AD7400AYRWZ [ADI]

Isolated Sigma-Delta Modulator;
AD7400AYRWZ
型号: AD7400AYRWZ
厂家: ADI    ADI
描述:

Isolated Sigma-Delta Modulator

光电二极管
文件: 总21页 (文件大小:396K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Isolated Sigma-Delta Modulator  
Data Sheet  
AD7400A  
FEATURES  
GENERAL DESCRIPTION  
10 MHz clock rate  
Second-order modulator  
16 bits, no missing codes  
2 LSB INL typical at 16 bits  
1.5 µV/°C typical offset drift  
On-board digital isolator  
On-board reference  
The AD7400A1 is a second-order, Σ-Δ modulator that converts  
an analog input signal into a high speed, 1-bit data stream with  
on-chip digital isolation based on Analog Devices, Inc., iCoupler®  
technology. The AD7400A operates from a 5 V power supply  
and accepts a differential input signal of 250 mV ( 320 mV  
full scale). The analog input is sampled continuously by the  
analog modulator, eliminating the need for external sample-  
and-hold circuitry. The input information is contained in the  
output stream as a density of ones with a data rate of 10 MHz.  
The original information can be reconstructed with an appropriate  
digital filter. The serial I/O can use a 5 V or a 3 V supply (VDD2).  
250 mV analog input range  
Low power operation: 15.5 mA typical at 5.5 V  
−40°C to +125°C operating range  
16-lead SOIC package  
AD7401A, external clock version in 16-lead SOIC  
Safety and regulatory approvals  
UL recognition  
5000 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice #5A  
VDE Certificate of Conformity  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
The serial interface is digitally isolated. High speed CMOS,  
combined with monolithic air core transformer technology,  
means the on-chip isolation provides outstanding performance  
characteristics superior to alternatives such as optocoupler  
devices. The part contains an on-chip reference and has an  
operating temperature range of −40°C to +125°C. The AD7400A  
is offered in a 16-lead SOIC package.  
V
IORM = 891 V peak  
1 Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329.  
APPLICATIONS  
AC motor controls  
Shunt current monitoring  
Data acquisition systems  
Analog-to-digital and opto-isolator replacements  
FUNCTIONAL BLOCK DIAGRAM  
V
V
DD2  
DD1  
AD7400A  
V
V
+
IN  
T/H  
Σ-Δ ADC  
IN  
UPDATE  
WATCHDOG  
ENCODE  
DECODE  
BUF  
MDAT  
REF  
CONTROL LOGIC  
UPDATE  
WATCHDOG  
ENCODE  
MCLKOUT  
DECODE  
GND  
GND  
1
2
Figure 1.  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2008–2012 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD7400A* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
REFERENCE MATERIALS  
Press  
Analog Devices Achieves Major Milestone by Shipping 1  
Billionth Channel of iCoupler Digital Isolation  
EVALUATION KITS  
Product Selection Guide  
AD7400A Evaluation Board  
Digital Isolator Product Selection and Resource Guide  
Technical Articles  
DOCUMENTATION  
Data Sheet  
Inside iCoupler® Technology:ADuM347x PWM Controller  
and Transformer Driver with Quad-Channel Isolators  
Design Summary  
AD7400A: Isolated Sigma-Delta Modulator Data Sheet  
NAppkin Note: Lowering the Power of the ADuM524x  
SOFTWARE AND SYSTEMS REQUIREMENTS  
CED1Z FPGA Project for AD7400A with Nios driver  
DESIGN RESOURCES  
AD7400A Material Declaration  
PCN-PDN Information  
TOOLS AND SIMULATIONS  
AD7400/AD7401 IBIS Model  
Quality And Reliability  
Symbols and Footprints  
REFERENCE DESIGNS  
CN0185  
DISCUSSIONS  
View all AD7400A EngineerZone Discussions.  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD7400A  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Terminology.................................................................................... 12  
Theory of Operation ...................................................................... 13  
Circuit Information.................................................................... 13  
Analog Input ............................................................................... 13  
Differential Inputs ...................................................................... 14  
Current Sensing Applications................................................... 14  
Voltage Sensing Applications.................................................... 14  
Digital Filter ................................................................................ 15  
Applications Information .............................................................. 17  
Grounding and Layout .............................................................. 17  
Evaluating the AD7400A Performance................................... 17  
Insulation Lifetime..................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 4  
Insulation and Safety-Related Specifications............................ 5  
Regulatory Information............................................................... 5  
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation  
Characteristics .............................................................................. 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
REVISION HISTORY  
11/12—Rev. C to Rev. D  
Changed UL Recognition from 3750 V rms to 5000 V rms  
(Table 4) ..............................................................................................5  
Changes to Note 1 (Table 4).............................................................5  
Deleted 8-Lead PDIP .........................................................Universal  
Change to Note 1 .............................................................................. 1  
Deleted Figure 5 and Renumbered Sequentially.......................... 8  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide .......................................................... 18  
9/08—Rev. 0 to Rev. A  
Added 16-Lead SOIC.........................................................Universal  
Changes to General Description Section .......................................1  
Changes to Table 1, Test Conditions/Comments Column ..........3  
Changes to Timing Specifications Table Summary ......................4  
Changes to Table 4, Note 2...............................................................5  
Added Figure 6; Renumbered Sequentially ...................................8  
Changes to Terminology Section ................................................. 12  
Updated Outline Dimensions....................................................... 18  
Changes to Ordering Guide.......................................................... 18  
7/11—Rev. B to Rev. C  
Changes to Minimum External Air Gap (Clearance) Parameter,  
Table 3 and Minimum External Tracking (Creepage) Parameter,  
Table 3 ................................................................................................ 5  
Changes to Figure 6; Pin 1 Description, Table 8; and Pin 7  
Description, Table 8.......................................................................... 8  
1/11—Rev. A to Rev. B  
Changed UL Recognition from 3750 V rms to 5000 V rms....... 1  
Changes to Input-to-Output Momentary Withstand Voltage  
Value (Table 3) .................................................................................. 5  
5/08—Revision 0: Initial Version  
Rev. D | Page 2 of 20  
 
