AD704TQ [ADI]

Quad Picoampere Input Current Bipolar Op Amp; 四Picoampere输入电流双极运算放大器
AD704TQ
型号: AD704TQ
厂家: ADI    ADI
描述:

Quad Picoampere Input Current Bipolar Op Amp
四Picoampere输入电流双极运算放大器

运算放大器 放大器电路
文件: 总8页 (文件大小:400K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad Picoampere Input Current  
Bipolar Op Amp  
a
AD704  
FEATURES  
CONNECTION DIAGRAMS  
High DC Precision  
75 V max Offset Voltage  
1 V/؇C max Offset Voltage Drift  
150 pA max Input Bias Current  
0.2 pA/؇C typical IB Drift  
14-Pin Plastic DIP (N)  
14-Pin Cerdip (Q) Packages  
16-Pin SOIC  
(R) Package  
OUTPUT  
–IN  
14  
13  
12  
11  
10  
9
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
OUTPUT  
–IN  
OUTPUT  
–IN  
1
2
3
4
5
6
7
8
OUTPUT  
–IN  
1
4
1
4
Low Noise  
0.5 V p-p typical Noise, 0.1 Hz to 10 Hz  
Low Power  
600 A max Supply Current per Amplifier  
Chips & MIL-STD-883B Processing Available  
Available in Tape and Reel in Accordance  
with EIA-481A Standard  
+
+
IN  
+
IN  
+
IN  
IN  
AD704  
AD704  
+V  
S
+V  
S
–V  
+
–V  
S
S
(TOP VIEW)  
(TOP VIEW)  
+
IN  
IN  
+
+
IN  
IN  
–IN  
OUTPUT  
NC  
2
3
–IN  
–IN  
–IN  
2
3
OUTPUT  
NC  
OUTPUT  
8
OUTPUT  
Single Version: AD705, Dual Version: AD706  
PRIMARY APPLICATIONS  
Industrial/Process Controls  
Weigh Scales  
ECG/EKG Instrumentation  
Low Frequency Active Filters  
NC = NO CONNECT  
20-Terminal LCC  
(E) Package  
1
3
2
20 19  
PRODUCT DESCRIPTION  
4
+IN1  
+IN4  
NC  
18  
The AD704 is a quad, low power bipolar op amp that has the  
low input bias current of a BiFET amplifier but which offers a  
significantly lower IB drift over temperature. It utilizes Super-  
beta bipolar input transistors to achieve picoampere input bias  
current levels (similar to FET input amplifiers at room tempera-  
ture), while its IB typically only increases by 5× at +125°C  
(unlike a BiFET amp, for which IB doubles every 10°C resulting  
in a 1000× increase at +125°C). Furthermore the AD704  
achieves 75 µV offset voltage and low noise characteristics of a  
precision bipolar input op amp.  
NC 5  
17  
16  
AMP 1  
AMP 4  
+V  
–V  
S
6
7
S
AD704  
AMP 2  
AMP 3  
NC  
15 NC  
+IN2 8  
14 +IN3  
9
11  
13  
10  
12  
NC = NO CONNECT  
100  
Since it has only 1/20 the input bias current of an AD OP07, the  
AD704 does not require the commonly used “balancing”  
resistor. Furthermore, the current noise is 1/5 that of the  
AD OP07 which makes the AD704 usable with much higher  
source impedances. At 1/6 the supply current (per amplifier) of  
the AD OP07, the AD704 is better suited for today’s higher  
density circuit boards and battery powered applications.  
10  
TYPICAL JFET AMP  
1
The AD704 is an excellent choice for use in low frequency  
