AD5684BRUZ [ADI]

Quad, 12-Bit nanoDAC+ with SPI Interface;
AD5684BRUZ
型号: AD5684BRUZ
厂家: ADI    ADI
描述:

Quad, 12-Bit nanoDAC+ with SPI Interface

光电二极管 转换器
文件: 总27页 (文件大小:753K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, 16-/12-Bit nanoDAC+  
with SPI Interface  
Data Sheet  
AD5686/AD5684  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
GND  
V
REF  
DD  
High relative accuracy (INL): 2 LSB maximum @ 16 bits  
Tiny package: 3 mm × 3 mm, 16-lead LFCSP  
Total unadjusted error (TUE): 0.1% of FSR maximum  
Offset error: 1.5 mV maximum  
Gain error: 0.1% of FSR maximum  
High drive capability: 20 mA, 0.5 V from supply rails  
User selectable gain of 1 or 2 (GAIN pin)  
Reset to zero scale or midscale (RSTSEL pin)  
1.8 V logic compatibility  
AD5686/AD5684  
V
LOGIC  
STRING  
DAC A  
INPUT  
REGISTER  
DAC  
V
V
V
V
A
B
C
D
OUT  
OUT  
OUT  
OUT  
REGISTER  
SCLK  
SYNC  
SDIN  
SDO  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
STRING  
DAC B  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC C  
INPUT  
REGISTER  
DAC  
REGISTER  
50 MHz SPI with readback or daisy chain  
Low glitch: 0.5 nV-sec  
STRING  
DAC D  
INPUT  
REGISTER  
DAC  
REGISTER  
POWER-ON  
RESET  
GAIN  
×1/×2  
POWER-  
DOWN  
LOGIC  
Low power: 1.8 mW at 3 V  
2.7 V to 5.5 V power supply  
−40°C to +105°C temperature range  
LDAC RESET  
RSTSEL  
GAIN  
Figure 1.  
APPLICATIONS  
Digital gain and offset adjustment  
Programmable attenuators  
Process control (PLC I/O cards)  
Industrial automation  
Data acquisition systems  
GENERAL DESCRIPTION  
The AD5686/AD5684, members of the nanoDAC+™ family, are  
low power, quad, 16-/12-bit buffered voltage output DACs.  
The devices include a gain select pin giving a full-scale output  
of 2.5 V (gain = 1) or 5 V (gain = 2). All devices operate from  
a single 2.7 V to 5.5 V supply, are guaranteed monotonic by  
design, and exhibit less than 0.1% FSR gain error and 1.5 mV  
offset error performance. The devices are available in a 3 mm  
× 3 mm LFCSP and a TSSOP package.  
Table 1. Quad nanoDAC+ Devices  
Interface Reference 16-Bit  
14-Bit  
12-Bit  
SPI  
SPI  
I2C  
I2C  
Internal  
External  
Internal  
External  
AD5686R  
AD5686  
AD5696R  
AD5696  
AD5685R AD5684R  
AD5684  
AD5695R AD5694R  
AD5694  
PRODUCT HIGHLIGHTS  
The AD5686/AD5684 also incorporate a power-on reset circuit  
and a RSTSEL pin that ensures that the DAC outputs power up  
to zero scale or midscale and remain at that level until a valid  
write takes place. Each part contains a per-channel power-down  
feature that reduces the current consumption of the device to  
4 µA at 3 V while in power-down mode.  
1. High Relative Accuracy (INL).  
AD5686 (16-bit): 2 LSB maximum  
AD5684 (12-bit): 1 LSB maximum  
2. Excellent DC Performance.  
Total unadjusted error: 0.1% of FSR maximum  
Offset error: 1.5 mV maximum  
The AD5686/AD5684 employ a versatile SPI interface that  
operates at clock rates up to 50 MHz, and all devices contain  
a VLOGIC pin intended for 1.8 V/3 V/5 V logic.  
Gain error: 0.1% of FSR maximum  
3. Two Package Options.  
3 mm × 3 mm, 16-lead LFCSP  
16-lead TSSOP  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2012–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD5686/AD5684  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Serial Interface ............................................................................ 19  
Standalone Operation................................................................ 20  
Write and Update Commands.................................................. 20  
Daisy-Chain Operation ............................................................. 20  
Readback Operation .................................................................. 21  
Power-Down Operation ............................................................ 21  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Characteristics........................................................................ 5  
Timing Characteristics ................................................................ 6  
Daisy-Chain and Readback Timing Characteristics................ 7  
Absolute Maximum Ratings............................................................ 9  
ESD Caution.................................................................................. 9  
Pin Configurations and Function Descriptions ......................... 10  
Typical Performance Characteristics ........................................... 11  
Terminology .................................................................................... 16  
Theory of Operation ...................................................................... 18  
Digital-to-Analog Converter .................................................... 18  
Transfer Function ....................................................................... 18  
DAC Architecture....................................................................... 18  
LDAC  
Load DAC (Hardware  
Pin)........................................... 22  
Mask Register ................................................................. 22  
Hardware Reset ( ) .......................................................... 23  
LDAC  
RESET  
Reset Select Pin (RSTSEL) ........................................................ 23  
Applications Information .............................................................. 24  
Microprocessor Interfacing....................................................... 24  
AD5686/AD5684 to ADSP-BF531 Interface .......................... 24  
AD5686/AD5684 to SPORT Interface .................................... 24  
Layout Guidelines....................................................................... 24  
Galvanically Isolated Interface ................................................. 25  
Outline Dimensions....................................................................... 26  
Ordering Guide .......................................................................... 27  
REVISION HISTORY  
6/2017—Rev. B to Rev. C  
3/2015—Rev. A to Rev. B  
Changes to Features Section 1 ........................................................ 1  
Changes to Table 2............................................................................ 3  
Changes to Table 3............................................................................ 5  
Changes to Table 4............................................................................ 6  
Changes to Table 5 and Figure 4..................................................... 7  
Changes to Figure 5.......................................................................... 8  
Changes to Table 6............................................................................ 9  
Changes to Table 4 and Figure 2......................................................6  
Inserted Note 2 to Ordering Guide.............................................. 27  
6/2013—Rev. 0 to Rev. A  
Changes to Pin GAIN and Pin RSTSEL Descriptions; Table 7.. 10  
7/2012—Revision 0: Initial Version  
RESET  
Change to VLOGIC Pin Description and  
Pin Description,  
Table 7 ................................................................................................ 9  
Changes to Figure 12 and Figure 13............................................. 11  
Changes to Figure 14 to Figure 19................................................ 12  
Changes to Figure 20, Figure 22, and Figure 25 ......................... 13  
Changes to Figure 32...................................................................... 15  
Changes to Table 8.......................................................................... 19  
Changes to Readback Operation Section.................................... 21  
RESET  
Changes to Hardware Reset (  
) Section............................ 23  
Changes to Ordering Guide .......................................................... 27  
Rev. C | Page 2 of 27  
 
