AD5790 [ADI]

System Ready, 18-Bit ±1 LSB INL; 系统就绪, 18位± 1 LSB INL
AD5790
型号: AD5790
厂家: ADI    ADI
描述:

System Ready, 18-Bit ±1 LSB INL
系统就绪, 18位± 1 LSB INL

文件: 总28页 (文件大小:594K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
System Ready, 18-Bit 1 ꢀSB ꢁIꢀ,  
Voltage Output DAC  
Data Sheet  
AD5780  
FEATURES  
FUNCTIONAꢀ BꢀOCK DIAGRAM  
V
V
V
REFP  
CC  
DD  
True 18-bit voltage output DAC, 1 ꢀSB INꢀ  
8 nV/√Hz output noise spectral density  
0.025 ꢀSB long-term linearity error stability  
0.018 ppm/°C gain error temperature coefficient  
2.5 μs output voltage settling time  
R
R1  
FB  
6.8k6.8kΩ  
AD5780  
A1  
R
IOV  
CC  
FB  
INV  
SDIN  
SCLK  
SYNC  
SDO  
INPUT  
SHIFT  
18  
18  
18-BIT  
DAC  
DAC  
REG  
V
OUT  
REGISTER  
AND  
CONTROL  
LOGIC  
3.5 nV-sec midscale glitch impulse  
Integrated precision reference buffers  
Operating temperature range: −40°C to +125°C  
4 mm × 5 mm ꢀFCSP package  
Wide power supply range of up to 16.5 V  
35 MHz Schmitt triggered digital interface  
1.8 V-compatible digital interface  
6kΩ  
LDAC  
CLR  
POWER-ON RESET  
AND CLEAR LOGIC  
RESET  
DGND  
V
AGND  
V
REFN  
SS  
Figure 1.  
APPꢀICATIONS  
Table 1. Related Devices  
Medical instrumentation  
Test and measurement  
Industrial control  
Scientific and aerospace instrumentation  
Data acquisition systems  
Digital gain and offset adjustment  
Power supply control  
Part No.  
AD5790  
AD5791  
AD5781  
Description  
20-bit, 2 LSB accurate DAC  
20-bit, 1 ppm accurate DAC  
18-bit, 0.5 LSB accurate DAC  
AD5541A/AD5542A 16-bit, 1 LSB accurate 5 V DAC  
AD5760 16-bit, 0.5 LSB accurate DAC  
GENERAꢀ DESCRIPTION  
The AD57801 is a true 18-bit, unbuffered voltage output DAC  
that operates from a bipolar supply of up to 33 V. The AD5780  
accepts a positive reference input range of 5 V to VDD − 2.5 V  
and a negative reference input range of VSS + 2.5 V to 0 V. Both  
reference inputs are buffered on chip and external buffers are  
not required. The AD5780 offers a relative accuracy specifica-  
tion of 1 LSB maximum range, and operation is guaranteed  
monotonic with a 1 LSB DNL maximum range specification.  
PRODUCT HIGHꢀIGHTS  
1. True 18-bit accuracy.  
2. Wide power supply range of up to 1ꢀ.5 V.  
3. −40°C to +125°C operating temperature range.  
4. Low 8 nV/√Hz noise.  
5. Low 0.018 ppm/°C gain error temperature coefficient.  
COMPANION PRODUCTS  
Output Amplifier Buffer: AD8ꢀ75, ADA4898-1, ADA4004-1  
External Reference: ADR445  
The part uses a versatile 3-wire serial interface that operates at  
clock rates of up to 35 MHz and is compatible with standard  
SPI, QSPI™, MICROWIRE™, and DSP interface standards. The  
part incorporates a power-on reset circuit that ensures that the  
DAC output powers up to 0 V in a known output impedance  
state and remains in this state until a valid write to the device  
takes place. The part provides an output clamp feature that  
places the output in a defined load state.  
DC-to-DC Design Tool: ADIsimPower™  
Additional companion products on the AD5780 product page  
1 Protected by U.S. Patent No. 7,884,747 and 8,089,380.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2011–2012 Analog Devices, Inc. All rights reserved.  
 
AD5780  
Data Sheet  
TABꢀE OF COITEITS  
Features .............................................................................................. 1  
DAC Architecture....................................................................... 19  
Serial Interface............................................................................ 19  
Hardware Control Pins.............................................................. 20  
On-Chip Registers...................................................................... 21  
AD5780 Features ............................................................................ 24  
Power-On to 0 V......................................................................... 24  
Configuring the AD5780 .......................................................... 24  
DAC Output State ...................................................................... 24  
Output Amplifier Configuration.............................................. 24  
Applications Information.............................................................. 2ꢀ  
Typical Operating Circuit ......................................................... 2ꢀ  
Evaluation Board........................................................................ 27  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Companion Products....................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 10  
Terminology .................................................................................... 18  
Theory of Operation ...................................................................... 19  
REVISION HISTORY  
3/12—Rev. B to Rev. C  
Changes to Data Sheet Title and added Patent 8,089,380........... 1  
2/12—Rev. A to Rev. B  
Deleted Linearity Compensation Section ................................... 24  
12/11—Rev. 0 to Rev. A  
Edits to Table 2.................................................................................. 3  
Changes to Figure 48...................................................................... 17  
Changes to DAC Register Section................................................ 21  
Changes to Table 10 and Table 11 ................................................ 22  
11/11—Revision 0: Initial Version  
Rev. C | Page 2 of 28  
 
Data Sheet  
AD5780  
SPECꢁFꢁCATꢁOIS  
VDD = 12.5 V to 1ꢀ.5 V, VSS = −1ꢀ.5 V to −12.5 V, VREFP = 10 V, VREFN = −10 V, VCC = 2.7 V to 5.5 V, IOVCC = 1.71 V to 5.5 V,  
RL = unloaded, CL = unloaded, TMIN to TMAX, unless otherwise noted.  
Table 2.  
A, B Versions1  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
STATIC PERFORMANCE2  
Resolution  
Integral Nonlinearity Error (Relative  
Accuracy)  
18  
−0.85  
Bits  
LSB  
+0.85  
B grade, VREFP = +10 V, VREFN = −10 V,  
TA = 25°C  
−1  
−2  
−0.25  
−1  
+1  
+2  
+0.75  
+1  
LSB  
LSB  
LSB  
LSB  
B grade, VREFx  
A grade, VREFx  
B grade, VREFx  
A grade, VREFx  
=
=
=
=
10 V, +10 V, and +5 V  
10 V, +10 V, and +5 V  
10 V, +10 V, and +5 V  
10 V, +10 V, and +5 V  
Differential Nonlinearity Error  
Long-Term Linearity Error Stability3  
Full-Scale Error  
0.025  
0.95  
0.675  
0.45  
LSB  
LSB  
LSB  
LSB  
After 750 hours at TA = 135°C  
VREFP = +10 V, VREFN = −10 V  
VREFP = 10 V, VREFN = 0 V  
−3  
−5.5  
−10  
+3  
+0.5  
+10  
VREFP = 5 V, VREFN = 0 V  
Full-Scale Error Temperature Coefficient  
Zero-Scale Error  
0.026  
0.325  
0.175  
0.225  
0.025  
ppm/°C  
LSB  
LSB  
LSB  
ppm/°C  
VREFP = +10 V, VREFN = −10 V  
VREFP = +10 V, VREFN = −10 V  
VREFP = 10 V, VREFN = 0 V  
VREFP = 5 V, VREFN = 0 V  
VREFP = +10 V, VREFN = −10 V  
−4.8  
−10  
−20.5  
+4.8  
+10  
+20.5  
Zero-Scale Error Temperature  
Coefficient  
Gain Error  
−19  
−35  
−68  
2.3  
1.9  
0.9  
0.018  
0.015  
+19  
+35  
+68  
ppm FSR  
ppm FSR  
ppm FSR  
ppm/°C  
%
VREFP = +10 V, VREFN = −10 V  
VREFP = 10 V, VREFN = 0 V  
VREFP = 5 V, VREFN = 0 V  
Gain Error Temperature Coefficient  
R1, RFB Matching  
VREFP = +10 V, VREFN = −10 V  
OUTPUT CHARACTERISTICS  
Output Voltage Range  
VREFN  
VREFP  
V
Output Voltage Settling Time  
2.5  
μs  
10 V step to 0.02%, using the ADA4898-1  
buffer in unity-gain mode  
3.5  
8
8
μs  
500 code step to 1 LSB4  
Output Noise Spectral Density  
nV/√Hz  
nV/√Hz  
μV p-p  
At 1 kHz, DAC code = midscale  
At 10 kHz, DAC code = midscale  
DAC code = midscale, 0.1 Hz to  
10 Hz bandwidth  
VREFP = +10 V, VREFN = −10 V  
VREFP = 10 V, VREFN = 0 V  
Output Voltage Noise  
1.1  
Midscale Glitch Impulse4  
14  
3.5  
4
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
kΩ  
VREFP = 5 V, VREFN = 0 V  
MSB Segment Glitch Impulse4  
14  
3.5  
4
57  
0.27  
3.4  
6
VREFP = +10 V, VREFN = −10 V, see Figure 43  
VREFP = 10 V, VREFN = 0 V, see Figure 44  
VREFP = 5 V, VREFN = 0 V, see Figure 45  
On removal of output ground clamp  
Output Enabled Glitch Impulse  
Digital Feedthrough  
DC Output Impedance (Normal Mode)  
DC Output Impedance (Output  
Clamped to Ground)  
kΩ  
Rev. C | Page 3 of 28  
 