active filters in 12- and 14-bit data acquisition systems, in  
precision instrumentation, and as a high quality integrator. The  
AD704 is internally compensated for unity gain and is available  
in five performance grades. The AD704J and AD704K are rated  
over the commercial temperature range of 0°C to +70°C. The  
AD704A and AD704B are rated over the industrial temperature  
of –40°C to +85°C. The AD704T is rated over the military  
temperature range of –55°C to +125°C and is available  
processed to MIL-STD-883B, Rev. C.  
0.1  
AD704T  
0.01  
–55  
+25  
+125  
TEMPERATURE – °C  
Figure 1. Input Bias Current Over Temperature  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
AD704–SPECIFICATIONS  
(@ TA = +25؇C, VCM = 0 V, and ؎15 V dc, unless otherwise noted)  
Model  
AD704J/A  
AD704K/B  
AD704T  
Conditions  
Min Typ Max Min Typ Max Min Typ Max Units  
INPUT OFFSET VOLTAGE  
Initial Offset  
Offset  
vs. Temp, Average TC  
vs. Supply (PSRR)  
50  
150  
250  
1.5  
30  
50  
0.2  
132  
126  
0.3  
75  
150  
1.0  
30  
80  
100  
150  
1.0  
µV  
µV  
µV/°C  
dB  
dB  
T
MIN–TMAX  
100  
0.2  
132  
126  
0.3  
VS = ±2 to ±18 V  
VS = ±2.5 to ±18 V 100  
100  
112  
108  
112  
108  
132  
126  
0.3  
T
MIN–TMAX  
Long Term Stability  
µV/month  
INPUT BIAS CURRENT1  
VCM = 0 V  
VCM = ±13.5 V  
100  
0.3  
270  
300  
80  
150  
200  
80  
200  
250  
pA  
pA  
pA/°C  
pA  
pA  
vs. Temp, Average TC  
TMIN–TMAX  
TMIN–TMAX  
0.2  
1.0  
VCM = 0 V  
VCM = ±13.5 V  
300  
400  
200  
300  
600  
700  
INPUT OFFSET CURRENT  
V
CM = 0 V  
80  
250  
300  
30  
100  
150  
50  
150  
200  
pA  
pA  
VCM = ±13.5 V  
vs. Temp, Average TC  
0.6  
100  
100  
0.4  
80  
80  
0.4  
80  
100  
pA/°C  
pA  
pA  
T
MIN–TMAX  
VCM = 0 V  
VCM = ±13.5 V  
300  
400  
200  
300  
400  
500  
TMIN–TMAX  
MATCHING CHARACTERISTICS  
Offset Voltage  
250  
400  
500  
600  
130  
200  
300  
400  
150  
250  
400  
600  
µV  
µV  
pA  
pA  
dB  
dB  
dB  
dB  
T
MIN–TMAX  
Input Bias Current2  
Common-Mode Rejection3  
Power Supply Rejection4  
Crosstalk5  
TMIN–TMAX  
TMIN–TMAX  
94  
94  
94  
94  
110  
104  
110  
106  
104  
104  
110  
106  
T
MIN–TMAX  
f = 10 Hz  
RLOAD = 2 kΩ  
150  
150  
150  
dB  
FREQUENCY RESPONSE  
UNITY GAIN  
Crossover Frequency  
Slew Rate, Unity Gain  
Slew Rate  
0.8  
0.15  
0.1  
0.8  
0.15  
0.1  
0.8  
0.15  
0.1  
MHz  
V/µs  
V/µs  
G = –1  
TMIN–TMAX  
INPUT IMPEDANCE  
Differential  
Common-Mode  
40ʈ2  
300ʈ2  
40ʈ2  
300ʈ2  
40ʈ2  
300ʈ2  
MʈpF  
GʈpF  
INPUT VOLTAGE RANGE  
Common-Mode Voltage  
±13.5 ±14  
±13.5 ±14  
±13.5 ±14  
V
Common-Mode Rejection Ratio  
VCM = ±13.5 V  
TMIN–TMAX  
100  
98  
132  
128  
114  
108  
132  
128  
110  
108  
132  
