AD7809BSTZ-REEL [ADI]

暂无描述;
AD7809BSTZ-REEL
型号: AD7809BSTZ-REEL
厂家: ADI    ADI
描述:

暂无描述

文件: 总28页 (文件大小:302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
+3.3 V to +5 V Quad/Octal 10-Bit DACs  
AD7804/AD7805/AD7808/AD7809*  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
Four 10-Bit DACs in One Package  
Serial and Parallel Loading Facilities Available  
AD7804 Quad 10-Bit Serial Loading  
AD7805 Quad 10-Bit Parallel Loading  
AD7808 Octal 10-Bit Serial Loading  
AD7809 Octal 10-Bit Parallel Loading  
+3.3 V to +5 V Operation  
AV  
DD  
DV  
DD  
AGND DGND  
V
F*  
OUT  
OUT  
POWER ON  
RESET  
REFOUT  
REFIN  
1.23V REF  
AD7804/  
AD7808  
V
E*  
AV  
DD  
V
BIAS  
DIVIDER  
V
V
V
D
C
B
MUX  
DAC D  
OUT  
OUT  
OUT  
COMP  
CHANNEL D  
CONTROL REG  
DATA  
REGISTER  
DAC  
REGISTER  
Power-Down Mode  
Power-On Reset  
V
BIAS  
MUX  
DAC C  
Standby Mode (All DACs/Individual DACs)  
Low Power All CMOS Construction  
10-Bit Resolution  
Double Buffered DAC Registers  
Dual External Reference Capability  
DATA  
REGISTER  
CHANNEL C  
CONTROL REG  
DAC  
REGISTER  
V
BIAS  
MUX  
DAC B  
CHANNEL B  
CONTROL REG  
DATA  
REGISTER  
DAC  
REGISTER  
APPLICATIONS  
Optical Disk Drives  
Instrumentation and Communication Systems  
Process Control and Voltage Setpoint Control  
Trim Potentiometer Replacement  
Automatic Calibration  
V
BIAS  
V
V
A
MUX  
DAC A  
OUT  
PD**  
DATA  
REGISTER  
DAC  
REGISTER  
CHANNEL A  
CONTROL REG  
H*  
G*  
SYSTEM  
CONTROL REG  
OUT  
V
OUT  
FSIN  
CLKIN  
SDIN  
INPUT SHIFT  
REGISTER &  
CONTROL LOGIC  
GENERAL DESCRIPTION  
The AD7804/AD7808 are quad/octal 10-bit digital-to-analog  
converters, with serial load capabilities, while the AD7805/AD7809  
are quad/octal 10-bit digital-to-analog converters with parallel  
load capabilities. These parts operate from a +3.3 V to +5 V  
(±10%) power supply and incorporates an on-chip reference.  
**ONLY AD7804 SHOWN FOR CLARITY  
**SHOWS ADDITIONAL CHANNELS ON THE AD7808  
**PIN ON THE AD7808 ONLY  
CLR LDAC  
AV  
DD  
DV  
DD  
AGND DGND  
V
OUT  
F*  
E*  
POWER ON  
RESET  
REFOUT  
REFIN  
1.23V REF  
AD7805/  
AD7809  
These DACs provide output signals in the form of VBIAS ± VSWING  
VSWING is derived internally from VBIAS. On-chip control registers  
include a system control register and channel control registers.  
The system control register has control over all DACs in the  
package. The channel control registers allow individual control  
of DACs. The complete transfer function of each individual  
DAC can be shifted around the VBIAS point using an on-chip  
Sub DAC. All DACs contain double buffered data inputs,  
which allow all analog outputs to be simultaneously updated  
using the asynchronous LDAC input.  
.
V
OUT  
AV  
DD  
V
BIAS  
DIVIDER  
V
D
MUX  
DAC D  
OUT  
COMP  
CHANNEL D  
CONTROL REG  
DATA  
REGISTER  
DAC  
REGISTER  
V
BIAS  
V
V
C
MUX  
OUT  
OUT  
OUT  
DAC C  
DAC  
REGISTER  
CHANNEL C  
CONTROL REG  
DATA  
REGISTER  
V
BIAS  
B
A
MUX  
DAC B  
