AD5724BREZ [ADI]

IC SERIAL INPUT LOADING, 8 us SETTLING TIME, 12-BIT DAC, PDSO24, LEAD FREE, MO-153ADT, TSSOP-24, Digital to Analog Converter;
AD5724BREZ
型号: AD5724BREZ
厂家: ADI    ADI
描述:

IC SERIAL INPUT LOADING, 8 us SETTLING TIME, 12-BIT DAC, PDSO24, LEAD FREE, MO-153ADT, TSSOP-24, Digital to Analog Converter

输入元件 光电二极管 转换器
文件: 总34页 (文件大小:842K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Complete, Quad, 12-/14-/16-Bit, Serial Input,  
Unipolar/Bipolar Voltage Output DACs  
Preliminary Technical Data  
AD5724/AD5734/AD5754  
FEATURES  
GENERAL DESCRIPTION  
Complete, quad, 12-/14-/16-bit D/A converter  
Operates from single/dual supplies  
Software programmable output range  
+5 V, +10 V, +10.8 V, 5 V, 10 V, 10.8 V  
The AD5724/AD5734/AD5754 are quad, 12-/14-/16-bit serial  
input, voltage output, digital-to analog converters. They operate  
from single supply voltages of +4.5 V up to +16.5 V or dual  
supply voltages from 4.5 V up to 16.5 V. Nominal full-scale  
INL error: 16 LSB maximum, DNL error: 1 LSB maximum  
Total unadjusted error (TUE): 0.1% FSR maximum  
Settling time: 10 µs maximum  
output range is software-selectable from the options of +5 V,  
+10 V, +10.8 V, 5 V, 10 V, or 10.8 V. Integrated output  
amplifiers, reference buffers, and proprietary power-up/power-  
down control circuitry are also provided.  
Integrated reference buffers  
Output control during power-up/brownout  
Simultaneous updating via LDAC  
Asynchronous CLR to zero-/mid-scale  
DSP-/microcontroller-compatible serial interface  
24-lead TSSOP  
The parts offer guaranteed monotonicity, integral nonlinearity  
(INL) of 16 LꢀB maximum, low noise, and 10 µs maximum  
settling time.  
The AD5724/AD5734/AD5754 use a serial interface that  
operates at clock rates up to 30 MHz and are compatible with  
DꢀP and microcontroller interface standards. Double buffering  
allows the simultaneous updating of all DACs. The input coding  
is user-selectable twos complement or offset binary for a bipolar  
Operating temperature range: −40°C to +85°C  
iCMOS™ process technology1  
APPLICATIONS  
Industrial automation  
2sComp  
output (depending on the state of pin BIN/  
), and  
Closed-loop servo control, process control  
Automotive test and measurement  
Programmable logic controllers  
straight binary for a unipolar output. The asynchronous clear  
function clears all DAC registers to a user-selectable zero-scale  
or mid-scale output. The parts are available in a 24-lead TꢀꢀOP  
and offer guaranteed specifications over the −40°C to +85°C  
industrial temperature range.  
Table 1. Pin Compatible Devices  
Part Number  
Description  
AD5724R/AD5734R/AD5754R AD5724/AD5734/AD5754 with  
internal reference.  
AD5722/AD5732/AD5752  
Complete, dual, 12-/14-/16-bit,  
serial input, unipolar/bipolar,  
voltage output DAC.  
AD5722R/AD5732R/AD5752R AD5722/AD5732/AD5752 with  
internal reference.  
1 For analog systems designers within industrial/instrumentation equipment OEMs who need high performance ICs at higher-voltage levels, iCMOS is a technology  
platform that enables the development of analog ICs capable of 30 V and operating at ±15 V supplies while allowing dramatic reductions in power consumption and  
package size, and increased AC and DC performance.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
AD5724/AD5734/AD5754  
Preliminary Technical Data  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Configuring the AD5724/AD5734/AD5754 .......................... 22  
Transfer Function....................................................................... 22  
Input Register.............................................................................. 26  
Data Register............................................................................... 26  
Output Range ꢀelect Register ................................................... 27  
Control Register ......................................................................... 27  
Power Control Register ............................................................. 28  
Features............................................................................................ 29  
Analog Output Control ............................................................. 29  
Overcurrent Protection ............................................................. 29  
Thermal ꢀhutdown .................................................................... 29  
Applications Information.............................................................. 30  
+5V / 5V operation.................................................................. 30  
Layout Guidelines....................................................................... 30  
Galvanically Isolated Interface ................................................. 30  
Voltage Reference ꢀelection ...................................................... 30  
Microprocessor Interfacing....................................................... 31  
Outline Dimensions....................................................................... 32  
Ordering Guide .......................................................................... 32  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 3  
ꢀpecifications..................................................................................... 4  
Dual supply specifications........................................................... 4  
ꢀingle ꢀupply ꢀpecifications........................................................ 6  
AC Performance Characteristics................................................ 7  
Timing Characteristics ................................................................ 8  
Absolute Maximum Ratings.......................................................... 11  
EꢀD Caution................................................................................ 11  
Pin Configuration and Function Descriptions........................... 12  
Typical Performance Characteristics ........................................... 13  
Terminology .................................................................................... 18  
Theory of Operation ...................................................................... 20  
Architecture................................................................................. 20  
ꢀerial Interface ............................................................................ 20  
LDAC  
Load DAC (  
)..................................................................... 22  
CLR  
Asynchronous Clear (  
)....................................................... 22  
REVISION HISTORY  
PrC – Preliminary Revision, November 16, 2007  
Rev. PrC | Page 2 of 34  
Preliminary Technical Data  
FUNCTIONAL BLOCK DIAGRAM  
AD5724/AD5734/AD5754  
AV  
AV  
DD  
REFIN  
SS  
DV  
CC  
REFERENCE  
BUFFERS  
AD5754  
16  
16  
16  
16  
16  
INPUT  
REGISTER A  
DAC  
REGISTER A  
DAC A  
DAC B  
DAC C  
DAC D  
SDIN  
SCLK  
SYNC  
SDO  
V
A
OUT  
INPUT SHIFT  
REGISTER  
AND  
CONTROL  
LOGIC  
INPUT  
REGISTER B  
DAC  
REGISTER B  
V
V
V
B
C
D
OUT  
OUT  
OUT  
INPUT  
REGISTER C  
DAC  
REGISTER C  
CLR  
BIN/2sCOMP  
INPUT  
DAC  
REGISTER D  
REGISTER D  
DAC_GND (2)  
SIG_GND (2)  
GND  
LDAC  
Figure 1.  
Rev. PrC | Page 3 of 34  
AD5724/AD5734/AD5754  
Preliminary Technical Data  
SPECIFICATIONS  
DUAL SUPPLY SPECIFICATIONS  
AVDD = 4.5 V1 to 16.5 V, AVꢀꢀ = −4.5 V1 to −16.5 V, GND = 0 V, REFIN= +2.5 V, DVCC = 2.7 V to 5.5 V,  
R
LOAD = 2 kΩ, CLOAD = 200 pF; all specifications TMIN to TMAX  
,
10 V range unless otherwise noted.  
Table 2.  
Parameter  
ACCURACY  
Bipolar Output  
Resolution  
AD5754  
Value  
Unit  
Test Conditions/Comments  
Outputs unloaded  
16  
14  
12  
0.1  
Bits  
Bits  
Bits  
% FSR max  
AD5734  
AD5724  
Total Unadjusted Error (TUE)  
Over temperature, supplies, and time  
Relative Accuracy (INL)  
B Grade  
Differential Nonlinearity (DNL)  
Bipolar Zero Error  
±16  
±1  
±5  
LSB max  
LSB max  
mV max  
@ 16-bit resolution  
Guaranteed monotonic (@ 16-bit resolution)  
@ 25°C, error at other temperatures obtained using Bipolar  
Zero TC  
Bipolar Zero TC2  
Zero-Scale Error  
±±  
±1  
ppm FSR/°C max  
mV max  
@ 25°C, error at other temperatures obtained using Zero-  
Scale TC  
Zero-Scale TC2  
Gain Error  
±±  
±0.05  
ppm FSR/°C max  
% FSR max  
@ 25°C, error at other temperatures obtained using Gain  
TC  
Gain TC2  
DC Crosstalk2  
Unipolar Output  
Resolution  
±±  
0.6  
ppm FSR/°C max  
LSB max  
@ 16-bit resolution  
AVSS = 0 V  
AD5754  
AD5734  
AD5724  
Total Unadjusted Error (TUE)  
Relative Accuracy (INL)  
B Grade  
Differential Nonlinearity (DNL)  
Zero-Scale Error  
16  
14  
12  
0.1  
Bits  
Bits  
Bits  
% FSR max  
Over temperature, supplies, and time  
±16  
±1  
+10  
LSB max  
LSB max  
mV max  
@ 16-bit resolution  
Guaranteed monotonic (@ 16 bit-resolution)  
@ 25°C, error at other temperatures obtained using Zero-  
Scale TC  
Zero-Scale TC2  
Offset Error  
Gain Error  
±4  
±10  
±0.05  
ppm FSR/°C max  
mV max  
% FSR max  
@ 25°C, error at other temperatures obtained using Gain  
TC  
Gain TC2  
DC Crosstalk2  
±4  
0.6  
ppm FSR/°C max  
LSB max  
@ 16-bit resolution  
REFERENCE INPUT2  
Reference Input Voltage  
DC Input Impedance  
Input Current  
2.5  
1
±10  
2 to 3  
V nom  
MΩ min  
µA max  
V min to V max  
±1% for specified performance  
Typically 100 MΩ  
Typically ±30 nA  
Reference Range  
OUTPUT CHARACTERISTICS2  
Output Voltage Range  
±10.±  
±12  
V min to V max  
V min to V max  
AVDD/AVSS = ±11.7 V min, REFIN = +2.5 V  
