing a load current at either rail, the output voltage headroom with respect to that rail is limited by the 25 Ω typical channel resistance of the output  
devices. For example, when sinking 1 mA, the minimum output voltage = 25 Ω × 1 mA = 25 mV.  
6 Initial accuracy presolder reflow is 750 µV; output voltage includes the effects of preconditioning drift. See the Internal Reference Setup section.  
7 Reference is trimmed and tested at two temperatures and is characterized from −40°C to +125°C.  
8 Reference temperature coefficient calculated as per the box method. See the Terminology section for further information.  
9 Interface inactive. All DACs active. DAC outputs unloaded.  
10 All DACs powered down.  
Rev. B | Page 6 of 34  
Data Sheet  
AD5672R/AD5676R  
AC CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ 5.5 V, RL = 2 kΩ to GND, CL = 200 pF to GND, all specifications TMIN to TMAX unless otherwise  
noted. The operating temperature range is −40°C to +125°C; TA = 25°C. Guaranteed by design and characterization, not production tested.  
Table 4.  
Parameter  
OUTPUT VOLTAGE SETTLING TIME1  
Min Typ  
Max  
Unit  
Test Conditions/Comments  
AD5672R  
AD5676R  
5
5
8
8
µs  
µs  
¼ to ¾ scale settling to 2 LSB  
¼ to ¾ scale settling to 2 LSB  
SLEW RATE  
DIGITAL-TO-ANALOG GLITCH IMPULSE1  
DIGITAL FEEDTHROUGH1  
CROSSTALK1  
Digital  
0.8  
1.4  
0.13  
V/µs  
nV-sec  
nV-sec  
1 LSB change around major carry (internal reference, gain = 1)  
0.1  
−0.25  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
dB  
Analog  
−1.3  
−2.0  
−80  
300  
6
Internal reference, gain = 2  
Internal reference, gain = 2  
DAC-to-DAC  
TOTAL HARMONIC DISTORTION2  
OUTPUT NOISE SPECTRAL DENSITY1  
OUTPUT NOISE1  
At TA, bandwidth = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
nV/√Hz DAC code = midscale, 10 kHz, gain = 2  
µV p-p  
dB  
0.1 Hz to 10 Hz, gain = 1  
SIGNAL-TO-NOISE RATIO (SNR)  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
90  
At TA = 25°C, bandwidth = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
At TA = 25°C, bandwidth = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
At TA = 25°C, bandwidth = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
83  
dB  
SIGNAL-TO-NOISE-AND-DISTORTION  
RATIO (SINAD)  
80  
dB  
1 See the Terminology section. Measured using internal reference and gain = 1, unless otherwise noted.  
2 Digitally generated sine wave at 1 kHz.  
Rev. B | Page 7 of 34  
 
AD5672R/AD5676R  
Data Sheet  
TIMING CHARACTERISTICS  
All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. See Figure 2.  
VDD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ 5.5 V, and VREFIN = 2.5 V. All specifications −40°C to +125°C, unless otherwise noted. Maximum  
SCLK frequency is 50 MHz at VDD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ VDD. Guaranteed by design and characterization; not production tested.  
Table 5.  
1.8 V ≤ VLOGIC < 2.7 V 2.7 V ≤ VLOGIC ≤ 5.5 V  
Parameter Min  
Max  
Min  
20  
1.7  
4.3  
10.1  
0.8  
−0.8  
1.25  
6.75  
9.7  
Max  
Unit Description  
t1  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
SCLK Cycle Time  
SCLK High Time  
SCLK Low Time  
SYNC to SCLK Falling Edge Setup Time  
Data Setup Time  
t2  
4
t3  
4.5  
t4  
15.1  
0.8  
t5  
t6  
0.1  
Data Hold Time  
t7  
0.95  
9.65  
4.75  
4.85  
41.25  
26.35  
4.8  
SCLK Falling Edge to SYNC Rising Edge  
Minimum SYNC High Time (Single, Combined, or All Channel Update)  
SYNC Falling Edge to SCLK Fall Ignore  
LDAC Pulse Width Low  
t8  
t9  
t10  
t11  
t12  
t13  
t14  
5.45  
25  
SCLK Falling Edge to LDAC Rising Edge  
SCLK Falling Edge to LDAC Falling Edge  
RESET Minimum Pulse Width Low  
RESET Pulse Activation Time  
Power-Up Time1  
20.3  
6.2  
132  
5.15  
80  
5.18  
1 Time to exit power-down to normal mode of AD5672R/AD5676R operation, 32nd clock edge to 90% of DAC midscale value, with output unloaded.  
t9  
t1  
SCLK  
t2  
t8  
t7  
t3  
t4  
SYNC  
SDI  
t6  
t5  
DB23  
DB0  
t12  
t10  
1
LDAC  
t11  
2
LDAC  
t13  
RESET  
t14  
V
OUT  
1
2
ASYNCHRONOUS LDAC UPDATE MODE.  
SYNCHRONOUS LDAC UPDATE MODE.  
Figure 2. Serial Write Operation  
Rev. B | Page 8 of 34  
 
 
 
Data Sheet  
AD5672R/AD5676R  
DAISY-CHAIN AND READBACK TIMING CHARACTERISTICS  
All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. See Figure 4 and  
Figure 5. VDD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ 5.5 V, VREF = 2.5 V. All specifications −40°C to +125°C, unless otherwise noted. Maximum  
SCLK frequency is 25 MHz or 15 MHz at VDD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ VDD. Guaranteed by design and characterization; not  
production tested.  
Table 6.  
1.8 V ≤ VLOGIC < 2.7 V  
Min Max  
2.7 V ≤ VLOGIC ≤ 5.5 V  
Min Max  
Parameter  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Description  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t10  
t11  
120  
33  
2.8  
83.3  
25.3  
3.25  
50  
SCLK Cycle Time  
SCLK High Time  
SCLK Low Time  
SYNC to SCLK Falling Edge  
Data Setup Time  
75  
1.2  
0.3  
16.2  
55.1  
21.5  
24.4  
0.5  
0.4  
13  
Data Hold Time  
SCLK Falling Edge to SYNC Rising Edge  
Minimum SYNC High Time  
SDO Data Valid from SCLK Rising Edge  
SCLK Falling Edge to SYNC Rising Edge  
45  
22.7  
20.3  
t12  
85.5  
54  
ns  
SYNC Rising Edge to SCLK Rising Edge  
Circuit Diagram and Daisy-Chain and Readback Timing Diagrams  
200µA  
I
OL  
TO OUTPUT  
PIN  
V
(MIN)  
OH  
C
L
20pF  
200µA  
I
OH  
Figure 3. Load Circuit for Digital Output (SDO) Timing Specifications  
SCLK  
24  
48  
t11  
t8  
t12  
t4  
SYNC  
SDI  
t6  
t5  
DB23  
DB0  
DB23  
DB0  
INPUT WORD FOR DAC N  
INPUT WORD FOR DAC N + 1  
INPUT WORD FOR DAC N  
t10  
DB23  
DB0  
SDO  
UNDEFINED  
Figure 4. Daisy-Chain Timing Diagram  
Rev. B | Page 9 of 34  
 
 
AD5672R/AD5676R  
Data Sheet  
t1  
SCLK  
24  
24  
1
1
t3  
t7  
t4  
t2  
t8  
SYNC  
t6  
t5  
DB23  
DB0  
DB23  
DB0  
SDI  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
NOP CONDITION  
t10  
DB23  
DB0  
DB23  
DB0  
SDO  
UNDEFINED  
SELECTED REGISTER DATA  
CLOCKED OUT  
Figure 5. Readback Timing Diagram  
Rev. B | Page 10 of 34  
 