Data Sheet  
AD7400A  
SPECIFICATIONS  
VDD1 = 4.5 V to 5.5 V, VDD2 = 3 V to 5.5 V, VIN+ = −200 mV to +200 mV, except where specified, and VIN− = 0 V (single-ended);  
TA = −40°C to +125°C, except where specified; fMCLK = 10 MHz, tested with Sinc3 filter, 256 decimation rate, as defined by Verilog code,  
unless otherwise noted.  
Table 1.  
Y Version1  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
STATIC PERFORMANCE  
Resolution  
16  
Bits  
LSB  
LSB  
LSB  
LSB  
Filter output truncated to 16 bits  
Integral Nonlinearity2  
2
4
4
12  
16  
22  
0.9  
VIN+ = 200 mV, TA = −40°C to +125°C  
VIN+ = 250 mV, TA = −40°C to +85°C  
VIN+ = 250 mV, TA = −40°C to +125°C  
Guaranteed no missing codes to 16 bits  
Differential Nonlinearity2  
Offset Error2  
Offset Drift vs. Temperature  
Offset Drift vs. VDD1  
Gain Error2  
50  
1.5  
120  
500 μV  
4
µV/°C −40°C to +125°C  
µV/V  
mV  
mV  
1.5  
2
−40°C to +85°C  
−40°C to +125°C  
Gain Error Drift vs. Temperature  
Gain Error Drift vs. VDD1  
ANALOG INPUT  
23  
110  
µV/°C −40°C to +125°C  
µV/V  
Input Voltage Range  
Dynamic Input Current  
−250  
+250 mV  
For specified performance, full range = 320 mV  
VIN+ = 400 mV, VIN− = 0 V  
VIN+ = 500 mV, VIN− = 0 V  
7
9
0.5  
10  
8
µA  
µA  
µA  
pF  
10  
VIN+ = VIN− = 0 V  
Input Capacitance  
DYNAMIC SPECIFICATIONS  
VIN+ = 35 Hz  
Signal-to-Noise and Distortion (SINAD) Ratio2  
70  
68  
73  
72  
78  
78  
80  
80  
−84  
−82  
−86  
−84  
12.5  
12.5  
30  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
VIN+ = 200 mV  
VIN+ = 250 mV  
VIN+ = 200 mV  
VIN+ = 250 mV  
VIN+ = 200 mV  
VIN+ = 250 mV  
VIN+ = 200 mV  
VIN+ = 250 mV  
VIN+ = 200 mV  
VIN+ = 250 mV  
Signal-to-Noise Ratio (SNR)  
Total Harmonic Distortion (THD)2  
Peak Harmonic or Spurious Noise (SFDR)2  
Effective Number of Bits (ENOB)2  
11.5  
11  
25  
Bits  
Bits  
kV/µs  
Isolation Transient Immunity2  
LOGIC OUTPUTS  
Output High Voltage, VOH  
Output Low Voltage, VOL  
POWER REQUIREMENTS  
VDD1  
VDD2 − 0.1  
V
V
IO = −200 µA  
IO = +200 µA  
0.4  
4.5  
3
5.5  
5.5  
13  
6
V
V
mA  
mA  
mA  
VDD2  
3
IDD1  
IDD2  
11  
4.5  
3
VDD1 = 5.5 V  
VDD2 = 5.5 V  
VDD2 = 3.3 V  
4
3.5  
1 All voltages are relative to their respective ground.  
2 See the Terminology section.  
3 See Figure 14.  
4 See Figure 15.  
Rev. D | Page 3 of 20  
 
 
 
 
 
 
 
 
 
 
 
 
AD7400A  
Data Sheet  
TIMING SPECIFICATIONS  
VDD1 = 4.5 V to 5.5 V, VDD2 = 3 V to 5.5 V, TA = −40°C to +125°C, except where specified.1  
Table 2.  
Parameter  
Limit at tMIN, tMAX  
Unit  
Description  
2
fMCLKOUT  
10  
9/11  
40  
10  
0.4 × tMCLKOUT  
0.4 × tMCLKOUT  
MHz typ  
MHz min/MHz max  
ns max  
ns min  
ns min  
Master clock output frequency  
Master clock output frequency  
Data access time after MCLK rising edge  
Data hold time after MCLK rising edge  
Master clock low time  
3
t1  
t2  
3
t3  
t4  
ns min  
Master clock high time  
1 Sample tested during initial release to ensure compliance.  
2 Mark space ratio for clock output is 40/60 to 60/40.  
3 Measured with the load circuit shown in Figure 2 and defined as the time required for the output to cross 0.8 V or 2.0 V.  
200µA  
I
OL  
TO OUTPUT  
PIN  
+1.6V  
C
L
25pF  
200µA  
I
OH  
Figure 2. Load Circuit for Digital Output Timing Specifications  
t4  
MCLKOUT  
MDAT  
t1  
t2  
t3  
Figure 3. Data Timing  
Rev. D | Page 4 of 20  
 
 
 
 
 