AD5780  
Data Sheet  
A, B Versions1  
Typ  
Parameter  
Min  
Max  
Unit  
Test Conditions/Comments  
REFERENCE INPUTS  
VREFP Input Range  
VREFN Input Range  
Input Bias Current  
5
VDD − 2.5  
0
+20  
+4  
V
V
nA  
VSS + 2.5  
−20  
−4  
−0.63  
−0.63  
1
TA = 0°C to 105°C  
VREFP, VREFN  
Input Capacitance  
pF  
LOGIC INPUTS  
Input Current5  
Input Low Voltage, VIL  
−1  
+1  
μA  
V
0.3 × IOVCC  
IOVCC = 1.71 V to 5.5 V  
IOVCC = 1.71 V to 5.5 V  
Input High Voltage, VIH  
0.7 × IOVCC  
V
Pin Capacitance  
5
3
pF  
LOGIC OUTPUT (SDO)  
Output Low Voltage, VOL  
Output High Voltage, VOH  
High Impedance Leakage Current  
0.4  
1
V
V
μA  
pF  
IOVCC = 1.71 V to 5.5 V, sinking 1 mA  
IOVCC = 1.71 V to 5.5 V, sourcing 1 mA  
IOVCC − 0.5  
High Impedance Output Capacitance  
POWER REQUIREMENTS  
All digital inputs at DGND or IOVCC  
VDD  
VSS  
VCC  
7.5  
VDD − 33  
2.7  
VSS + 33  
−2.5  
5.5  
V
V
V
IOVCC  
1.71  
5.5  
V
IOVCC ≤ VCC  
IDD  
ISS  
ICC  
IOICC  
10.3  
−10  
600  
52  
7.5  
1.5  
90  
14  
mA  
mA  
μA  
μA  
μV/V  
μV/V  
dB  
dB  
−14  
900  
140  
SDO disabled  
∆VDD 10%, VSS = −15 V  
∆VSS 10%, VDD = 15 V  
∆VDD 200 mV, 50 Hz/60 Hz, VSS = −15 V  
∆VSS 200 mV, 50 Hz/60 Hz, VDD = 15 V  
DC Power Supply Rejection Ratio  
AC Power Supply Rejection Ratio  
90  
1 Temperature range: −40°C to +125°C, typical conditions: TA = 25°C, VDD = +15 V, VSS = −15 V, VREFP = +10 V, VREFN = −10 V.  
2 Performance characterized with the AD8675ARZ output buffer.  
3 Linearity error refers to both INL error and DNL error, either parameter can be expected to drift by the amount specified after the length of time specified.  
4 The AD5780 is configured in the unity-gain mode with a low-pass RC filter on the output. R = 300 Ω, C = 143 pF (total capacitance seen by the output buffer, lead  
capacitance, and so forth).  
5 Current flowing in an individual logic pin.  
Rev. C | Page 4 of 28  
 
 
 
Data Sheet  
AD5780  
TIMING CHARACTERISTICS  
VCC = 2.7 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
ꢀimit1  
Parameter  
Unit  
Test Conditions/Comments  
IOVCC = 1.71 V to 3.3 V  
IOVCC = 3.3 V to 5.5 V  
2
t1  
40  
92  
15  
9
28  
60  
10  
5
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns typ  
ns typ  
ns min  
ns typ  
ns min  
SCLK cycle time  
SCLK cycle time (readback and daisy-chain modes)  
SCLK high time  
t2  
t3  
t4  
SCLK low time  
5
5
SYNC to SCLK falling edge setup time  
SCLK falling edge to SYNC rising edge hold time  
Minimum SYNC high time  
t5  
2
2
t6  
48  
8
40  
6
t7  
SYNC rising edge to next SCLK falling edge ignore  
Data setup time  
Data hold time  
LDAC falling edge to SYNC falling edge  
SYNC rising edge to LDAC falling edge  
LDAC pulse width low  
t8  
t9  
9
7
7
12  
13  
20  
14  
130  
130  
50  
140  
0
t10  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
t21  
t22  
10  
16  
11  
130  
130  
50  
140  
0
LDAC falling edge to output response time  
SYNC rising edge to output response time (LDAC tied low)  
CLR pulse width low  
CLR pulse activation time  
SYNC falling edge to first SCLK rising edge  
65  
62  
0
60  
45  
0
ns max SYNC rising edge to SDO tristate (CL = 50 pF)  
ns max SCLK rising edge to SDO valid (CL = 50 pF)  
ns min  
ns typ  
ns typ  
SYNC rising edge to SCLK rising edge ignore  
RESET pulse width low  
35  
150  
35  
150  
RESET pulse activation time  
1 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVCC) and timed from a voltage level of (VIL + VIH)/2.  
2 Maximum SCLK frequency is 35 MHz for write mode and 16 MHz for readback and daisy-chain modes.  
Rev. C | Page 5 of 28  
 
 
AD5780  
Data Sheet  
t1  
t7  
SCLK  
1
2
24  
t3  
t2  
t6  
t4  
t5  
SYNC  
SDIN  
t9  
t8  
DB23  
DB0  
t12  
t10  
t11  
LDAC  
t13  
V
V
OUT  
OUT  
t14  
t15  
CLR  
t16  
V
OUT  
t21  
RESET  
t22  
V
OUT  
Figure 2. Write Mode Timing Diagram  
t20  
t1  
t17  
t7  
SCLK  
1
2
24  
1
2
24  
t3  
t2  
t6  
t17  
t5  
t5  
t4  
SYNC  
SDIN  
t9  
t8  
DB23  
DB0  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
NOP CONDITION  
t18  
t19  
DB23  
DB0  
SDO  
REGISTER CONTENTS CLOCKED OUT  
Figure 3. Readback Mode Timing Diagram  
Rev. C | Page 6 of 28  
 