Data Sheet  
AD5672R/AD5676R  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
The design of the thermal board requires close attention. Thermal  
resistance is highly impacted by the printed circuit board (PCB)  
being used, layout, and environmental conditions.  
Table 7.  
Parameter  
Rating  
VDD to GND  
VLOGIC to GND  
VOUTx to GND  
VREF to GND  
Digital Input Voltage to GND  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
Reflow Soldering Peak Temperature,  
Pb-Free (J-STD-020)  
−0.3 V to +7 V  
−0.3 V to +7 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VLOGIC + 0.3 V  
−40°C to +125°C  
−65°C to +150°C  
125°C  
Table 8. Thermal Resistance  
Package Type  
θJA  
θJB  
θJC  
ΨJT  
ΨJB  
Unit  
20-Lead TSSOP  
(RU-20)1  
98.65 44.39 17.58 1.77 43.9 °C/W  
20-Lead LFCSP  
(CP-20-8)2  
82  
16.67 32.5  
0.43 22  
°C/W  
1 Thermal impedance simulated values are based on a JEDEC 2S2P thermal  
test board. See JEDEC JESD51  
260°C  
2 Thermal impedance simulated values are based on a JEDEC 2S2P thermal  
test board with nine thermal vias. See JEDEC JESD51.  
ESD Ratings  
Human Body Model (HBM)  
2 kV  
Field-Induced Charged Device Model  
(FICDM)  
1.5 kV  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 11 of 34  
 
 
 
AD5672R/AD5676R  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
1
V
2
OUT  
OUT  
2
V
0
V
V
3
OUT  
OUT  
REFOUT  
3
V
DD  
AD5672R/  
AD5676R  
TOP VIEW  
(Not to Scale)  
4
V
RESET  
SDO  
V
REFOUT  
V
LOGIC  
15  
14  
13  
12  
11  
1
2
3
4
5
DD  
5
RESET  
SDO  
V
SYNC  
SCLK  
SDI  
LOGIC  
AD5672R/  
AD5676R  
SYNC  
SCLK  
SDI  
6
LDAC  
RSTSEL  
GND  
LDAC  
GND  
7
8
GAIN  
9
V
7
6
V
V
4
5
OUT  
OUT  
OUT  
OUT  
10  
V
TOP VIEW  
(Not to Scale)  
NOTES  
1. NIC = NO INTERNAL CONNECTION.  
2. THE EXPOSED PAD MUST BE TIED TO GND.  
Figure 6. TSSOP Pin Configuration  
Figure 7. LFCSP Pin Configuration  
Table 9. Pin Function Descriptions  
Pin No.  
TSSOP LFCSP Mnemonic Description  
1
2
3
19  
20  
1
VOUT  
VOUT  
VDD  
1
0
Analog Output Voltage from DAC 1. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 0. The output amplifier has rail-to-rail operation.  
Power Supply Input. These devices operate from 2.7 V to 5.5 V. Decouple the VDD supply with a 10 µF  
capacitor in parallel with a 0.1 µF capacitor to GND.  
4
5
2
3
VLOGIC  
SYNC  
Digital Power Supply. The voltage on this pin ranges from 1.8 V to 5.5 V.  
Active Low Control Input. This is the frame synchronization signal for the input data. When SYNC goes  
low, data transfers in on the falling edges of the next 24 clocks.  
6
7
8
4
5
SCLK  
SDI  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input.  
Data transfers at rates of up to 50 MHz.  
Serial Data Input. This device has a 24-bit input shift register. Data is clocked into the register on the  
falling edge of the serial clock input.  
GAIN  
Span Set Pin. When this pin is tied to GND, all eight DAC outputs have a span from 0 V to VREF. If this pin is  
tied to VLOGIC, all eight DACs output a span of 0 V to 2 × VREF  
.
9
6
7
8
9
10  
11  
VOUT  
VOUT  
VOUT  
VOUT  
NIC  
7
6
5
4
Analog Output Voltage from DAC 7. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 6. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 5. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 4. The output amplifier has rail-to-rail operation.  
No Internal Connection.  
Ground Reference Point for All Circuitry on the Device.  
Power-On Reset Pin. Tie this pin to GND to power up all eight DACs to zero scale. Tie this pin to VLOGIC to  
power up all eight DACs to midscale.  
10  
11  
12  
13  
14  
GND  
RSTSEL  
15  
12  
LDAC  
Load DAC. LDAC operates in two modes, asynchronously and synchronously. Pulsing this pin low allows any or  
all DAC registers to be updated if the input registers have new data, which allows all DAC outputs to update  
simultaneously. This pin can also be tied permanently low.  
16  
17  
13  
14  
SDO  
Serial Data Output. This pin can be used to daisy-chain a number of devices together, or it can be used for  
readback. The serial data transfers on the rising edge of SCLK and is valid on the falling edge.  
Asynchronous Reset Input. The RESET input is falling edge sensitive. When RESET is low, all LDAC pulses are  
ignored. When RESET is activated, the input register and the DAC register are updated with zero scale or  
midscale, depending on the state of the RSTSEL pin.  
RESET  
18  
19  
20  
N/A1  
15  
17  
18  
0
VREFOUT  
Reference Output Voltage. When using the internal reference, this is the reference output pin.  
Analog Output Voltage from DAC 3. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 2. The output amplifier has rail-to-rail operation.  
Exposed Pad. The exposed pad must be tied to GND.  
VOUT  
VOUT  
3
2
EPAD  
1 N/A means not applicable.  
Rev. B | Page 12 of 34  
 
 
Data Sheet  
AD5672R/AD5676R  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.0  
1.0  
0.8  
1.5  
0.6  
1.0  
0.4  
0.5  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
CODE  
Figure 8. AD5676R INL Error vs. Code  
Figure 11. AD5672R DNL Error vs. Code  
2.0  
1.5  
0.04  
0.03  
0.02  
0.01  
0
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.01  
–0.02  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
CODE  
Figure 9. AD5672R INL Error vs. Code  
Figure 12. AD5676R TUE vs. Code  
1.0  
0.8  
0.04  
0.03  
0.02  
0.01  
0
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.01  
–0.02  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
CODE  
Figure 10. AD5676R DNL Error vs. Code  
Figure 13. AD5672R TUE vs. Code  
 