Data Sheet  
AD7400A  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 3.  
Parameter  
Symbol  
VISO  
L(I01)  
Value  
Unit  
Conditions  
Input-to-Output Momentary Withstand Voltage  
Minimum External Air Gap (Clearance)  
5000 min  
8.1 min  
V rms 1-minute duration  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance through air  
Measured from input terminals to output  
terminals, shortest distance path along body  
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material group (DIN VDE 0110, 1/89, Table 1)  
Minimum External Tracking (Creepage)  
L(I02)  
CTI  
7.46 min  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017 min  
>175  
IIIa  
mm  
V
REGULATORY INFORMATION  
Table 4.  
UL1  
CSA  
VDE2  
Recognized Under 1577  
Approved under CSA Component  
Acceptance Notice #5A  
Certified according to DIN V VDE V 0884-10  
(VDE V 0884-10):2006-122  
Component Recognition Program1  
5000 V rms isolation voltage  
Reinforced insulation per CSA 60950-1-03 and  
IEC 60950-1, 630 V rms maximum working voltage  
Reinforced insulation per DIN V VDE V 0884-10  
(VDE V 0884-10):2006-12, 891 V peak  
File E214100  
File 205078  
File 2471900-4880-0001  
1 In accordance with UL 1577, each AD7400A is proof tested by applying an insulation test voltage ≥6000 V rms for 1 sec (current leakage detection limit = 15 µA).  
2 In accordance with DIN V VDE V 0884-10, each AD7400A is proof tested by applying an insulation test voltage ≥1671 V peak for 1 sec (partial discharge detection limit = 5 pC).  
Rev. D | Page 5 of 20  
 
 
 
 
 
AD7400A  
Data Sheet  
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS  
This isolator is suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by  
means of protective circuits.  
Table 5.  
Parameter  
Symbol Characteristic Unit  
INSTALLATION CLASSIFICATION PER DIN VDE 0110  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 450 V rms  
I to IV  
I to II  
For Rated Mains Voltage ≤ 600 V rms  
I to II  
CLIMATIC CLASSIFICATION  
40/105/21  
2
POLLUTION DEGREE (DIN VDE 0110, Table 1)  
MAXIMUM WORKING INSULATION VOLTAGE  
INPUT-TO-OUTPUT TEST VOLTAGE, METHOD B1  
VIORM × 1.875 = VPR, 100% Production Test, tm = 1 sec, Partial Discharge < 5 pC  
INPUT-TO-OUTPUT TEST VOLTAGE, METHOD A  
After Environmental Test Subgroup 1  
VIORM × 1.6 = VPR, tm = 60 sec, Partial Discharge < 5 pC  
After Input and/or Safety Test Subgroup 2/Safety Test Subgroup 3  
VIORM × 1.2 = VPR, tm = 60 sec, Partial Discharge < 5 pC  
HIGHEST ALLOWABLE OVERVOLTAGE (TRANSIENT OVERVOLTAGE, tTR = 10 sec)  
SAFETY-LIMITING VALUES (MAXIMUM VALUE ALLOWED IN THE EVENT OF A FAILURE, ALSO SEE Figure 4)  
Case Temperature  
VIORM  
891  
V peak  
V peak  
V peak  
V peak  
V peak  
VPR  
VPR  
1671  
1426  
1069  
6000  
VTR  
TS  
IS1  
IS2  
RS  
150  
265  
335  
>109  
°C  
Side 1 Current  
Side 2 Current  
mA  
mA  
INSULATION RESISTANCE AT TS, VIO = 500 V  
350  
300  
250  
SIDE 2  
200  
150  
SIDE 1  
100  
50  
0
0
50  
100  
150  
200  
CASE TEMPERATURE (°C)  
Figure 4. Thermal Derating Curve, Dependence of Safety-Limiting Values  
with Case Temperature per DIN V VDE V 0884-10  
Rev. D | Page 6 of 20  
 
 
Data Sheet  
AD7400A  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted. All voltages are relative to  
their respective ground.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 6.  
Parameter  
Rating  
VDD1 to GND1  
VDD2 to GND2  
−0.3 V to +6.5 V  
−0.3 V to +6.5 V  
−0.3 V to VDD1 + 0.3 V  
−0.3 V to VDD2 + 0.3 V  
10 mA  
−40°C to +125°C  
−65°C to +150°C  
150°C  
Analog Input Voltage to GND1  
Output Voltage to GND2  
Input Current to Any Pin Except Supplies1  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
SOIC Package  
Table 7. Maximum Continuous Working Voltage1  
Parameter  
Max  
Unit  
Constraint  
AC Voltage,  
Bipolar Waveform  
565  
V peak  
50-year minimum  
lifetime  
AC Voltage,  
Unipolar Waveform  
891  
891  
V peak  
V
Maximum CSA/VDE  
approved working  
voltage  
Maximum CSA/VDE  
approved working  
voltage  
θJA Thermal Impedance2  
θJC Thermal Impedance2  
Resistance (Input-to-Output), RI-O  
89.2°C/W  
55.6°C/W  
1012 Ω  
DC Voltage  
3
Capacitance (Input-to-Output), CI-O  
1.7 pF typ  
1 Refers to continuous voltage magnitude imposed across the isolation  
barrier. See the Insulation Lifetime section for more details.  
RoHS-Compliant Temperature, Soldering  
Reflow  
ESD  
260 (+0)°C  
2.5 kV  
ESD CAUTION  
1 Transient currents of up to 100 mA do not cause SCR to latch-up.  
2 JEDEC 2S2P standard board.  
3 f = 1 MHz.  
Rev. D | Page 7 of 20  
 
 
 
 
 
 
 