Data Sheet  
AD5686/AD5684  
SPECIFICATIONS  
VDD = 2.7 V to 5.5 V; VREF = 2.5 V; 1.62 V ≤ VLOGIC ≤ 5.5 V; all specifications TMIN to TMAX, unless otherwise noted. RL = 2 kΩ; CL = 200 pF.  
Table 2.  
A Grade1  
Typ  
B Grade1  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Test Conditions/Comments  
STATIC PERFORMANCE2  
AD5686  
Resolution  
Relative Accuracy  
16  
16  
Bits  
LSB  
LSB  
LSB  
2
2
8
8
1
1
1
2
3
1
Gain = 2  
Gain = 1  
Differential Nonlinearity  
AD5684  
Guaranteed monotonic by design  
Resolution  
12  
12  
Bits  
LSB  
LSB  
mV  
mV  
Relative Accuracy  
Differential Nonlinearity  
Zero-Code Error  
Offset Error  
0.12  
2
1
0.12  
1
1
1.5  
1.5  
0.1  
Guaranteed monotonic by design  
All 0s loaded to DAC register  
0.4  
+0.1  
+0.01  
4
0.4  
+0.1  
+0.01  
4
0.2  
Full-Scale Error  
% of  
FSR  
All 1s loaded to DAC register  
Gain Error  
0.02  
0.01  
0.2  
0.02  
0.01  
0.1  
0.1  
0.2  
% of  
FSR  
% of  
FSR  
% of  
FSR  
Total Unadjusted Error  
0.25  
0.25  
Gain = 2  
Gain = 1  
Offset Error Drift3  
Gain Temperature  
Coefficient3  
1
1
1
1
µV/°C  
ppm  
Of FSR/°C  
DC Power Supply Rejection  
Ratio3  
DC Crosstalk3  
0.15  
2
0.15  
2
mV/V  
µV  
DAC code = midscale; VDD = 5 V 10%  
Due to single channel, full-scale  
output change  
3
2
3
2
µV/mA Due to load current change  
µV  
Due to powering down (per channel)  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
0
0
VREF  
2 × VREF  
0
0
VREF  
2 × VREF  
V
Gain = 1  
V
Gain = 2, see Figure 23  
RL = ∞  
RL = 1 kΩ  
Capacitive Load Stability  
2
2
nF  
nF  
kΩ  
10  
10  
Resistive Load4  
Load Regulation  
1
1
80  
80  
80  
80  
µV/mA 5 V 10%, DAC code = midscale;  
−30 mA ≤ IOUT ≤ +30 mA  
µV/mA 3 V 10%, DAC code = midscale;  
−20 mA ≤ IOUT ≤ +20 mA  
Short-Circuit Current5  
Load Impedance at Rails6  
Power-Up Time  
40  
25  
2.5  
40  
25  
2.5  
mA  
µs  
See Figure 23  
Coming out of power-down mode;  
VDD = 5 V  
REFERENCE INPUT  
Reference Current  
90  
180  
90  
180  
µA  
µA  
V
V
kΩ  
kΩ  
VREF = VDD = VLOGIC = 5.5 V, gain = 1  
VREF = VDD = VLOGIC = 5.5 V, gain = 2  
Gain = 1  
Gain = 2  
Gain = 2  
Gain = 1  
Reference Input Range  
1
1
VDD  
VDD/2  
1
1
VDD  
VDD/2  
Reference Input Impedance  
16  
32  
16  
32  
Rev. C | Page 3 of 27  
 
AD5686/AD5684  
Data Sheet  
A Grade1  
Typ  
B Grade1  
Typ  
Parameter  
LOGIC INPUTS3  
Min  
Max  
Min  
Max  
Unit  
Test Conditions/Comments  
Input Current  
Input Low Voltage (VINL  
2
2
µA  
V
Per pin  
)
0.3 × VLOGIC  
0.3 × VLOGIC  
Input High Voltage (VINH  
)
0.7 × VLOGIC  
0.7 × VLOGIC  
V
Pin Capacitance  
LOGIC OUTPUTS (SDO)3  
Output Low Voltage, VOL  
Output High Voltage, VOH  
Floating State Output  
Capacitance  
2
4
2
4
pF  
0.4  
0.4  
V
V
pF  
ISINK = 200 μA  
ISOURCE = 200 μA  
VLOGIC − 0.4  
VLOGIC − 0.4  
POWER REQUIREMENTS  
VLOGIC  
ILOGIC  
VDD  
1.62  
5.5  
3
5.5  
5.5  
1.62  
5.5  
3
5.5  
5.5  
V
µA  
V
2.7  
VREF + 1.5  
2.7  
VREF + 1.5  
Gain = 1  
Gain = 2  
V
IDD  
VIH = VDD, VIL = GND, VDD = 2.7 V to 5.5 V  
Normal Mode7  
All Power-Down Modes8  
0.59  
1
0.7  
4
6
0.59  
1
0.7  
4
6
mA  
µA  
µA  
−40°C to +85°C  
−40°C to +105°C  
1 Temperature range, A and B grade: −40°C to +105°C.  
2 DC specifications tested with the outputs unloaded, unless otherwise noted. Upper dead band = 10 mV and exists only when VREF = VDD with gain = 1 or when VREF/2 =  
VDD with gain = 2. Linearity calculated using a reduced code range of 256 to 65,280 (AD5686) or 12 to 4080 (AD5684).  
3 Guaranteed by design and characterization; not production tested.  
4 Channel A and Channel B can have a combined output current of up to 30 mA. Similarly, Channel C and Channel D can have a combined output current of up to  
30 mA up to a junction temperature of 110°C.  
5 VDD = 5 V. The device includes current limiting that is intended to protect the device during temporary overload conditions. Junction temperature can be exceeded  
during current limit. Operation above the specified maximum operation junction temperature may impair device reliability.  
6 When drawing a load current at either rail, the output voltage headroom with respect to that rail is limited by the 25 Ω typical channel resistance of the output  
devices. For example, when sinking 1 mA, the minimum output voltage = 25 Ω × 1 mA = 25 mV (see Figure 23).  
7 Interface inactive. All DACs active. DAC outputs unloaded.  
8 All DACs powered down.  
Rev. C | Page 4 of 27  
 
Data Sheet  
AD5686/AD5684  
AC CHARACTERISTICS  
VDD = 2.7 V to 5.5 V; VREF = 2.5 V; 1.62 V ≤ VLOGIC ≤ 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; all specifications TMIN to TMAX, unless  
otherwise noted.1  
Table 3.  
Parameter2  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments3  
Output Voltage Settling Time  
AD5686  
AD5684  
5
5
8
7
µs  
µs  
¼ to ¾ scale settling to 2 LSB  
¼ to ¾ scale settling to 2 LSB  
Slew Rate  
0.8  
0.5  
0.13  
500  
0.1  
0.2  
0.3  
−80  
100  
V/µs  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
Multiplying Bandwidth  
Digital Crosstalk  
nV-sec  
nV-sec  
kHz  
nV-sec  
nV-sec  
nV-sec  
dB  
1 LSB change around major carry  
Analog Crosstalk  
DAC-to-DAC Crosstalk  
Total Harmonic Distortion4  
Output Noise Spectral Density  
At ambient, BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
DAC code = midscale, 10 kHz; gain = 2, internal reference  
enabled  
nV/√Hz  
Output Noise  
SNR  
SFDR  
6
µV p-p  
dB  
dB  
0.1 Hz to 10 Hz  
90  
83  
80  
At ambient, BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
At ambient, BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
At ambient, BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
SINAD  
dB  
1 Guaranteed by design and characterization; not production tested.  
2 See the Terminology section.  
3 Temperature range is −40°C to +105°C, typical @ 25°C.  
4 Digitally generated sine wave @ 1 kHz.  
Rev. C | Page 5 of 27  
 
AD5686/AD5684  
Data Sheet  
TIMING CHARACTERISTICS  
All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. See Figure 2.  
DD = 2.7 V to 5.5 V, 1.62 V ≤ VLOGIC ≤ 5.5 V; VREF = 2.5 V. All specifications TMIN to TMAX, unless otherwise noted.  
V
Table 4.  
1.62 V ≤ VLOGIC < 2.7 V 2.7 V ≤ VLOGIC 5.5 V  
Parameter1  
Symbol  
Min  
20  
10  
10  
15  
5
Max  
Min  
20  
10  
10  
10  
5
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
SCLK Cycle Time  
SCLK High Time  
SCLK Low Time  
SYNC to SCLK Falling Edge Setup Time  
Data Setup Time  
t1  
t2  
t3  
t4  
t5  
Data Hold Time  
t6  
t7  
5
5
SCLK Falling Edge to SYNC Rising Edge  
Minimum SYNC High Time  
SYNC Rising Edge to SYNC Rising Edge (DAC Register Update/s)  
SYNC Falling Edge to SCLK Fall Ignore  
LDAC Pulse Width Low  
10  
20  
870  
16  
15  
20  
30  
840  
30  
30  
4.5  
10  
20  
830  
10  
15  
20  
30  
800  
30  
30  
4.5  
t8  
t9  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
SYNC Rising Edge to LDAC Rising Edge  
SYNC Rising Edge to LDAC Falling Edge  
LDAC Falling Edge to SYNC Rising Edge  
Minimum Pulse Width Low  
Pulse Activation Time  
Power-Up Time2  
1 Maximum SCLK frequency is 50 MHz at VDD = 2.7 V to 5.5 V, 1.62 V ≤ VLOGIC ≤ VDD. Guaranteed by design and characterization; not production tested.  
2
SYNC  
Time to exit power-down to normal mode of AD5686/AD5684 operation,  
rising edge to 90% of DAC midscale value, with output unloaded.  
t10  
t1  
SCLK  
SYNC  
t2  
t8  
t7  
t3  
t14  
t4  
t9  
t6  
t5  
SDIN  
DB23  
DB0  
t11  
t13  
1
LDAC  
t12  
2
LDAC  
t15  
RESET  
t16  
V
OUT  
1
2
ASYNCHRONOUS LDAC UPDATE MODE.  
SYNCHRONOUS LDAC UPDATE MODE.  
Figure 2. Serial Write Operation  
Rev. C | Page 6 of 27  
 