AD5672R/AD5676R  
Data Sheet  
10  
10  
8
8
6
6
4
4
2
2
0
0
–2  
–4  
–2  
–4  
–6  
–8  
–10  
V
T
= 5V  
V
T
= 5V  
–6  
–8  
DD  
= 25°C  
DD  
= 25°C  
A
A
INTERNAL REFERENCE = 2.5V  
INTERNAL REFERENCE = 2.5V  
–10  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
120  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. AD5676R INL Error vs. Temperature  
Figure 17. AD5672R DNL Error vs. Temperature  
10  
8
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
6
4
2
0
V
= 5V  
= 25°C  
DD  
–2  
–4  
–6  
–8  
–10  
T
A
INTERNAL REFERENCE = 2.5V  
V
= 5V  
= 25°C  
DD  
T
A
INTERNAL REFERENCE = 2.5V  
–40  
–20  
0
20  
40  
60  
80  
100  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 18. AD5676R TUE vs. Temperature  
Figure 15. AD5672R INL Error vs. Supply Voltage  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
10  
8
6
4
2
0
V
= 5V  
= 25°C  
DD  
–2  
–4  
–6  
–8  
–10  
T
A
INTERNAL REFERENCE = 2.5V  
V
T
= 5V  
DD  
= 25°C  
A
INTERNAL REFERENCE = 2.5V  
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 19. AD5672R TUE vs. Temperature  
Figure 16. AD5676R DNL Error vs. Temperature  
Rev. B | Page 14 of 34  
Data Sheet  
AD5672R/AD5676R  
10  
0.10  
0.08  
0.06  
0.04  
0.02  
0
8
6
4
2
0
–2  
–4  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
V
= 5V  
= 25°C  
V
= 5V  
–6  
–8  
DD  
DD  
T
T = 25°C  
A
A
INTERNAL REFERENCE = 2.5V  
INTERNAL REFERENCE = 2.5V  
–10  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 20. AD5676R INL Error vs. Supply Voltage  
Figure 23. AD5676R TUE vs. Supply Voltage  
10  
8
0.10  
0.08  
0.06  
0.04  
0.02  
0
6
4
2
0
–2  
–4  
–6  
–8  
–10  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
V
= 5V  
= 25°C  
V
= 5V  
DD  
DD  
T
T = 25°C  
A
A
INTERNAL REFERENCE = 2.5V  
INTERNAL REFERENCE = 2.5V  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 21. AD5676R DNL Error vs. Supply Voltage  
Figure 24. AD5672R TUE vs. Supply Voltage  
10  
8
0.10  
0.08  
0.06  
0.04  
0.02  
0
6
4
2
FULL-SCALE ERROR  
GAIN ERROR  
0
–2  
–4  
–6  
–8  
–10  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
V
T
= 5V  
= 25°C  
DD  
V
T
= 5V  
DD  
A
= 25°C  
INTERNAL REFERENCE = 2.5V  
A
INTERNAL REFERENCE = 2.5V  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 22. AD5672R DNL Error vs. Supply Voltage  
Figure 25. AD5676R Gain Error and Full-Scale Error vs. Temperature  
Rev. B | Page 15 of 34  
AD5672R/AD5676R  
Data Sheet  
0.10  
0.08  
0.06  
0.04  
0.02  
0
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
V
T
= 5V  
= 25°C  
DD  
A
INTERNAL REFERENCE = 2.5V  
ZERO CODE ERROR  
OFFSET ERROR  
GAIN ERROR  
–0.02  
–0.04  
–0.06  
FULL-SCALE ERROR  
V
= 5V  
DD  
–0.3  
–0.6  
–0.08  
–0.10  
T = 25°C  
A
INTERNAL REFERENCE = 2.5V  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 29. AD5676R Zero Code Error and Offset Error vs. Temperature  
Figure 26. AD5672R Gain Error and Full-Scale Error vs. Temperature  
1.8  
0.10  
0.08  
0.06  
0.04  
0.02  
V
T
= 5V  
= 25°C  
DD  
1.5  
1.2  
0.9  
0.6  
0.3  
0
A
INTERNAL REFERENCE = 2.5V  
ZERO CODE ERROR  
GAIN ERROR  
OFFSET ERROR  
0
–0.02  
FULL-SCALE ERROR  
–0.04  
–0.06  
V
= 5V  
–0.3  
–0.6  
DD  
–0.08  
–0.10  
T = 25°C  
A
INTERNAL REFERENCE = 2.5V  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 30. AD5672R Zero Code Error and Offset Error vs. Temperature  
Figure 27. AD5676R Gain Error and Full-Scale Error vs. Supply Voltage  
1.5  
0.10  
0.08  
0.06  
0.04  
0.02  
1.0  
ZERO CODE ERROR  
0.5  
OFFSET ERROR  
0
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
GAIN ERROR  
–0.5  
FULL-SCALE ERROR  
–1.0  
–1.5  
V
= 5V  
DD  
V
= 5V  
= 25°C  
DD  
T
= 25°C  
A
T
A
INTERNAL REFERENCE = 2.5V  
INTERNAL REFERENCE = 2.5V  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 31. AD5676R Zero Code Error and Offset Error vs. Supply Voltage  
Figure 28. AD5672R Gain Error and Full-Scale Error vs. Supply Voltage  
Rev. B | Page 16 of 34  
Data Sheet  
AD5672R/AD5676R  
1.5  
1.0  
0.5  
0
6
5
0xFFFF  
0xC000  
0x8000  
ZERO CODE ERROR  
OFFSET ERROR  
4
3
2
0x4000  
0x0000  
1
–0.5  
0
–1.0  
–1.5  
V
= 5V  
= 25°C  
DD  
–1  
–2  
T
A
INTERNAL REFERENCE = 2.5V  
–0.06  
–0.04  
–0.02  
0
0.02  
0.04  
0.06  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
SUPPLY VOLTAGE (V)  
LOAD CURRENT (A)  
Figure 35. Source and Sink Capability at 5 V  
Figure 32. AD5672R Zero Code Error and Offset Error vs. Supply Voltage  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
70  
V
= 5V  
= 25°C  
DD  
T
A
60  
50  
40  
30  
20  
10  
0
INTERNAL REFERENCE = 2.5V  
0xFFFF  
0xC000  
0x8000  
0x4000  
0x0000  
–0.5  
–1.0  
–0.06  
–0.04  
–0.02  
0
0.02  
0.04  
0.06  
LOAD CURRENT (A)  
I
FULL SCALE (µA)  
DD  
Figure 36. Source and Sink Capability at 3 V  
Figure 33. Supply Current (IDD) Histogram with Internal Reference  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
1.4  
SINKING, V = –2.7V  
DD  
U1284  
U1285  
U1286  
SINKING, V = –3.0V  
DD  
1.0  
0.6  
SINKING, V = –5.0V  
DD  
SOURCING, V = –5.0V  
DD  
SOURCING, V = –3.0V  
DD  
SOURCING, V = –2.7V  
DD  
0.2  
–0.2  
–0.6  
–1.0  
–1.4  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
0
0.005  
0.010  
0.015  
0.020  
0.025  
0.030  
CODE  
LOAD CURRENT (A)  
Figure 37. Supply Current (IDD) vs. Code  
Figure 34. Headroom/Footroom (ΔVOUT) vs. Load Current  
Rev. B | Page 17 of 34  
AD5672R/AD5676R  
Data Sheet  
2.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.8  
FULL-SCALE  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
DAC 1  
DAC 2  
DAC 3  
DAC 4  
DAC 5  
DAC 5  
DAC 7  
DAC 8  
ZERO CODE  
EXTERNAL REFERENCE, FULL-SCALE  
V
= 5.5V  
DD  
GAIN = +1  
INTERNAL REFERENCE = 2.5V  
1/4 TO 3/4 SCALE  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
80  
100  
120  
140  
160  
180  
200  
TEMPERATURE (°C)  
TIME (µs)  
Figure 38. Supply Current (IDD) vs. Temperature  
Figure 41. Full-Scale Settling Time  
6
5
0.006  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.005  
0.004  
0.003  
0.002  
0.001  
0
V
V
(V)  
DD  
0 (V)  
1 (V)  
2 (V)  
3 (V)  
4 (V)  
5 (V)  
6 (V)  
7 (V)  
OUT  
4
FULL-SCALE  
V
OUT  
V
V
OUT  
3
OUT  
V
OUT  
ZERO CODE  
V
OUT  
2
V
V
OUT  
OUT  
EXTERNAL REFERENCE, FULL-SCALE  
1
0
–1  
–0.001  
10  
0
2
4
6
8
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
TIME (ms)  
SUPPLY VOLTAGE (V)  
Figure 39. Supply Current (IDD) vs. Supply Voltage  
Figure 42. Power-On Reset to 0 V and Midscale  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
MIDSCALE, GAIN = 2  
FULL-SCALE  
ZERO CODE  
MIDSCALE, GAIN = 1  
EXTERNAL REFERENCE, FULL-SCALE  
V
T
= 5V  
= 25°C  
DD  
A
INTERNAL REFERENCE = 2.5V  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
–5  
0
5 10  
SUPPLY VOLTAGE (V)  
TIME (µs)  
Figure 40. Supply Current (IDD) vs. Zero Code and Full-Scale  
Figure 43. Exiting Power-Down to Midscale  
Rev. B | Page 18 of 34  
Data Sheet  
AD5672R/AD5676R  
0.004  
0.003  
0.002  
0.001  
0
1
–0.001  
–0.002  
–0.003  
–0.004  
V
= 5V  
DD  
GAIN = 1  
= 25°C  
T
D
REFERENCE = 2.5V  
CODE = 7FFF TO 8000  
ENERGY = 1.209376nV-s  
2
CH1 50.0mV  
M1.00s  
A
CH1  
401mV  
15  
16  
17  
18  
19  
20  
21  
22  
TIME (µs)  
Figure 44. Digital-to-Analog Glitch Impulse  
Figure 47. 0.1 Hz to 10 Hz Output Noise  
0.003  
0.002  
0.001  
0
1200  
1000  
800  
600  
400  
200  
0
V
= 5V  
= 25°C  
DD  
T
A
GAIN = 1  
INTERNAL REFERENCE = 2.5V  
–0.001  
–0.002  
–0.003  
–0.004  
–0.005  
–0.006  
FULL SCALE  
MID SCALE  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
CHANNEL 5  
CHANNEL 6  
CHANNEL 7  
ZERO SCALE  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
10  
100  
1k  
10k  
100k  
1M  
TIME (µs)  
FREQUENCY (Hz)  
Figure 45. Analog Crosstalk  
Figure 48. Noise Spectral Density (NSD)  
0.012  
0.010  
0.008  
0.006  
0.004  
0.002  
0
0
–20  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
CHANNEL 5  
CHANNEL 6  
CHANNEL 7  
V
= 5V  
= 25°C  
DD  
T
A
INTERNAL REFERENCE = 2.5V  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
TIME (µs)  
FREQUENCY (kHz)  
Figure 46. DAC-to-DAC Crosstalk  
Figure 49. Total Harmonic Distortion (THD) at 1 kHz  
Rev. B | Page 19 of 34  
AD5672R/AD5676R  
Data Sheet  
2.0  
1.9  
1.8  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
V
A
= 5V  
DD  
T
= 25°C  
C
C
C
C
C
= 0nF  
= 0.1nF  
= 1nF  
= 4.7nF  
= 10nF  
L
L
L
L
L
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
10  
100  
1k  
10k  
100k  
1M  
0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20  
TIME (ms)  
FREQUENCY (Hz)  
Figure 50. Settling Time vs. Capacitive Load  
Figure 53. Internal Reference NSD vs. Frequency  
2.0  
2.5020  
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
2.4985  
2.4980  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
DEVICE1  
DEVICE2  
DEVICE3  
DEVICE4  
DEVICE5  
DAC 1  
DAC 2  
DAC 3  
DAC 4  
DAC 5  
DAC 6  
DAC 7  
DAC 8  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
80  
100  
120  
140  
160  
180  
200  
TIME (µs)  
TEMPERATURE (°C)  
Figure 51. Settling Time, 5.5 V  
Figure 54. Internal Reference Voltage (VREF) vs. Temperature (A Grade)  
3
2
1
0
0.3  
0.2  
0.1  
0
RESET  
MIDSCALE,GAIN=1
ZERO SCALE, GAIN = 1  
–20  
0
20  
40  
60  
TIME (µs)  
Figure 52. Hardware Reset  
Rev. B | Page 20 of 34  
Data Sheet  
AD5672R/AD5676R  
2.5020  
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
2.4985  
2.4980  
2.50050  
2.50045  
2.50040  
2.50035  
2.50030  
2.50025  
2.50020  
2.50015  
2.50010  
T
= 25°C  
A
DEVICE1  
DEVICE2  
DEVICE3  
DEVICE4  
DEVICE5  
DEVICE1  
DEVICE2  
DEVICE3  
2.5  
3.0  
3.5  
4.0  
V
4.5  
5.0  
5.5  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
(V)  
TEMPERATURE (°C)  
DD  
Figure 55. Internal Reference Voltage (VREF) vs. Temperature (B Grade)  
Figure 57. Internal Reference Voltage (VREF) vs. Supply Voltage (VDD  
)
2.5035  
V
T
= 5V  
= 25°C  
DD  
2.5030  
2.5025  
2.5020  
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
A
–0.035 –0.025  
–0.015 –0.005  
0.005  
0.015  
0.025  
0.035  
LOAD CURRENT (A)  
Figure 56. Internal Reference Voltage (VREF) vs. Load Current and Supply  
Voltage (VDD  
)
Rev. B | Page 21 of 34  
AD5672R/AD5676R  
Data Sheet  
TERMINOLOGY  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy or integral nonlinearity is a  
measurement of the maximum deviation, in LSBs, from a straight  
line passing through the endpoints of the DAC transfer function.  
Output Voltage Settling Time  
The output voltage settling time is the amount of time it takes  
for the output of a DAC to settle to a specified level for a ¼ to ¾  
full-scale input change and is measured from the rising edge  
SYNC  
of  
.
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity. These DACs are guaranteed monotonic  
by design.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-sec,  
and is measured when the digital input code is changed by  
1 LSB at the major carry transition (0x7FFF to 0x8000).  
Zero Code Error  
Zero code error is a measurement of the output error when zero  
code (0x0000) is loaded to the DAC register. The ideal output is  
0 V. The zero code error is always positive because the output of  
the DAC cannot go below 0 V due to a combination of the offset  
errors in the DAC and the output amplifier. Zero code error is  
expressed in mV.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into the  
analog output of the DAC from the digital inputs of the DAC,  
but is measured when the DAC output is not updated. It is  
specified in nV-sec, and measured with a full-scale code change  
on the data bus, that is, from all 0s to all 1s and vice versa.  
Full-Scale Error  
Reference Feedthrough  
Full-scale error is a measurement of the output error when full-  
scale code (0xFFFF) is loaded to the DAC register. The ideal  
output is VDD − 1 LSB. Full-scale error is expressed in percent of  
full-scale range (% of FSR).  
Reference feedthrough is the ratio of the amplitude of the signal  
at the DAC output to the reference input when the DAC output  
is not being updated. It is expressed in dB.  
Noise Spectral Density  
Gain Error  
Noise spectral density is a measurement of the internally  
generated random noise. Random noise is characterized as a  
spectral density (nV/√Hz). It is measured by loading the DAC  
to midscale and measuring noise at the output. It is measured in  
nV/√Hz.  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal expressed as % of FSR.  
Offset Error Drift  
Offset error drift is a measurement of the change in offset error  
with a change in temperature. It is expressed in µV/°C.  
DC Crosstalk  
DC crosstalk is the dc change in the output level of one DAC in  
response to a change in the output of another DAC. It is measured  
with a full-scale output change on one DAC (or soft power-down  
and power-up) while monitoring another DAC kept at midscale. It  
is expressed in μV.  
Offset Error  
Offset error is a measure of the difference between VOUT (actual)  
and VOUT (ideal) expressed in mV in the linear region of the  
transfer function. Offset error is measured with Code 256  
loaded in the DAC register. It can be negative or positive.  
DC crosstalk due to load current change is a measure of the  
impact that a change in load current on one DAC has on  
another DAC kept at midscale. It is expressed in μV/mA.  
DC Power Supply Rejection Ratio (PSRR)  
The dc power supply rejection ratio indicates how the output of  
the DAC is affected by changes in the supply voltage. PSRR is  
the ratio of the change in VOUT to a change in VDD for full-scale  
output of the DAC. It is measured in mV/V. VREF is held at 2 V,  
and VDD is varied by 10%.  
Digital Crosstalk  
Digital crosstalk is the glitch impulse transferred to the output  
of one DAC at midscale in response to a full-scale code change  
(all 0s to all 1s and vice versa) in the input register of another  
DAC. It is measured in standalone mode and is expressed in  
nV-sec.  
Rev. B | Page 22 of 34  
 