AVDD/AVSS = ±12.ꢀ V min, REFIN = +3 V  
Rev. PrC | Page 4 of 34  
Preliminary Technical Data  
AD5724/AD5734/AD5754  
Parameter  
Value  
Unit  
Test Conditions/Comments  
Headroom  
0.ꢀ  
0.5  
±±  
±12  
±15  
20  
V max  
V typ  
ppm FSR/°C max  
ppm FSR/500 hr typ  
ppm FSR/1000 hr typ  
mA typ  
Output Voltage TC  
Output Voltage Drift vs. Time  
Short-Circuit Current  
Load  
2
kΩ min  
For specified performance  
Capacitive Load Stability  
DC Output Impedance  
DIGITAL INPUTS2  
4000  
0.5  
pF max  
Ω typ  
DVCC = 2.7 V to 5.5 V, JEDEC compliant  
VIH, Input High Voltage  
VIL, Input Low Voltage  
Input Current  
2
V min  
0.±  
±1  
5
V max  
µA max  
pF typ  
Per pin  
Per pin  
Pin Capacitance  
DIGITAL OUTPUTS (SDO)2  
VOL, Output Low Voltage  
VOH, Output High Voltage  
VOL, Output Low Voltage  
VOH, Output High Voltage  
High Impedance Leakage Current  
High Impedance Output Capacitance  
POWER REQUIREMENTS  
AVDD  
0.4  
DVCC − 1  
0.4  
DVCC − 0.5  
±1  
5
V max  
V min  
V max  
V min  
µA max  
pF typ  
DVCC = 5 V ± 10%, sinking 200 µA  
DVCC = 5 V ± 10%, sourcing 200 µA  
DVCC = 2.7 V to 3.6 V, sinking 200 µA  
DVCC = 2.7 V to 3.6 V, sourcing 200 µA  
4.5 to 16.5  
-4.5 to -  
16.5  
V min to V max  
V min to V max  
AVSS  
DVCC  
2.7 to 5.5  
V min to V max  
Power Supply Sensitivity2  
∆VOUT/∆ΑVDD  
AIDD  
AISS  
DICC  
−75  
2
1.5  
1
dB typ  
mA/channel max  
mA/channel max  
µA max  
Outputs unloaded  
Outputs unloaded  
VIH = DVCC, VIL = GND, 0.5 µA typ  
±12 V operation, outputs unloaded  
Power Dissipation  
TBD  
mW typ  
Power-Down Currents  
AIDD  
AISS  
DICC  
±0  
TBD  
TBD  
µA typ  
µA typ  
µA typ  
1 For specified performance minimum headroom requirement is 0.ꢀV  
2 Guaranteed by characterization. Not production tested.  
Rev. PrC | Page 5 of 34  
AD5724/AD5734/AD5754  
Preliminary Technical Data  
SINGLE SUPPLY SPECIFICATIONS  
AVDD = 4.5 V1 to 16.5 V, AVꢀꢀ = 0 V, GND = 0 V, REFIN= 2.5 V, DVCC = 2.7 V to 5.5 V,  
RLOAD = 2 kΩ, CLOAD = 200 pF; all specifications TMIN to TMAX, 10 V range unless otherwise noted.  
Table 3.  
Parameter  
Value  
Unit  
Test Conditions/Comments  
Outputs unloaded  
ACCURACY  
Resolution  
AD5754  
AD5734  
AD5724  
Total Unadjusted Error (TUE)  
Relative Accuracy (INL)  
B Grade  
Differential Nonlinearity (DNL)  
Zero-Scale Error  
16  
14  
12  
0.1  
Bits  
Bits  
Bits  
% FSR max  
Across temperature and supplies  
±16  
±1  
+10  
LSB max  
LSB max  
mV max  
@ 16-bit resolution  
Guaranteed monotonic (@ 16-bit resolution)  
@ 25°C, error at other temperatures obtained using Zero-  
Scale TC  
Zero-Scale TC2  
Offset Error  
±4  
ppm FSR/°C max  
mV max  
% FSR max  
ppm FSR/°C max  
LSB max  
±10  
±0.02  
±±  
Gain Error  
@ 25°C, error at other temperatures obtained using Gain TC  
@ 16-bit resolution  
Gain TC2  
DC Crosstalk2  
0.6  
REFERENCE INPUT2  
Reference Input Voltage  
DC Input Impedance  
Input Current  
Reference Range  
OUTPUT CHARACTERISTICS2  
Output Voltage Range  
2.5  
1
±10  
2 to 3  
V nom  
MΩ min  
µA max  
V min to V max  
±1% for specified performance  
Typically 100 MΩ  
Typically ±30 nA  
10.±  
12  
V max  
V max  
AVDD = 11.7 V min, REFIN = 2.5 V  
AVDD = 12.ꢀ V min, REFIN = 3.75 V  
Headroom  
0.ꢀ  
0.5  
±±  
±12  
±15  
20  
V max  
V typ  
ppm FSR/°C max  
ppm/500 hr typ  
ppm/1000 hr typ  
mA typ  
Output Voltage TC  
Output Voltage Drift vs. Time  
Short Circuit Current  
Load  
2
KΩ max  
For specified performance  
Capacitive Load Stability  
DC Output Impedance  
DIGITAL INPUTS2  
4000  
0.5  
pF max  
Ω typ  
DVCC = 2.7 V to 5.5 V, JEDEC compliant  
VIH, Input High Voltage  
VIL, Input Low Voltage  
Input Current  
2
V min  
0.±  
±1  
5
V max  
µA max  
pF max  
Per pin  
Per pin  
Pin Capacitance  
DIGITAL OUTPUTS (SDO)2  
VOL, Output Low Voltage  
VOH, Output High Voltage  
VOL, Output Low Voltage  
VOH, Output High Voltage  
High Impedance Leakage Current  
High Impedance Output Capacitance  
POWER REQUIREMENTS  
AVDD  
0.4  
DVCC − 1  
0.4  
DVCC − 0.5  
±1  
5
V max  
V min  
V max  
V min  
µA max  
pF typ  
DVCC = 5 V ± 10%, sinking 200 µA  
DVCC = 5 V ± 10%, sourcing 200 µA  
DVCC = 2.7 V to 3.6 V, sinking 200 µA  
DVCC = 2.7 V to 3.6 V, sourcing 200 µA  
4.5 to 16.5  
2.7 to 5.5  
V min to V max  
V min to V max  
DVCC  
Rev. PrC | Page 6 of 34  
Preliminary Technical Data  
AD5724/AD5734/AD5754  
Parameter  
Power Supply Sensitivity2  
Value  
Unit  
Test Conditions/Comments  
∆VOUT/∆ΑVDD  
AIDD  
DICC  
−75  
2.75  
1
dB typ  
mA/channel max Outputs unloaded  
µA max  
mW typ  
VIH = DVCC, VIL = GND, 0.5 µA typ  
12 V operation, outputs unloaded  
Power Dissipation  
TBD  
Power-Down Currents  
AIDD  
DICC  
±0  
TBD  
µA typ  
µA typ  
1 For specified performance minimum headroom requirement is 0.ꢀV  
2 Guaranteed by characterization. Not production tested.  
AC PERFORMANCE CHARACTERISTICS  
AVDD = 4.5 V1 to 16.5 V, AVꢀꢀ = −4.5 V1 to −16.5 V / 0V, GND = 0 V, REFIN= 2.5 V, DVCC = 2.7 V to 5.5 V  
R
LOAD = 2 kΩ, CLOAD = 200 pF; all specifications TMIN to TMAX  
,
10 V range unless otherwise noted.  
Table 4.  
Parameter2  
B Grade  
Unit  
Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Output Voltage Settling Time  
±
10  
5
µs typ  
µs max  
µs max  
Full-scale step (20 V) to ±0.03 % FSR  
512 LSB step settling (@ 16 bits)  
Slew Rate  
4.5  
35  
25  
10  
10  
0.1  
0.05  
±0  
1
V/µs typ  
nV-sec typ  
mV typ  
nV-sec typ  
nV-sec typ  
nV-sec typ  
LSB p-p typ  
µV rms max  
kHz typ  
Digital-to-Analog Glitch Energy  
Glitch Impulse Peak Amplitude  
Digital Crosstalk  
DAC-to-DAC Crosstalk  
Digital Feedthrough  
Output Noise (0.1 Hz to 10 Hz Bandwidth)  
Output Noise (100 kHz Bandwidth)  
1/f Corner Frequency  
Output Noise Spectral Density  
120  
nV/√Hz typ  
Measured at 10 kHz  
1 For specified performance minimum headroom requirement is 0.±V  
2 Guaranteed by design and characterization, not production tested.  
Rev. PrC | Page 7 of 34  
AD5724/AD5734/AD5754  
Preliminary Technical Data  
TIMING CHARACTERISTICS  
AVDD = 4.5 V to 16.5 V, AVꢀꢀ = −4.5 V to −16.5 V / 0V, GND = 0 V, REFIN = 2.5 V, DVCC = 2.7 V to 5.5 V  
LOAD = 2 kΩ, CLOAD = 200 pF; all specifications TMIN to TMAX, unless otherwise noted.  
R
Table 5.  
Parameter1, 2, 3  
Limit at TMIN, TMAX  
Unit  
Description  
t1  
t2  
t3  
t4  
33  
13  
13  
13  
13  
100  
5
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
µs max  
µs max  
ns max  
ns min  
µs max  
ns min  
ns max  
ns min  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC falling edge to SCLK falling edge setup time  
SCLK falling edge to SYNC rising edge  
Minimum SYNC high time (write mode)  
Data setup time  
t5  
t6  
t7  
t±  
tꢀ  
0
Data hold time  
20  
20  
20  
1.5  
10  
1.5  
20  
2.5  
13  
40  
200  
LDAC falling edge to SYNC falling edge  
SYNC rising edge to LDAC falling edge  
LDAC pulse width low  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
LDAC falling edge to DAC output response time  
DAC output settling time  
SYNC rising edge to output response time (LDAC = 0)  
CLR pulse width low  
CLR pulse activation time  
4
t17  
SYNC rising edge to SCLK rising edge  
SCLK rising edge to SDO valid (CL SDO5 = 15 pF)  
Minimum SYNC high time (readback/daisy-chain mode)  
4
t1±  
t1ꢀ  
1 Guaranteed by characterization. Not production tested.  
2 All input signals are specified with tR = tF = 5 ns (10% to ꢀ0% of DVCC) and timed from a voltage level of 1.2 V.  
3 See Figure 2, Figure 3, and Figure 4.  
4 Daisy-chain and Readback mode.  
5 CL SDO = Capacitive load on SDO output.  
Rev. PrC | Page ± of 34  
AD5724/AD5734/AD5754  
Preliminary Technical Data  
t1  
SCLK  
1
2
24  
t2  
t3  
t6  
t5  
t4  
SYNC  
SDIN  
t8  
t7  
DB23  
DB0  
t11  
t9  
t10  
LDAC  
t13  
t12  
V
V
X
OUT  
OUT  
t13  
t14  
X
t15  
CLR  
t16  
V
X
OUT  
Figure 2. Serial Interface Timing Diagram  
t1  
SCLK  
24  
48  
t3  
t2  
t5  
t19  
t17  
t4  
SYNC  
SDIN  
t8  
t7  
DB23  
DB0  
DB23  
DB0  
INPUT WORD FOR DAC N  
INPUT WORD FOR DAC N – 1  
t18  
DB23  
DB0  
SDO  
t10  
UNDEFINED  
INPUT WORD FOR DAC N  
t11  
LDAC  
Figure 3. Daisy Chain Timing Diagram  
Rev. PrC | Page ꢀ of 34  
AD5724/AD5734/AD5754  
Preliminary Technical Data  
SCLK  
1
1
24  
24  
t19  
SYNC  
DB23  
DB23  
DB0  
DB23  
DB0  
SDIN  
SDO  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
NOP CONDITION  
DB0  
DB23  
DB0  
UNDEFINED  
SELECTED REGISTER DATA  
CLOCKED OUT  
Figure 4. Readback Timing Diagram  
Rev. PrC | Page 10 of 34  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
AD5724/AD5734/AD5754  
TA = 25°C unless otherwise noted.  
Transient currents of up to 100 mA do not cause ꢀCR latch-up.  
Table 6.  
Parameter  
ꢀtresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
AVDD to GND  
AVSS to GND  
DVCC to GND  
Digital Inputs to GND  
−0.3 V to +17 V  
+0.3 V to −17 V  
−0.3 V to +7 V  
−0.3 V to DVCC + 0.3 V or 7 V  
(whichever is less)  
Digital Outputs to GND  
−0.3 V to DVCC + 0.3 V or 7V  
(whichever is less)  
−0.3 V to +17 V  
ESD CAUTION  
REF IN to GND  
VOUTA, VOUTB, VOUTC, VOUTD to GND  
DAC_GND to GND  
AVSS to AVDD  
-0.3V to +0.3V  
SIG_GND to GND  
-0.3V to +0.3V  
Operating Temperature Range, TA  
Industrial  
−40°C to +±5°C  
−65°C to +150°C  
105°C  
Storage Temperature Range  
Junction Temperature, TJ max  
24-Lead TSSOP Package  
θJA Thermal Impedance  
Power Dissipation  
ꢀ0°C/W  
(TJ max – TA)/ θJA  
JEDEC Industry Standard  
J-STD-020  
Lead Temperature  
Soldering  
Rev. PrC | Page 11 of 34  
Preliminary Technical Data  
AD5724/AD5734/AD5754  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AV  