 
Data Sheet  
AD5686/AD5684  
DAISY-CHAIN AND READBACK TIMING CHARACTERISTICS  
All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. See Figure 4  
and Figure 5. VDD = 2.7 V to 5.5 V, 1.62 V ≤ VLOGIC ≤ 5.5 V; VREF = 2.5 V. All specifications TMIN to TMAX, unless otherwise noted.  
Table 5.  
1.62 V ≤ VLOGIC < 2.7 V  
Max  
2.7 V ≤ VLOGIC ≤ 5.5 V  
Max  
Parameter1  
Symbol  
Min  
66  
33  
33  
33  
5
5
15  
60  
Min  
40  
20  
20  
20  
5
5
10  
30  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Cycle Time  
SCLK High Time  
SCLK Low Time  
SYNC to SCLK Falling Edge  
Data Setup Time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
t11  
Data Hold Time  
SCLK Falling Edge to SYNC Rising Edge  
Minimum SYNC High Time  
SDO Data Valid from SCLK Rising Edge  
SYNC Rising Edge to SCLK Falling Edge  
SYNC Rising Edge to SDO Disable  
45  
30  
15  
60  
10  
60  
1 Maximum SCLK frequency is 25 MHz or 15 MHz at VDD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ VDD. Guaranteed by design and characterization; not production tested.  
Circuit and Timing Diagrams  
200µA  
I
OL  
TO OUTPUT  
PIN  
V
(MIN)  
OH  
C
L
20pF  
200µA  
I
OH  
Figure 3. Load Circuit for Digital Output (SDO) Timing Specifications  
t1  
SCLK  
24  
48  
t7  
t2  
t8  
t3  
t10  
t4  
SYNC  
SDIN  
t6  
t5  
DB23  
DB0  
DB23  
DB0  
INPUT WORD FOR DAC N  
INPUT WORD FOR DAC N + 1  
INPUT WORD FOR DAC N  
t9  
DB23  
DB0  
SDO  
UNDEFINED  
Figure 4. Daisy-Chain Timing Diagram  
Rev. C | Page 7 of 27  
 
 
AD5686/AD5684  
Data Sheet  
t1  
SCLK  
24  
24  
1
1
t3  
t8  
t7  
t4  
t2  
t10  
t8  
SYNC  
t6  
t5  
DB23  
DB0  
DB23  
DB0  
SDIN  
SDO  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
NOP CONDITION  
t9  
t11  
DB23  
DB0  
HI-Z  
SELECTED REGISTER DATA  
CLOCKED OUT  
Figure 5. Readback Timing Diagram  
Rev. C | Page 8 of 27  
 
Data Sheet  
AD5686/AD5684  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 6.  
Parameter  
Rating  
VDD to GND  
−0.3 V to +7 V  
VLOGIC to GND  
−0.3 V to +7 V  
VOUT to GND  
VREF to GND  
Digital Input Voltage to GND  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VLOGIC + 0.3 V  
−40°C to +105°C  
−65°C to +150°C  
125°C  
ESD CAUTION  
16-Lead TSSOP, θJA Thermal  
112.6°C/W  
Impedance, 0 Airflow (4-Layer Board)  
16-Lead LFCSP, θJA Thermal  
Impedance, 0 Airflow (4-Layer Board)  
Reflow Soldering Peak  
70°C/W  
260°C  
Temperature, Pb Free (J-STD-020)  
Rev. C | Page 9 of 27  
 
 
AD5686/AD5684  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
AD5686/AD5684  
V
V
A 1  
12 SDIN  
11 SYNC  
10 SCLK  
OUT  
GND 2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
RSTSEL  
RESET  
SDIN  
REF  
V
3
DD  
V
V
B
A
OUT  
9
V
LOGIC  
C 4  
AD5686/  
AD5684  
OUT  
OUT  
GND  
SYNC  
SCLK  
TOP VIEW  
(Not to Scale)  
V
DD  
V
V
C
D
V
LOGIC  
OUT  
OUT  
TOP VIEW  
(Not to Scale)  
GAIN  
LDAC  
SDO  
NOTES  
1. THE EXPOSED PAD MUST BE TIED TO GND.  
Figure 6. 16-Lead LFCSP Pin Configuration  
Figure 7. 16-Lead TSSOP Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
TSSOP  
LFCSP  
Mnemonic Description  
1
2
3
3
4
5
VOUT  
GND  
VDD  
A
Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.  
Ground Reference Point for All Circuitry on the Part.  
Power Supply Input. These parts can be operated from 2.7 V to 5.5 V, and the supply should be  
decoupled with a 10 µF capacitor in parallel with a 0.1 µF capacitor to GND.  
4
5
6
6
7
8
VOUT  
VOUT  
SDO  
C
D
Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.  
Serial Data Output. Can be used to daisy-chain a number of AD5686/AD5684 devices together or  
can be used for readback. The serial data is transferred on the rising edge of SCLK and is valid on  
the falling edge of the clock.  
7
8
9
LDAC  
GAIN  
LDAC can be operated in two modes, asynchronously and synchronously. Pulsing this pin low allows  
any or all DAC registers to be updated if the input registers have new data. This allows all DAC outputs  
to be simultaneously updated. This pin can also be tied permanently low.  
10  
Span Set Pin. When this pin is tied to GND, all four DAC outputs have a span from 0 V to VREF. When  
this pin is tied to VLOGIC, all four DAC outputs have a span from 0 V to 2 × VREF  
.
9
10  
11  
12  
VLOGIC  
SCLK  
Digital Power Supply. Voltage ranges from 1.62 V to 5.5 V.  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock  
input. Data can be transferred at rates of up to 50 MHz.  
11  
12  
13  
13  
14  
15  
SYNC  
SDIN  
Active Low Control Input. This is the frame synchronization signal for the input data. When SYNC  
goes low, data is transferred in on the falling edges of the next 24 clocks.  
Serial Data Input. These devices have a 24-bit input shift register. Data is clocked into the register on  
the falling edge of the serial clock input.  
Asynchronous Reset Input. The RESET input is falling edge sensitive. When RESET is low, all LDAC  
pulses are ignored. When RESET is activated, the input register and the DAC register are updated with  
zero scale or midscale, depending on the state of the RSTSEL pin. If the pin is forced low at power-up,  
the POR circuit does not initialize correctly until the pin is released.  
RESET  
Power-On Reset Pin. Tying this pin to GND powers up all four DACs to zero scale. Tying this pin to  
VLOGIC powers up all four DACs to midscale.  
Reference Input Voltage.  
Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.  
Exposed Pad. The exposed pad must be tied to GND.  
14  
16  
RSTSEL  
VREF  
15  
16  
17  
1
2
N/A  
VOUT  
B
EPAD  
Rev. C | Page 10 of 27  
 