Data Sheet  
AD5672R/AD5676R  
Analog Crosstalk  
Total Harmonic Distortion (THD)  
Analog crosstalk is the glitch impulse transferred to the output  
of one DAC due to a change in the output of another DAC. It is  
measured by first loading one of the input registers with a full-  
scale code change (all 0s to all 1s and vice versa). Then, execute  
THD is the difference between an ideal sine wave and its  
attenuated version using the DAC. The sine wave is used as the  
reference for the DAC, and the THD is a measurement of the  
harmonics present on the DAC output. It is measured in dB.  
LDAC  
a software  
and monitor the output of the DAC whose  
Voltage Reference Temperature Coefficient (TC)  
digital code was not changed. The area of the glitch is expressed  
in nV-sec.  
Voltage reference TC is a measure of the change in the reference  
output voltage with a change in temperature. The reference TC  
is calculated using the box method, which defines the TC as the  
maximum change in the reference output over a given tempera-  
ture range expressed in ppm/°C, as follows:  
DAC-to-DAC Crosstalk  
DAC-to-DAC crosstalk is the glitch impulse transferred to the  
output of one DAC due to a digital code change and subsequent  
analog output change of another DAC. It is measured by  
loading the attack channel with a full-scale code change (all 0s  
to all 1s and vice versa), using the write to and update commands  
while monitoring the output of the victim channel that is at  
midscale. The energy of the glitch is expressed in nV-sec.  
VREF (MAX ) VREF (MIN )  
TC =  
×106  
VREF (NOM ) ×Temp Range  
where:  
REF (MAX) is the maximum reference output measured over the  
total temperature range.  
REF (MIN) is the minimum reference output measured over the  
total temperature range.  
REF (NOM) is the nominal reference output voltage, 2.5 V.  
V
Multiplying Bandwidth  
The multiplying bandwidth is a measure of the finite bandwidth  
of the amplifiers within the DAC. A sine wave on the reference  
(with full-scale code loaded to the DAC) appears on the output.  
The multiplying bandwidth is the frequency at which the output  
amplitude falls to 3 dB below the input.  
V
V
Temp Range is the specified temperature range of −40°C to  
+125°C.  
Rev. B | Page 23 of 34  
AD5672R/AD5676R  
Data Sheet  
THEORY OF OPERATION  
V
REF  
DIGITAL-TO-ANALOG CONVERTER  
R
The AD5672R/AD5676R are octal, 12-/16-bit, serial input,  
voltage output DACs with an internal reference. The devices  
operate from supply voltages of 2.7 V to 5.5 V. Data is written to  
the AD5672R/AD5676R in a 24-bit word format via a 3-wire  
serial interface. The AD5672R/AD5676R incorporate a power-  
on reset circuit to ensure that the DAC output powers up to a  
known output state. The devices also have a software power-  
down mode that reduces the typical current consumption to 1 µA.  
R
R
TO OUTPUT  
AMPLIFIER  
TRANSFER FUNCTION  
The internal reference is on by default.  
R
R
The gain of the output amplifier can be set to ×1 or ×2 using the  
gain select pin (GAIN) on the TSSOP or the gain bit on the LFCSP.  
When the GAIN pin is tied to GND, all eight DAC outputs have  
a span from 0 V to VREF. When the GAIN pin is tied to VLOGIC  
,
Figure 59. Resistor String Structure  
all eight DACs output a span of 0 V to 2 × VREF. When using the  
LFCSP, the gain bit in the internal reference and gain setup  
register is used to set the gain of the output amplifier. The gain  
bit is 0 by default. When the gain bit is 0, the output span of all  
eight DACs is 0 V to VREF. When the gain bit is 1, the output span  
of all eight DACs is 0 V to 2 × VREF. The gain bit is ignored on  
the TSSOP.  
Internal Reference  
The AD5672R/AD5676R on-chip reference is enabled at power-  
up, but can be disabled via a write to the control register. See the  
Internal Reference Setup section for details.  
The AD5672R/AD5676R have a 2.5 V, 2 ppm/°C reference, giving  
a full-scale output of 2.5 V or 5 V, depending on the state of the  
GAIN pin or gain bit. The internal reference associated with the  
device is available at the VREFOUT pin. This buffered reference is  
capable of driving external loads of up to 15 mA.  
DAC ARCHITECTURE  
The AD5672R/AD5676R implement a segmented string DAC  
architecture with an internal output buffer. Figure 58 shows the  
internal block diagram.  
Output Amplifiers  
V
REF  
The output buffer amplifier generates rail-to-rail voltages on its  
output. The actual range depends on the value of VREF, the gain  
setting, the offset error, and the gain error.  
2.5V  
REF  
REF (+)  
INPUT  
REGISTER  
DAC  
REGISTER  
RESISTOR  
STRING  
V
X
OUT  
The output amplifiers can drive a load of 1 kΩ in parallel with  
10 nF to GND. The slew rate is 0.8 V/µs with a typical ¼ to ¾  
scale settling time of 5 µs.  
REF (–)  
GAIN  
(GAIN = 1 OR 2)  
GND  
Figure 58. Single DAC Channel Architecture Block Diagram  
Figure 59 shows the resistor string structure. The code loaded to  
the DAC register determines the node on the string where the  
voltage is tapped off and fed into the output amplifier. The voltage  
is tapped off by closing one of the switches and connecting the  
string to the amplifier. Because each resistance in the string has  
same value, R, the string DAC is guaranteed monotonic.  
Rev. B | Page 24 of 34  
 