128  
dB  
dB  
INPUT CURRENT NOISE  
INPUT VOLTAGE NOISE  
0.1 to 10 Hz  
f = 10 Hz  
3
50  
3
50  
3
50  
pA p-p  
fA/Hz  
0.1 to 10 Hz  
f = 10 Hz  
f = 1 kHz  
0.5  
17  
15  
0.5  
17  
15  
2.0  
22  
0.5  
17  
15  
2.0  
22  
µV p-p  
nV/Hz  
nV/Hz  
22  
OPEN-LOOP GAIN  
V
O = ±12 V  
RLOAD = 10 kΩ  
MIN–TMAX  
200  
150  
2000  
1500  
400  
300  
2000  
1500  
400  
300  
2000  
1500  
V/mV  
V/mV  
T
VO = ±10 V  
RLOAD = 2 kΩ  
TMIN–TMAX  
200  
150  
1000  
1000  
300  
200  
1000  
1000  
200  
100  
1000  
1000  
V/mV  
V/mV  
–2–  
REV. A  
AD704  
Model  
AD704J/A  
AD704K/B  
AD704T  
Conditions  
Min Typ Max Min Typ Max Min Typ Max Units  
OUTPUT CHARACTERISTICS  
Voltage Swing  
R
LOAD = 10 kΩ  
TMIN–TMAX  
Short Circuit  
±13 ±14  
±15  
± 13 ±14  
±15  
±13 ±14  
±15  
V
mA  
Current  
CAPACITIVE LOAD  
Drive Capability  
Gain = + 1  
10,000  
10,000  
10,000  
pF  
POWER SUPPLY  
Rated Performance  
Operating Range  
Quiescent Current  
±15  
±15  
±15  
V
V
mA  
mA  
±2.0  
±18  
2.4  
2.6  
±2.0  
±18  
2.4  
2.6  
±2.0  
±18  
2.4  
2.6  
1.5  
1.6  
1.5  
1.6  
1.5  
1.6  
TMIN–TMAX  
TRANSISTOR COUNT  
NOTES  
# of Transistors  
180  
180  
180  
1Bias current specifications are guaranteed maximum at either input.  
2Input bias current match is the maximum difference between corresponding inputs of all four amplifiers.  
3CMRR match is the difference of VOS/VCM between any two amplifiers, expressed in dB.  
4PSRR match is the difference between VOS/VSUPPLY for any two amplifiers, expressed in dB.  
5See Figure 2a for test circuit.  
All min and max specifications are guaranteed.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS1  
METALIZATION PHOTOGRAPH  
Dimensions shown in inches and (mm).  
Contact factory for latest dimensions.  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Internal Power Dissipation (+25°C) . . . . . . . . . . . See Note 2  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage3 . . . . . . . . . . . . . . . . . . . . . . . ±0.7 V  
Output Short Circuit Duration (Single Input) . . . . . Indefinite  
Storage Temperature Range  
(Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
(N, R) . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +125°C  
Operating Temperature Range  
AD704J/K . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
AD704A/B . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
AD704T . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Lead Temperature Range (Soldering 10 seconds) . . . . +300°C  
NOTES  
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2Specification is for device in free air:  
14-Pin Plastic Package: θJA = 150°C/Watt  
14-Pin Cerdip Package: θJA = 110°C/Watt  
–80  