Data Sheet  
AD5686/AD5684  
TYPICAL PERFORMANCE CHARACTERISTICS  
10  
1.0  
0.8  
8
6
0.6  
0.4  
4
0.2  
2
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–2  
–4  
–6  
V
T
= 5V  
= 25°C  
V
T
= 5V  
= 25°C  
DD  
DD  
–8  
A
A
REFERENCE = 2.5V  
REFERENCE = 2.5V  
–10  
0
625  
1250  
1875  
CODE  
2500  
3125  
3750 4096  
0
10000  
20000  
30000  
CODE  
40000  
50000  
60000  
Figure 11. AD5684 DNL  
Figure 8. AD5686 INL  
10  
8
10  
8
6
6
4
4
2
2
INL  
0
0
DNL  
–2  
–4  
–6  
–8  
–10  
–2  
–4  
–6  
–8  
–10  
V
= 5V  
= 25°C  
DD  
V
= 5V  
DD  
T
A
REFERENCE = 2.5V  
REFERENCE = 2.5V  
–40 10  
60  
110  
0
625  
1250  
1875  
CODE  
2500  
3125  
3750 4096  
TEMPERATURE (°C)  
Figure 12. INL Error and DNL Error vs. Temperature  
Figure 9. AD5684 INL  
10  
8
1.0  
0.8  
6
0.6  
4
0.4  
2
0.2  
INL  
0
0
DNL  
–2  
–4  
–6  
–8  
–10  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
T
= 5V  
= 25°C  
DD  
A
V
= 5V  
= 25°C  
DD  
T
A
REFERENCE = 2.5V  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
10000 20000  
30000  
CODE  
40000  
50000  
60000  
V
(V)  
REF  
Figure 13. INL Error and DNL Error vs. VREF  
Figure 10. AD5686 DNL  
Rev. C | Page 11 of 27  
 
 
 
AD5686/AD5684  
Data Sheet  
0.10  
0.08  
0.06  
0.04  
0.02  
0
10  
8
6
4
2
GAIN ERROR  
INL  
0
DNL  
FULL-SCALE ERROR  
–2  
–4  
–6  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
T
= 25°C  
–8  
T
= 25°C  
A
A
REFERENCE = 2.5V  
REFERENCE = 2.5V  
–10  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
2.7 3.2  
3.7  
4.2  
4.7  
5.2  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 14. INL Error and DNL Error vs. Supply Voltage  
Figure 17. Gain Error and Full-Scale Error vs. Supply Voltage  
0.10  
0.08  
0.06  
0.04  
0.02  
0
1.5  
1.0  
0.5  
ZERO-CODE ERROR  
FULL-SCALE ERROR  
GAIN ERROR  
0
OFFSET ERROR  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.5  
–1.0  
–1.5  
T = 25°C  
A
REFERENCE = 2.5V  
V
= 5V  
DD  
REFERENCE = 2.5V  
–40 –20  
0
20  
40  
60  
80  
100  
120  
2.7 3.2  
3.7  
4.2  
4.7  
5.2  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 15. Gain Error and Full-Scale Error vs. Temperature  
Figure 18. Zero-Code Error and Offset Error vs. Supply Voltage  
0.10  
V
= 5V  
DD  
V
= 5V  
DD  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
REFERENCE = 2.5V  
REFERENCE = 2.5V  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
ZERO-CODE ERROR  
OFFSET ERROR  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. Zero-Code Error and Offset Error vs. Temperature  
Figure 19. TUE vs. Temperature  
Rev. C | Page 12 of 27  
 
 
Data Sheet  
AD5686/AD5684  
1.0  
0.8  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.6  
0.4  
SINKING 2.7V  
0.2  
SINKING 5V  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.02  
–0.04  
–0.06  
SOURCING 5V  
SOURCING 2.7V  
15  
V
= 5V  
= 25°C  
DD  
–0.08  
–0.10  
T
A
INTERNAL REFERENCE = 2.5V  
2.7 3.2 3.7  
SUPPLY VOLTAGE (V)  
0
5
10  
20  
25  
30  
4.2  
4.7  
5.2  
LOAD CURRENT (mA)  
Figure 23. Headroom/Footroom vs. Load Current  
Figure 20. TUE vs. Supply Voltage, Gain = 1  
7
6
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–0.07  
–0.08  
–0.09  
–0.10  
V
= 5V  
= 25°C  
DD  
T
A
GAIN = 2  
REFERENCE = 2.5V  
0xFFFF  
5
4
0xC000  
0x8000  
0x4000  
0x0000  
3
2
1
0
V
= 5V  
= 25°C  
DD  
–1  
T
A
REFERENCE = 2.5V  
–2  
–0.06  
–0.04  
–0.02  
0
0.02  
0.04  
0.06  
0
10000 20000  
30000  
CODE  
40000  
50000  
60000 65535  
LOAD CURRENT (A)  
Figure 24. Source and Sink Capability at 5 V  
Figure 21. TUE vs. Code  
5
V
T
= 5V  
= 25°C  
V
= 3V  
= 25°C  
DD  
DD  
25  
T
A
A
EXTERNAL  
REFERENCE = 2.5V  
GAIN = 1  
EXTERNAL  
REFERENCE = 2.5V  
4
3
0xFFFF  
0xC000  
20  
15  
10  
5
2
0x8000  
0x4000  
1
0x0000  
0
–1  
0
–2  
–0.06  
540  
560  
580  
600  
620  
640  
–0.04  
–0.02  
0
0.02  
0.04  
0.06  
I
(µA)  
LOAD CURRENT (A)  
DD  
Figure 25. Source and Sink Capability at 3 V  
Figure 22. IDD Histogram  
Rev. C | Page 13 of 27  
 
AD5686/AD5684  
Data Sheet  
3
2
1
0
CH A  
CH B  
CH C  
CH D  
SYNC  
1.4  
1.2  
1.0  
0.8  
GAIN = 2  
GAIN = 1  
FULL-SCALE  
0.6  
0.4  
0.2  
0
V
= 5V  
= 25°C  
REFERENCE = 2.5V  
DD  
T
A
–5  
0
5 10  
–40  
10  
60  
110  
TIME (µs)  
TEMPERATURE (°C)  
Figure 29. Exiting Power-Down to Midscale  
Figure 26. Supply Current vs. Temperature  
2.5008  
2.5003  
2.4998  
2.4993  
2.4988  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
DAC A  
DAC B  
DAC C  
DAC D  
CHANNEL B  
T
= 25°C  
A
V
= 5.25V  
V
T
= 5V  
= 25°C  
REFERENCE = 2.5V  
¼ TO ¾ SCALE  
DD  
DD  
REFERENCE = 2.5V  
CODE = 7FFF TO 8000  
ENERGY = 0.227206nV-sec  
A
0
2
4
6
8
10  
12  
10  
20  
40  
80  
160  
320  
TIME (µs)  
TIME (µs)  
Figure 30. Digital-to-Analog Glitch Impulse  
Figure 27. Settling Time, 5 V  
0.003  
0.002  
0.001  
0
0.06  
6
CH A  
CH B  
CH C  
CH D  
CH B  
CH C  
CH D  
0.05  
0.04  
0.03  
0.02  
0.01  
0
5
V
DD  
4
3
2
1
–0.001  
–0.002  
0
T
= 25°C  
REFERENCE = 2.5V  
A
–0.01  
–1  
15  
0
5
10  
15  
20  
25  
–10  
–5  
0
5
10  
TIME (µs)  
TIME (µs)  
Figure 31. Analog Crosstalk, Channel A  
Figure 28. Power-On Reset to 0 V  
Rev. C | Page 14 of 27  
 