AV  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
DD  
SS  
NC  
A
V
V
C
OUT  
AD5724/  
AD5734/  
AD5754  
D
V
V
OUT  
OUT  
B
SIG_GND  
OUT  
20 SIG_GND  
BIN/2sCOMP  
NC  
TOP VIEW  
(Not to Scale)  
19  
18  
DAC_GND  
DAC_GND  
SYNC  
17 REFIN  
16 SDO  
15 GND  
SCLK  
SDIN  
LDAC 10  
DV  
11  
14  
13  
CLR  
CC  
NC  
12  
NC  
NC = NO CONNECT  
Figure 5. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
AVSS  
Negative Analog Supply Pin. Voltage ranges from –4.5 V to –16.5 V. This pin can be connected to 0 V if output  
ranges are unipolar.  
2, 6, 12, 13 NC  
Do not connect to these pins.  
3
4
5
VOUT  
VOUT  
BIN/2sCOMP  
A
B
Analog Output Voltage of DAC A. The output amplifier is capable of directly driving a 2 kΩ, 4000 pF load.  
Analog Output Voltage of DAC B. The output amplifier is capable of directly driving a 2 kΩ, 4000 pF load.  
Determines the DAC coding for a bipolar output range. This pin should be hardwired to either DVCC or GND.  
When hardwired to DVCC, input coding is offset binary. When hardwired to GND, input coding is twos  
complement. (For unipolar output ranges, coding is always straight binary).  
7
±
SYNC  
SCLK  
Active Low Input. This is the frame synchronization signal for the serial interface. While SYNC is low, data is  
transferred on the falling edge of SCLK.  
Serial Clock Input. Data is clocked into the shift register on the falling edge of SCLK. This operates at clock  
speeds up to 30 MHz.  
SDIN  
Serial Data Input. Data must be valid on the falling edge of SCLK.  
10  
LDAC  
Load DAC, Logic Input. This is used to update the DAC registers and consequently, the analog output. When  
tied permanently low, the addressed DAC register is updated on the rising edge of SYNC. If LDAC is held high  
during the write cycle, the DAC input register is updated, but the output update is held off until the falling  
edge of LDAC. In this mode, all analog outputs can be updated simultaneously on the falling edge of LDAC.  
The LDAC pin should not be left unconnected.  
11  
14  
15  
16  
CLR1  
DVCC  
GND  
SDO  
Active Low Input. Asserting this pin sets the DAC registers to zero-scale code or mid-scale code (user-selectable).  
Digital Supply Pin. Voltage ranges from 2.7 V to 5.5 V.  
Ground Reference Pin.  
Serial Data Output. Used to clock data from the serial register in daisy-chain or readback mode. Data is  
clocked out on the rising edge of SCLK and is valid on the falling edge of SCLK.  
17  
REFIN  
DAC_GND  
SIG_GND  
External Reference Voltage Input. Reference input range is 2 V to 3 V. REFIN = 2.5 V for specified performance.  
Ground reference pins for the four digital-to-analog converters.  
Ground reference pins for the four output amplifiers.  
Analog Output Voltage of DAC D. The output amplifier is capable of directly driving a 2 kΩ, 4000 pF load.  
Analog Output Voltage of DAC C. The output amplifier is capable of directly driving a 2 kΩ, 4000 pF load.  
Positive Analog Supply Pin. Voltage ranges from 4.5 V to 16.5 V.  
Negative Analog Supply connection. Voltage ranges from -4.5V to -16.5V. This paddle can be connected to 0V  
if output ranges are unipolar.  
1±, 1ꢀ  
20, 21  
22  
23  
24  
VOUT  
VOUT  
D
C
AVDD  
AVSS  
Exposed  
Paddle  
1 Internal pull-up device on this logic input. Therefore, it can be left floating and defaults to a logic high.  
Rev. PrC | Page 12 of 34  
Preliminary Technical Data  
AD5724/AD5734/AD5754  
TYPICAL PERFORMANCE CHARACTERISTICS  
Figure 6. AD5754 Integral Nonlinearity Error vs. Code (Four Traces)  
Figure 7. AD5734 Integral Nonlinearity Error vs. Code (Four Traces)  
Figure 8. AD5724 Integral Nonlinearity Error vs. Code (Four Traces)  
Figure 9. AD5754 Differential Nonlinearity Error vs. Code (Four Traces)  
Figure 10. AD5734 Differential Nonlinearity Error vs. Code (Four Traces)  
Figure 11. AD5724 Differential Nonlinearity Error vs. Code (Four Traces)  
Rev. PrC | Page 13 of 34  
AD5724/AD5734/AD5754  
Preliminary Technical Data  
Figure 12. AD5754 Integral Nonlinearity Error vs. Temperature (Four Traces)  
Figure 15. AD5754 Differential Nonlinearity Error vs. Supply Voltage (Four Traces)  
Figure 13. AD5754 Differential Nonlinearity Error vs. Temperature (Four Traces)  
Figure 16. AD5754 Integral Nonlinearity Error vs. Reference Voltage (Four Traces)  
Figure 17. AD5754 Differential Nonlinearity vs. Reference Voltage (Four Traces)  
Figure 14. AD5754 Integral Nonlinearity Error vs. Supply Voltage (Four Traces)  
Rev. PrC | Page 14 of 34  
Preliminary Technical Data  
AD5724/AD5734/AD5754  
Figure 18. AD5754 Total Unadjusted Error vs. Reference Voltage (Four Traces)  
Figure 21. AIDD vs. AVDD  
Figure 19. AD5754 Total Unadjusted Error vs. Supply Voltage (Four Traces)  
Figure 22. Zero-Scale Error vs. Temperature (Four Traces)  
Figure 20. AIDD/AISS vs. AVDD/AVSS  
Figure 23. Bipolar Zero Error vs. Temperature (Two Traces)  
Rev. PrC | Page 15 of 34  
AD5724/AD5734/AD5754  
Preliminary Technical Data  
Figure 24. Gain Error vs. Temperature (Four Traces)  
Figure 27. Full-Scale Settling Time, 10 V Range (Two Traces)  
Figure 28. Full-Scale Settling Time, 5 V Range (Two Traces)  
Figure 29. Full-Scale Settling Time, +10 V Range (Two Traces)  
Figure 25. DICC vs. Logic Input Voltage Increasing and Decreasing  
Figure 26. Output Amplifier Source and Sink Capability (Four Traces)  
Rev. PrC | Page 16 of 34  
Preliminary Technical Data  
AD5724/AD5734/AD5754  
Figure 30. Full-Scale Settling Time, +5 V Range (Two Traces)  
Figure 33. Peak-to-Peak Noise, 100 kHz Bandwidth (Four Traces)  
Figure 34. VOUT vs. AVDD/AVSS on Power Up (Two Traces)  
Figure 31. Digital-to-Analog Glitch Energy (Four Traces)  
Figure 32. Peak-to-Peak Noise, 0.1 Hz to 10 Hz Bandwidth (Four Traces)  
Rev. PrC | Page 17 of 34  
AD5724/AD5734/AD5754  
TERMINOLOGY  
Preliminary Technical Data  
Slew Rate  
Relative Accuracy or Integral Nonlinearity (INL)  
The slew rate of a device is a limitation in the rate of change of  
the output voltage. The output slewing speed of a voltage output  
D/A converter is usually limited by the slew rate of the amplifier  
used at its output. ꢀlew rate is measured from 10% to 90% of the  
output signal and is given in V/µs.  
For the DAC, relative accuracy, or integral nonlinearity, is a  
measure of the maximum deviation in LꢀBs from a straight line  
passing through the endpoints of the DAC transfer function. A  
typical INL vs. code plot can be seen in Figure 6.  
Differential Nonlinearity (DNL)  
Gain Error  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LꢀB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LꢀB maximum  
ensures monotonicity. This DAC is guaranteed monotonic by  
design. A typical DNL vs. code plot can be seen in Figure 9.  
This is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from ideal  
expressed in % FꢀR. A plot of gain error vs. temperature can be  
seen in Figure 24.  
Gain TC  
Monotonicity  
This is a measure of the change in gain error with changes in  
temperature. Gain TC is expressed in ppm FꢀR/°C.  
A DAC is monotonic if the output either increases or remains  
constant for increasing digital input code. The AD5724/  
AD5734/AD5754 are monotonic over their full operating  
temperature range.  
Total Unadjusted Error (TUE)  
Total unadjusted error is a measure of the output error taking  
all the various errors into account, namely INL error, offset  
error, gain error, and output drift over supplies, temperature,  
and time. TUE is expressed in % FꢀR.  
Bipolar Zero Error  
Bipolar zero error is the deviation of the analog output from the  
ideal half-scale output of 0 V when the DAC register is loaded  
with 0x8000 (straight binary coding) or 0x0000 (twos complement  
coding). A plot of bipolar zero error vs. temperature can be seen  
in Figure 23.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state, but the output voltage remains constant. It is normally  
specified as the area of the glitch in nV-sec and is measured  
when the digital input code is changed by 1 LꢀB at the major  
carry transition (0x7FFF to 0x8000). ꢀee Figure 31.  
Bipolar Zero TC  
Bipolar Zero TC is a measure of the change in the bipolar zero  
error with a change in temperature. It is expressed in ppm FꢀR/°C.  
Zero-Scale Error/Negative Full-Scale Error  
Glitch Impulse Peak Amplitude  
Zero-scale error is the error in the DAC output voltage when  
0x0000 (straight binary coding) or 0x8000 (twos complement  
coding) is loaded to the DAC register. Ideally, the output voltage  
should be negative full-scale− 1 LꢀB. A plot of zero-scale error  
vs. temperature can be seen in Figure 22.  
Glitch impulse peak amplitude is the peak amplitude of the  
impulse injected into the analog output when the input code in  
the DAC register changes state. It is specified as the amplitude  
of the glitch in mV and is measured when the digital input code  
is changed by 1 LꢀB at the major carry transition (0x7FFF to  
0x8000). ꢀee Figure 31.  
Zero-Scale TC  
This is a measure of the change in zero-scale error with a change in  
temperature. Zero-ꢀcale TC is expressed in ppm FꢀR/°C.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC, but is measured when the DAC output is not updated. It  
is specified in nV-sec and measured with a full-scale code  
change on the data bus.  
Output Voltage Settling Time  
Output voltage settling time is the amount of time it takes for  
the output to settle to a specified level for a full-scale input  
change. A plot of settling time can be seen in Figure 27.  
Power Supply Sensitivity  