16-Pin SOIC Package: θJA = 100°C/Watt  
20-Terminal LCC Package: θJA = 150°C/Watt  
AMP4  
3The input pins of this amplifier are protected by back-to-back diodes. If the  
differential voltage exceeds ±0.7 volts, external series protection resistors should  
be added to limit the input current to less than 25 mA.  
–100  
AMP2  
AMP3  
9k  
–120  
1k  
OUTPUT  
AD704  
PIN 4  
1/4  
AD704  
–140  
–160  
+V  
S
0.1 µF  
COM  
0.1 µF  
–V  
1µF  
1µF  
INPUT  
SIGNAL  
*
2.5k  
1k  
S
AD704  
PIN 11  
10  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
ALL 4 AMPLIFIERS ARE CONNECTED AS SHOWN  
THE SIGNAL INPUT (SUCH THAT THE AMPLIFIER'S OUTPUT IS AT MAX  
AMPLITUDE WITHOUT CLIPPING OR SLEW LIMITING) IS APPLIED TO ONE  
AMPLIFIER AT A TIME. THE OUTPUTS OF THE OTHER THREE AMPLIFIERS ARE  
THEN MEASURED FOR CROSSTALK.  
*
Figure 2b. Crosstalk vs. Frequency  
Figure 2a. Crosstalk Test Circuit  
–3–  
REV. A  
AD704–Typical Characteristics(@ +25؇C, VS = ؎15 V, unless otherwise noted)  
ORDERING GUIDE  
Model  
Temperature Range Package Option*  
AD704JN  
AD704JR  
0°C to +70°C  
0°C to +70°C  
N-14  
R-16  
AD704JR-/REEL 0°C to +70°C  
Tape and Reel  
N-14  
N-14  
Q-14  
R-16  
AD704KN  
AD704AN  
AD704AQ  
AD704AR  
0°C to +70°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
AD704AR-REEL –40°C to +85°C  
Tape and Reel  
Q-14  
E-20A  
Q-14  
AD704BQ  
–40°C to +85°C  
–55°C to +125°C  
–55°C to +125°C  
–55°C to +125°C  
AD704SE/883B  
AD704TQ  
AD704TQ/883B  
Q-14  
Chips are also available.  
*E = Leadless Ceramic Chip Carrier; N = Plastic DIP; Q = Cerdip;  
R = Small Outline (SOIC).  
50  
40  
50  
50  
40  
40  
30  
20  
10  
30  
20  
10  
0
30  
20  
10  
0
0
–40  
INPUT OFFSET VOLTAGE – µV  
+80  
–80  
0
+40  
–80  
INPUT BIAS CURRENT – pA  
+160  
–120  
–60  
0
+60  
+120  
–160  
0
+80  
INPUT OFFSET CURRENT – pA  
Figure 3. Typical Distribution of  
Input Offset Voltage  
Figure 4. Typical Distribution of  
Input Bias Current  
Figure 5. Typical Distribution of  
Input Offset Current  
100  
35  
+V  
S
SOURCE RESISTANCE  
MAY BE EITHER BALANCED  
OR UNBALANCED  
–0.5  
–1.0  
–1.5  
30  
25  
10  
1.0  
0.1  
20  
15  
+1.5  
+1.0  
+0.5  
10  
5
–V  
S
0
10k  
100k  
1M  
100M  
1k  
1k  
10k  
100k  
1M  
10M  
0
5
10  
15  
20  
FREQUENCY – Hz  
SOURCE RESISTANCE –  
SUPPLY VOLTAGE – Volts  
Figure 6. Input Common-Mode  
Voltage Range vs. Supply Voltage  
Figure 7. Large Signal Frequency  
Response  
Figure 8. Offset Voltage Drift vs.  
Source Resistance  
–4–  
REV. A  
AD704  
120  
50  
40  
30  
20  
4
3
2
1
0
100  
80  
POSITIVE I  
B
60  
40  
20  
0
NEGATIVE I  
B
10  
0
10  
COMMON MODE VOLTAGE – Volts  
–15  
–10  
–5  
0
5
15  
–0.8  
–0.4  
0
+0.4  
+0.8  
0
1
2
3