Data Sheet  
AD5780  
t20  
t1  
t17  
SCLK  
26  
1
2
24  
25  
48  
t3  
t2  
t6  
t5  
t4  
SYNC  
SDIN  
t9  
t8  
DB23  
DB23  
DB0  
DB23  
DB0  
INPUT WORD FOR DAC N – 1  
t19  
INPUT WORD FOR DAC N  
t18  
DB0  
DB23  
DB0  
SDO  
INPUT WORD FOR DAC N  
UNDEFINED  
Figure 4. Daisy-Chain Mode Timing Diagram  
Rev. C | Page 7 of 28  
AD5780  
Data Sheet  
ABSOꢀUTE MAXꢁMUM RATꢁIGS  
TA = 25°C, unless otherwise noted. Transient currents of up to  
100 mA do not cause SCR latch-up.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 4.  
Parameter  
VDD to AGND  
VSS to AGND  
VDD to VSS  
VCC to DGND  
IOVCC to DGND  
Rating  
−0.3 V to +34 V  
−34 V to +0.3 V  
−0.3 V to +34 V  
−0.3 V to +7 V  
−0.3 V to VCC + 3 V or +7 V  
(whichever is less)  
This device is a high performance integrated circuit with an  
ESD rating of 1.ꢀ kV, and it is ESD sensitive. Proper precautions  
must be taken for handling and assembly.  
Digital Inputs to DGND  
−0.3 V to IOVCC + 0.3 V or  
+7 V (whichever is less)  
ESD CAUTION  
VOUT to AGND  
VREFP to AGND  
VREFN to AGND  
DGND to AGND  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
VSS − 0.3 V to +0.3 V  
−0.3 V to +0.3 V  
Operating Temperature Range, TA  
Industrial  
Storage Temperature Range  
Maximum Junction Temperature,  
TJ max  
−40°C to +125°C  
−65°C to +150°C  
150°C  
Power Dissipation  
LFCSP Package  
(TJ max − TA)/θJA  
θJA Thermal Impedance  
Lead Temperature  
Soldering  
31.0°C/W  
JEDEC industry standard  
J-STD-020  
ESD (Human Body Model)  
1.6 kV  
Rev. C | Page 8 of 28  
 
Data Sheet  
AD5780  
PꢁI COIFꢁGURATꢁOI AID FUICTꢁOI DESCRꢁPTꢁOIS  
AGND  
1
2
3
4
5
6
7
19  
18  
17  
16  
15  
14  
V
OUT  
V
V
SS  
REFP  
V
V
SS  
DD  
AD5780  
V
TOP VIEW  
RESET  
V
REFN  
(Not to Scale)  
DGND  
SYNC  
DD  
CLR  
13 SCLK  
LDAC  
NOTES  
TO THIS PIN.  
SS  
1. DNC = DO NOT CONNECT. DO NOT CONNECT  
2. NEGATIVE ANALOG SUPPLY CONNECTION (V ).  
A VOLTAGE IN THE RANGE OF –16.5 V TO –2.5 V  
CAN BE CONNECTED. V SHOULD BE DECOUPLED  
SS  
RICALLY  
TO AGND. THE PADDLE CAN BE LEFT ELECT  
UNCONNECTED PROVIDED THAT A SUPPLY  
CONNECTION IS MADE AT THE VSS PINS. IT IS  
RECOMMENDED THAT THE PADDLE BE THERMAL  
LY  
CONNECTED TO A COPPER PLANE FOR ENHANCED  
THERMAL PERFORMANCE.  
Figure 5. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic  
Description  
1
2
3, 5  
VOUT  
VREFP  
VDD  
Analog Output Voltage.  
Positive Reference Voltage Input. A voltage in the range of 5 V to VDD − 2.5 V can be connected to this pin.  
Positive Analog Supply Connection. A voltage in the range of 7.5 V to 16.5 V can be connected to this pin. VDD must be  
decoupled to AGND.  
4
6
RESET  
CLR  
Active Low Reset. Asserting this pin returns the AD5780 to its power-on status.  
Active Low Input. Asserting this pin sets the DAC register to a user defined value (see Table 12) and updates the DAC  
output. The output value depends on the DAC register coding that is being used, either binary or twos complement.  
7
LDAC  
Active Low Load DAC Logic Input. This pin is used to update the DAC register and, consequently, the analog output.  
SYNC LDAC  
When tied permanently low, the output is updated on the rising edge of  
. If  
is held high during the write cycle,  
LDAC LDAC  
the input register is updated, but the output update is held off until the falling edge of  
unconnected.  
. Do not leave the  
pin  
8
9
VCC  
IOVCC  
Digital Supply. Voltage range is from 2.7 V to 5.5 V. VCC should be decoupled to DGND.  
Digital Interface Supply. Digital threshold levels are referenced to the voltage applied to this pin. Voltage range is from  
1.71 V to 5.5 V.  
10, 21,  
22, 23  
DNC  
Do Not Connect. Do not connect to these pins.  
11  
12  
SDO  
SDIN  
Serial Data Output.  
Serial Data Input. This device has a 24-bit input shift register. Data is clocked into the register on the falling edge of the  
serial clock input.  
13  
14  
SCLK  
SYNC  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can be  
transferred at rates of up to 35 MHz.  
SYNC  
Level Triggered Control Input (Active Low). This is the frame synchronization signal for the input data. When  
low, it enables the input shift register, and data is then transferred in on the falling edges of the following clocks. The DAC  
SYNC  
goes  
is updated on the rising edge of  
.
15  
16  
17, 18  
DGND  
VREFN  
VSS  
Ground Reference Pin for Digital Circuitry.  
Negative Reference Voltage Input.  
Negative Analog Supply Connection. A voltage in the range of −16.5 V to −2.5 V can be connected to this pin.  
VSS must be decoupled to AGND.  
19  
20  
AGND  
RFB  
Ground Reference Pin for Analog Circuitry.  
Feedback Connection for External Amplifier. See the AD5780 Features section for further details.  
Inverting Input Connection for External Amplifier. See the AD5780 Features section for further details.  
Negative Analog Supply Connection (VSS). A voltage in the range of −16.5 V to −2.5 V can be connected to this pin. VSS  
must be decoupled to AGND. The paddle can be left electrically unconnected provided that a supply connection is made  
at the VSS pins. It is recommended that the paddle be thermally connected to a copper plane for enhanced thermal  
performance.  
24  
INV  
VSS  
EPAD  
Rev. C | Page 9 of 28  
 
AD5780  
Data Sheet  
TYPꢁCAꢀ PERFORMAICE CHARACTERꢁSTꢁCS  
0.4  
0.3  
0.4  
AD8675 OUTPUT BUFFER  
AD8675 OUTPUT BUFFER  
T = 25°C  
A
T
= 25°C  
A
0.3  
0.2  
0.2  
0.1  
0
0.1  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
0
–0.1  
–0.2  
–0.3  
–0.4  
V
V
V
V
= +10V  
= –10V  
V
V
V
V
= +5V  
= 0V  
REFP  
REFN  
DD  
SS  
REFP  
REFN  
DD  
SS  
= +15V  
= +15V  
= –15V  
= –15V  
0
50000  
100000  
150000  
200000  
250000  
300000  
0
50000  
100000  
150000  
200000  
250000  
300000  
DAC CODE  
DAC CODE  
Figure 6. Integral Nonlinearity Error vs. DAC Code, 1ꢀ V Span  
Figure 9. Integral Nonlinearity Error vs. DAC Code, 5 V Span, ×2 Gain Mode  
0.5  
0.6  
AD8675 OUTPUT BUFFER  
A
AD8675 OUTPUT BUFFER  
= 25°C  
T
= 25°C  
T
A
0.5  
0.4  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.1  
–0.2  
–0.3  
–0.4  
V
V
V
V
= +10V  
= –10V  
V
V
V
V
= +10V  
= 0V  
REFP  
REFN  
DD  
SS  
REFP  
REFN  
DD  
SS  
= +15V  
= +15V  
= –15V  
= –15V  
0
50000  
100000  
150000  
200000  
250000  
300000  
0
50000  
100000  
150000  
200000  
250000  
300000  
DAC CODE  
DAC CODE  
Figure 7. Integral Nonlinearity Error vs. DAC Code, 1ꢀ V Span  
Figure 1ꢀ. Differential Nonlinearity Error vs. DAC Code, 1ꢀ V Span  
0.8  
0.7  
AD8675 OUTPUT BUFFER  
= 25°C  
AD8675 OUTPUT BUFFER  
A
T
T
= 25°C  
A
0.6  
0.4  
0.5  
0.3  
0.2  
0.1  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.1  
–0.3  
–0.5  
–0.7  
V
V
V
V
= +5V  
= 0V  
REFP  
REFN  
DD  
SS  
V
V
V
V
= +10V  
= 0V  
REFP  
REFN  
DD  
SS  
= +15V  
= –15V  
= +15V  
= –15V  
0
50000  
100000  
150000  
200000  
250000  
300000  
0
50000  
100000  
150000  
200000  
250000  
300000  
DAC CODE  
DAC CODE  
Figure 8. Integral Nonlinearity Error vs. DAC Code, 5 V Span  
Figure 11. Differential Nonlinearity Error vs. DAC Code, 1ꢀ V Span  
Rev. C | Page 10 of 28  
 