 
 
 
 
 
Data Sheet  
AD5672R/AD5676R  
SERIAL INTERFACE  
Table 10. Command Definitions  
Command  
SYNC  
The AD5672R/AD5676R use a 3-wire serial interface (  
,
SCLK, and SDI that is compatible with SPI, QSPI™, and  
MICROWIRE interface standards, as well as most DSPs. See  
Figure 2 for a timing diagram of a typical write sequence. The  
AD5672R/AD5676R contain an SDO pin to allow the user to  
daisy-chain multiple devices together (see the Daisy-Chain  
Operation section) or for readback.  
C3 C2 C1 C0 Description  
0
0
0
0
0
0
0
1
No operation  
Write to Input Register n where n = 1 to 8,  
depending on the DAC selected from the  
address bits in Table 11 (dependent  
on LDAC)  
0
0
1
0
Update DAC Register n with contents of  
Input Register n  
Input Shift Register  
0
0
0
0
0
1
0
1
1
1
1
0
1
0
0
1
1
0
1
0
1
0
1
0
Write to and update DAC Channel n  
Power down/power up the DAC  
Hardware LDAC mask register  
The input shift register of the AD5672R/AD5676R is 24 bits  
wide. Data is loaded MSB first (DB23), and the first four bits are  
the command bits, C3 to C0 (see Table 10), followed by the 4-  
bit DAC address bits, A3 to A0 (see Table 11), and finally, the  
bit data-word.  
Software reset (power-on reset)  
Internal reference and gain setup register  
Set up the DCEN register (daisy-chain  
enable)  
Set up the readback register (readback  
enable)  
Update all channels of the input register  
simultaneously with the input data  
The data-word comprises 12-bit or 16-bit input code, followed by  
zero or four don’t care bits for the AD5676R and AD5672R,  
respectively (see Figure 60 and Figure 61). These data bits are  
transferred to the input register on the 24 falling edges of SCLK  
1
1
1
0
0
0
0
1
1
1
0
1
SYNC  
and are updated on the rising edge of  
.
Update all channels of the DAC register  
and input register simultaneously with  
the input data  
Commands execute on individual DAC channels, combined DAC  
channels, or on all DACs, depending on the address bits selected.  
1
1
0
0
Reserved  
1
1
1
1
Reserved  
Table 11. Address Commands  
Channel Address[3:0]  
A3  
0
A2  
0
A1  
0
A0  
0
Selected Channel1  
DAC 0  
0
0
0
1
DAC 1  
0
0
1
0
DAC 2  
0
0
1
1
DAC 3  
0
1
0
0
DAC 4  
0
1
0
1
DAC 5  
0
1
1
0
DAC 6  
0
1
1
1
DAC 7  
1 Any combination of DAC channels can be selected using the address bits.  
DB23 (MSB)  
DB0 (LSB)  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
X
X
X
DATA BITS  
COMMAND BITS  
ADDRESS BITS  
Figure 60. AD5672R Input Shift Register Content  
DB23 (MSB)  
C3 C2  
DB0 (LSB)  
D1 D0  
C1  
C0  
A3  
A2  
A1  
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
DATA BITS  
COMMAND BITS  
ADDRESS BITS  
Figure 61. AD5676R Input Shift Register Content  
Rev. B | Page 25 of 34  
 
 
 
 
 