Data Sheet  
AD5686/AD5684  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
0nF  
V
= 5V  
= 25°C  
DD  
0.1nF  
10nF  
0.22nF  
4.7nF  
T
A
T
REFERENCE = 2.5V  
1
V
= 5V  
= 25°C  
DD  
T
A
EXTERNAL REFERENCE = 2.5V  
1.590 1.595 1.600 1.605 1.610 1.615 1.620 1.625 1.630  
TIME (ms)  
CH1 10µV M1.0s  
A
CH1  
802mV  
Figure 34. Settling Time vs. Capacitive Load  
Figure 32. 0.1 Hz to 10 Hz Output Noise Plot  
0
20  
0
V
= 5V  
= 25°C  
DD  
T
A
REFERENCE = 2.5V  
–10  
–20  
–40  
–20  
–30  
–40  
–50  
–60  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
V
= 5V  
DD  
T
= 25°C  
A
REFERENCE = 2.5V, ±0.1V p-p  
10k 100k  
FREQUENCY (Hz)  
1M  
10M  
0
2000 4000 6000 8000 10000 12000 14000 16000 18000 20000  
FREQUENCY (Hz)  
Figure 35. Multiplying Bandwidth, Reference = 2.5 V, 0.1 V p-p,  
10 kHz to 10 MHz  
Figure 33. Total Harmonic Distortion @ 1 kHz  
Rev. C | Page 15 of 27  
AD5686/AD5684  
Data Sheet  
TERMINOLOGY  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy or integral nonlinearity is a  
measurement of the maximum deviation, in LSBs, from a  
straight line passing through the endpoints of the DAC transfer  
function. A typical INL vs. code plot is shown in Figure 8.  
Output Voltage Settling Time  
The output voltage setting time is the amount of time it takes  
for the output of a DAC to settle to a specified level for a ¼ to ¾  
full-scale input change and is measured from the rising edge  
SYNC  
of  
.
Differential Nonlinearity (DNL)  
Digital-to-Analog Glitch Impulse  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity. These DACs are guaranteed monotonic  
by design. A typical DNL vs. code plot can be seen in Figure 10.  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-sec,  
and is measured when the digital input code is changed by  
1 LSB at the major carry transition (0x7FFF to 0x8000) (see  
Figure 30).  
Zero-Code Error  
Zero-code error is a measurement of the output error when  
zero code (0x0000) is loaded to the DAC register. Ideally, the  
output should be 0 V. The zero-code error is always positive in  
the AD5686/AD5684 because the output of the DAC cannot go  
below 0 V due to a combination of the offset errors in the DAC  
and the output amplifier. Zero-code error is expressed in mV. A  
plot of zero-code error vs. temperature can be seen in Figure 16.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into the  
analog output of the DAC from the digital inputs of the DAC,  
but is measured when the DAC output is not updated. It is  
specified in nV-sec and measured with a full-scale code change  
on the data bus, that is, from all 0s to all 1s and vice versa.  
Noise Spectral Density  
Full-Scale Error  
Noise spectral density is a measurement of the internally  
generated random noise. Random noise is characterized as a  
spectral density (nV/√Hz). It is measured by loading the DAC  
to midscale and measuring noise at the output. It is measured in  
nV/√Hz.  
Full-scale error is a measurement of the output error when full-  
scale code (0xFFFF) is loaded to the DAC register. Ideally, the  
output should be VDD − 1 LSB. Full-scale error is expressed in  
percent of full-scale range (% of FSR). A plot of full-scale error  
vs. temperature can be seen in Figure 15.  
DC Crosstalk  
Gain Error  
DC crosstalk is the dc change in the output level of one DAC  
in response to a change in the output of another DAC. It is  
measured with a full-scale output change on one DAC (or soft  
power-down and power-up) while monitoring another DAC  
kept at midscale. It is expressed in μV.  
Gain error is a measurement of the span error of the DAC. It is  
the deviation in slope of the DAC transfer characteristic from  
the ideal expressed as % of FSR.  
Offset Error Drift  
Offset error drift is a measurement of the change in offset error  
with a change in temperature. It is expressed in µV/°C.  
DC crosstalk due to load current change is a measurement of  
the impact that a change in load current on one DAC has to  
another DAC kept at midscale. It is expressed in μV/mA.  
Gain Temperature Coefficient  
Gain temperature coefficient is a measurement of the change in  
gain error with changes in temperature. It is expressed in ppm  
of FSR/°C.  
Digital Crosstalk  
Digital crosstalk is the glitch impulse transferred to the output  
of one DAC at midscale in response to a full-scale code change  
(all 0s to all 1s and vice versa) in the input register of another  
DAC. It is measured in standalone mode and is expressed in  
nV-sec.  
Offset Error  
Offset error is a measurement of the difference between VOUT  
(actual) and VOUT (ideal) expressed in mV in the linear region of  
the transfer function. It can be negative or positive.  
DC Power Supply Rejection Ratio (PSRR)  
DC PSRR indicates how the output of the DAC is affected by  
changes in the supply voltage. PSRR is the ratio of the change in  
V
OUT to a change in VDD for full-scale output of the DAC. It is  
measured in mV/V. VREF is held at 2.5 V, and VDD is varied by  
10%.  
Rev. C | Page 16 of 27  
 
Data Sheet  
AD5686/AD5684  
Analog Crosstalk  
Multiplying Bandwidth  
Analog crosstalk is the glitch impulse transferred to the output  
of one DAC due to a change in the output of another DAC. It is  
measured by loading one of the input registers with a full-scale  
code change (all 0s to all 1s and vice versa). Then execute a  
software LDAC and monitor the output of the DAC whose  
digital code was not changed. The area of the glitch is expressed  
in nV-sec.  
The amplifiers within the DAC have a finite bandwidth. The  
multiplying bandwidth is a measure of this. A sine wave on the  
reference (with full-scale code loaded to the DAC) appears on  
the output.  
Total Harmonic Distortion (THD)  
THD is the difference between an ideal sine wave and its  
attenuated version using the DAC. The sine wave is used as the  
reference for the DAC, and the THD is a measurement of the  
harmonics present on the DAC output. It is measured in dB.  
DAC-to-DAC Crosstalk  
DAC-to-DAC crosstalk is the glitch impulse transferred to  
the output of one DAC in response to a digital code change  
and subsequent analog output change of another DAC. It is  
measured by loading the attack channel with a full-scale code  
change (all 0s to all 1s and vice versa) using the write to and  
update commands while monitoring the output of another  
channel that is at midscale. The energy of the glitch is  
expressed in nV-sec.  
Rev. C | Page 17 of 27  
AD5686/AD5684  
Data Sheet  
THEORY OF OPERATION  
The resistor string structure is shown in Figure 37. It is a string  
of resistors, each of Value R. The code loaded to the DAC register  
determines the node on the string where the voltage is to be  
tapped off and fed into the output amplifier. The voltage is  
tapped off by closing one of the switches connecting the  
string to the amplifier. Because the DAC is a string of resistors,  
it is guaranteed monotonic.  
DIGITAL-TO-ANALOG CONVERTER  
The AD5686/AD5684 are quad, 16-/12-bit, serial input, voltage  
output DACs. The parts operate from supply voltages of 2.7 V to  
5.5 V. Data is written to the AD5686/AD5684 in a 24-bit word  
format via a 3-wire serial interface. The AD5686/AD5684  
incorporate a power-on reset circuit to ensure that the DAC  
output powers up to a known output state. The devices also  
have a software power-down mode that reduces the typical  
current consumption to typically 4 µA.  
V
REF  
R
TRANSFER FUNCTION  
R
R
Because the input coding to the DAC is straight binary, the ideal  
output voltage when using an external reference is given by  
TO OUTPUT  
AMPLIFIER  
D
VOUT =VREF ×Gain  
N
2
where:  
D is the decimal equivalent of the binary code that is loaded to  
the DAC register as follows:  
R
R
0 to 4095 for the 12-bit device.  
0 to 65,535 for the 16-bit device.  
N is the DAC resolution.  
VREF is the value of the external reference.  
Gain is the gain of the output amplifier and is set to 1 by default.  
The gain can be set to ×1 or ×2 using the gain select pin. When  
this pin is tied to GND, all four DAC outputs have a span of 0 V  
to VREF. When this pin is tied to VDD, all four DAC outputs have  
Figure 37. Resistor String Structure  
Output Amplifiers  
The output buffer amplifier can generate rail-to-rail voltages on  
its output, which gives an output range of 0 V to VDD. The actual  
range depends on the value of VREF, the GAIN pin, offset error,  
and gain error. The GAIN pin selects the gain of the output.  
a span of 0 V to 2 × VREF  
.
DAC ARCHITECTURE  
The DAC architecture consists of a string DAC followed by an  
output amplifier. Figure 36 shows a block diagram of the DAC  
architecture.  
If this pin is tied to GND, all four outputs have a gain of 1,  
and the output range is 0 V to VREF  
If this pin is tied to VDD, all four outputs have a gain of 2,  
and the output range is 0 V to 2 × VREF  
.
V
REF  
.
These amplifiers are capable of driving a load of 1 kΩ in parallel  
with 2 nF to GND. The slew rate is 0.8 V/µs with a ¼ to ¾ scale  
settling time of 5 µs.  
REF (+)  
INPUT  
REGISTER  
DAC  
REGISTER  
RESISTOR  
STRING  
V
X
OUT  
REF (–)  
GAIN  
(GAIN = 1 OR 2)  
GND  
Figure 36. Single DAC Channel Architecture Block Diagram  
Rev. C | Page 18 of 27  
 