 
 
Data Sheet  
AD5780  
0.5  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
±10V SPAN MAX DNL  
+10V SPAN MAX DNL  
+5V SPAN MAX DNL  
±10V SPAN MIN DNL  
+10V SPAN MIN DNL  
+5V SPAN MIN DNL  
0.4  
0.3  
0.2  
0.1  
V
V
= +15V  
= –15V  
DD  
SS  
0
AD8675 OUTPUT BUFFER  
–0.1  
–0.2  
–0.3  
V
V
V
V
= +5V  
= 0V  
REFP  
REFN  
DD  
SS  
AD8675 OUTPUT BUFFER  
= 25°C  
= +15V  
= –15V  
T
A
–0.05  
–0.4  
–40  
–20  
0
20  
40  
60  
80  
100  
0
50000  
100000  
150000  
200000  
250000  
300000  
TEMPERATURE (°C)  
DAC CODE  
Figure 12. Differential Nonlinearity Error vs. DAC Code, 5 V Span  
Figure 15. Differential Nonlinearity Error vs. Temperature  
0.6  
0.4  
V
V
V
V
= +5V  
= 0V  
AD8675 OUTPUT BUFFER  
= 25°C  
REFP  
REFN  
DD  
SS  
T
A
= +15V  
= –15V  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.3  
0.2  
INL MAX  
0.1  
T
= 25°C  
A
V
= +10V  
REFP  
REFN  
0
V
= –10V  
AD8675 OUTPUTBUFFER  
–0.1  
–0.2  
–0.3  
–0.4  
INL MIN  
15.0  
–0.1  
–0.2  
0
50000  
100000  
150000  
200000  
250000  
300000  
12.5  
13.0  
13.5  
14.0  
14.5  
15.5  
16.0  
16.5  
DAC CODE  
V
/|V | (V)  
DD SS  
Figure 13. Differential Nonlinearity Error vs. DAC Code, 5 V Span,  
×2 Gain Mode  
Figure 16. Integral Nonlinearity Error vs. Supply Voltage, 1ꢀ V Span  
±10V SPAN MAX INL  
+10V SPAN MAX INL  
+5V SPAN MAX INL  
±10V SPAN MIN INL  
+10V SPAN MIN INL  
+5V SPAN MIN INL  
0.7  
0.5  
0.4  
INL MAX  
0.2  
0.3  
T
= 25°C  
A
0
–0.2  
–0.4  
–0.6  
V
= 5V  
REFP  
REFN  
V
= 0V  
0.1  
AD8675 OUTPUTBUFFER  
–0.1  
–0.3  
–0.5  
INL MIN  
V
V
= +15V  
= –15V  
DD  
SS  
AD8675 OUTPUT BUFFER  
40 60 80 100  
TEMPERATURE (°C)  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
–40  
–20  
0
20  
V
DD SS  
Figure 17. Integral Nonlinearity Error vs. Supply Voltage, 5 V Span  
Figure 14. Integral Nonlinearity Error vs. Temperature  
Rev. C | Page 11 of 28  
AD5780  
Data Sheet  
0.35  
0.30  
0.25  
4
3
T
V
V
= 25°C  
A
= 5V  
DNL MAX  
REFP  
REFN  
= 0V  
AD8675 OUTPUT BUFFER  
2
0.20  
0.15  
0.10  
0.05  
0
T
V
V
= 25°C  
A
= +10V  
= –10V  
REFP  
REFN  
1
AD8675 OUTPUT BUFFER  
0
–1  
–2  
DNL MIN  
–0.05  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
V
/|V | (V)  
V
DD SS  
DD SS  
Figure 18. Differential Nonlinearity Error vs. Supply Voltage, 1ꢀ V Span  
Figure 21. Zero-Scale Error vs. Supply Voltage, 5 V Span  
0.35  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
T
V
V
= 25°C  
A
DNL MAX  
= +10V  
= –10V  
REFP  
REFN  
0.30  
AD8675 OUTPUT BUFFER  
0.25  
0.20  
0.15  
0.10  
0.05  
0
T
V
V
= 25°C  
A
= 5V  
= 0V  
REFP  
REFN  
AD8675 OUTPUT BUFFER  
DNL MIN  
–0.05  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
V
/|V | (V)  
V
DD SS  
DD SS  
Figure 22. Midscale Error vs. Supply Voltage, 1ꢀ V Span  
Figure 19. Differential Nonlinearity Error vs. Supply Voltage, 5 V Span  
0.5  
2.0  
1.5  
T
V
V
= 25°C  
A
= +10V  
0.4  
0.3  
REFP  
REFN  
= –10V  
AD8675 OUTPUT BUFFER  
1.0  
0.2  
0.5  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
–1.0  
–1.5  
–2.0  
T
V
V
= 25°C  
A
= 5V  
REFP  
REFN  
= 0V  
AD8675 OUTPUT BUFFER  
7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
V
/|V | (V)  
V
DD SS  
DD SS  
Figure 2ꢀ. Zero-Scale Error vs. Supply Voltage, 1ꢀ V Span  
Figure 23. Midscale Error vs. Supply Voltage, 5 V Span  
Rev. C | Page 12 of 28  
Data Sheet  
AD5780  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.50  
T
V
V
= 25°C  
A
= +10V  
= –10V  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
REFP  
REFN  
AD8675 OUTPUT BUFFER  
T
= 25°C  
A
V
V
= 5V  
REFP  
= 0V  
REFN  
AD8675 OUTPUT BUFFER  
7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
V
V
/|V | (V)  
DD SS  
DD SS  
Figure 27. Gain Error vs. Supply Voltage, 5 V Span  
Figure 24. Full-Scale Error vs. Supply Voltage, 1ꢀ V Span  
1.5  
1.0  
0.3  
0.2  
T
V
V
= 25°C  
A
INL MAX  
= 5V  
REFP  
REFN  
= 0V  
AD8675 OUTPUT BUFFER  
0.5  
0.1  
0
0
T
V
V
= 25°C  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
A
= +15V  
= –15V  
DD  
SS  
–0.1  
–0.2  
–0.3  
–0.4  
AD8675 OUTPUT BUFFER  
INL MIN  
8.5  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
9.0  
9.5 10.0  
V
V
| (V)  
DD SS  
REFP  
REFN  
Figure 25. Full-Scale Error vs. Supply Voltage, 5 V Span  
Figure 28. Integral Nonlinearity Error vs. Reference Voltage  
0.35  
0.25  
0.30  
T
V
V
= 25°C  
A
INL MAX  
= +10V  
= –10V  
REFP  
REFN  
0.25  
0.20  
0.15  
0.10  
0.05  
0
AD8675 OUTPUT BUFFER  
0.15  
T
V
V
= 25°C  
A
= +15V  
= –15V  
DD  
SS  
0.05  
AD8675 OUTPUT BUFFER  
–0.05  
–0.15  
–0.25  
INL MIN  
7.5  
–0.05  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