 
AD7400A  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
2
DD1  
V
+
NC  
V
IN  
AD7400A  
V
IN  
DD2  
TOP VIEW  
NC  
NC  
NC  
MCLKOUT  
NC  
(Not to Scale)  
MDAT  
NC  
V
/NC  
DD1  
GND  
GND  
2
1
NC = NO CONNECT  
Figure 5. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
VDD1  
Supply Voltage, 4.5 V to 5.5 V. This is the supply voltage for the isolated side of the AD7400A and is  
relative to GND1.  
2
3
VIN+  
VIN−  
NC  
VDD1/NC  
Positive Analog Input. Specified range of 250 mV.  
Negative Analog Input. Normally connected to GND1.  
No Connect.  
Supply Voltage. 4.5 V to 5.5 V. This is the supply voltage for the isolated side of the AD7400A and is  
relative to GND1.  
4 to 6, 10, 12, 15  
7
No Connect (NC). If desired, Pin 7 of the SOIC device may be allowed to float. It should not be tied  
to ground. The AD7400A will operate normally provided that the supply voltage is applied to Pin 1.  
8
9, 16  
11  
GND1  
GND2  
MDAT  
Ground 1. This is the ground reference point for all circuitry on the isolated side.  
Ground 2. This is the ground reference point for all circuitry on the nonisolated side.  
Serial Data Output. The single bit modulator output is supplied to this pin as a serial data stream. The  
bits are clocked out on the rising edge of the MCLKOUT output and are valid on the following  
MCLKOUT rising edge.  
13  
14  
MCLKOUT  
VDD2  
Master Clock Logic Output (10 MHz Typical). The bit stream from the modulator is valid on the  
rising edge of MCLKOUT.  
Supply Voltage, 3 V to 5.5 V. This is the supply voltage for the nonisolated side and is relative to GND2.  
Rev. D | Page 8 of 20  
 
Data Sheet  
AD7400A  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, using 20 kHz brickwall filter, unless otherwise noted.  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
–85  
–80  
–75  
–70  
–65  
–60  
V
= V = 5V  
DD2  
DD1  
NO DECOUPLING CAPACITOR  
V
V
T
= V = 5V  
DD2  
10  
0
DD1  
= 25°C  
= 200mV SINE WAVE ON V  
RIPPLE  
DD1  
A
100  
1k  
10k  
100k  
1M  
10M  
50  
100  
150  
200  
250  
300  
350  
SUPPLY RIPPLE FREQUENCY (Hz)  
INPUT AMPLITUDE (mV)  
Figure 9. SINAD vs. VIN  
Figure 6. PSRR vs. Supply Ripple Frequency Without Supply Decoupling  
(1 MHz Filter Used)  
0.5  
0.4  
–90  
–80  
–70  
V
V
+ = –200mV TO +200mV  
– = 0V  
IN  
IN  
0.3  
V
= V = 4.5V  
DD2  
DD1  
–60  
–50  
–40  
–30  
–20  
–10  
0
0.2  
0.1  
0
V
= V = 5.5V  
DD2  
DD1  
V
= V = 5V  
DD2  
DD1  
–0.1  
–0.2  
–0.3  
–0.4  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
0
10,000  
20,000  
30,000  
CODE  
40,000  
50,000  
60,000  
INPUT FREQUENCY (Hz)  
Figure 7. SINAD vs. Analog Input Frequency for Various Supply Voltages  
Figure 10. Typical DNL, 200 mV Range  
(Using Sinc3 Filter, 256 Decimation Rate)  
0
0.8  
0.6  
V
V
+ = –200mV TO +200mV  
– = 0V  
8192 POINT FFT  
fIN = 35Hz  
SINAD = 79.6991dB  
IN  
IN  
–20  
THD = –92.6722dB  
DECIMATION BY 256  
–40  
0.4  
–60  
0.2  
–80  
–100  
–120  
–140  
–160  
–180  
0
–0.2  
–0.4  
–0.6  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
10,000  
20,000  
30,000  
CODE  
40,000  
50,000  
60,000  
FREQUENCY (kHz)  
Figure 8. Typical FFT, 200 mV Range  
(Using Sinc3 Filter, 256 Decimation Rate)  
Figure 11. Typical INL, 200 mV Range  
(Using Sinc3 Filter, 256 Decimation Rate)  
Rev. D | Page 9 of 20  
 
 
 
AD7400A  
Data Sheet  
500  
450  
400  
350  
300  
250  
200  
150  
100  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
+125°C  
+85°C  
+25°C  
–40°C  
50  
0
V
= V = 5V  
DD2  
= 25°C  
DD1  
V
= V  
= 5V  
DD2  
DD1  
T
A
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–0.4  
–0.3  
–0.2  
–0.1  
0
0.1  
0.2  
0.3  
0.4  
TEMPERATURE (°C)  
V
DC INPUT VOLTAGE (V)  
IN  
Figure 12. Offset Drift vs. Temperature  
Figure 15. IDD2 vs. VIN at Various Temperatures  
0.20  
0.15  
0.10  
0.05  
0
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
= V = 4.5V  
DD2  
DD1  
V
= V = 5V  
DD2  
DD1  
–0.05  
–0.10  
–0.15  
–0.20  
V
= V = 5.5V  
DD2  
DD1  
–45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95 105  
TEMPERATURE (°C)  
100  
1k  
10k  
100k  
1M  
10M  
COMMON-MODE RIPPLE FREQUENCY (Hz)  
Figure 13 . Gain Error Drift vs. Temperature for Various Supply Voltages  
Figure 16. CMRR vs. Common-Mode Ripple Frequency  
11.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0
+125°C  
+85°C  
BANDWIDTH = 100kHz  
10.5  
+25°C  
10.0  
–40°C  
9.5  
9.0  
V
= V  
DD1  
= 5V  
0.39  
DD2  
8.5  
–0.33  
–0.21  
–0.09  
0.03  
0.15  
0.27  
V
DC INPUT VOLTAGE (V)  
IN  
V
DC INPUT (V)  
IN  
Figure 17. RMS Noise Voltage vs. VIN DC Input  
Figure 14. IDD1 vs. VIN at Various Temperatures  
Rev. D | Page 10 of 20  
 