Power supply sensitivity indicates how the output of the DAC is  
affected by changes in the power supply voltage, it is measured  
by superimposing a 50/60 Hz, 200mVpk-pk sine wave on the  
supply voltages and measuring the proportion of the sine wave  
that transfers to the outputs.  
Rev. PrC | Page 1± of 34  
Preliminary Technical Data  
AD5724/AD5734/AD5754  
DC Crosstalk  
DAC-to-DAC Crosstalk  
This is the dc change in the output level of one DAC in response  
to a change in the output of another DAC. It is measured with a  
full-scale output change on one DAC while monitoring another  
DAC. It is expressed in LꢀBs.  
DAC-to-DAC crosstalk is the glitch impulse transferred to the  
output of one DAC due to a digital change and subsequent  
output change of another DAC. This includes both digital and  
analog crosstalk. It is measured by loading one of the DACs  
with a full-scale code change (all 0s to all 1s and vice versa) with  
Digital Crosstalk  
LDAC  
low and monitoring the output of another DAC. The  
energy of the glitch is expressed in nV-sec.  
Digital crosstalk is a measure of the impulse injected into the  
analog output of one DAC from the digital inputs of another  
DAC, but is measured when the DAC output is not updated. It  
is specified in nV-sec and measured with a full-scale code  
change on the data bus.  
Rev. PrC | Page 1ꢀ of 34  
AD5724/AD5734/AD5754  
Preliminary Technical Data  
THEORY OF OPERATION  
REFIN  
The AD5724/AD5734/AD5754 are quad, 12-/14-/16-bit, serial  
input, unipolar/bipolar, voltage output DACs. They operate  
from unipolar supply voltages of +4.5 V to +16.5 V or bipolar  
supply voltages of 4.5 V to 16.5 V. In addition, the parts have  
software-selectable output ranges of +5 V, +10 V, +10.8 V, 5 V,  
10 V, and 10.8 V. Data is written to the AD5724/AD5734/  
AD5754 in a 24-bit word format via a 3-wire serial interface.  
The devices also offer an ꢀDO pin to facilitate daisy chaining or  
readback.  
R
R
R
TO OUTPUT  
AMPLIFIER  
The AD5724/AD5734/AD5754 incorporate a power-on reset  
circuit to ensure that the DAC registers power up loaded with  
0x0000. When powered on, the outputs are clamped to 0 V via  
a low impedance path.  
R
R
ARCHITECTURE  
The DAC architecture consists of a string DAC followed by an  
output amplifier. Figure 35 shows a block diagram of the DAC  
architecture. The reference input is buffered before being  
applied to the DAC.  
Figure 36. Resistor String Structure  
REFIN  
Output Amplifiers  
The output amplifiers are capable of generating both unipolar  
and bipolar output voltages. They are capable of driving a load  
of 2 kΩ in parallel with 4000 pF to GND. The source and sink  
capabilities of the output amplifiers can be seen in Figure 26.  
The slew rate is 4.5 V/µs with a full-scale settling time of 10 µs.  
REF (+)  
RESISTOR  
STRING  
DAC REGISTER  
V
X
OUT  
CONFIGURABLE  
OUTPUT  
REF (–)  
AMPLIFIER  
GND  
OUTPUT  
RANGE CONTROL  
Reference Buffers  
The AD5724/AD5734/AD5754 require an external reference  
source. The reference input has an input range of 2 V to 3 V  
with 2.5 V for specified performance. This input voltage is then  
buffered before it is applied to the DAC cores.  
Figure 35. DAC Architecture Block Diagram  
The resistor string structure is shown in Figure 36. It is a string  
of resistors, each of value R. The code loaded to the DAC  
register determines the node on the string where the voltage is  
to be tapped off to be fed into the output amplifier. The voltage  
is tapped off by closing one of the switches connecting the  
string to the amplifier. Because it is a string of resistors, it is  
guaranteed monotonic.  
SERIAL INTERFACE  
The AD5724/AD5734/AD5754 are controlled over a versatile  
3-wire serial interface that operates at clock rates up to 30 MHz.  
It is compatible with ꢀPI®, QꢀPI™, MICROWIRE™, and DꢀP  
standards.  
Input Shift Register  
The input shift register is 24 bits wide. Data is loaded into the  
device MꢀB first as a 24-bit word under the control of a serial  
clock input, ꢀCLK. The input register consists of a read/write  
bit, three register select bits, three DAC address bits, and 16 data  
bits. The timing diagram for this operation is shown in Figure 2.  
Rev. PrC | Page 20 of 34  
Preliminary Technical Data  
AD5724/AD5734/AD5754  
Standalone Operation  
Daisy-Chain Operation  
The serial interface works with both a continuous and noncon-  
tinuous serial clock. A continuous ꢀCLK source can only be  
For systems that contain several devices, the ꢀDO pin can be  
used to daisy chain several devices together. Daisy-chain mode  
can be useful in system diagnostics and in reducing the number  
ꢀYNC  
used if  
In gated clock mode, a burst clock containing the exact number  
ꢀYNC  
is held low for the correct number of clock cycles.  
ꢀYNC  
of serial interface lines. The first falling edge of  
write cycle. ꢀCLK is continuously applied to the input shift  
ꢀYNC  
starts the  
of clock cycles must be used, and  
must be taken high  
register when  
is low. If more than 24 clock pulses are  
after the final clock to latch the data. The first falling edge of  
ꢀYNC  
applied, the data ripples out of the shift register and appears on  
the ꢀDO line. This data is clocked out on the rising edge of  
ꢀCLK and is valid on the falling edge. By connecting the ꢀDO  
of the first device to the ꢀDIN input of the next device in the  
chain, a multidevice interface is constructed. Each device in the  
system requires 24 clock pulses. Therefore, the total number of  
clock cycles must equal 24 × N, where N is the total number of  
AD5724/AD5734/AD5754 devices in the chain. When the serial  
starts the write cycle. Exactly 24 falling clock edges must  
ꢀYNC  
be applied to ꢀCLK before  
ꢀYNC  
is brought high again. If  
th  
is brought high before the 24 falling ꢀCLK edge, the  
data written is invalid. If more than 24 falling ꢀCLK edges are  
ꢀYNC  
applied before  
invalid. The input register addressed is updated on the rising  
ꢀYNC ꢀYNC  
is brought high, the input data is also  
edge of  
. For another serial transfer to take place,  
must be brought low again. After the end of the serial data  
transfer, data is automatically transferred from the input shift  
register to the addressed register.  
ꢀYNC  
transfer to all devices is complete,  
is taken high. This  
latches the input data in each device in the daisy chain and  
prevents any further data from being clocked into the input shift  
register. The serial clock can be a continuous or a gated clock.  
When the data has been transferred into the chosen register of  
the addressed DAC, all DAC registers and outputs can be  
updated by taking  
ꢀYNC  
A continuous ꢀCLK source can only be used if  
is held  
LDAC  
ꢀYNC  
low while  
is high.  
low for the correct number of clock cycles. In gated clock mode,  
a burst clock containing the exact number of clock cycles must  
AD5724/  
AD5734/  
AD5754*  
*
68HC11  
ꢀYNC  
be used, and  
latch the data.  
Readback Operation  
must be taken high after the final clock to  
SDIN  
MOSI  
SCK  
PC7  
PC6  
SCLK  
SYNC  
LDAC  
W
Readback mode is invoked by setting the R/ bit = 1 in the  
serial input register write. (If the ꢀDO output is disabled via the  
ꢀDO DIꢀABLE bit in the control register, it is automatically  
enabled for the duration of the read operation after which it is  
SDO  
MISO  
SDIN  
W
disabled again). With R/ = 1, Bit A2 to Bit A0 in association  
AD5724/  
AD5734/  
AD5754*  
with Bit REG2 to Bit REG0 select the register to be read. The  
remaining data bits in the write sequence are don’t care bits.  
During the next ꢀPI write, the data appearing on the ꢀDO  
output contains the data from the previously addressed register.  
For a read of a single register, the NOP command can be used  
in clocking out the data from the selected register on ꢀDO. The  
readback diagram in Figure 4 shows the readback sequence. For  
example, to read back the data register of Channel A, the  
following sequence should be implemented:  
SCLK  
SYNC  
LDAC  
SDO  
SDIN  
AD5724/  
AD5734/  
AD5754*  
1. Write 0x800000 to the AD5724/AD5734/AD5754 input  
register. This configures the part for read mode with the  
data register of Channel A selected. Note that all the data  
bits, DB15 to DB0, are don’t care bits.  
SCLK  
SYNC  
LDAC  
SDO  
2. Follow this with a second write, a NOP condition, 0x180000.  
During this write, the data from the register is clocked out  
on the ꢀDO line.  
*
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 37. Daisy Chaining the AD5724/AD5734/AD5754  
Rev. PrC | Page 21 of 34  
AD5724/AD5734/AD5754  
Preliminary Technical Data  
LOAD DAC (LDAC)  
CONFIGURING THE AD5724/AD5734/AD5754  
When the power supplies are applied to the AD5724/AD5734/  
AD5754, the power-on reset circuit ensures that all registers  
default to 0. This places all channels in power-down mode. The  
first communication to the AD5724/AD5734/AD5754 should be  
to set the required output range on all channels (default range is  
the 5 V unipolar range) by writing to the range select register.  
The user should then write to the power-control register to power-  
on the required channels. To program an output value on a  
channel, that channel must first be powered up; any writes to a  
channel while it is in power-down mode are ignored. The  
AD5724/AD5734/AD5754 operate with a wide power supply  
range. It is important that the power supply applied to the parts  
provides adequate headroom to support the chosen output  
ranges.  