5.0  
5.5  
6.0  
6.5  
7.0  
8.0  
| (V)  
8.5  
9.0  
9.5 10.0  
V
/|V | (V)  
V
/|V  
REFP REFN  
DD SS  
Figure 26. Gain Error vs. Supply Voltage, 1ꢀ V Span  
Figure 29. Differential Nonlinearity Error vs. Reference Voltage  
Rev. C | Page 13 of 28  
AD5780  
Data Sheet  
–1.0  
–1.1  
–1.2  
–1.3  
–1.4  
–1.5  
–1.6  
–1.7  
–1.8  
–1.9  
–2.0  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
–0.35  
T
V
V
= 25°C  
= +15V  
SS  
T
V
V
= 25°C  
= +15V  
DD  
A
A
DD  
= –15V  
= –15V  
SS  
AD8675 OUTPUT BUFFER  
AD8675 OUTPUT BUFFER  
–0.40  
5.0  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
V
| (V)  
V
| (V)  
REFP  
REFN  
REFP  
REFN  
Figure 3ꢀ. Zero-Scale Error vs. Reference Voltage  
Figure 33. Gain Error vs. Reference Voltage  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
1.8  
±10V SPAN  
T
V
V
= 25°C  
A
+10V SPAN  
+5V SPAN  
= +15V  
= –15V  
DD  
SS  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
AD8675 OUTPUT BUFFER  
V
V
= +15V  
= –15V  
DD  
SS  
AD8675 OUTPUT BUFFER  
40 60 80 100  
TEMPERATURE (°C)  
–1.0  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
–40  
–20  
0
20  
V
| (V)  
REFP  
REFN  
Figure 34. Full-Scale Error vs. Temperature  
Figure 31. Midscale Error vs. Reference Voltage  
0.6  
0.4  
T
V
V
= 25°C  
±10V SPAN  
+10V SPAN  
+5V SPAN  
1.7  
1.5  
1.3  
1.1  
0.9  
A
= +15V  
= –15V  
DD  
SS  
AD8675 OUTPUT BUFFER  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
V
V
= +15V  
= –15V  
DD  
SS  
AD8675 OUTPUT BUFFER  
–40 –20 20  
TEMPERATURE (°C)  
0.7  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
0
40  
60  
80  
100  
V
| (V)  
REFP  
REFN  
Figure 35. Midscale Error vs. Temperature  
Figure 32. Full-Scale Error vs. Reference Voltage  
Rev. C | Page 14 of 28  
Data Sheet  
AD5780  
1.0  
0.010  
0.008  
0.006  
0.004  
0.002  
0
±10V SPAN  
+10V SPAN  
+5V SPAN  
0.5  
0
I
DD  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
I
SS  
V
V
= +15V  
= –15V  
DD  
SS  
AD8675 OUTPUT BUFFER  
40 60 80 100  
TEMPERATURE (°C)  
–40  
–20  
0
20  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
V
/V (V)  
DD SS  
Figure 36. Zero-Scale Error vs. Temperature  
Figure 39. Power Supply Currents vs. Power Supply Voltages  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
6
4
2
0
±10V SPAN  
+10V SPAN  
+5V SPAN  
V
V
= +15V  
= –15V  
DD  
SS  
–2  
–4  
V
V
= +10V  
= –10V  
REFP  
REFN  
ADA4808-1 BUFFERED  
LOAD = 10M|| 20pF  
–6  
–8  
V
V
= +15V  
= –15V  
DD  
SS  
AD8675 OUTPUT BUFFER  
40 60 80 100  
TEMPERATURE (°C)  
–10  
–1  
0
1
2
3
4
5
–40  
–20  
0
20  
TIME (µs)  
Figure 37. Gain Error vs. Temperature  
Figure 4ꢀ. Rising Full-Scale Voltage Step  
6
4
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
IOV = 5V, LOGIC VOLTAGE  
CC  
INCREASING  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
T
= 25°C  
A
= +10V  
IOV = 5V, LOGIC VOLTAGE  
REFP  
REFN  
CC  
= –10V  
DECREASING  
ADA4808-1 BUFFERED  
LOAD = 10M|| 20pF  
IOV = 3V, LOGIC VOLTAGE  
CC  
2
INCREASING  
IOV = 3V, LOGIC VOLTAGE  
CC  
0
DECREASING  
–2  
–4  
–6  
–8  
–10  
–1  
0
1
2
3
4
5
0
1
2
3
4
5
6
TIME (µs)  
LOGIC INPUT VOLTAGE (V)  
Figure 41. Falling Full-Scale Voltage Step  
Figure 38. IOICC vs. Logic Input Voltage  
Rev. C | Page 15 of 28  
AD5780  
Data Sheet  
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
VREFP = 5V  
REFN = 0V  
UNITY-GAIN MODE  
ADA4898-1 OUTPUT BUFFER  
RC LOW-PASS FILTER  
NEGATIVE  
POSITIVE  
V
V
V
= +10V  
= –10V  
REFP  
REFN  
RC LOW-PASS FILTER  
UNITY-GAIN MODE  
ADA4898-1 OUTPUT BUFFER  
0
–1  
0
1
2
3
4
5
TIME (µs)  
CODE  
Figure 42. 5ꢀꢀ Code Step Settling Time  
Figure 45. 6 MSB Segment Glitch Energy for 5 V VREF  
25  
V
55  
45  
NEGATIVE  
POSITIVE  
±10V SPAN  
+10V SPAN  
+5V SPAN  
= +10V  
= –10V  
REFP  
REFN  
V
UNITY-GAIN MODE  
ADA4898-1 OUTPUT BUFFER  
RC LOW-PASS FILTER  
20  
15  
10  
5
POSITIVE  
CODE CHANGE  
NEGATIVE  
CODE CHANGE  
35  
25  
15  
5
–5  
–15  
–25  
0
–1  
0
1
2
3
TIME (µs)  
CODE  
Figure 43. 6 MSB Segment Glitch Energy for 1ꢀ V VREF  
Figure 46. Midscale Peak-to-Peak Glitch for 1ꢀ V  
4.0  
800  
V
V
= 10V  
= 0V  
NEGATIVE  
POSITIVE  
T
= 25°C  
= +15V  
MIDSCALE CODE LOADED  
OUTPUT UNBUFFERED  
REFP  
REFN  
A
V
V
V
V
DD  
UNITY-GAIN MODE  
ADA4898-1  
OUTPUT BUFFER  
RC LOW-PASS FILTER  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
= –15V  
600  
400  
SS  
= +10V  
= –10V  
REFP  
REFN  
200  
0
–200  
–400  
–600  
0
1
2
3
4
5
6
7
8
9
10  
TIME (Seconds)  
CODE  
Figure 44. 6 MSB Segment Glitch Energy for 1ꢀ V VREF  
Figure 47. Voltage Output Noise, ꢀ.1 Hz to 1ꢀ Hz Bandwidth  
Rev. C | Page 16 of 28  
 