 
Data Sheet  
AD7400A  
11.0  
10.8  
10.6  
10.4  
V
= V = 4.5V  
DD2  
DD1  
10.2  
10.0  
9.8  
V
DD1  
= V = 5.25V  
DD2  
9.6  
9.4  
V
= V = 5V  
DD2  
DD1  
9.2  
9.0  
TEMPERATURE (°C)  
Figure 18. MCLKOUT vs. Temperature for Various Supplies  
Rev. D | Page 11 of 20  
AD7400A  
Data Sheet  
TERMINOLOGY  
Differential Nonlinearity  
Total Harmonic Distortion (THD)  
Differential nonlinearity is the difference between the measured  
and the ideal 1 LSB change between any two adjacent codes in  
the ADC.  
THD is the ratio of the rms sum of harmonics to the  
fundamental. For the AD7400A, it is defined as  
2
2
2
2
2
V2 +V3 +V4 +V5 +V6  
THD(dB) = 20 log  
Integral Nonlinearity  
V1  
Integral nonlinearity is the maximum deviation from a straight  
line passing through the endpoints of the ADC transfer function.  
The endpoints of the transfer function are specified negative  
full scale, −250 mV (VIN+ − VIN−), Code 7169, and specified  
positive full scale, +250 mV (VIN+ − VIN−), Code 58,366 for  
the 16-bit level.  
where:  
V1 is the rms amplitude of the fundamental.  
V2, V3, V4, V5, and V6 are the rms amplitudes of the second  
through the sixth harmonics.  
Peak Harmonic or Spurious Noise  
Offset Error  
Peak harmonic or spurious noise is defined as the ratio of the rms  
value of the next largest component in the ADC output spectrum  
(up to fS/2, excluding dc) to the rms value of the fundamental.  
Normally, the value of this specification is determined by the  
largest harmonic in the spectrum, but for ADCs where the  
harmonics are buried in the noise floor, it is a noise peak.  
Offset is the deviation of the midscale code (Code 32,768 for  
the 16-bit level) from the ideal VIN+ − VIN− (that is, 0 V).  
Gain Error  
Gain error includes both positive full-scale gain error and  
negative full-scale gain error. Positive full-scale gain error is the  
deviation of the specified positive full-scale code (58,366 for the  
16-bit level) from the ideal VIN+ − VIN− (+250 mV) after the  
offset error is adjusted out. Negative full-scale gain error is the  
deviation of the specified negative full-scale code (7169 for the  
16-bit level) from the ideal VIN+ − VIN− (−250 mV) after the  
offset error is adjusted out. Gain error includes reference error.  
Common-Mode Rejection Ratio (CMRR)  
CMRR is defined as the ratio of the power in the ADC output at  
250 mV frequency, f, to the power of a 250 mV p-p sine wave  
applied to the common-mode voltage of VIN+ and VIN− of  
frequency fS as  
CMRR (dB) = 10 log(Pf/PfS)  
where:  
Signal-to-Noise and Distortion (SINAD) Ratio  
This ratio is the measured ratio of signal-to-noise and distortion  
at the output of the ADC. The signal is the rms amplitude of the  
fundamental. Noise is the sum of all nonfundamental signals up  
to half the sampling frequency (fS/2), excluding dc. The ratio is  
dependent on the number of quantization levels in the digitization  
process; the more levels, the smaller the quantization noise. The  
theoretical signal-to-noise and distortion ratio for an ideal N-bit  
converter with a sine wave input is given by  
Pf is the power at frequency f in the ADC output.  
PfS is the power at frequency fS in the ADC output.  
Power Supply Rejection Ratio (PSRR)  
Variations in power supply affect the full-scale transition but  
not the converter linearity. PSRR is the maximum change in the  
specified full-scale ( 250 mV) transition point due to a change  
in power supply voltage from the nominal value (see Figure 6).  
Signal-to-Noise and Distortion = (6.02N + 1.76) dB  
Isolation Transient Immunity  
Therefore, for a 12-bit converter, SINAD is 74 dB.  
The isolation transient immunity specifies the rate of rise/fall of  
a transient pulse applied across the isolation boundary beyond  
which clock or data is corrupted. (The AD7400A was tested using  
a transient pulse frequency of 100 kHz.)  
Effective Number of Bits (ENOB)  
The ENOB is defined by  
ENOB = (SINAD − 1.76)/6.02  
Rev. D | Page 12 of 20  
 