After data has been transferred into the input register of the  
DACs, there are two ways to update the DAC registers and DAC  
ꢀYNC  
LDAC  
outputs. Depending on the status of both  
and  
, one  
of two update modes is selected: individual DAC updating or  
simultaneous updating of all DACs.  
OUTPUT  
AMPLIFIER  
V
12-/14-/16-BIT  
DAC  
REFIN  
V
OUT  
DAC  
REGISTER  
LDAC  
INPUT  
REGISTER  
TRANSFER FUNCTION  
SCLK  
SYNC  
SDIN  
INTERFACE  
LOGIC  
Table 9 to Table 17 show the relationships of the ideal input code  
to output voltage for the AD5754, AD5734, and AD5724,  
respectively, for all output voltage ranges. For unipolar output  
ranges, the data coding is straight binary. For bipolar output  
ranges, the data coding is user-selectable via the BIN/  
pin and can be either offset binary or twos complement.  
SDO  
Figure 38. Simplified Diagram of Input Loading Circuitry for One DAC  
Individual DAC Updating  
2sCOMP  
LDAC  
In this mode,  
the input shift register. The addressed DAC output is updated  
ꢀYNC  
is held low while data is being clocked into  
For a unipolar output range, the output voltage expression is  
given by  
on the rising edge of  
Simultaneous Updating of All DACs  
LDAC  
.
D
VOUT =VREFIN ×Gain  
In this mode,  
into the input shift register. All DAC outputs are  
LDAC  
is held high while data is being clocked  
N
2
For a bipolar output range, the output voltage expression is given by  
ꢀYNC  
has  
asynchronously updated by taking  
been taken high. The update now occurs on the falling edge of  
LDAC  
low after  
Gain ×VREFIN  
D
VOUT =VREFIN ×Gain  
N
.
2
2
ASYNCHRONOUS CLEAR (CLR)  
where:  
CLR  
is an active low clear that allows the outputs to be cleared  
D is the decimal equivalent of the code loaded to the DAC.  
N is the bit resolution of the DAC.  
to either zero-scale code or mid-scale code. The clear code value  
is user-selectable via the CLR ꢀELECT bit of the control register  
V
REFIN is the reference voltage applied at the REFIN pin.  
CLR  
(see the Control Register section). It is necessary to maintain  
low for a minimum amount of time (see Figure 2) to complete  
CLR  
Gain is an internal gain whose value depends on the output  
range selected by the user as shown in Table 8.  
the operation. When the  
signal is returned high, the output  
remains at the cleared value until a new value is programmed.  
Table 8.  
Output Range  
Gain Value  
CLR  
The outputs cannot be updated with a new value while the  
pin is low. A clear operation can also be performed via the clear  
command in the control register.  
+5 V  
2
+10 V  
4
+10.± V  
±5 V  
4.32  
4
±10 V  
±
±10.± V  
±.64  
Rev. PrC | Page 22 of 34  
Preliminary Technical Data  
AD5724/AD5734/AD5754  
Ideal Output Voltage to Input Code Relationship—AD5754  
Table 9. Bipolar Output, Offset Binary Coding  
Digital Input  
Analog Output  
10 V Output Range  
+4 REFIN(32767/3276±)  
+4 REFIN(32766/3276±)  
MSB  
1111  
1111  
LSB  
1111  
1110  
5 V Output Range  
+2 REFIN(32767/3276±)  
+2 REFIN(32766/3276±)  
10.8 V Output Range  
+4.32 REFIN(32767/3276±)  
+4.32 REFIN(32766/3276±)  
1111  
1111  
1111  
1111  
1000  
1000  
0111  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 REFIN(1/3276±)  
0 V  
−2 REFIN(1/3276±)  
+4 REFIN(1/3276±)  
0 V  
−4 REFIN(1/3276±)  
+4.32 REFIN(1/3276±)  
0 V  
−4.32 REFIN(32766/3276±)  
0000  
0000  
0000  
0000  
0000  
0000  
0001  
0000  
−2 REFIN(32766/3276±)  
−2 REFIN(32767/3276±  
−4 REFIN(32766/3276±)  
−4 REFIN(32767/3276±)  
−4.32 REFIN(32766/3276±)  
−4.32 REFIN(32767/3276±)  
Table 10. Bipolar Output, Twos Complement Coding  
Digital Input  
Analog Output  
10 V Output Range  
+4 REFIN(32767/3276±)  
+4 REFIN(32766/3276±)  
MSB  
0111  
0111  
LSB  
1111  
1110  
5 V Output Range  
+2 REFIN(32767/3276±)  
+2 REFIN(32766/3276±)  
10.8 V Output Range  
+4.32 REFIN(32767/3276±)  
+4.32 REFIN(32766/3276±)  
1111  
1111  
1111  
1111  
0000  
0000  
1111  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 REFIN(1/3276±)  
0 V  
−2 REFIN(1/3276±)  
+4 REFIN(1/3276±)  
0 V  
−4 REFIN(1/3276±)  
+4.32 REFIN(1/3276±)  
0 V  
−4.32 REFIN(1/3276±)  
1000  
1000  
0000  
0000  
0000  
0000  
0001  
0000  
−2 REFIN(32766/3276±)  
−2 REFIN(32767/3276±)  
−4 REFIN(32766/3276±)  
−4 REFIN(32767/3276±)  
−4.32 REFIN(32766/3276±)  
−4.32 REFIN(32767/3276±)  
Table 11. Unipolar Output, Straight Binary Coding  
Digital Input  
Analog Input  
+10 V Output Range  
+4 REFIN(65535/65536)  
+4 REFIN(65534/65536)  
MSB  
1111  
1111  
LSB  
1111  
1110  
+5 V Output Range  
+2 REFIN(65535/65536)  
+2 REFIN(65534/65536)  
+10.8 V Output Range  
+4.32 REFIN(65535/65536)  
+4.32 REFIN(65534/65536)  
1111  
1111  
1111  
1111  
1000  
1000  
0111  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 REFIN(3276ꢀ/65536)  
+2 REFIN(3276±/65536)  
+2 REFIN(32767/65536)  
+4 REFIN(3276ꢀ/65536)  
+4 REFIN(3276±/65536)  
+4 REFIN(32767/65536)  
+4.32 REFIN(3276ꢀ/65536)  
+4.32 REFIN(3276±/65536)  
+4.32 REFIN(32767/65536)  
0000  
0000  
0000  
0000  
0000  
0000  
0001  
0000  
+2 REFIN(1/65536)  
0 V  
+4 REFIN(1/65536)  
0 V  
+4.32 REFIN(1/65536)  
0 V  
Rev. PrC | Page 23 of 34  
AD5724/AD5734/AD5754  
Preliminary Technical Data  
Ideal Output Voltage to Input Code Relationship—AD5734  
Table 12. Bipolar Output, Offset Binary Coding  
Digital Input  
Analog Output  
MSB  
11  
11  
LSB  
1111  
1110  
5 V Output Range  
+2 REFIN(±1ꢀ1/±1ꢀ2)  
+2 REFIN(±1ꢀ0/±1ꢀ2)  
10 V Output Range  
+4 REFIN(±1ꢀ1/±1ꢀ2)  
+4 REFIN(±1ꢀ0/±1ꢀ2)  
10.8 V Output Range  
+4.32 REFIN(±1ꢀ1/±1ꢀ2)  
+4.32 REFIN(±1ꢀ0/±1ꢀ2)  
1111  
1111  
1111  
1111  
10  
10  
01  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 REFIN(1/±1ꢀ2)  
0 V  
−2 REFIN(1/±1ꢀ2)  
+4 REFIN(1/±1ꢀ2)  
0 V  
−4 REFIN(1/±1ꢀ2)  
+4 REFIN(1/±1ꢀ2)  
0 V  
−4.32 REFIN(1/±1ꢀ2)  
00  
00  
0000  
0000  
0000  
0000  
0001  
0000  
−2 REFIN(±1ꢀ0/±1ꢀ2)  
−2 REFIN(±1ꢀ1/±1ꢀ1)  
−4 REFIN(±1ꢀ0/±1ꢀ2)  
−4 REFIN(±1ꢀ1/±1ꢀ2)  
−4.32 REFIN(±1ꢀ0/±1ꢀ2)  
−4.32 REFIN(±1ꢀ1/±1ꢀ2)  
Table 13. Bipolar Output, Twos Complement Coding  
Digital Input  
Analog Output  
10 V Output Range  
+4 REFIN(±1ꢀ1/±1ꢀ2)  
+4 REFIN(±1ꢀ0/±1ꢀ2)  
MSB  
01  
01  
LSB  
1111  
1110  
5 V Output Range  
+2 REFIN(±1ꢀ1/±1ꢀ2)  
+2 REFIN(±1ꢀ0/±1ꢀ2)  
10.8 V Output Range  
+4.32 REFIN(±1ꢀ1/±1ꢀ2)  
+4.32 REFIN(±1ꢀ0/±1ꢀ2)  
1111  
1111  
1111  
1111  
00  
00  
11  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 REFIN(1/±1ꢀ2)  
0 V  
−2 REFIN(1/±1ꢀ2)  
+4 REFIN(1/±1ꢀ2)  
0 V  
−4 REFIN(1/±1ꢀ2)  
+4 REFIN(1/±1ꢀ2)  
0 V  
−4.32 REFIN(1/±1ꢀ2)  
10  
10  
0000  
0000  
0000  
0000  
0001  
0000  
−2 REFIN(±1ꢀ0/±1ꢀ2)  
−2 REFIN(±1ꢀ1/±1ꢀ2)  
−4 REFIN(±1ꢀ0/±1ꢀ2)  
−4 REFIN(±1ꢀ1/±1ꢀ2)  
−4.32 REFIN(±1ꢀ0/±1ꢀ2)  
−4.32 REFIN(±1ꢀ1/±1ꢀ2)  
Table 14. Unipolar Output, Straight Binary Coding  
Digital Input  
Analog Output  
10 V Output Range  
+4 REFIN(163±3/163±4)  
+4 REFIN(163±2/163±4)  
MSB  
11  
11  
LSB  
1111  
1110  
5 V Output Range  
+2 REFIN(163±3/163±4)  
+2 REFIN(163±2/163±4)  
10.8 V Output Range  
+4.32 REFIN(163±3/163±4)  
+4.32 REFIN(163±2/163±4)  
1111  
1111  
1111  
1111  
10  
10  
01  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 REFIN(±1ꢀ3/163±4)  
+2 REFIN(±1ꢀ2/163±4)  
+2 REFIN(±1ꢀ1/163±4)  
+4 REFIN(±1ꢀ3/163±4)  
+4 REFIN(±1ꢀ2/163±4)  
+4 REFIN(±1ꢀ1/163±4)  
+4.32 REFIN(±1ꢀ3/163±4)  
+4.32 REFIN(±1ꢀ2/163±4)  
+4.32 REFIN(±1ꢀ1/163±4)  
00  
00  
0000  
0000  
0000  
0000  
0001  
0000  
+2 REFIN(1/163±4)  
0 V  
+4 REFIN(1/163±4)  
0 V  
+4.32 REFIN(1/163±4)  
0 V  
Rev. PrC | Page 24 of 34  
Preliminary Technical Data  
AD5724/AD5734/AD5754  
Ideal Output Voltage to Input Code Relationship—AD5724  
Table 15. Bipolar Output, Offset Binary Coding  
Digital Input  
Analog Output  
10 V Output Range  
MSB  
1111  
1111  
LSB  
1111  
1110  
5 V Output Range  
+2 REFIN(2047/204±)  
+2 REFIN(2046/204±)  
10.8 V Output Range  
+4.32 REFIN(2047/204±)  
+4.32 REFIN(2046/204±)  
1111  
1111  
+4 REFIN(2047/204±)  
+4 REFIN(2046/204±)  
1000  
1000  
0111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 REFIN(1/204±)  
0 V  
−2 REFIN(1/204±)  
+4 REFIN(1/204±)  
0 V  
−4 REFIN(1/204±)  
+4 REFIN(1/204±)  
0 V  
−4.32 REFIN(1/204±)  
0000  
0000  
0000  
0000  
0001  
0000  
−2 REFIN(2046/204±)  
−2 REFIN(2047/2047)  
−4 REFIN(2046/204±)  
−4 REFIN(2047/204±)  
−4.32 REFIN(2046/204±)  
−4.32 REFIN(2047/204±)  
Table 16. Bipolar Output, Twos Complement Coding  
Bipolar Output  
Analog Output  
MSB  
0111  
0111  
LSB  
1111  
1110  
5 V Output Range  
+2 REFIN(2047/204±)  
+2 REFIN(2046/204±)  
10 V Output Range  
+4 REFIN(2047/204±)  
+4 REFIN(2046/204±)  
10.8 V Output Range  
+4.32 REFIN(2047/204±)  
+4.32 REFIN(2046/204±)  
1111  
1111  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 REFIN(1/204±)  
0 V  
−2 REFIN(1/204±)  
+4 REFIN(1/204±)  
0 V  
−4 REFIN(1/204±)  
+4 REFIN(1/204±)  
0 V  
−4.32 REFIN(1/204±)  
1000  
1000  
0000  
0000  
0001  
0000  
−2 REFIN(2046/204±)  
−2 REFIN(2047/204±)  
−4 REFIN(2046/204±)  
−4 REFIN(2047/204±)  
−4.32 REFIN(2046/204±)  
−4.32 REFIN(2047/204±)  
Table 17. Unipolar Output, Straight Binary Coding  
Digital Input  
Analog Output  
MSB  
1111  
1111  
LSB  
1111  
1110  
+5 V Output Range  
+2 REFIN(40ꢀ5/40ꢀ6)  
+2 REFIN(40ꢀ4/40ꢀ6)  
+10 V Output Range  
+4 REFIN(40ꢀ5/40ꢀ6)  
+4 REFIN(40ꢀ4/40ꢀ6)  
+10.8 V Output Range  
+4.32 REFIN(40ꢀ5/40ꢀ6)  
+4.32 REFIN(40ꢀ4/40ꢀ6)  
1111  
1111  
1000  
1000  
0111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 REFIN(204ꢀ/40ꢀ6)  
+2 REFIN(204±/40ꢀ6)  
+2 REFIN(2047/40ꢀ6)  
+4 REFIN(204ꢀ/40ꢀ6)  
+4 REFIN(204±/40ꢀ6)  