 
 
 
 
 
Data Sheet  
AD5686/AD5684  
Table 8. Command Bit Definitions  
SERIAL INTERFACE  
Command Bits  
SYNC  
The AD5686/AD5684 have a 3-wire serial interface (  
SCLK, and SDIN) that is compatible with SPI, QSPI™, and  
MICROWIRE® interface standards as well as most DSPs. See  
Figure 2 for a timing diagram of a typical write sequence. The  
AD5686/AD5684 contain an SDO pin to allow the user to daisy-  
chain multiple devices together (see the Daisy-Chain Operation  
section) or for readback.  
,
C3  
0
0
C2 C1 C0 Description  
0
0
0
0
0
1
0
1
0
No operation  
LDAC  
)
Write to Input Register n (dependent on  
0
Update DAC Register n with contents of Input  
Register n  
0
0
0
0
0
1
1
1
1
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
Write to and update DAC Channel n  
Power down/power up DAC  
LDAC  
Hardware  
mask register  
Input Shift Register  
Software reset (power-on reset)  
Reserved  
Set up DCEN register (daisy-chain enable)  
Set up readback register (readback enable)  
Reserved  
The input shift register of the AD5686/AD5684 is 24 bits wide.  
Data is loaded MSB first (DB23). The first four bits are the  
command bits, C3 to C0 (see Table 8), followed by the 4-bit  
DAC address bits, DAC A, DAC B, DAC C, andDAC D (see  
Table 9), and finally the bit data-word.  
Reserved  
No operation, daisy-chain mode  
For the AD5686, the data-word comprises 16-bit input code(see  
Figure 38). For the AD5684, the data-word comprises 12-bit input  
code, followed by zero or four don’t care bits (see Figure 39).  
These data bits are transferred to the input register on the 24  
falling edges of SCLK and are updated on the rising edge  
SYNC  
Table 9. Address Bits and Selected DACs  
Address Bits  
DAC D DAC C DAC B DAC A Selected DAC Channel1  
0
0
0
1
0
1
0
0
1
0
0
1
0
1
0
0
1
1
1
0
0
0
1
1
DAC A  
DAC B  
DAC C  
DAC D  
DAC A and DAC B  
All DACs  
of  
.
Commands can be executed on individual DAC channels,  
combined DAC channels, or on all DACs, depending on the  
address bits selected (see Table 9).  
1 Any combination of DAC channels can be selected using the address bits.  
DB23 (MSB)  
DB0 (LSB)  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DATA BITS  
DAC DAC DAC DAC  
C3 C2 C1 C0  
D
C
B
A
COMMAND BITS  
ADDRESS BITS  
Figure 38. AD5686 Input Shift Register Contents  
DB23 (MSB)  
DB0 (LSB)  
DAC DAC DAC DAC  
C3 C2 C1 C0  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DATA BITS  
X
X
X
X
D
C
B
A
COMMAND BITS  
ADDRESS BITS  
Figure 39. AD5684 Input Shift Register Contents  
Rev. C | Page 19 of 27  
 
 
 
 
 
AD5686/AD5684  
Data Sheet  
STANDALONE OPERATION  
AD5686/  
AD5684  
68HC11*  
MOSI  
SYNC  
The write sequence begins by bringing the  
from the SDIN line is clocked into the 24-bit input shift register  
on the falling edge of SCLK. After the last of 24 data bits is  
line low. Data  
SDIN  
SCK  
PC7  
PC6  
SCLK  
SYNC  
LDAC  
SYNC  
clocked in,  
function is then executed, that is, an  
in DAC register contents and/or a change in the mode of  
should be brought high. The programmed  
LDAC  
-dependent change  
SDO  
MISO  
th  
SYNC  
operation. If  
clock, it is considered a valid frame and invalid data may be  
SYNC  
is taken high at a clock before the 24  
SDIN  
loaded to the DAC.  
of 20 ns (single channel, see t8 in Figure 2) before the next write  
SYNC  
must be brought high for a minimum  
AD5686/  
AD5684  
SCLK  
sequence so that a falling edge of  
can initiate the next  
should be idle at rails between write  
sequences for even lower power operation of the part.  
SYNC  
SYNC  
LDAC  
SYNC  
write sequence.  
SDO  
The  
line is kept low for 24 falling edges of SCLK, and the  
SYNC  
DAC is updated on the rising edge of  
.
After data is transferred into the input register of the addressed  
DAC, all DAC registers and outputs can be updated by  
SDIN  
AD5686/  
AD5684  
LDAC  
SYNC  
taking  
low while the  
line is high.  
SCLK  
WRITE AND UPDATE COMMANDS  
Write to Input Register n (Dependent on  
SYNC  
LDAC  
)
LDAC  
SDO  
Command 0001 allows the user to write to each DACs  
LDAC  
dedicated input register individually. When  
the input register is transparent (if not controlled by the  
LDAC  
is low,  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
mask register).  
Figure 40. Daisy-Chaining the AD5686/AD5684  
Update DAC Register n with Contents of Input Register n  
The SCLK pin is continuously applied to the input shift register  
Command 0010 loads the DAC registers/outputs with the  
contents of the selected input registers and updates the DAC  
outputs directly.  
SYNC  
when  
is low. If more than 24 clock pulses are applied, the  
data ripples out of the input shift register and appears on the  
SDO line. This data is clocked out on the rising edge of SCLK  
and is valid on the falling edge. By connecting the SDO line to  
the SDIN input on the next DAC in the chain, a daisy-chain  
interface is constructed. Each DAC in the system requires 24  
clock pulses. Therefore, the total number of clock cycles must  
equal 24 × N, where N is the total number of devices that are  
is taken high at a clock that is not a multiple  
of 24, it is considered a valid frame and invalid data may be  
loaded to the DAC. When the serial transfer to all devices is  
Write to and Update DAC Channel n (Independent  
of  
)
LDAC  
Command 0011 allows the user to write to the DAC registers  
and update the DAC outputs directly.  
DAISY-CHAIN OPERATION  
SYNC  
updated. If  
For systems that contain several DACs, the SDO pin can be  
used to daisy-chain several devices together. This function  
is enabled through a software executable daisy-chain enable  
(DCEN) command. Command 1000 is reserved for this DCEN  
function (see Table 8). The daisy-chain mode is enabled by  
setting Bit DB0 in the DCEN register. The default setting is  
standalone mode, where DB0 = 0. Table 10 shows how the state  
of the bit corresponds to the mode of operation of the device.  
SYNC  
complete,  
is taken high. This latches the input data in  
each device in the daisy chain and prevents any further data  
from being clocked into the input shift register. The serial clock  
can be continuous or a gated clock. A continuous SCLK source  
can be held low for the correct  
number of clock cycles. In gated clock mode, a burst clock  
containing the exact number of clock cycles must be used,  
SYNC  
can be used only if  
Table 10. Daisy-Chain Enable (DCEN) Register  
DB0  
Description  
SYNC  
and  
must be taken high after the final clock to latch the data.  
0
1
Standalone mode (default)  
DCEN mode  
Rev. C | Page 20 of 27  
 
 
 