 
 
Data Sheet  
AD5780  
200  
180  
160  
140  
120  
100  
80  
100  
V
V
V
V
= +15V  
= –15V  
REFP  
REFN  
V
V
V
V
= +15V  
DD  
SS  
DD  
SS  
= –15V  
= +10V  
= –10V  
= +10V  
REFP  
REFN  
= –10V  
UNITY GAIN  
ADA4898-1  
10  
60  
40  
20  
0
1
–20  
0.1  
1
10  
100  
1k  
10k  
0
1
2
3
4
5
6
TIME (µs)  
FREQUENCY (Hz)  
Figure 49. Glitch Impulse on Removal of Output Clamp  
Figure 48. Noise Spectral Density vs. Frequency  
Rev. C | Page 17 of 28  
 
AD5780  
Data Sheet  
TERMꢁIOꢀOGY  
Relative Accuracy  
Output Voltage Settling Time  
Relative accuracy, or integral nonlinearity (INL), is a measure of  
the maximum deviation, in LSB, from a straight line passing  
through the endpoints of the DAC transfer function. A typical  
INL error vs. code plot is shown in Figure ꢀ.  
Output voltage settling time is the amount of time it takes for  
the output voltage to settle to a specified level for a specified  
change in voltage. For fast settling applications, a high speed  
buffer amplifier is required to buffer the load from the 3.4 kΩ  
output impedance of the AD5780, in which case, it is the  
amplifier that determines the settling time.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity. This DAC is guaranteed monotonic. A  
typical DNL error vs. code plot is shown in Figure 10.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is specified as the area of the glitch in nV-sec and is  
measured when the digital input code is changed by 1 LSB at  
the major carry transition (see Figure 49).  
Linearity Error Long-Term Stability  
Linearity error long-term stability is a measure of the stability of  
the linearity of the DAC over a long period of time. It is speci-  
fied in LSB for a time period of 500 hours and 1000 hours at an  
elevated ambient temperature.  
Output Enabled Glitch Impulse  
Output enabled glitch impulse is the impulse injected into the  
analog output when the clamp to ground on the DAC output is  
removed. It is specified as the area of the glitch in nV-sec (see  
Figure 49).  
Zero-Scale Error  
Zero-scale error is a measure of the output error when zero-scale  
code (0x00000) is loaded to the DAC register. Ideally, the output  
voltage should be VREFN. Zero-scale error is expressed in LSBs.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC but is measured when the DAC output is not updated. It is  
specified in nV-sec and measured with a full-scale code change  
on the data bus, that is, from all 0s to all 1s, and vice versa.  
Zero-Scale Error Temperature Coefficient  
Zero-scale error temperature coefficient is a measure of the  
change in zero-scale error with a change in temperature. It is  
expressed in ppm FSR/°C.  
Total Harmonic Distortion (THD)  
Full-Scale Error  
Total harmonic distortion is the ratio of the rms sum of the  
harmonics of the DAC output to the fundamental value. Only  
the second to fifth harmonics are included.  
Full-scale error is a measure of the output error when full-scale  
code (0x3FFFF) is loaded to the DAC register. Ideally, the  
output voltage should be VREFP − 1 LSB. Full-scale error is  
expressed in LSBs.  
DC Power Supply Rejection Ratio  
DC power supply rejection ratio is a measure of the rejection of  
the output voltage to dc changes in the power supplies applied  
to the DAC. It is measured for a given dc change in power  
supply voltage and is expressed in μV/V.  
Full-Scale Error Temperature Coefficient  
Full-scale error temperature coefficient is a measure of the  
change in full-scale error with a change in temperature. It is  
expressed in ppm FSR/°C.  
AC Power Supply Rejection Ratio (AC PSRR)  
Gain Error  
AC power supply rejection ratio is a measure of the rejection of  
the output voltage to ac changes in the power supplies applied  
to the DAC. It is measured for a given amplitude and frequency  
change in power supply voltage and is expressed in decibels.  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal, expressed in ppm of the full-scale range.  
Gain Error Temperature Coefficient  
Gain error temperature coefficient is a measure of the change  
in gain error with a change in temperature. It is expressed in  
ppm FSR/°C.  
Midscale Error  
Midscale error is a measure of the output error when midscale  
code (0x20000) is loaded to the DAC register. Ideally, the output  
voltage should be (VREFP – VREFN)/2 + VREFN. Midscale error is  
expressed in LSBs.  
Rev. C | Page 18 of 28  
 
Data Sheet  
AD5780  
THEORY OF OPERATꢁOI  
R
R
R
The AD5780 is a high accuracy, fast settling, single, 18-bit,  
serial input, voltage output DAC. It operates from a VDD supply  
voltage of 7.5 V to 1ꢀ.5 V and a VSS supply of −1ꢀ.5 V to −2.5 V.  
Data is written to the AD5780 in a 24-bit word format via a 3-wire  
serial interface. The AD5780 incorporates a power-on reset  
circuit that ensures the DAC output powers up to 0 V with the  
V
OUT  
...  
...  
...  
...  
2R  
S1  
2R  
S11  
2R  
2R  
2R  
E0  
2R  
2R  
S0  
E62  
E61  
V
REFP  
V
REFN  
VOUT pin clamped to AGND through a ~ꢀ kΩ internal resistor.  
12-BIT R-2R LADDER  
SIX MSBs DECODED INTO  
63 EQUAL SEGMENTS  
DAC ARCHITECTURE  
Figure 5ꢀ. DAC Ladder Structure Serial Interface  
The architecture of the AD5780 consists of two matched DAC  
sections. A simplified circuit diagram is shown in Figure 50.  
The six MSBs of the 18-bit data-word are decoded to drive  
ꢀ3 switches, E0 to Eꢀ2. Each of these switches connects one  
of ꢀ3 matched resistors to either the buffered VREFP or buffered  
VREFN voltage. The remaining 12 bits of the data-word drive  
the S0 to S11 switches of a 12-bit voltage mode R-2R ladder  
network.  
SERIAꢀ INTERFACE  
The AD5780 has a 3-wire serial interface (  
, SCLK, and  
SYNC  
SDIN) that is compatible with SPI, QSPI, and MICROWIRE  
interface standards, as well as most DSPs (see Figure 2 for a  
timing diagram).  
Input Shift Register  
The input shift register is 24 bits wide. Data is loaded into the  
device MSB first as a 24-bit word under the control of a serial  
clock input, SCLK, which can operate at up to 35 MHz. The  
W
input register consists of a R/ bit, three address bits, and  
20 data bits as shown in Table ꢀ. The timing diagram for this  
operation is shown in Figure 2.  
Table 6. Input Shift Register Format  
MSB  
ꢀSB  
DB23  
DB22  
DB21  
Register address  
DB20  
DB19 to DB0  
R/W  
Register data  
Table 7. Decoding the Input Shift Register  
R/W  
X1  
0
0
0
0
1
1
Register Address  
Description  
0
0
0
0
1
0
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
No operation (NOP). Used in readback operations.  
Write to the DAC register.  
Write to the control register.  
Write to the clearcode register.  
Write to the software control register.  
Read from the DAC register.  
Read from the control register.  
Read from the clearcode register.  
1
1 X is don’t care.  
Rev. C | Page 19 of 28  
 
 
 
 
 
AD5780  
Data Sheet  
Standalone Operation  
AD5780*  
CONTROLLER  
The serial interface works with both a continuous and noncon-  
tinuous serial clock. A continuous SCLK source can be used  
DATA OUT  
SERIAL CLOCK  
CONTROL OUT  
SDIN  
SCLK  
SYNC  
SYNC  
only if  
In gated clock mode, a burst clock containing the exact number  
SYNC  
is held low for the correct number of clock cycles.  
DATA IN  
SDO  
of clock cycles must be used, and  
the final clock to latch the data. The first falling edge of  
starts the write cycle. Exactly 24 falling clock edges must be  
must be taken high after  
SYNC  
SDIN  
AD5780*  
SYNC  
SYNC  
applied to SCLK before  
is brought high again. If  
is  
brought high before the 24th falling SCLK edge, the data written  
is invalid. If more than 24 falling SCLK edges are applied before  
SCLK  
SYNC  
SYNC  
is brought high, the input data is also invalid.  
The input shift register is updated on the rising edge of  
SYNC  
SYNC  
must be brought  
.
SDO  
For another serial transfer to take place,  
low again. After the end of the serial data transfer, data is  
automatically transferred from the input shift register to the  
addressed register. When the write cycle is complete, the output  
SDIN  
AD5780*  
LDAC  
SYNC  
can be updated by taking  
low while  
is high.  
SCLK  
SYNC  
Daisy-Chain Operation  
For systems that contain several devices, the SDO pin can be  
used to daisy-chain several devices together. Daisy-chain mode  
can be useful in system diagnostics and in reducing the number  
SDO  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
SYNC  
of serial interface lines. The first falling edge of  
write cycle. SCLK is continuously applied to the input shift register  
SYNC  
starts the  
Figure 51. Daisy-Chain Block Diagram  
Readback  
when  
is low. If more than 24 clock pulses are applied, the  
The contents of all the on-chip registers can be read back via  
the SDO pin. Table 7 outlines how the registers are decoded.  
After a register has been addressed for a read, the next 24 clock  
cycles clock the data out on the SDO pin. The clocks must be  
data ripples out of the shift register and appears on the SDO  
line. This data is clocked out on the rising edge of SCLK and  
is valid on the falling edge. By connecting the SDO of the first  
device to the SDIN input of the next device in the chain, a  
multidevice interface is constructed. Each device in the system  
requires 24 clock pulses. Therefore, the total number of clock  
cycles must equal 24 × N, where N is the total number of  
AD5780 devices in the chain. When the serial transfer to all  
SYNC  
SYNC  
applied while  
is low. When  
is returned high, the  
SDO pin is placed in tristate. For a read of a single register, the  
NOP function can be used to clock out the data. Alternatively,  
if more than one register is to be read, the data of the first  
register to be addressed can be clocked out at the same time  
that the second register to be read is being addressed. The SDO  
pin must be enabled to complete a readback operation. The  
SDO pin is enabled by default.  
SYNC  
devices is complete,  
is taken high. This latches the input  
data in each device in the daisy chain and prevents any further  
data from being clocked into the input shift register. The serial  
clock can be a continuous or a gated clock.  
SYNC  
HARDWARE CONTROꢀ PINS  
A continuous SCLK source can be used only if  
is held  
low for the correct number of clock cycles. In gated clock mode,  
a burst clock containing the exact number of clock cycles must  
LDAC  
Load DAC Function (  
)
After data has been transferred into the input register of the  
DAC, there are two ways to update the DAC register and DAC  
output. Depending on the status of both  
SYNC  
be used, and  
latch the data.  
must be taken high after the final clock to  
SYNC  
LDAC  
and  
, one  
In any one daisy-chain sequence, do not mix writes to the DAC  
register with writes to any of the other registers. All writes to the  
daisy-chained parts must be either writes to the DAC registers  
or writes to the control, clearcode, or software control register.  
of two update modes is selected: synchronous DAC update or  
asynchronous DAC update.  
Synchronous DAC Update  
LDAC  
In this mode,  
the input shift register. The DAC output is updated on the rising  
SYNC  
is held low while data is being clocked into  
edge of  
.
Rev. C | Page 20 of 28  
 