AD5672R/AD5676R  
Data Sheet  
STANDALONE OPERATION  
AD5672R/  
AD5676R  
68HC11*  
SYNC  
Bring the  
line low to begin the write sequence. Data from  
MOSI  
SDI  
the SDI line is clocked into the 24-bit input shift register on the  
falling edge of SCLK. After the last of 24 data bits is clocked in,  
SCK  
PC7  
PC6  
SCLK  
SYNC  
LDAC  
SYNC  
that is, an  
bring  
high. The programmed function is then executed,  
LDAC  
-dependent change in DAC register contents  
SDO  
SDI  
MISO  
SYNC  
and/or a change in the mode of operation. If  
is taken  
high at a clock before the 24th clock, it is considered a valid  
SYNC  
frame, and invalid data is loaded to the DAC. Bring  
for a minimum of 20 ns (single channel, see t8 in Figure 2)  
SYNC  
high  
AD5672R/  
AD5676R  
before the next write sequence so that a falling edge of  
SCLK  
SYNC  
can initiate the next write sequence. Idle  
at rails between  
SYNC  
LDAC  
SYNC  
write sequences for even lower power operation. The  
is kept low for 24 falling edges of SCLK, and the DAC is  
SYNC  
line  
SDO  
SDI  
updated on the rising edge of  
.
When data is transferred into the input register of the addressed  
LDAC  
DAC, all DAC registers and outputs update by taking  
SYNC  
low  
AD5672R/  
AD5676R  
while the  
line is high.  
SCLK  
WRITE AND UPDATE COMMANDS  
Write to Input Register n (Dependent on  
SYNC  
LDAC  
)
LDAC  
SDO  
Command 0001 allows the user to write the dedicated input  
LDAC  
register of each DAC individually. When  
is low, the input  
Figure 62. Daisy-Chaining the AD5672R/AD5676R  
LDAC  
register is transparent, if not controlled by the  
register.  
mask  
The SCLK pin is continuously applied to the input shift register  
SYNC  
when  
is low. If more than 24 clock pulses are applied, the  
Update DAC Register n with Contents of Input Register n  
data ripples out of the input shift register and appears on the  
SDO line. This data is clocked out on the rising edge of SCLK  
and is valid on the falling edge. By connecting this line to the  
SDI input on the next DAC in the chain, a daisy-chain interface is  
constructed. Each DAC in the system requires 24 clock pulses.  
Therefore, the total number of clock cycles must equal 24 × N,  
Command 0010 loads the DAC registers and outputs with the  
contents of the input registers selected and updates the DAC  
outputs directly.  
Write to and Update DAC Channel n (Independent of  
)
LDAC  
Command 0011 allows the user to write to the DAC registers  
and updates the DAC outputs directly. Bit D7 to Bit D0  
determine which DACs have data from the input register  
transferred to the DAC register. Setting a bit to 1 transfers data  
from the input register to the appropriate DAC register.  
SYNC  
where N is the total number of devices updated. If  
is  
taken high at a clock that is not a multiple of 24, it is considered  
a valid frame, and invalid data may be loaded to the DAC.  
SYNC  
When the serial transfer to all devices is complete,  
goes  
high, which latches the input data in each device in the daisy  
chain and prevents any further data from being clocked into the  
input shift register. The serial clock can be continuous or a gated  
DAISY-CHAIN OPERATION  
For systems that contain several DACs, the SDO pin can daisy-  
chain several devices together and is enabled through a software  
executable daisy-chain enable (DCEN) command. Command  
1000 is reserved for this DCEN function (see Table 10). The  
daisy-chain mode is enabled by setting Bit DB0 in the DCEN  
register. The default setting is standalone mode, where DB0 = 0.  
Table 12 shows how the state of the bit corresponds to the mode  
of operation of the device.  
SYNC  
clock. If  
is held low for the correct number of clock  
cycles, a continuous SCLK source is used. In gated clock mode,  
use a burst clock containing the exact number of clock cycles,  
SYNC  
and take  
high after the final clock to latch the data.  
Table 12. Daisy-Chain Enable (DCEN) Register  
DB0  
Description  
0
1
Standalone mode (default)  
DCEN mode  
Rev. B | Page 26 of 34  
 
 
 
 
Data Sheet  
AD5672R/AD5676R  
READBACK OPERATION  
Table 13. Modes of Operation  
Operating Mode  
Normal Operation  
Power-Down Modes  
1 kΩ to GND  
Readback mode is invoked through a software executable  
readback command. If the SDO output is disabled via the daisy-  
chain mode disable bit in the control register, it is automatically  
enabled for the duration of the read operation, after which it is  
disabled again. Command 1001 is reserved for the readback  
function. This command, in association with the address bits  
A3 to A0, selects the DAC input register to read (see Table 10  
and Table 11). Note that, during readback, only one input  
register can be selected. The remaining data bits in the write  
sequence are don’t care bits. During the next SPI write, the data  
appearing on the SDO output contains the data from the  
previously addressed register.  
PD1  
PD0  
0
0
0
1
1
1
Tristate  
When both Bit PD1 and Bit PD0 in the input shift register are set to  
0, the device works normally with a typical power consumption of  
1 mA at 5 V. However, for the two power-down modes, the  
supply current typically falls to 1 µA. In addition to this fall, the  
output stage switches internally from the amplifier output to a  
resistor network of known values. This has the advantage that the  
output impedance of the devices is known while the devices are  
in power-down mode. There are two different power-down  
options. The output is either connected internally to GND  
through a 1 kΩ resistor or it is left open-circuited (tristate).  
Figure 63 shows the output stage.  
For example, to read back the DAC register for Channel 0,  
implement the following sequence:  
1. Write 0x900000 to the AD5672R/AD5676R input register.  
This configures the device for read mode with the DAC  
register of Channel 0 selected. Note that all data bits, DB15  
to DB0, are don’t care bits.  
AMPLIFIER  
V
DAC  
OUT  
2. Follow this with a second write, a no operation (NOP)  
condition, 0x000000. During this write, the data from the  
register is clocked out on the SDO line. DB23 to DB20  
contain undefined data, and the last 16 bits contain the  
DB19 to DB4 DAC register contents.  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
SYNC  
When  
is high, the SDO pin is driven by a weak latch that  
Figure 63. Output Stage During Power-Down  
holds the last data bit. The SDO pin can be overdriven by the  
SDO pin of another device, thus allowing multiple devices to be  
read using the same SPI interface.  
The bias generator, output amplifier, resistor string, and other  
associated linear circuitry shut down when power-down mode is  
activated. However, the contents of the DAC register are unaffected  
when in power-down. The DAC register updates while the device  
is in power-down mode. The time required to exit power-down is  
typically 2.5 µs for VDD = 5 V.  
POWER-DOWN OPERATION  
The AD5672R/AD5676R contain two separate power-down  
modes. Command 0100 is designated for the power-down  
function (see Table 10). These power-down modes are software  
programmable by setting 16 bits, Bit DB15 to Bit DB0, in the  
input shift register. There are two bits associated with each DAC  
channel. Table 13 shows how the state of the two bits corresponds  
to the mode of operation of the device.  
To reduce the current consumption further, power off the on-chip  
reference. See the Internal Reference Setup section.  
Any or all DACs (DAC A to DAC D) power down to the  
selected mode by setting the corresponding bits. See Table 14  
for the contents of the input shift register during the power-  
down/power-up operation.  
Table 14. 24-Bit Input Shift Register Contents of Power-Down/Power-Up Operation  
DAC 7  
DAC 6  
DAC 5  
DAC 4  
DAC 3  
DAC 2  
DAC 1  
DAC 0  
[DB23:DB20]  
DB19  
[DB18:DB16]  
XXX1  
[DB15: B14] [DB13: B12] [DB11: B10] [DB9:DB8]  
[DB7:DB6]  
[PD1:PD0]  
[DB5:DB4]  
[PD1:PD0]  
[DB3:DB2]  
[PD1:PD0]  
[DB1:DB0]  
[PD1:PD0]  
0100  
0
[PD1:PD0]  
[PD1:PD0]  
[PD1:PD0]  
[PD1:PD0]  
1 X means don’t care  
Rev. B | Page 27 of 34  
 
 
 
 
 