+4 REFIN(2047/40ꢀ6)  
+4.32 REFIN(204ꢀ/40ꢀ6)  
+4.32 REFIN(204±/40ꢀ6)  
+4.32 REFIN(2047/40ꢀ6)  
0000  
0000  
0000  
0000  
0001  
0000  
+2 REFIN(1/40ꢀ6)  
0 V  
+4 REFIN(1/40ꢀ6)  
0 V  
4.32 REFIN(1/40ꢀ6)  
0 V  
Rev. PrC | Page 25 of 34  
AD5724/AD5734/AD5754  
Preliminary Technical Data  
INPUT REGISTER  
The input register is 24 bits wide and consists of a read/write bit, a reserved bit, three register select bits, three DAC address bits, and up to  
12-/14-/16 data bits. The register data is clocked in MꢀB first on the ꢀDIN pin. Table 18 shows the register format while Table 19 describes  
the function of each bit in the register. All registers are read/write registers.  
Table 18. Input Register Format  
MSB  
LSB  
DB15 to DB0  
DATA  
DB23  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
W
R/  
0
REG2  
REG1  
REG0  
A2  
A1  
A0  
Table 19. Input Register Bit Functions  
Bit Mnemonic  
Description  
R/W  
Indicates a read from or a write to the addressed register.  
REG2, REG1, REG0  
Used in association with the address bits to determine if a write operation is to the data register, output range  
select register, power control register or control register.  
REG2  
REG1  
REG0  
Function  
0
0
0
0
0
0
1
1
0
1
0
1
Data Register  
Output Range Select Register  
Power Control Register  
Control Register  
A2, A1, A0  
These bits are used to decode the DAC channels.  
A2  
A1  
0
A0  
0
Channel Address  
DAC A  
0
0
0
1
DAC B  
0
1
0
DAC C  
0
1
1
DAC D  
1
0
0
All Four DACs  
DB15 to DB0  
Data bits.  
DATA REGISTER  
The data register is addressed by setting the three REG bits to 000. The DAC address bits select the DAC channel where the data transfer  
is to take place (see Table 19). The data bits are in positions DB15 to DB0 for the AD5754 (ꢀee Table 20), DB15 to DB2 for the AD5734  
(ꢀee Table 21), and DB15 to DB4 for the AD5724 (ꢀee Table 22).  
Table 20. Programming the AD5754 Data Register  
MSB  
REG2  
0
LSB  
REG1  
REG0  
A2  
A1  
DAC Address  
A0  
DB15 to DB0  
0
0
16-Bit DAC Data  
Table 21. Programming the AD5734 Data Register  
MSB  
LSB  
REG2  
REG1  
REG0  
A2  
A1  
A0  
DB15 to DB2  
DB1  
DB0  
0
0
0
DAC Address  
14-Bit DAC Data  
X
X
Table 22. Programming the AD5724 Data Register  
MSB  
LSB  
REG2  
REG1  
REG0  
A2  
A1  
DAC Address  
A0  
DB15 to DB4  
DB3  
DB2  
DB1  
DB0  
0
0
0
12-Bit DAC Data  
X
X
X
X
Rev. PrC | Page 26 of 34  
Preliminary Technical Data  
AD5724/AD5734/AD5754  
OUTPUT RANGE SELECT REGISTER  
The output range select register is addressed by setting the three REG bits to 001. The DAC address bits select the DAC channel, while,  
the range bits (R2, R1, R0) select the required output range (ꢀee Table 23 and Table 24).  
Table 23. Programming the Required Output Range  
MSB  
REG2  
0
LSB  
REG1  
REG0  
A2  
A1  
A0  
DB15 to DB3  
DB2  
DB1  
DB0  
0
0
DAC Address  
Don’t Care  
R2  
R1  
R0  
Table 24. Output Range Options  
R2  
R1  
R0  
Output Range  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
+5 V  
+10 V  
+10.± V  
±5 V  
±10 V  
±10.± V  
CONTROL REGISTER  
The control register is addressed by setting the three REG bits to 011. The value written to the address and data bits determines the  
control function selected. The control register options are shown in Table 25 and Table 26.  
Table 25. Control Register Format  
MSB  
REG2  
0
LSB  
REG1  
REG0  
A2  
A1  
A0  
DB15 to DB4  
DB3  
DB2  
DB1  
DB0  
1
1
0
0
0
NOP, Data = Don’t Care  
REG2  
REG1  
REG0  
A2  
A1  
A0  
DB15 to DB4  
DB3  
DB2  
DB1  
DB0  
0
1
1
0
0
1
Don’t Care  
TSD ENABLE  
CLAMP ENABLE  
CLR SELECT  
SDO DISABLE  
REG2  
REG1  
REG0  
A2  
A1  
A0  
DB15 to DB4  
DB15 to DB4  
DB3  
DB3  
DB2  
DB1  
DB0  
DB0  
0
1
1
1
0
0
CLEAR, Data = Don’t Care  
REG2  
REG1  
REG0  
A2  
A1  
A0  
DB2  
DB1  
0
1
1
1
0
1
LOAD, Data = Don’t Care  
Table 26. Explanation of Control Register Options  
Option  
Description  
NOP  
No operation instruction used in readback operations.  
CLEAR  
LOAD  
SDO DISABLE  
CLR SELECT  
CLAMP ENABLE  
Addressing this function sets the DAC registers to the clear code and updates the outputs.  
Addressing this function updates the DAC registers and consequently, the DAC outputs.  
Set by the user to disable the SDO output. Cleared by the user to enable the SDO output (default).  
See Table 27 for a description of the CLR SELECT operation.  
Set by the user to enable the current limit clamp (default). The channel does not power down on detection of  
overcurrent; the current is clamped at 20 mA.  
Cleared by the user to disable the current-limit clamp. The channel powers down on detection of overcurrent.  
TSD ENABLE  
Set by the user to enable the thermal shutdown feature. Cleared by the user to disable the thermal shutdown  
feature (default).  
Table 27. CLR Select Options  
CLR SELECT  
Output CLR Value  
Bipolar Output Range  
Setting  
Unipolar Output Range  
0
1
0 V  
Mid-Scale  
0 V  
Negative Full-Scale  
Rev. PrC | Page 27 of 34  
AD5724/AD5734/AD5754  
Preliminary Technical Data  
POWER CONTROL REGISTER  
The power control register is addressed by setting the three REG bits to 010. This register allows the user to control and determine the  
power and thermal status of the AD5724/AD5734/AD5754. The power control register options are shown in Table 28 and Table 29.  
Table 28. Power Control Register Format  
MSB  
LSB  
DB3 DB2 DB1 DB0  
PUD PUC PUB PUA  
REG2 REG1 REG0 A2 A1 A0 DB15 to DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4  
Don’t Care OCD OCC OCB OCA TSD  
0
1
0
0
0
0
0
0
Table 29. Power Control Register Functions  
Option Description  
PUA  
PUB  
PUC  
PUD  
DAC A Power-Up. When set, this bit places DAC A in normal operating mode. When cleared, this bit places DAC A in power-down  
mode (default). If the CLAMP ENABLE bit of the control register is cleared, DAC A will power down automatically on detection of  
an over-current, PUA will be cleared to reflect this.  
DAC B Power-Up. When set, this bit places DAC B in normal operating mode. When cleared, this bit places DAC B in power-down  
mode (default). If the CLAMP ENABLE bit of the control register is cleared, DAC B will power down automatically on detection of  
an over-current, PUB will be cleared to reflect this.  
DAC C Power-Up. When set, this bit places DAC C in normal operating mode. When cleared, this bit places DAC C in power-down  
mode (default). If the CLAMP ENABLE bit of the control register is cleared, DAC C will power down automatically on detection of  
an over-current, PUC will be cleared to reflect this.  
DAC D Power-Up. When set, this bit places DAC D in normal operating mode. When cleared, this bit places DAC D in power-down  
mode (default). If the CLAMP ENABLE bit of the control register is cleared, DAC D will power down automatically on detection of  
an over-current, PUD will be cleared to reflect this.  
TSD  
OCA  
OCB  
OCC  
OCD  
Thermal Shutdown Alert. Read-Only Bit. In the event of an overtemperature situation, this bit is set.  
DAC A Overcurrent Alert. Read-Only Bit. In the event of an overcurrent situation on DAC A, this bit is set.  
DAC B Overcurrent Alert. Read-Only Bit. In the event of an overcurrent situation on DAC B, this bit is set.  
DAC C Overcurrent Alert. Read-Only Bit. In the event of an overcurrent situation on DAC C, this bit is set.  
DAC D Overcurrent Alert. Read-Only Bit. In the event of an overcurrent situation on DAC D, this bit is set.  
Rev. PrC | Page 2± of 34  
AD5724/AD5734/AD5754  
Preliminary Technical Data  
FEATURES  
ANALOG OUTPUT CONTROL  
Constant Current Clamp (CLAMP ENABLE =1)  
If a short circuit occurs, in this configuration the current is  
clamped at 20 mA. This event is signaled to the user by the  
setting of the appropriate overcurrent (OCX) bit in the power  
control register. Upon removal of the short-circuit fault, the  
OCX bit is cleared.  
In many industrial process control applications, it is vital that the  
output voltage be controlled during power-up. When the supply  
voltages are changing during power-up, the VOUT pins are clamped  
to 0 V via a low impedance path (approxiamately 4k). To  
prevent the output amplifiers from being shorted to 0 V during  
this time, Transmission Gate G1 is also opened (see Figure 39).  
These conditions are maintained until the power supplies have  
stabilized and a valid word is written to a DAC register. At this  
time, G2 opens and G1 closes.  
Automatic Channel Power-Down (CLAMP ENABLE = 0)  
If a short circuit occurs, in this configuration the shorted  
channel powers down and its output is clamped to ground via a  
resistance of approxiamately 4k, also at this time the output of  
the amplifier is disconnected from the output pin. The short-  
circuit event is signaled to the user via the overcurrent (OCX)  
bits, and the power-up (PUX ) bits also indicate which channels  
have been powered down. After the fault has been rectified, the  
channels can be powered up again by setting the PUX bits.  
VOLTAGE  
MONITOR  
AND  
CONTROL  
G1  
V
A
OUT  
G2  
THERMAL SHUTDOWN  
The AD5724/AD5734/AD5754 incorporate a thermal shutdown  
feature that automatically shuts down the device if the core  
temperature exceeds approximately 150°C. The thermal shutdown  
feature is disabled by default and can be enabled via the TꢀD  
ENABLE bit of the control register. In the event of a thermal  
shutdown, the TꢀD bit of the power control register is set.  
Figure 39. Analog Output Control Circuitry  
OVERCURRENT PROTECTION  
Each DAC channel of the AD5724/AD5734/AD5754 incorporates  