Data Sheet  
AD5780  
is high) until a new value is loaded to the DAC register. The  
CLR  
low. A clear operation can also be performed by setting the CLR  
bit in the software control register (see Table 13).  
Asynchronous DAC Update  
output cannot be updated with a new value while the  
pin is  
LDAC  
In this mode,  
into the input shift register. The DAC output is asynchronously  
LDAC SYNC  
is held high while data is being clocked  
updated by taking  
The update now occurs on the falling edge of  
RESET  
low after  
has been taken high.  
ON-CHIP REGISTERS  
DAC Register  
LDAC  
.
Reset Function (  
The AD5780 can be reset to its power-on state by two means:  
RESET  
)
Table 9 outlines how data is written to and read from the DAC  
register.  
either by asserting the  
in the software control register (see Table 13). If the  
is not used, hardwire it to IOVCC  
pin or by using the reset function  
The following equation describes the ideal transfer function of  
the DAC:  
RESET  
pin  
.
(
VREFP VREFN × D  
)
CLR  
Asynchronous Clear Function (  
)
VOUT  
=
+VREFN  
218  
CLR  
The  
pin is an active low clear that allows the output to be  
where:  
V
V
cleared to a user defined value. The 18-bit clearcode value is  
programmed to the clearcode register (see Table 12). It is  
REFN is the negative voltage applied at the VREFN input pin.  
REFP is the positive voltage applied at the VREFP input pin.  
D is the 18-bit code programmed to the DAC.  
CLR  
necessary to maintain  
low for a minimum amount of time  
CLR  
to complete the operation (see Figure 2). When the  
is returned high, the output remains at the clear value (if  
signal  
LDAC  
Table 8. Hardware Control Pins Truth Table  
ꢀDAC  
CꢀR  
RESET  
Function  
X1  
X1  
0
0
1
X1  
X1  
0
1
0
1
0
1
0
0
The AD5780 is in reset mode. The device cannot be programmed.  
The AD5780 is returned to its power-on state. All registers are set to their default values.  
The DAC register is loaded with the clearcode register value, and the output is set accordingly.  
The output is set according to the DAC register value.  
The DAC register is loaded with the clearcode register value, and the output is set accordingly.  
The output is set according to the DAC register value.  
The output remains at the clearcode register value.  
The output remains set according to the DAC register value.  
The output remains at the clearcode register value.  
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
The DAC register is loaded with the clearcode register value and the output is set accordingly.  
The DAC register is loaded with the clearcode register value and the output is set accordingly.  
The output remains at the clearcode register value.  
The output is set according to the DAC register value.  
1 X is don’t care.  
Table 9. DAC Register  
MSB  
ꢀSB  
DB23  
R/W  
DB22  
DB21  
DB20  
DB19 to DB2  
DB1  
DB0  
Register address  
0
DAC register data  
18 bits of data  
R/W  
0
1
X1  
X1  
1 X is don’t care.  
Rev. C | Page 21 of 28  
 
 
 
 
AD5780  
Data Sheet  
Control Register  
is asserted. The output value depends on the DAC coding that is  
being used, either binary or twos complement. The default  
register value is 0.  
The control register controls the mode of operation of the  
AD5780.  
Clearcode Register  
The clearcode register sets the value to which the DAC output is  
set when the  
pin or CLR bit in the software control register  
CLR  
Table 10. Control Register  
MSB  
ꢀSB  
DB23 DB22 DB21 DB20 DB19 to DB11 DB10  
DB9 DB8 DB7 DB6 DB5  
Control register data  
SDODIS BIN/2sC DACTRI OPGND RBUF Reserved  
DB4  
DB3  
DB2  
DB1  
DB0  
W
Register address  
R/  
R/  
W
0
1
0
Reserved  
Reserved  
0000  
Table 11. Control Register Functions  
Bit Name  
Reserved  
RBUF  
Description  
These bits are reserved and should be programmed to zero.  
Output amplifier configuration control.  
0: the internal amplifier, A1, is powered up and Resistors RFB and R1 are connected in series as shown in Figure 54. This allows  
an external amplifier to be connected in a gain of two configuration. See the AD5780 Features section for further details.  
1: (default) the internal amplifier, A1, is powered down and Resistors RFB and R1 are connected in parallel, as shown in Figure 53,  
so that the resistance between the RFB and INV pins is 3.4 kΩ, equal to the resistance of the DAC. This allows the RFB and INV  
pins to be used for input bias current compensation for an external unity-gain amplifier. See the AD5780 Features section for  
further details.  
OPGND  
Output ground clamp control.  
0: the DAC output clamp to ground is removed, and the DAC is placed in normal mode.  
1: (default) the DAC output is clamped to ground through a ~6 kΩ resistance, and the DAC is placed in tristate mode.  
Resetting the part puts the DAC in OPGND mode, where the output ground clamp is enabled and the DAC is tristated. Setting  
the OPGND bit to 1 in the control register overrules any write to the DACTRI bit  
DACTRI  
BIN/2sC  
SDODIS  
DAC tristate control.  
0: the DAC is in normal operating mode.  
1: (default) the DAC is in tristate mode.  
DAC register coding selection.  
0: (default) the DAC register uses twos complement coding.  
1: the DAC register uses offset binary coding.  
SDO pin enable/disable control.  
0: (default) the SDO pin is enabled.  
1: the SDO pin is disabled (tristate).  
Read/write select bit.  
W
R/  
0: AD5780 is addressed for a write operation.  
1: AD5780 is addressed for a read operation.  
Table 12. Clearcode Register  
MSB  
ꢀSB  
DB23  
R/W  
DB22  
DB21  
DB20  
DB19 to DB2  
DB1  
DB0  
Register address  
1
Clearcode register data  
18 bits of data  
R/W  
0
1
X1  
X1  
1 X is don’t care.  
Rev. C | Page 22 of 28  
 
 
Data Sheet  
AD5780  
Software Control Register  
This is a write only register in which writing a 1 to a particular bit has the same effect as pulsing the corresponding pin low.  
Table 13. Software Control Register  
MSB  
ꢀSB  
DB23  
R/W  
0
DB22  
DB21  
DB20  
DB19 to DB3  
DB2  
Software control register data  
Reset  
CLR1  
DB1  
DB0  
LDAC2  
Register address  
0
1
0
Reserved  
1
LDAC  
CLR  
The CLR function has no effect when the  
The LDAC function has no effect when the  
pin is low.  
pin is low.  
2
Table 14. Software Control Register Functions  
Bit Name  
Description  
LDAC  
Setting this bit to 1 updates the DAC register and consequently the DAC output.  
CLR  
Setting this bit to 1 sets the DAC register to a user defined value (see Table 12) and updates the DAC output. The output  
value depends on the DAC register coding that is being used, either binary or twos complement.  
Reset  
Setting this bit to 1 returns the AD5780 to its power-on state.  
Rev. C | Page 23 of 28  
 