AD5672R/AD5676R  
Data Sheet  
LDAC  
Deferred DAC Updating (  
is Pulsed Low)  
is held high while data is clocked into the input register  
using Command 0001. All DAC outputs are asynchronously  
LDAC SYNC  
LOAD DAC (HARDWARE LDAC PIN)  
LDAC  
The AD5672R/AD5676R DACs have double buffered interfaces  
consisting of two banks of registers: input registers and DAC  
registers. The user can write to any combination of the input  
registers. Updates to the DAC register are controlled by  
updated by taking  
low after  
is taken high. The  
LDAC  
update now occurs on the falling edge of  
.
LDAC  
the  
Instantaneous DAC Updating (  
LDAC  
pin.  
LDAC MASK REGISTER  
LDAC  
Held Low)  
is held low while data is clocked into the input register  
using Command 0001. Both the addressed input register and  
LDAC  
Command 0101 is reserved for this software  
function.  
Address bits are ignored. Writing to the DAC, using  
LDAC  
Command 0101, loads the 8-bit  
register (DB7 to DB0).  
LDAC  
SYNC  
the DAC register are updated on the rising edge of  
and  
The default for each channel is 0; that is, the  
pin works  
the output begins to change (see Table 16).  
normally. Setting the bits to 1 forces this DAC channel to ignore  
LDAC  
AMPLIFIER  
transitions on the  
pin, regardless of the state of the  
12-/16-BIT  
DAC  
LDAC  
hardware  
pin. This flexibility is useful in applications  
V
V
X
OUT  
REF  
where the user wishes to select which channels respond to  
LDAC  
the  
pin.  
DAC  
REGISTER  
LDAC  
LDAC  
The  
register gives the user extra flexibility and control  
LDAC  
LDAC  
pin (see Table 15). Setting the  
over the hardware  
bits (DB0 to DB7) to 0 for a DAC channel means that this  
LDAC  
INPUT  
REGISTER  
channel update is controlled by the hardware  
pin.  
SCL  
SDA  
INTERFACE  
LOGIC  
Figure 64. Simplified Diagram of Input Loading Circuitry for a Single DAC  
LDAC  
Table 15.  
Overwrite Definition  
Load LDAC Register  
LDAC Bits (DB7 to DB0)  
00000000  
LDAC Pin  
1 or 0  
X1  
LDAC Operation  
Determined by the LDAC pin.  
11111111  
DAC channels update and override the LDAC pin. DAC channels see LDAC as 1.  
1 X means don’t care.  
1
LDAC  
Table 16. Write Commands and  
Pin Truth Table  
Hardware LDAC Pin State  
Command Description  
Input Register Contents  
Data update  
Data update  
DAC Register Contents  
0001  
Write to Input Register n  
VLOGIC  
GND2  
VLOGIC  
GND  
No change (no update)  
Data update  
(dependent on LDAC)  
0010  
Update DAC Register n  
with contents of Input  
Register n  
No change  
Updated with input register contents  
Updated with input register contents  
No change  
0011  
Write to and update DAC VLOGIC  
Channel n  
Data update  
Data update  
Data update  
Data update  
GND  
1
LDAC  
A high to low hardware  
pin transition always updates the contents of the contents of the DAC register with the contents of the input register on channels that  
LDAC  
are not masked (blocked) by the mask register.  
is permanently tied low, the LDAC mask bits are ignored.  
2
LDAC  
When  
Rev. B | Page 28 of 34  
 
 
 
 
Data Sheet  
AD5672R/AD5676R  
HARDWARE RESET (RESET)  
SOLDER HEAT REFLOW  
As with all IC reference voltage circuits, the reference value  
experiences a shift induced by the soldering process. Analog  
Devices, Inc. performs a reliability test called precondition to  
mimic the effect of soldering a device to a board. The output  
voltage specification quoted previously includes the effect of  
this reliability test.  
RESET  
The  
be cleared to either zero scale or midscale. The clear code value  
RESET  
pin is an active low reset that allows the outputs to  
is user selectable via the  
select pin. It is necessary to  
pin low for a minimum time (see Table 5) to  
RESET  
RESET  
keep the  
complete the operation. When the  
high, the output remains at the cleared value until a new value is  
RESET  
signal is returned  
Figure 65 shows the effect of solder heat reflow (SHR) as  
measured through the reliability test (precondition).  
programmed. While the  
pin is low, the outputs cannot  
be updated with a new value. A software executable reset function  
is also available, which resets the DAC to the power-on reset code.  
Command 0110 is designated for this software reset function (see  
Table 10). Any events on the  
on reset are ignored.  
35  
POSTSOLDER  
HEAT REFLOW  
30  
LDAC RESET  
or  
pins during power-  
PRESOLDER  
HEAT REFLOW  
25  
20  
15  
10  
5
RESET SELECT PIN (RSTSEL)  
The AD5672R/AD5676R contain a power-on reset circuit that  
controls the output voltage during power-up. By connecting the  
RSTSEL pin low, the output powers up to zero scale. Note that  
this is outside the linear region of the DAC; by connecting the  
RSTSEL pin high, VOUTx power up to midscale. The output  
remains powered up at this level until a valid write sequence is  
made to the DAC. The RSTSEL pin is only available on the  
TSSOP. When the AD5672R/AD5676R LFCSP is used, the  
outputs power up to 0 V  
0
2.497  
2.498  
2.499  
2.500  
(V)  
2.501  
2.502  
V
REF  
Figure 65. Solder Heat Reflow Reference Voltage Shift  
AMPLIFIER GAIN SELECTION ON LFCSP  
LONG-TERM TEMPERATURE DRIFT  
The output amplifier gain setting for the LFCSP is determined  
by the state of the DB2 bit in the internal reference and gain  
setup register (see Table 17 and Table 18).  
Figure 66 shows the change in VREF value after 1000 hours in the  
life test at 150°C.  
70  
0
HOURS  
168 HOURS  
500 HOURS  
1000 HOURS  
INTERNAL REFERENCE SETUP  
60  
50  
40  
30  
20  
10  
0
The on-chip reference is on at power-up by default. To reduce  
the supply current, turn off this reference by setting the software  
programmable bit, DB0, in the control register. Table 17 shows  
how the state of the bit corresponds to the mode of operation.  
Command 0111 is reserved for setting up the internal reference  
and the gain setting on the LFCSP (see Table 10).  
Table 17. Internal Reference and Gain Setup Register  
Bit  
Description  
DB2  
Amplifier gain setting  
2.498  
2.499  
2.500  
(V)  
2.501  
2.502  
DB2 = 0: amplifier gain = 1 (default)  
DB2 = 1: amplifier gain = 2  
Reference enable  
V
REF  
Figure 66. Reference Drift Through to 1000 Hours  
DB0  
DB0 = 0: internal reference enabled (default)  
DB0 = 1: internal reference disabled  
Table 18. 24-Bit Input Shift Register Contents for Internal Reference and Gain Setup Command  
DB23 (MSB)  
DB22  
DB21  
DB20  
DB19 to DB3  
DB2  
DB1  
DB0 (LSB)  
Reference enable  
0
1
1
1
Don’t care  
Gain  
Reserved. Set to 0  
Rev. B | Page 29 of 34  
 
 
 
 
 
 
 
 
 
 
Data Sheet  
AD5672R/AD5676R  
3
2
1
0
THERMAL HYSTERESIS  
FIRST TEMPERATURE SWEEP  
SUBSEQUENT TEMPERATURE SWEEPS  
Thermal hysteresis is the voltage difference induced on the  
reference voltage by sweeping the temperature from ambient to  
cold, to hot, and then back to ambient.  
Figure 67 shows thermal hysteresis data. It is measured by  
sweeping the temperature from ambient to −40°C, then to  
+125°C, and returning to ambient. The VREF delta, shown in  
blue in Figure 67, is then measured between the two ambient  
measurements. The same temperature sweep and measurements  
were immediately repeated and the results are shown in red in  
Figure 67.  
–130 –110 –90 –70 –50 –30 –10  
10  
30  
50  
70  
DISTORTION (ppm)  
Figure 67. Thermal Hysteresis  
Rev. B | Page 30 of 34  
 