Data Sheet  
AD7400A  
THEORY OF OPERATION  
A differential input of 320 mV ideally results in a stream of all  
1s. This is the absolute full-scale range of the AD7400A, while  
250 mV is the specified full-scale range, as shown in Table 9.  
CIRCUIT INFORMATION  
The AD7400A isolated Σ-Δ modulator converts an analog input  
signal into a high speed (10 MHz typical), single-bit data stream;  
the time average of the single-bit data from the modulator is  
directly proportional to the input signal. Figure 21 shows a  
typical application circuit where the AD7400A is used to provide  
isolation between the analog input, a current sensing resistor,  
and the digital output, which is then processed by a digital filter  
to provide an N-bit word.  
Table 9. Analog Input Range  
Analog Input  
Voltage Input  
+640 mV  
+320 mV  
+250 mV  
+200 mV  
0 mV  
Full-Scale Range  
Positive Full Scale  
Positive Typical Input Range  
Positive Specified Input Range  
Zero  
ANALOG INPUT  
Negative Specified Input Range  
Negative Typical Input Range  
Negative Full Scale  
−200 mV  
−250 mV  
−320 mV  
The differential analog input of the AD7400A is implemented  
with a switched capacitor circuit. This circuit implements a  
second-order modulator stage that digitizes the input signal  
into a 1-bit output stream. The sample clock (MCLKOUT)  
provides the clock signal for the conversion process as well as  
the output data-framing clock. This clock source is internal on  
the AD7400A. The analog input signal is continuously sampled  
by the modulator and compared to an internal voltage reference. A  
digital stream that accurately represents the analog input over  
time appears at the output of the converter (see Figure 19).  
To reconstruct the original information, this output needs  
to be digitally filtered and decimated. A Sinc3 filter is recom-  
mended because this is one order higher than that of the  
AD7400A modulator. If a 256 decimation rate is used, the  
resulting 16-bit word rate is 39 kHz, assuming a 10 MHz  
internal clock frequency. Figure 20 shows the transfer function  
of the AD7400A relative to the 16-bit output.  
MODULATOR OUTPUT  
+FS ANALOG INPUT  
65535  
–FS ANALOG INPUT  
53248  
ANALOG INPUT  
Figure 19. Analog Input vs. Modulator Output  
SPECIFIED RANGE  
A differential signal of 0 V ideally results in a stream of 1s and  
0s at the MDAT output pin. This output is high 50% of the time  
and low 50% of the time. A differential input of 200 mV produces  
a stream of 1s and 0s that are high 81.25% of the time (for a  
+250 mV input, the output stream is high 89.06% of the time).  
A differential input of −200 mV produces a stream of 1s and 0s  
that are high 18.75% of the time (for a −250 mV input, the output  
stream is high 10.94% of the time).  
12288  
0
–320mV  
–200mV  
ANALOG INPUT  
+200mV +320mV  
Figure 20. Filtered and Decimated 16-Bit Transfer Characteristic  
ISOLATED  
5V  
NONISOLATED  
5V/3V  
AD7400A  
V
V
V
DD  
DD1  
DD2  
3
SINC FILTER*  
Σ-Δ  
MOD/  
CS  
V
V
+
MDAT  
MDAT  
MCLK  
IN  
ENCODER  
DECODER  
ENCODER  
+
SCLK  
INPUT  
CURRENT  
MCLKOUT  
IN  
SDAT  
R
SHUNT  
DECODER  
GND  
GND  
GND  
1
2
*THIS FILTER IS IMPLEMENTED  
WITH AN FPGA OR DSP.  
Figure 21. Typical Application Circuit  
Rev. D | Page 13 of 20  
 
 
 
 
 
 
 
AD7400A  
Data Sheet  
DIFFERENTIAL INPUTS  
CURRENT SENSING APPLICATIONS  
The analog input to the modulator is a switched capacitor  
design. The analog signal is converted into charge by highly  
linear sampling capacitors. A simplified equivalent circuit  
diagram of the analog input is shown in Figure 22. A signal  
source driving the analog input must be able to provide the  
charge onto the sampling capacitors every half MCLKOUT cycle  
and settle to the required accuracy within the next half cycle.  
The AD7400A is ideally suited for current sensing applications  
where the voltage across a shunt resistor is monitored. The load  
current flowing through an external shunt resistor produces a  
voltage at the input terminals of the AD7400A. The AD7400A  
provides isolation between the analog input from the current  
sensing resistor and the digital outputs. By selecting the appropriate  
shunt resistor value, a variety of current ranges can be monitored.  
φA  
Choosing RSENSE  
1kΩ  
φB  
V
+
IN  
2pF  
2pF  
The shunt resistor values used in conjunction with the AD7400A  
are determined by the specific application requirements in terms of  
voltage, current, and power. Small resistors minimize power  
dissipation, while low inductance resistors prevent any induced  
voltage spikes, and good tolerance devices reduce current  
variations. The final values chosen are a compromise between  
low power dissipation and good accuracy. Low value resistors  
have less power dissipated in them, but higher value resistors  
may be required to use the full input range of the ADC, thus  
achieving maximum SNR performance.  
φA  
φB  
1kΩ  
V
IN  
φA φB φA φB  
MCLKOUT  
Figure 22. Analog Input Equivalent Circuit  
Because the AD7400A samples the differential voltage across its  
analog inputs, low noise performance is attained with an input  
circuit that provides low common-mode noise at each input.  
The amplifiers used to drive the analog inputs play a critical  
role in attaining the high performance available from the  
AD7400A.  
When the peak sense current is known, the voltage range of the  
AD7400A ( 200 mV) is divided by the maximum sense current  
to yield a suitable shunt value. If the power dissipation in the shunt  
resistor is too large, the shunt resistor can be reduced, in which  
case, less of the ADC input range is used. Using less of the ADC  
input range results in performance that is more susceptible to noise  
and offset errors because offset errors are fixed and are thus more  
significant when smaller input ranges are used.  
When a capacitive load is switched onto the output of an op  
amp, the amplitude drops momentarily. The op amp tries to  
correct the situation and, in the process, hits its slew rate limit.  
This nonlinear response, which can cause excessive ringing, can  
lead to distortion. To remedy the situation, a low-pass RC filter  
can be connected between the amplifier and the input to the  
AD7400A. The external capacitor at each input aids in supplying  
the current spikes created during the sampling process, and the  
resistor isolates the op amp from the transient nature of the load.  
R
SENSE must be able to dissipate the I2R power losses. If the power  
dissipation rating of the resistor is exceeded, its value may drift  
or the resistor may be damaged, resulting in an open circuit.  
This can result in a differential voltage across the terminals of  
the AD400A in excess of the absolute maximum ratings (see  
Table 6.). If ISENSE has a large high frequency component, take  
care to choose a resistor with low inductance.  
The recommended circuit configuration for driving the differential  
inputs to achieve best performance is shown in Figure 23. A  
capacitor between the two input pins sources or sinks charge  
to allow most of the charge that is needed by one input to be  
effectively supplied by the other input. The series resistor again  
isolates any op amp from the current spikes created during the  
sampling process. Recommended values for the resistors and  
capacitor are 22 Ω and 47 pF, respectively.  
VOLTAGE SENSING APPLICATIONS  
The AD7400A can also be used for isolated voltage monitoring.  
For example, in motor control applications, it can be used to  
sense bus voltage. In applications where the voltage being  
monitored exceeds the specified analog input range of the  
AD7400A, a voltage divider network can be used to reduce  
the voltage being monitored to the required range.  
R
V
+
IN  
C
AD7400A  
R
V
IN  
Figure 23. Differential Input RC Network  
Rev. D | Page 14 of 20  
 