 
Data Sheet  
AD5686/AD5684  
Table 11. Modes of Operation  
Operating Mode  
Normal Operation  
Power-Down Modes  
1 kΩ to GND  
READBACK OPERATION  
PDx1  
PDx0  
Readback mode is invoked through a software executable  
readback command. If the SDO output is disabled via the daisy-  
chain mode disable bit in the control register, it is automatically  
enabled for the duration of the read operation, after which it is  
disabled again. Command 1001 is reserved for the readback  
function. This command, in association with selecting one  
of the address bits, DAC A to DAC D, selects the register to  
read. Note that only one DAC register can be selected during  
readback. The remaining three address bits must be set to  
Logic 0. The remaining data bits in the write sequence are  
don’t care bits. If more than one or no bits are selected, DAC  
Channel A is read back by default. During the next SPI write,  
the data appearing on the SDO output contains the data from  
the previously addressed register.  
0
0
0
1
1
1
0
1
100 kΩ to GND  
Three-State  
Any or all DACs (DAC A to DAC D) can be powered down  
to the selected mode by setting the corresponding bits. See  
Table 12 for the contents of the input shift register during the  
power-down/power-up operation.  
When both Bit PDx1 and Bit PDx0 (where x is the channel  
selected) in the input shift register are set to 0, the parts work  
normally with their normal power consumption of 0.59 mA at  
5 V. However, for the three power-down modes, the supply  
current falls to 4 μA at 5 V. Not only does the supply current  
fall, but the output stage is also internally switched from the  
output of the amplifier to a resistor network of known values.  
This has the advantage that the output impedance of the part is  
known while the part is in power-down mode. There are three  
different power-down options (see Table 11). The output is  
connected internally to GND through either a 1 kΩ or a 100 kΩ  
resistor, or it is left open-circuited (three-state). The output stage  
is illustrated in Figure 41.  
For example, to read back the DAC register for Channel A, the  
following sequence should be implemented:  
1. Write 0x900000 to the AD5686/AD5684 input register.  
This configures the part for read mode with the DAC  
register of Channel A selected. Note that all data bits,  
DB15 to DB0, are don’t care bits.  
2. Follow this with a second write, a NOP condition,  
0x000000 (0xF00000 in daisy-chain mode). During this  
write, the data from the register is clocked out on the SDO  
line. DB23 to DB20 contain undefined data, and the last  
16 bits contain the DB19 to DB4 DAC register contents.  
AMPLIFIER  
V
X
DAC  
OUT  
POWER-DOWN OPERATION  
The AD5686/AD5684 provide three separate power-down  
modes (see Table 11). Command 0100 is designated for the power-  
down function (see Table 8). These power-down modes are  
software programmable by setting eight bits, Bit DB7 to Bit DB0,  
in the input shift register. Two bits are associated with each DAC  
channel. Table 11 shows how the state of the two bits corresponds  
to the mode of operation of the device.  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
Figure 41. Output Stage During Power-Down  
The bias generator, output amplifier, resistor string, and other  
associated linear circuitry are shut down when the power-down  
mode is activated. However, the contents of the DAC registers  
are unaffected when in power-down. The DAC registers can be  
updated while the device is in power-down mode. The time  
required to exit power-down is typically 4.5 µs for VDD = 5 V.  
Table 12. 24-Bit Input Shift Register Contents for Power-Down/Power-Up Operation1  
DB15  
to  
DB8  
DB0  
(LSB)  
DB23 DB22  
DB21  
DB20  
DB19 to DB16  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
0
1
0
0
X
X
PDD1  
PDD0  
PDC1  
PDC0  
PDB1  
PDB0 PDA1  
PDA0  
Command bits (C3 to C0)  
Address bits  
(don’t care)  
Power-Down  
Select DAC D  
Power-Down  
Select DAC C  
Power-Down  
Select DAC B  
Power-Down  
Select DAC A  
1 X = don’t care.  
Rev. C | Page 21 of 27  
 
 
 
 
 
AD5686/AD5684  
Data Sheet  
LOAD DAC (HARDWARE LDAC PIN)  
LDAC MASK REGISTER  
The AD5686/AD5684 DACs have double buffered interfaces  
consisting of two banks of registers: input registers and DAC  
registers. The user can write to any combination of the input  
registers. Updates to the DAC register are controlled by  
LDAC  
function.  
Command 0101 is reserved for the software  
Address bits are ignored. Writing to the DAC using Command  
LDAC  
0101 loads the 4-bit  
for each channel is 0; that is, the  
Setting the bits to 1 forces this DAC channel to ignore transitions  
LDAC LDAC  
register (DB3 to DB0). The default  
LDAC  
pin works normally.  
LDAC  
the  
pin.  
on the  
pin. This flexibility is useful in applications where the user  
LDAC  
pin, regardless of the state of the hardware  
OUTPUT  
AMPLIFIER  
V
16-/12-BIT  
DAC  
REF  
V
X
OUT  
wishes to select which channels respond to the  
pin.  
register gives the user extra flexibility and control  
LDAC LDAC  
LDAC  
The  
over the hardware  
bits (DB3 to DB0) to 0 for a DAC channel means that this  
LDAC  
DAC  
REGISTER  
pin (see Table 13). Setting the  
LDAC  
channel’s update is controlled by the hardware  
LDAC  
pin.  
INPUT  
REGISTER  
Table 13.  
Load  
Overwrite Definition  
Register  
LDAC  
SCLK  
SYNC  
SDIN  
INTERFACE  
LOGIC  
Bits  
(DB3 to DB0)  
LDAC  
SDO  
Pin  
Operation  
LDAC  
LDAC  
1 or 0  
X1  
Figure 42. Simplified Diagram of Input Loading Circuitry for a Single DAC  
0
1
Determined by the LDAC pin.  
DAC channels are updated and  
override the LDAC pin. DAC  
channels see LDAC as 1.  
LDAC  
Instantaneous DAC Updating (  
Held Low)  
is held low while data is clocked into the input register  
using Command 0001. Both the addressed input register and  
LDAC  
1 X = don’t care.  
SYNC  
the DAC register are updated on the rising edge of  
the output begins to change (see Table 14).  
and  
LDAC  
Deferred DAC Updating (  
Is Pulsed Low)  
is held high while data is clocked into the input register  
using Command 0001. All DAC outputs are asynchronously  
LDAC SYNC  
LDAC  
updated by taking  
low after  
has been taken  
LDAC  
high. The update now occurs on the falling edge of  
.
1
LDAC  
Table 14. Write Commands and  
Pin Truth Table  
Hardware LDAC  
Pin State  
Input Register  
Contents  
Command  
Description  
DAC Register Contents  
No change (no update)  
Data update  
0001  
VLOGIC  
GND2  
VLOGIC  
Data update  
Data update  
No change  
Write to Input Register n (dependent on LDAC)  
0010  
0011  
Update DAC Register n with contents of Input  
Register n  
Updated with input register contents  
GND  
VLOGIC  
GND  
No change  
Data update  
Data update  
Updated with input register contents  
Data update  
Write to and update DAC Channel n  
Data update  
1
LDAC  
A high to low hardware  
pin transition always updates the contents of the DAC register with the contents of the input register on channels that are not masked  
mask register.  
2 When LDAC is permanently tied low, the LDAC mask bits are ignored.  
LDAC  
(blocked) by the  
Rev. C | Page 22 of 27  
 
 
 
 
Data Sheet  
AD5686/AD5684  
HARDWARE RESET (  
)
RESET SELECT PIN (RSTSEL)  
RESET  
The AD5686/AD5684 contain a power-on reset circuit that  
controls the output voltage during power-up. By connecting  
the RSTSEL pin low, the output powers up to zero scale. Note  
that this is outside the linear region of the DAC. By connecting  
the RSTSEL pin high, VOUT powers up to midscale. The output  
remains powered up at this level until a valid write sequence  
is made to the DAC.  
RESET  
is an active low reset that allows the outputs to be  
cleared to either zero scale or midscale. The clear code value is  
RESET  
user selectable via the  
select pin. It is necessary to  
low for a minimum of 30 ns to complete the  
RESET  
RESET  
keep  
operation (see Figure 2). When the  
signal is returned  
high, the output remains at the cleared value until a new value  
is programmed. The outputs cannot be updated with a new  
RESET  
value while the  
pin is low. There is also a software  
executable reset function that resets the DAC to the power-  
on reset code. Command 0110 is designated for this software  
LDAC  
reset function (see Table 8). Any events on  
during a  
RESET  
power-on reset are ignored. If the  
pin is pulled low at  
power-up, the device does not initialize correctly until the pin is  
released.  
Rev. C | Page 23 of 27  
 