4
5
INPUT OFFSET VOLTAGE DRIFT µV/°C  
WARM-UP TIME – Minutes  
Figure 9. Typical Distribution of  
Offset Voltage Drift  
Figure 11. Input Bias Current vs.  
Common-Mode Voltage  
Figure 10. Change in Input Off-  
set Voltage vs. Warm-Up Time  
1000  
100  
1000  
100  
100  
10kΩ  
10  
10  
20MΩ  
VOUT  
1
1
100  
10  
FREQUENCY – Hz  
1
10  
100  
1000  
1
1000  
FREQUENCY – Hz  
Figure 12. Input Noise Voltage  
Spectral Density  
Figure 14. 0.1 Hz to 10 Hz Noise  
Voltage  
Figure 13. Input Noise Current  
Spectral Density  
+160  
180  
160  
140  
500  
V
T
= ±15V  
S
A
+140  
+120  
= +25°C  
450  
400  
V
= ± 15V  
S
+100  
+80  
120  
100  
+125°C  
–PSR  
+60  
+40  
80  
60  
40  
20  
+25°C  
+PSR  
350  
300  
+20  
0
–55°C  
0.1  
1
10  
100  
1M  
10k 100k  
5
20  
1k  
0
10  
15  
0.1  
10  
1
100  
1M  
1k  
10k 100k  
FREQUENCY – Hz  
SUPPLY VOLTAGE – ±Volts  
FREQUENCY – Hz  
Figure 16. Common-Mode  
Rejection vs. Frequency  
Figure 17. Power Supply Rejection  
vs. Frequency  
Figure 15. Quiescent Supply  
Current vs. Supply Voltage (per  
Amplifier)  
REV. A  
–5–  
AD704  
10M  
140  
120  
100  
80  
0
+V  
S
R = 10k  
L
30  
60  
–0.5  
–1.0  
–1.5  
–55 C  
+25 C  
PHASE  
90  
120  
150  
180  
60  
1M  
+125 C  
40  
+1.5  
+1.0  
GAIN  
20  
0
+0.5  
–V  
S
–20  
100k  
1
0.01 0.1  
1
10 100  
10k 100k 1M 10M  
1k  
2
0
5
15  
20  
4
6
8 10  
10  
100  
FREQUENCY – Hz  
LOAD RESISTANCE – kΩ  
SUPPLY VOLTAGE – ±Volts  
Figure 18. Open-Loop Gain vs.  
Figure 19. Open-Loop Gain and Phase Figure 20. Output Voltage Swing vs.  
Load Resistance Over Temperature vs. Frequency  
Supply Voltage  
R
F
1000  
+V  
S
100  
10  
100  
90  
0.1 µF  
A
= –1000  
V
1/4  
V
OUT  
AD704  
1
R
2kΩ  
V
L
IN  
C
L
A
= +1  
V
0.1  
10  
0.1 µF  
0%  
SQUARE  
WAVE INPUT  
0.01  
0.001  
2V  
50µs  
I
= +1mA  
OUT  
–V  
S
1
10  
100  
FREQUENCY – Hz  
1k  
10k  
100k  
Figure 21. Closed-Loop Output  
Impedance vs. Frequency  
Figure 22a. Unity Gain Follower  
(For Large Signal Applications,  
Resistor RF Limits the Current  
Through the Input Protection  
Diodes)  
Figure 22b. Unity Gain Follower  
Large Signal Pulse Response  
RF = 10 k, CL = 1,000 pF  
10k  
5µs  
5µs  
+V  
S
100  
90  
100  
90  
0.1 µF  
10k  
V
IN  
1/4  
AD704  
V
OUT  
RL  
2.5k  
C
L
SQUARE  
WAVE INPUT  
10  
10  
0%  
0%  
0.1 µF  
20mV  
20mV  
–V  
S
Figure 23a. Unity Gain Inverter  
Connection  
Figure 22c. Unity Gain Follower  
Small Signal Pulse Response  
RF = 0 , CL = 100 pF  
Figure 22d. Unity Gain Follower  
Small Signal Pulse Response  
RF = 0 , CL = 1,000 pF  
–6–  
REV. A  
AD704  
5µS  
5µS  
2V  
50µs  
100  
90  
100  
90  
100  
90  
10  
10  
10  
0%  
0%  
0%  
20mV  
20mV  
Figure 23c. Unity Gain Inverter  