 
 
 
 
Data Sheet  
AD7400A  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [15:0]  
reg [7:0]  
diff2;  
DIGITAL FILTER  
diff3;  
The overall system resolution and throughput rate is deter-  
mined by the filter selected and the decimation rate used. The  
higher the decimation rate, the greater the system accuracy, as  
illustrated in Figure 24. However, there is a tradeoff between  
accuracy and throughput rate and, therefore, higher decimal-  
tion rates result in lower throughput solutions.  
diff1_d;  
diff2_d;  
DATA;  
word_count;  
reg word_clk;  
reg init;  
A Sinc3 filter is recommended for use with the AD7400A. This  
filter can be implemented on an FPGA or a D S P.  
DR  
/*Perform the Sinc ACTION*/  
3  
(
1Z  
(
)
H(z) =  
1Z 1  
)
always @ (mdata1)  
if(mdata1==0)  
ip_data1 <= 0;  
to a -1 for 2's comp */  
else  
/* change from a 0  
where DR is the decimation rate.  
90  
3
2
SINC  
80  
70  
60  
50  
40  
30  
20  
10  
0
ip_data1 <= 1;  
/*ACCUMULATOR (INTEGRATOR)  
Perform the accumulation (IIR) at the speed  
of the modulator.  
SINC  
MCLKOUT  
ACC1+  
+
ACC2+  
+
ACC3+  
IP_DATA1  
Z
Z
Z
1
SINC  
+
Figure 25. Accumulator  
Z = one sample delay  
MCLKOUT = modulators conversion bit rate  
*/  
1
10  
100  
DECIMATION RATE  
1k  
always @ (negedge mclk1 or posedge reset)  
if (reset)  
Figure 24. SNR vs. Decimation Rate for Different Filter Types  
begin  
The following Verilog code provides an example of a Sinc3 filter  
implementation on a Xilinx® Spartan-II 2.5 V FPGA. This code  
can possibly be compiled for another FPGA, such as an Altera®  
device. Note that the data is read on the negative clock edge in  
this case, although it can be read on the positive edge, if preferred.  
Figure 24 shows the effect of using different decimation rates  
with various filter types.  
/*initialize acc registers on reset*/  
acc1 <= 0;  
acc2 <= 0;  
acc3 <= 0;  
end  
else  
begin  
/*perform accumulation process*/  
acc1 <= acc1 + ip_data1;  
acc2 <= acc2 + acc1;  
acc3 <= acc3 + acc2;  
end  
/*`Data is read on negative clk edge*/  
module DEC256SINC24B(mdata1, mclk1, reset,  
DATA);  
input mclk1;  
input reset;  
input mdata1;  
filtered*/  
/*used to clk filter*/  
/*used to reset filter*/  
/*ip data to be  
/*DECIMATION STAGE (MCLKOUT/ WORD_CLK)  
*/  
always @ (posedge mclk1 or posedge reset)  
if (reset)  
word_count <= 0;  
else  
output [15:0] DATA;  
/*filtered op*/  
integer location;  
integer info_file;  
word_count <= word_count + 1;  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
reg [23:0]  
ip_data1;  
acc1;  
always @ (word_count)  
word_clk <= word_count[7];  
acc2;  
acc3;  
acc3_d1;  
acc3_d2;  
diff1;  
Rev. D | Page 15 of 20  
 