 
Data Sheet  
AD5672R/AD5676R  
APPLICATIONS INFORMATION  
POWER SUPPLY RECOMMENDATIONS  
The following supplies typically power the AD5672R/AD5676R:  
AD5672R/AD5676R TO SPORT INTERFACE  
The Analog Devices ADSP-BF527 has one SPORT serial port.  
Figure 70 shows how a SPORT interface is used to control the  
AD5672R/AD5676R.  
VDD = 3.3 V and VLOGIC = 1.8 V.  
The ADP7118 can be used to power the VDD pin. The ADP160  
can be used to power the VLOGIC pin. Figure 68 shows this setup.  
The ADP7118 can operate from input voltages up to 20 V. The  
ADP160 can operate from input voltages up to 5.5 V.  
AD5672R/  
AD5676R  
ADSP-BF531  
5V  
INPUT  
ADP7118  
LDO  
3.3V: V  
DD  
SPORT_TFS  
SPORT_TSCK  
SPORT_DTO  
SYNC  
SCLK  
SDI  
ADP160  
LDO  
1.8V: V  
LOGIC  
GPIO0  
GPIO1  
LDAC  
Figure 68. Low Noise Power Solution for the AD5672R/AD5676R  
RESET  
MICROPROCESSOR INTERFACING  
Figure 70. SPORT Interface  
Microprocessor interfacing to the AD5672R/AD5676R is  
performed via a serial bus that uses a standard protocol  
compatible with DSP processors and microcontrollers. The  
communications channel requires a 3-wire or 4-wire interface  
consisting of a clock signal, a data signal, and a synchronization  
signal. The devices require a 24-bit data-word with data valid  
LAYOUT GUIDELINES  
In any circuit where accuracy is important, careful consideration  
of the power supply and ground return layout helps to ensure  
the rated performance. Design the printed circuit board (PCB) on  
which the AD5672R/AD5676R are mounted so that the devices  
lie on the analog plane.  
SYNC  
on the rising edge of  
.
The AD5672R/AD5676R must have ample supply bypassing of  
10 µF in parallel with 0.1 µF on each supply, located as close to  
the package as possible, ideally right up against the device. The  
10 µF capacitors are tantalum bead type. The 0.1 µF capacitors  
must have low effective series resistance (ESR) and low effective  
series inductance (ESI), such as the common ceramic types,  
which provide a low impedance path to ground at high  
frequencies to handle transient currents due to internal logic  
switching.  
AD5672R/AD5676R TO ADSP-BF531 INTERFACE  
The SPI interface of the AD5672R/AD5676R can easily  
connected to industry-standard DSPs and microcontrollers.  
Figure 69 shows the AD5672R/AD5676R connected to the  
Analog Devices Blackfin® DSP. The Blackfin has an integrated  
SPI port that can connect directly to the SPI pins of the  
AD5672R/AD5676R.  
AD5672R/  
AD5676R  
In systems where there are many devices on one board, it is  
often useful to provide some heat sinking capability to allow  
the power to dissipate easily.  
ADSP-BF531  
SPISELx  
SCK  
SYNC  
SCLK  
SDI  
The GND plane on the device can be increased (as shown in  
Figure 71) to provide a natural heat sinking effect.  
MOSI  
PF9  
PF8  
LDAC  
AD5672R/  
AD5676R  
RESET  
Figure 69. ADSP-BF531 Interface  
GND  
PLANE  
BOARD  
Figure 71. Pad Connection to the Board  
Rev. B | Page 31 of 34  
 
 
 
 
 
 
 
 
 
 
AD5672R/AD5676R  
Data Sheet  
GALVANICALLY ISOLATED INTERFACE  
ADuM14001  
CONTROLLER  
V
V
V
V
V
V
V
V
IA  
IB  
IC  
ID  
OA  
OB  
OC  
OD  
In many process control applications, it is necessary to provide  
an isolation barrier between the controller and the unit being  
controlled to protect and isolate the controlling circuitry from  
any hazardous common-mode voltages that may occur. iCoupler®  
products from Analog Devices provide voltage isolation in excess  
of 2.5 kV. The serial loading structure of the AD5672R/AD5676R  
makes the devices ideal for isolated interfaces because the number  
of interface lines is kept to a minimum. Figure 72 shows a  
4-channel isolated interface to the AD5672R/AD5676R using  
an ADuM1400. For further information, visit  
TO  
SERIAL  
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
SCLK  
CLOCK IN  
TO  
SDI  
SERIAL  
DATA OUT  
DECODE  
DECODE  
DECODE  
TO  
SYNC  
SYNC  
LOAD DAC  
OUT  
TO  
LDAC  
www.analog.com/icoupler.  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 72. Isolated Interface  
Rev. B | Page 32 of 34  
 
 
Data Sheet  
AD5672R/AD5676R  
OUTLINE DIMENSIONS  
6.60  
6.50  
6.40  
20  
11  
10  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-153-AC  
Figure 73. 20-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-20)  
Dimensions shown in millimeters  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
16  
15  
20  
0.50  
BSC  
1
EXPOSED  
PAD  
2.75  
2.60 SQ  
2.35  
11  
5
6
BOTTOM VIEW  
10  
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.  
Figure 74. 20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 × 4 mm Body, Very Very Thin Quad  
(CP-20-8)  
Dimensions shown in millimeters  
Rev. B | Page 33 of 34  
 
AD5672R/AD5676R  
Data Sheet  
ORDERING GUIDE  
Typical  
Resolution  
(Bits)  
12  
Temperature  
Range  
Accuracy  
(LSB INL)  
Reference Temperature  
Coefficient (ppm/°C)  
Package  
Description  
Package  
Option  
Model1  
AD5672RBRUZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
1
1
1
1
8
8
8
8
3
3
3
3
2
2
2
2
5
5
5
5
2
2
2
2
20-Lead TSSOP  
20-Lead TSSOP  
20-Lead LFCSP_WQ  
20-Lead LFCSP_WQ  
20-Lead TSSOP  
RU-20  
RU-20  
CP-20-8  
CP-20-8  
RU-20  
AD5672RBRUZ-REEL7 12  
AD5672RBCPZ-REEL7 12  
AD5672RBCPZ-RL  
AD5676RARUZ  
12  
16  
AD5676RARUZ REEL7 16  
AD5676RACPZ-REEL7 16  
20-Lead TSSOP  
RU-20  
20-Lead LFCSP_WQ  
20-Lead LFCSP_WQ  
20-Lead TSSOP  
CP-20-8  
CP-20-8  
RU-20  
RU-20  
CP-20-8  
CP-20-8  
AD5676RACPZ-RL  
AD5676RBRUZ  
16  
16  
AD5676RBRUZ-REEL7 16  
AD5676RBCPZ-REEL7 16  
20-Lead TSSOP  
20-Lead LFCSP_WQ  
20-Lead LFCSP_WQ  
Evaluation Board  
AD5676RBCPZ-RL  
EVAL-AD5676RSDZ  
16  
1 Z = RoHS Compliant Part.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2014–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11954-0-11/15(B)  
Rev. B | Page 34 of 34  
 
 
 

相关型号:

AD5672RBRUZ-REEL7

Octal, 12-/16-Bit nanoDAC with ppm/°C Reference, SPI Interface
ADI

AD5675

Easy implementation
ADI

AD5675ACPZ-REEL7

Octal, 16-Bit nanoDAC
ADI

AD5675ACPZ-RL

Octal, 16-Bit nanoDAC
ADI

AD5675ARUZ

Octal, 16-Bit nanoDAC
ADI

AD5675ARUZ-REEL7

Octal, 16-Bit nanoDAC+ with I<sup>2</sup>C Interface
ADI

AD5675BCPZ-REEL7

Octal, 16-Bit nanoDAC+ with I<sup>2</sup>C Interface
ADI

AD5675BCPZ-RL

Octal, 16-Bit nanoDAC
ADI

AD5675BRUZ

Octal, 16-Bit nanoDAC+ with I<sup>2</sup>C Interface
ADI

AD5675BRUZ-REEL7

Octal, 16-Bit nanoDAC+ with I<sup>2</sup>C Interface
ADI

AD5675R

Easy implementation
ADI

AD5675RACPZ-REEL7

Base station power amplifiers
ADI