Small Signal Pulse Response,  
CL = 100 pF  
Figure 23d. Unity Gain Inverter Small  
Signal Pulse Response, CL = 1,000 pF  
Figure 23b. Unity Gain Inverter  
Large Signal Pulse Response,  
CL = 1,000 pF  
C1  
_ _  
Q =  
C3  
_ _  
4C2  
GAIN TRIM  
(500k POT)  
1
OPTIONAL  
AC CMRR TRIM  
Q
=
=
4C4  
2
1
_________  
=
ω
1
_________  
R6 C1C2  
ω
R
47.5k  
R4  
49.9k  
R2  
2.4k  
R5  
6.34k  
R3  
6.34k  
R1  
G
R8 C3C4  
R6 = R7  
R8 = R9  
+V  
S
C
t
0.1 µF  
C1  
1MΩ  
1MΩ  
C3  
DC  
CMRR  
TRIM  
R6  
R7  
1MΩ  
R8  
1MΩ  
R9  
1/4  
AD704  
1/4  
AD704  
C2  
1/4  
AD704  
OUTPUT  
(5k POT)  
1/4  
AD704  
C4  
0.1 µF  
–V  
IN  
IN  
+V  
–V  
S
R10  
C5  
2MΩ  
R11  
C6  
2MΩ  
0.01µF  
R2 2R2  
R1  
__  
___  
RG  
INSTRUMENTATION AMPLIFIER GAIN = 1 +  
+
(FOR R1 = R3, R2 = R4 + R5)  
0.01µF  
ALL RESISTORS METAL FILM, 1%  
OPTIONAL BALANCE RESISTOR  
NETWORKS CAN BE REPLACED  
WITH A SHORT  
CAPACITORS C2 AND C4 ARE  
SOUTHERN ELECTRONICS MPCC,  
POLYCARBONATE, ±5%, 50 VOLT  
Figure 24. Gain of 10 Instrumentation Amplifier with Post Filtering  
The instrumentation amplifier with post filtering (Figure 24)  
Table I. Resistance Values for Various Gains  
combines two applications which benefit greatly from the  
AD704. This circuit achieves low power and dc precision over  
temperature with a minimum of components.  
Circuit Gain  
(G)  
RG (Max Value  
of Trim Potentiometer) (–3 dB), Hz  
Bandwidth  
R1 & R3  
The instrumentation amplifier circuit offers many performance  
benefits including BiFET level input bias currents, low input  
offset voltage drift and only 1.2 mA quiescent current. It will  
operate for gains G 2, and at lower gains it will benefit from  
the fact that there is no output amplifier offset and noise  
contribution as encountered in a 3 op amp design. Good low  
frequency CMRR is achieved even without the optional AC  
CMRR trim (Figure 25). Table I provides resistance values for  
3 common circuit gains. For other gains, use the following  
equations:  
10  
100  
1,000  
6.34 kΩ  
526 Ω  
56.2 Ω  
166 kΩ  
16.6 kΩ  
1.66 kΩ  
50k  
5k  
0.5k  
160  
140  
120  
GAIN = 10, 0.2V p-p COMMON-MODE INPUT  
CIRCUIT TRIMMED  
USING CAPACITOR C  
t
100  
80  
R2 = R4 + R5 = 49.9 k  
TYPICAL MONOLITHIC IN AMP  
60  
49.9 kΩ  
0.9 G 1  
R1 = R3 =  
40  
WITHOUT CAPACITOR C  
t
20  
0
99.8 k  
0.06 G  
Max Value of RG  
=
1
1k  
10k  
10  
100  
FREQUENCY – Hz  
Figure 25. Common-Mode Rejection vs. Frequency with  
and without Capacitor Ct  
1
Ct ≈  
2 π (R3) 5 × 105  
REV. A  
–7–  
AD704  
180  
120  
The 1 Hz, 4-pole active filter offers dc precision with a mini-  
mum of components and cost. The low current noise, IOS, and  