 
AD7400A  
Data Sheet  
/*DIFFERENTIATOR (including decimation  
stage)  
Perform the differentiation stage (FIR) at a  
lower speed.  
diff2_d <= diff2;  
end  
/* Clock the Sinc output into an output  
register  
DIFF1  
DIFF2  
DIFF3  
+
+
+
WORD_CLK  
ACC3  
–1  
–1  
–1  
Z
Z
Z
DIFF3  
DATA  
Figure 27. Clocking Sinc Output into an Output Register  
WORD_CLK  
WORD_CLK = output word rate  
*/  
Figure 26. Differentiator  
Z = one sample delay  
WORD_CLK = output word rate  
*/  
always @ (posedge word_clk)  
begin  
DATA[15] <= diff3[23];  
DATA[14] <= diff3[22];  
DATA[13] <= diff3[21];  
DATA[12] <= diff3[20];  
DATA[11] <= diff3[19];  
DATA[10] <= diff3[18];  
DATA[9] <= diff3[17];  
DATA[8] <= diff3[16];  
DATA[7] <= diff3[15];  
DATA[6] <= diff3[14];  
DATA[5] <= diff3[13];  
DATA[4] <= diff3[12];  
DATA[3] <= diff3[11];  
DATA[2] <= diff3[10];  
DATA[1] <= diff3[9];  
DATA[0] <= diff3[8];  
always @ (posedge word_clk or posedge reset)  
if(reset)  
begin  
acc3_d2 <= 0;  
diff1_d <= 0;  
diff2_d <= 0;  
diff1 <= 0;  
diff2 <= 0;  
diff3 <= 0;  
end  
else  
begin  
diff1 <= acc3 - acc3_d2;  
diff2 <= diff1 - diff1_d;  
diff3 <= diff2 - diff2_d;  
acc3_d2 <= acc3;  
diff1_d <= diff1;  
end  
endmodule  
Rev. D | Page 16 of 20  
Data Sheet  
AD7400A  
APPLICATIONS INFORMATION  
GROUNDING AND LAYOUT  
INSULATION LIFETIME  
All insulation structures subjected to sufficient time and/or  
voltage are vulnerable to breakdown. In addition to the testing  
performed by the regulatory agencies, Analog Devices has carried  
out an extensive set of evaluations to determine the lifetime of  
the insulation structure within the AD7400A.  
Supply decoupling with a value of 100 nF is strongly recom-  
mended on both VDD1 and VDD2. Decoupling on one or  
both VDDx pins does not significantly affect performance. In  
applications involving high common-mode transients, ensure  
that board coupling across the isolation barrier is minimized.  
Furthermore, the board layout should be designed so that  
any coupling that occurs equally affects all pins on a given  
component side. Failure to ensure this may cause voltage  
differentials between pins to exceed the absolute maximum  
ratings of the device, thereby leading to latch-up or permanent  
damage. Any decoupling used should be placed as close to the  
supply pins as possible.  
These tests subjected populations of devices to continuous  
cross-isolation voltages. To accelerate the occurrence of failures,  
the selected test voltages were values exceeding those of normal  
use. The time to failure values of these units were recorded and  
used to calculate acceleration factors. These factors were then  
used to calculate the time to failure under normal operating  
conditions. The values shown in Table 7 are the lesser of the  
following two values:  
Series resistance in the analog inputs should be minimized to  
avoid any distortion effects, especially at high temperatures. If  
possible, equalize the source impedance on each analog input to  
minimize offset. Beware of mismatch and thermocouple effects  
on the analog input PCB tracks to reduce offset drift.  
The value that ensures at least a 50-year lifetime of  
continuous use.  
The maximum CSA/VDE approved working voltage.  
Note that the lifetime of the AD7400A varies according to  
the waveform type imposed across the isolation barrier. The  
iCoupler insulation structure is stressed differently depending  
on whether the waveform is bipolar ac, unipolar ac, or dc.  
Figure 28, Figure 29, and Figure 30 illustrate the different  
isolation voltage waveforms.  
EVALUATING THE AD7400A PERFORMANCE  
An AD7400A evaluation board is available with split ground  
planes and a board split beneath the AD7400A package to  
ensure isolation. This board allows access to each pin on the  
device for evaluation purposes.  
RATED PEAK VOLTAGE  
The evaluation board package includes a fully assembled and  
tested evaluation board, documentation, and software for  
controlling the board from the PC via the EVAL-CED1Z. The  
software also includes a SINC3 filter implemented on an FPGA.  
The evaluation board is used in conjunction with the EVAL-CED1Z  
board and can be used as a standalone board. The software  
allows the user to perform ac (fast Fourier transform) and dc  
(histogram of codes) tests on the AD7400A. The software and  
documentation are on a CD that ships with the evaluation board.  
0V  
Figure 28. Bipolar AC Waveform  
RATED PEAK VOLTAGE  
0V  
Figure 29. Unipolar AC Waveform  
RATED PEAK VOLTAGE  
0V  
Figure 30. DC Waveform  
Rev. D | Page 17 of 20  
 
 
 
 
 
 
 
AD7400A  
Data Sheet  
OUTLINE DIMENSIONS  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 31. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (RW-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Package  
Option  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
AD7400AYRWZ  
AD7400AYRWZ-RL  
EVAL-AD7400AEDZ  
EVAL-CED1Z  
16-Lead Standard Small Outline Package (SOIC_W)  
16-Lead Standard Small Outline Package (SOIC_W)  
Standalone Evaluation Board  
RW-16  
RW-16  
Development Board  
1 Z = RoHS Compliant Part.  
Rev. D | Page 18 of 20  
 
 
 
Data Sheet  
NOTES  
AD7400A  
Rev. D | Page 19 of 20  
AD7400A  
NOTES  
Data Sheet  
©2008–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07077-0-11/12(D)  
Rev. D | Page 20 of 20  

相关型号:

AD7400AYRWZ1

Isolated Sigma-Delta Modulator
ADI

AD7400AYRWZREEL

Isolated Sigma-Delta Modulator
ADI

AD7400AYRWZREEL7

Isolated Sigma-Delta Modulator
ADI

AD7400BRW

Isolated Sigma-Delta Modulator
ADI

AD7400YRWZ

Isolated Sigma-Delta Modulator
ADI

AD7400YRWZ-REEL

Isolated Sigma-Delta Modulator
ADI

AD7400YRWZ-REEL7

Isolated Sigma-Delta Modulator
ADI

AD7400_06

Isolated Sigma-Delta Modulator
ADI

AD7401

Isolated Sigma-Delta Modulator
ADI

AD7401A

Isolated Sigma-Delta Modulator
ADI

AD7401AYRWZ

Isolated Sigma-Delta Modulator
ADI

AD7401AYRWZ-REEL

IC,CONVERTER, OTHER/SPECIAL/MISCELLANEOUS,CMOS,SOP,16PIN
ADI