individual overcurrent protection. The user has two options for  
the configuration of the overcurrent protection, constant current  
clamp or automatic channel power-down. The configuration of  
the overcurrent protection is selected via the CLAMP ENABLE  
bit in the control register.  
Rev. PrC | Page 2ꢀ of 34  
AD5724/AD5734/AD5754  
Preliminary Technical Data  
APPLICATIONS INFORMATION  
+5V / 5V OPERATION  
GALVANICALLY ISOLATED INTERFACE  
In many process control applications, it is necessary to provide  
an isolation barrier between the controller and the unit being  
controlled to protect and isolate the controlling circuitry from  
any hazardous common-mode voltages that may occur. The  
iCoupler® family of products from Analog Devices provides  
voltage isolation in excess of 2.5 kV. The serial loading structure  
of the AD5724/AD5734/AD5754 make them ideal for isolated  
interfaces because the number of interface lines is kept to a  
minimum. Figure 40 shows a 4-channel isolated interface to the  
AD5724/AD5734/AD5754 using an ADuM1400. For further  
information, visit http://www.analog.com/icouplers.  
When operating from a single +5V supply or a dual 5V supply  
an output range of +5V or 5V is not achievable as sufficient  
headroom for the output amplifier is not available. In this  
situation a reduced reference voltage can be used, for instance a  
2V reference will produce an output range of +4V or 4V, the  
1V of headroom is more than enough for full operation. A  
standard value voltage reference of 2.048V can be used to  
produce output ranges of +4.096V and 4.096V. Refer to the  
typical performance characteristics plots for performance data  
at a range of voltage reference values.  
LAYOUT GUIDELINES  
MICROCONTROLLER  
ADuM1400*  
In any circuit where accuracy is important, careful  
V
V
V
V
V
V
V
V
OA  
OB  
OC  
OD  
IA  
IB  
IC  
ID  
SERIAL CLOCK OUT  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
TO SCLK  
TO SDIN  
TO SYNC  
TO LDAC  
consideration of the power supply and ground return layout  
helps to ensure the rated performance. The printed circuit  
board on which the AD5724/AD5734/AD5754 are mounted  
should be designed so that the analog and digital sections are  
separated and confined to certain areas of the board. If the  
AD5724/AD5734/AD5754 are in a system where multiple  
devices require an AGND-to-DGND connection, the  
connection should be made at one point only. The star ground  
point should be established as close as possible to the device.  
SERIAL DATA OUT  
SYNC OUT  
ENCODE  
ENCODE  
ENCODE  
CONTROL OUT  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 40. Isolated Interface  
VOLTAGE REFERENCE SELECTION  
The AD5724/AD5734/AD5754 should have ample supply  
bypassing of a 10 µF capacitor in parallel with a 0.1 µF capacitor  
on each supply located as close to the package as possible,  
ideally right up against the device. The 10 µF capacitors are the  
tantalum bead type. The 0.1 µF capacitor should have low  
effective series resistance (EꢀR) and low effective series  
inductance (EꢀI) such as the common ceramic types, which  
provide a low impedance path to ground at high frequencies to  
handle transient currents due to internal logic switching.  
To achieve optimum performance from the AD5724/AD5734/  
AD5754 over their full operating temperature range, a precision  
voltage reference must be used. Thought should be given to the  
selection of a precision voltage reference. The voltage applied to  
the reference inputs are used to provide a buffered positive and  
negative reference for the DAC cores. Therefore, any error in  
the voltage reference is reflected in the outputs of the device.  
There are four possible sources of error to consider when  
choosing a voltage reference for high accuracy applications:  
initial accuracy, temperature coefficient of the output voltage,  
long term drift, and output voltage noise.  
The power supply lines of the AD5724/AD5734/AD5754  
should use as large a trace as possible to provide low impedance  
paths and reduce the effects of glitches on the power supply  
line. Fast switching signals such as clocks should be shielded  
with digital ground to avoid radiating noise to other parts of  
the board and should never be run near the reference inputs.  
A ground line routed between the ꢀDIN and ꢀCLK lines helps  
reduce crosstalk between them (this is not required on a multilayer  
board that has a separate ground plane, but separating the lines  
does help). It is essential to minimize noise on the REFIN line  
because it couples through to the DAC output.  
Initial accuracy error on the output voltage of an external  
reference can lead to a full-scale error in the DAC.  
Therefore, to minimize these errors, a reference with low  
initial accuracy error specification is preferred. Choosing a  
reference with an output trim adjustment, such as the  
ADR421, allows a system designer to trim out system  
errors by setting the reference voltage to a voltage other  
than the nominal. The trim adjustment can also be used at  
temperature to trim out any error.  
Avoid crossover of digital and analog signals. Traces on opposite  
sides of the board should run at right angles to each other. This  
reduces the effects of feed through the board. A microstrip  
technique is by far the best, but not always possible with a  
double-sided board. In this technique, the component side of  
the board is dedicated to ground plane, while signal traces are  
placed on the solder side.  
The temperature coefficient of a references output voltage  
affects INL, DNL, and TUE. A reference with a tight  
temperature coefficient specification should be chosen to  
reduce the dependence of the DAC output voltage on  
ambient conditions.  
Long term drift is a measure of how much the reference  
output voltage drifts over time. A reference with a tight  
Rev. PrC | Page 30 of 34  
Preliminary Technical Data  
AD5724/AD5734/AD5754  
long-term drift specification ensures that the overall  
solution remains relatively stable over its entire lifetime.  
Reference output voltage noise needs to be considered in  
high accuracy applications that have relatively low noise  
budgets. It is important to choose a reference with as low  
an output noise voltage as practical for the required system  
resolution. Precision voltage references such as the  
ADR431 (XFET® design) produce low output noise in the  
0.1 Hz to 10 Hz range However, as the circuit bandwidth  
increases, filtering the output of the reference may be  
required to minimize the output noise.  
Table 30. Some Precision References Recommended for Use with the AD5724/AD5734/AD5754  
Part No. Initial Accuracy (mV max) Long-Term Drift (ppm typ) Temp Drift (ppm/°C max) 0.1 Hz to 10 Hz Noise (µV p-p typ)  
ADR431 ±1  
ADR421 ±1  
40  
50  
50  
50  
20  
1
1
3
3
3.5  
1.75  
10  
±
ADR03  
±2.5  
ADR2ꢀ1 ±2  
AD7±0  
±1  
10  
4
AD5724/AD5734/AD5754 to Blackfin® DSP interface  
MICROPROCESSOR INTERFACING  
Figure 41 shows how the AD5724/AD5734/AD5754 can be  
interfaced to Analog Devices Blackfin DꢀP. The Blackfin has an  
integrated ꢀPI port that can be connected directly to the ꢀPI  
pins of the AD5724/AD5734/AD5754 and the programmable I/O  
pins that can be used to set the state of a digital input such as  
Microprocessor interfacing to the AD5724/AD5734/AD5754 is via  
a serial bus that uses standard protocol compatible with  
microcontrollers and DꢀP processors. The communications  
channel is a 3-wire (minimum) interface consisting of a clock  
signal, a data signal, and a synchronization signal. The  
AD5724/AD5734/AD5754 require a 24-bit data-word with data  
valid on the falling edge of ꢀCLK.  
LDAC  
the  
pin.  
SPISELx  
SYNC  
For all interfaces, the DAC output update can be initiated  
automatically when all the data is clocked in, or it can be  
SCK  
SCLK  
SDIN  
MOSI  
AD5724/  
AD5734/  
AD5754  
LDAC  
performed under the control of  
. The contents of the  
ADSP-BF531  
PF10  
registers can be read using the readback function.  
LDAC  
Figure 41. AD5724/AD5734/AD5754 to Blackfin Interface  
Rev. PrC | Page 31 of 34  
AD5724/AD5734/AD5754  
OUTLINE DIMENSIONS  
Preliminary Technical Data  
5.02  
5.00  
4.95  
7.90  
7.80  
7.70  
24  
13  
12  
4.50  
4.40  
4.30  
3.25  
3.20  
3.15  
EXPOSED  
PAD  
(Pins Up)  
6.40 BSC  
1
BOTTOM VIEW  
TOP VIEW  
1.05  
1.00  
0.80  
1.20 MAX  
PLANE  
8°  
0°  
0.20  
0.09  
0.15  
0.05  
0.30  
0.19  
0.65  
BSC  
0.75  
0.60  
0.45  
SEATING  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-153-ADT  
Figure 42. 24-Lead Thin Shrink Small Outline Package, Exposed Pad [TSSOP_EP]  
(RE-24)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD5724BREZ1  
AD5724BREZ-REEL71  
AD5734BREZ1  
AD5734BREZ-REEL71  
AD5754BREZ1  
AD5754BREZ-REEL71  
Resolution  
Temperature Range  
−40°C to ±5°C  
−40°C to ±5°C  
−40°C to ±5°C  
−40°C to ±5°C  
−40°C to ±5°C  
−40°C to ±5°C  
INL  
Package Description  
24-Lead TSSOP_EP  
24-Lead TSSOP_EP  
24-Lead TSSOP_EP  
24-Lead TSSOP_EP  
24-Lead TSSOP_EP  
24-Lead TSSOP_EP  
Package Option  
RE-24  
RE-24  
12  
12  
14  
14  
16  
16  
±1 LSB  
±1 LSB  
±4 LSB  
±4 LSB  
±16 LSB  
±16 LSB  
RE-24  
RE-24  
RE-24  
RE-24  
1 Z = Pb-free part.  
Rev. PrC | Page 32 of 34  
Preliminary Technical Data  
NOTES  
AD5724/AD5734/AD5754  
Rev. PrC | Page 33 of 34  
AD5724/AD5734/AD5754  
NOTES  
Preliminary Technical Data  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR06468-0-11/07(PrC)  
Rev. PrC | Page 34 of 34  