IB allow the use of 1 Mresistors without sacrificing the  
1 µV/°C drift of the AD704. This means lower capacitor values  
may be used, reducing cost and space. Furthermore, since the  
AD704’s IB is as low as its IOS, over most of the MIL tempera-  
ture range, most applications do not require the use of the  
normal balancing resistor (with its stability capacitor). Adding the  
optional balancing resistor enhances performance at high  
temperatures, as shown in Figure 26. Table II gives capacitor  
values for several common low pass responses.  
WITHOUT OPTIONAL  
BALANCE RESISTOR, R3  
60  
0
WITH OPTIONAL  
BALANCE RESISTOR, R3  
–60  
–120  
–180  
0
+120  
–40  
+40  
+80  
TEMPERATURE – oC  
Figure 26. VOS vs. Temperature Performance of the 1 Hz  
Filter Circuit  
Table II. 1 Hz, 4-Pole Low-Pass Filter Recommended Component Values  
Section 1  
Frequency  
(Hz)  
Section 2  
Frequency  
(Hz)  
Desired Low  
Pass Response  
C1  
(F)  
C2  
(F)  
C3  
(F)  
C4  
(F)  
Q
Q
Bessel  
Butterworth  
0.1 dB Chebychev  
0.2 dB Chebychev  
0.5 dB Chebychev  
1.0 dB Chebychev  
1.43  
1.00  
0.648  
0.603  
0.540  
0.492  
0.522  
0.541  
0.619  
0.646  
0.705  
0.785  
1.60  
1.00  
0.948  
0.941  
0.932  
0.925  
0.806  
1.31  
2.18  
2.44  
2.94  
3.56  
0.116  
0.172  
0.304  
0.341  
0.416  
0.508  
0.107  
0.147  
0.198  
0.204  
0.209  
0.206  
0.160  
0.416  
0.733  
0.823  
1.00  
0.0616  
0.0609  
0.0385  
0.0347  
0.0290  
0.0242  
1.23  
Specified Values are for a –3 dB point of 1.0 Hz. For other frequencies simply scale capacitors C1 through C4 directly; i.e., for 3 Hz Bessel response, C1 = 0.0387 µF,  
C2 = 0.0357 µF, C3 = 0.0533 µF, C4 = 0.0205 µF.  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
14-Pin Cerdip (Q) Package  
14-Pin Plastic DIP (N) Package  
20-Terminal LCCC (E) Package  
16-Pin Plastic SO (R) Package  
0.100 (2.54)  
0.064 (1.63)  
0.358 (9.09)  
0.342 (8.69)  
0.040 (1.02)  
x 45° REF  
3 PLCS  
0.028 (0.71)  
0.022 (0.56)  
NO. 1 PIN  
INDEX  
0.050  
(1.27)  
BSC  
0.020 (0.51)  
x 45° REF  
–8–  
REV. A  

相关型号:

AD704TQ/883B

Quad Picoampere Input Current Bipolar Op Amp
ADI

AD704_02

Quad Picoampere Input Current Bipolar Op Amp
ADI

AD705

Picoampere Input Current Bipolar Op Amp
ADI

AD705AQ

Picoampere Input Current Bipolar Op Amp
ADI

AD705BQ

Picoampere Input Current Bipolar Op Amp
ADI

AD705JCHIPS

Picoampere Input Current Bipolar Op Amp
ADI

AD705JN

Picoampere Input Current Bipolar Op Amp
ADI

AD705JR

Picoampere Input Current Bipolar Op Amp
ADI

AD705JR-REEL

Picoampere Input Current Bipolar Op Amp
ADI

AD705JR-REEL7

Picoampere Input Current Bipolar Op Amp
ADI

AD705JR/+

IC,OP-AMP,SINGLE,BIPOLAR,SOP,8PIN,PLASTIC
ADI

AD705KN

Picoampere Input Current Bipolar Op Amp
ADI