 
AD5780  
Data Sheet  
AD5780 FEATURES  
Unity-Gain Configuration  
Figure 52 shows an output amplifier configured for unity gain.  
POWER-ON TO 0 V  
The AD5780 contains a power-on reset circuit that, as well as  
resetting all registers to their default values, controls the output  
voltage during power-up. Upon power-on, the DAC is placed in  
tristate (its reference inputs are disconnected), and its output is  
clamped to AGND through a ~ꢀ kΩ resistor. The DAC remains  
in this state until programmed otherwise via the control register.  
This is a useful feature in applications where it is important to  
know the state of the DAC output while it is in the process of  
powering up.  
In this configuration, the output spans from VREFN to VREFP  
.
V
REFP  
R
R1  
R
FB  
FB  
A1  
AD8675,  
ADA4898-1,  
ADA4004-1  
6.8k6.8kΩ  
INV  
OUT  
18-BIT  
DAC  
V
V
OUT  
CONFIGURING THE AD5780  
AD5780  
After power-on, the AD5780 must be configured to put it into  
normal operating mode before programming the output. To  
do this, the control register must be programmed. The DAC  
is removed from tristate by clearing the DACTRI bit, and the  
output clamp is removed by clearing the OPGND bit. At this  
point, the output goes to VREFN unless an alternative value is first  
programmed to the DAC register.  
V
REFN  
Figure 52. Output Amplifier in Unity-Gain Configuration  
A second unity-gain configuration for the output amplifier is  
one that removes an offset from the input bias currents of the  
amplifier. It does this by inserting a resistance in the feedback  
path of the amplifier that is equal to the output resistance of the  
DAC. The DAC output resistance is 3.4 kΩ. By connecting R1  
and RFB in parallel, a resistance equal to the DAC resistance is  
available on chip. Because the resistors are all on one piece of  
silicon, they are temperature coefficient matched. To enable this  
mode of operation, the RBUF bit of the control register must be  
set to Logic 1. Figure 53 shows how the output amplifier is  
connected to the AD5780. In this configuration, the output  
amplifier is in unity gain and the output spans from VREFN to  
DAC OUTPUT STATE  
The DAC output can be placed in one of three states, controlled  
by the DACTRI and OPGND bits of the control register, as  
shown in Table 15.  
Table 15. Output State Truth Table  
DACTRI OPGND Output State  
0
0
1
1
0
1
0
1
Normal operating mode.  
Output is clamped via ~6 kΩ to AGND.  
Output is in tristate.  
V
REFP. This unity-gain configuration allows a capacitor to be  
placed in the amplifier feedback path to improve dynamic  
performance.  
Output is clamped via ~6 kΩ to AGND.  
V
REFP  
OUTPUT AMPꢀIFIER CONFIGURATION  
R
FB  
There are a number of different ways that an output amplifier  
can be connected to the AD5780, depending on the voltage  
references applied and the desired output voltage span.  
R1  
6.8k  
R
FB  
10pF  
6.8kΩ  
V
INV  
OUT  
18-BIT  
DAC  
V
OUT  
AD8675,  
ADA4898-1,  
ADA4004-1  
AD5780  
V
= 0V  
REFN  
Figure 53. Output Amplifier in Unity Gain with Amplifier Input Bias Current  
Compensation  
Rev. C | Page 24 of 28  
 
 
 
 
 
Data Sheet  
AD5780  
V
REFP  
Gain of Two Configuration (×2 Gain Mode)  
Figure 54 shows an output amplifier configured for a gain of  
two. The gain is set by the internal matched ꢀ.8 kΩ resistors,  
which are exactly twice the DAC resistance, having the effect  
of removing an offset from the input bias current of the external  
R
R1  
R
FB  
FB  
A1  
10pF  
6.8k6.8kΩ  
V
INV  
OUT  
OUT  
18-BIT  
DAC  
amplifier. In this configuration, the output spans from 2 × VREFN  
V
AD8675,  
ADA4898-1,  
ADA4004-1  
VREFP to VREFP. This configuration is used to generate a bipolar  
output span from a single-ended reference input, with VREFN  
=
AD5780  
0 V. For this mode of operation, the RBUF bit of the control  
register must be cleared to Logic 0.  
V
REFN  
Figure 54. Output Amplifier in Gain-of-Two Configuration  
Rev. C | Page 25 of 28  
 
AD5780  
Data Sheet  
APPꢀꢁCATꢁOIS ꢁIFORMATꢁOI  
TYPICAꢀ OPERATING CIRCUIT  
4
0 - 5  
0 9 6 4 9  
Figure 55. Typical Operating Circuit  
Rev. C | Page 26 of 28  
 
 
Data Sheet  
AD5780  
Figure 55 shows a typical operating circuit for the AD5780  
using an AD8ꢀ75 as an output buffer. Because the output  
impedance of the AD5780 is 3.4 kΩ, an output buffer is  
required for driving low resistive, high capacitive loads.  
populated and tested AD5780 printed circuit board (PCB). The  
evaluation board interfaces to the USB port of a PC. Software is  
available with the evaluation board to allow the user to easily  
program the AD5780. The software runs on any PC that has  
Microsoft® Windows® XP (SP2), Vista (32-bit or ꢀ4-bit), or  
Windows 7 installed. The AD5780 user guide, UG-25ꢀ, is  
available, which gives full details on the operation of the  
evaluation board.  
EVAꢀUATION BOARD  
An evaluation board is available for the AD5780 to aid  
designers in evaluating the high performance of the part  
with minimum effort. The AD5780 evaluation kit includes a  
Rev. C | Page 27 of 28  
 
AD5780  
Data Sheet  
OUTꢀꢁIE DꢁMEISꢁOIS  
2.75  
2.65  
2.50  
4.00 BSC  
PIN 1  
PIN 1  
INDICATOR  
INDICATOR  
(Chamfer 0.225)  
20  
24  
19  
1
0.50  
BSC  
5.00 BSC  
3.75  
3.65  
3.50  
EXPOSED  
PAD  
13  
7
12  
8
0.50  
0.40  
0.30  
TOP VIEW  
BOTTOM VIEW  
1.00  
0.90  
0.80  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.30  
0.25  
0.20  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
Figure 56. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 5 mm Body, Very Thin Quad  
(CP-24-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
INꢀ  
2 LSB  
2 LSB  
1 LSB  
1 LSB  
Package Description  
Package Option  
AD5780ACPZ  
AD5780ACPZ-REEL7  
AD5780BCPZ  
AD5780BCPZ-REEL7  
EVAL-AD5780SDZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
24-Lead LFCSP_VQ  
Evaluation Board  
CP-24-5  
CP-24-5  
CP-24-5  
CP-24-5  
1 Z = RoHS Compliant Part.  
©2011–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09649-0-3/12(C)  
Rev. C | Page 28 of 28  
 
 
 

相关型号:

AD5790BCPZ

System Ready, 20-Bit, ±2LSB INL
ADI

AD5790BCPZ-RL7

System Ready, 20-Bit, ±2LSB INL
ADI

AD5790_18

Voltage Output DAC
ADI

AD5791

System Ready, 18-Bit ±1 LSB INL
ADI

AD5791ARUZ

1 ppm 20-Bit, 1 LSB INL, Voltage Output DAC
ADI

AD5791BRUZ

1 ppm 20-Bit, 1 LSB INL, Voltage Output DAC
ADI

AD5791_13

1 ppm 20-Bit, 1 LSB INL, Voltage Output DAC
ADI

AD5791_18

Voltage Output DAC
ADI

AD579JN

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD579KN

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD579TD

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD579TD/883B

IC 2-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, CDIP32, SIDE BRAZED, CERAMIC, DIP-32, Analog to Digital Converter
ADI