相关型号:

AD5724BREZ-REEL7

IC SERIAL INPUT LOADING, 8 us SETTLING TIME, 12-BIT DAC, PDSO24, LEAD FREE, MO-153ADT, TSSOP-24, Digital to Analog Converter
ADI

AD5724R

Quad 12-Bit Serial Input Unipolar/Bipolar Voltage Output DAC
ADI

AD5724RBREL

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs
ADI

AD5724RBREZ

Complete, Quad, 12-Bit, Serial Input, Unipolar/Bipolar Voltage Output DAC with Internal Reference
ADI

AD5724RBREZ-REEL7

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs
ADI

AD5725

Quad 12-Bit Serial Input Unipolar/Bipolar Voltage Output DAC
ADI

AD5725ARSZ-REEL

Quad, 12-Bit, Parallel Input, Unipolar/Bipolar, Voltage Output DAC
ADI

AD5725BRSZ-1500RL7

Quad, 12-Bit, Parallel Input, Unipolar/Bipolar, Voltage Output DAC
ADI

AD5725BRSZ-1REEL

PARALLEL, WORD INPUT LOADING, 10us SETTLING TIME, 12-BIT DAC, PDSO28, ROHS COMPLIANT, MO-150AH, SSOP-28
ADI

AD5725BRSZ-500RL7

Quad, 12-Bit, Parallel Input, Unipolar/Bipolar, Voltage Output DAC
ADI

AD5725BRSZ-REEL

Quad, 12-Bit, Parallel Input, Unipolar/Bipolar, Voltage Output DAC
ADI

AD5726

Quad 12-Bit Serial Input Unipolar/Bipolar Voltage Output DAC
ADI