 
AD5686/AD5684  
Data Sheet  
APPLICATIONS INFORMATION  
MICROPROCESSOR INTERFACING  
LAYOUT GUIDELINES  
Microprocessor interfacing to the AD5686/AD5684 is via a  
serial bus that uses a standard protocol that is compatible with  
DSP processors and microcontrollers. The communications  
channel requires a 3- or 4-wire interface consisting of a clock  
signal, a data signal, and a synchronization signal. The devices  
require a 24-bit data-word with data valid on the rising edge  
In any circuit where accuracy is important, careful consider-  
ation of the power supply and ground return layout helps to  
ensure the rated performance. The PCB on which the AD5686/  
AD5684 are mounted should be designed so that the AD5686/  
AD5684 lie on the analog plane.  
The AD5686/AD5684 should have ample supply bypassing  
of 10 µF in parallel with 0.1 µF on each supply, located as close  
to the package as possible, ideally right up against the device.  
The 10 µF capacitors are the tantalum bead type. The 0.1 µF  
capacitor should have low effective series resistance (ESR)  
and low effective series inductance (ESI), such as the common  
ceramic types, which provide a low impedance path to ground  
at high frequencies to handle transient currents due to internal  
logic switching.  
SYNC  
of  
.
AD5686/AD5684 TO ADSP-BF531 INTERFACE  
The SPI interface of the AD5686/AD5684 is designed to be  
easily connected to industry-standard DSPs and micro-  
controllers. Figure 43 shows the AD5686/AD5684 connected  
to the Analog Devices, Inc., Blackfin® DSP. The Blackfin has an  
integrated SPI port that can be connected directly to the SPI  
pins of the AD5686/AD5684.  
In systems where there are many devices on one board, it is  
often useful to provide some heat sinking capability to allow  
the power to dissipate easily.  
AD5686/  
AD5684  
The AD5686/AD5684 LFCSP models have an exposed pad  
beneath the device. Connect this pad to the GND supply for the  
part. For optimum performance, use special considerations to  
design the motherboard and to mount the package. For  
enhanced thermal, electrical, and board level performance,  
solder the exposed pad on the bottom of the package to the  
corresponding thermal land pad on the PCB. Design thermal  
vias into the PCB land pad area to further improve heat  
dissipation.  
ADSP-BF531  
SPISELx  
SCK  
SYNC  
SCLK  
SDIN  
MOSI  
PF9  
PF8  
LDAC  
RESET  
Figure 43. ADSP-BF531 Interface  
AD5686/AD5684 TO SPORT INTERFACE  
The Analog Devices ADSP-BF527 has one SPORT serial  
port. Figure 44 shows how one SPORT interface can be used  
to control theAD5686/AD5684.  
The GND plane on the device can be increased (as shown in  
Figure 45) to provide a natural heat sinking effect.  
AD5686/  
AD5684  
AD5686/  
AD5684  
ADSP-BF527  
SPORT_TFS  
SPORT_TSCK  
SPORT_DTO  
SYNC  
SCLK  
SDIN  
GND  
PLANE  
GPIO0  
GPIO1  
LDAC  
RESET  
BOARD  
Figure 44. SPORT Interface  
Figure 45. Pad Connection to Board  
Rev. C | Page 24 of 27  
 
 
 
 
 
 
 
 
Data Sheet  
AD5686/AD5684  
GALVANICALLY ISOLATED INTERFACE  
ADuM14001  
CONTROLLER  
V
V
V
V
V
V
V
V
IA  
IB  
IC  
ID  
OA  
OB  
OC  
OD  
In many process control applications, it is necessary to  
provide an isolation barrier between the controller and  
the unit being controlled to protect and isolate the controlling  
circuitry from any hazardous common-mode voltages that may  
occur. iCoupler® products from Analog Devices provide voltage  
isolation in excess of 2.5 kV. The serial loading structure of the  
AD5686/AD5684 makes the part ideal for isolated interfaces  
because the number of interface lines is kept to a minimum.  
Figure 46 shows a 4-channel isolated interface to the AD5686/  
AD5684 using an ADuM1400. For more information, visit  
http://www.analog.com/icouplers.  
TO  
SERIAL  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
SCLK  
CLOCK IN  
TO  
SDIN  
SERIAL  
DATA OUT  
ENCODE  
ENCODE  
ENCODE  
TO  
SYNC  
SYNC OUT  
LOAD DAC  
OUT  
TO  
LDAC  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 46. Isolated Interface  
Rev. C | Page 25 of 27  
 
 
AD5686/AD5684  
Data Sheet  
OUTLINE DIMENSIONS  
3.10  
3.00 SQ  
2.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.50  
BSC  
1
4
12  
EXPOSED  
PAD  
1.75  
1.60 SQ  
1.45  
9
8
5
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.  
Figure 47. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
3 mm × 3 mm Body, Very Very Thin Quad  
(CP-16-22)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
16  
9
4.50  
4.40  
4.30  
6.40  
BSC  
1
8
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 48. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
Rev. C | Page 26 of 27  
 
Data Sheet  
AD5686/AD5684  
ORDERING GUIDE  
Package  
Description  
Package  
Model1, 2  
Resolution  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
12 Bits  
12 Bits  
12 Bits  
12 Bits  
12 Bits  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
Accuracy  
8 LSB INL  
2 LSB INL  
8 LSB INL  
8 LSB INL  
2 LSB INL  
2 LSB INL  
1 LSB INL  
2 LSB INL  
2 LSB INL  
1 LSB INL  
1 LSB INL  
Option  
CP-16-22  
CP-16-22  
RU-16  
RU-16  
RU-16  
Branding  
DJH  
DJJ  
AD5686ACPZ-RL7  
AD5686BCPZ-RL7  
AD5686ARUZ  
AD5686ARUZ-RL7  
AD5686BRUZ  
AD5686BRUZ-RL7  
AD5684BCPZ-RL7  
AD5684ARUZ  
AD5684ARUZ-RL7  
AD5684BRUZ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead LFCSP_WQ  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
RU-16  
CP-16-22  
RU-16  
RU-16  
RU-16  
RU-16  
DJP  
AD5684BRUZ-RL7  
1 Z = RoHS Compliant Part.  
2 The EVAL-AD5686RSDZ can be used to evaluate the AD5686/AD5684. The EVAL-AD5686RSDZ requires the EVAL-SDP-CB1Z support board for operation.  
©2012–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10797-0-6/17(C)  
Rev. C | Page 27 of 27  
 

相关型号:

AD5684BRUZ-RL7

Quad, 12-Bit nanoDAC+ with SPI Interface
ADI

AD5684R

Quad 16-/14-/12-Bit nanoDAC
ADI

AD5684RARUZ

Quad, 16-/14-/12-Bit nanoDAC
ADI

AD5684RARUZ-RL7

Quad, 16-/14-/12-Bit nanoDAC
ADI

AD5684RBCPZ-RL7

Quad, 16-/14-/12-Bit nanoDAC
ADI

AD5684RBRUZ

Quad, 16-/14-/12-Bit nanoDAC
ADI

AD5684RBRUZ-RL7

Quad, 16-/14-/12-Bit nanoDAC
ADI

AD5685R

Quad 16-/14-/12-Bit nanoDAC
ADI

AD5685RARUZ

Quad, 16-/14-/12-Bit nanoDAC
ADI

AD5685RARUZ-RL7

Quad, 16-/14-/12-Bit nanoDAC
ADI

AD5685RBCPZ-RL7

Quad, 16-/14-/12-Bit nanoDAC
ADI

AD5685RBRUZ

Quad, 16-/14-/12-Bit nanoDAC
ADI