Control Features  
Channels Controlled  
Main DAC  
Sub DAC  
DATA  
REGISTER  
DAC  
REGISTER  
CHANNEL B  
CONTROL REG  
Hardware Clear  
System Control  
Power Down1  
System Standby2  
System Clear  
Input Coding  
Channel Control  
Channel Standby2  
Channel Clear  
VBIAS  
All  
͙
͙
V
BIAS  
All  
All  
All  
All  
͙
͙
͙
͙
͙
͙
V
MUX  
DAC A  
DATA  
REGISTER  
DAC  
REGISTER  
CHANNEL A  
CONTROL REG  
͙
͙
͙
PD**  
SYSTEM  
CONTROL REG  
V
H*  
G*  
OUT  
Selective  
Selective  
Selective  
͙
͙
͙
INPUT  
REGISTER  
CS  
WR  
CONTROL  
LOGIC  
V
OUT  
MODE A0 A1  
DB9 DB2 DB1 DB0  
A2**  
CLR LDAC  
NOTES  
**ONLY AD7805 SHOWN FOR CLARITY  
**SHOWS ADDITIONAL CHANNELS ON THE AD7809  
**PIN ON THE AD7809 ONLY  
1Power-down function powers down all internal circuitry including the reference.  
2Standby functions power down all circuitry except for the reference.  
*Patent pending.  
Index on Page 26.  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
AD7804/AD7805/AD7808/AD7809  
AD7804/AD7805–SPECIFICATIONS (AV and DV  
DD = 3.3 V ؎ 10% to 5 V ؎ 10%; AGND = DGND = 0 V;  
Reference = Internal Reference; CL = 100 pF; RL = 2 kto GND. Sub DAC at Midscale. All specifications TMIN to TMAX unless otherwise noted.)  
DD  
Parameter  
B Grade1  
C Grade1  
Units  
Comments  
STATIC PERFORMANCE  
MAIN DAC  
Resolution  
10  
10  
Bits  
Relative Accuracy  
Gain Error  
±3  
±3  
–80/+40  
V  
±3  
±3  
–80/+40  
V  
LSB max  
% FSR max  
mV max  
mV max  
Bias Offset Error2  
Zero-Scale Error3  
DAC Code = 0.5 Full Scale  
DAC Code = 000H for Offset Binary  
BIAS  
BIAS  
/ +40  
/ +40  
16  
16  
Monotonicity  
Minimum Load Resistance  
SUB DAC  
Resolution  
Differential Nonlinearity  
9
2
10  
2
Bits  
kmin  
and 200H for Twos Complement Coding  
Refers to an LSB of the Main DAC  
8
8
Bits  
LSB typ  
LSB max  
±0.125  
±0.5  
±0.125  
±0.5  
OUTPUT CHARACTERISTICS  
Output Voltage Range3  
V
BIAS ± 15/16 × VBIAS  
V
BIAS ± 15/16 × VBIAS  
V
V
Twos Complement Coding  
Offset Binary Coding  
Typically 1.5 µs  
VBIAS/16 to 31/16 × VBIAS VBIAS/16 to 31/16 × VBIAS  
4
Voltage Output Settling Time to 10 Bits  
Slew Rate  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
Digital Crosstalk  
Analog Crosstalk  
4
2.5  
1
0.5  
0.5  
±0.2  
2
µs max  
V/µs typ  
nV-s typ  
nV-s typ  
nV-s typ  
LSB typ  
typ  
2.5  
1
0.5  
0.5  
±0.2  
2
1 LSB Change Around the Major Carry  
DC Output Impedance  
Power Supply Rejection Ratio  
0.002  
0.002  
%/% typ  
VDD ± 10%  
DAC REFERENCE INPUTS  
REF IN Range  
1.0 to VDD/2  
1.0 to VDD/2  
V min to V max  
REF IN Input Leakage  
±1  
±1  
µA max  
Typically ±1 nA  
DIGITAL INPUTS  
Input High Voltage, VIH @ VDD = 5 V  
Input High Voltage, VIH @ VDD = 3.3 V 2.1  
Input Low Voltage, VIL @ VDD = 5 V  
Input Low Voltage, VIL @ VDD = 3.3 V  
Input Leakage Current  
2.4  
2.4  
2.1  
0.8  
0.6  
V min  
V min  
V max  
V max  
0.8  
0.6  
±10  
µA max  
Input Capacitance  
10  
10  
pF max  
Input Coding  
Twos Comp/Binary  
Twos Comp/Binary  
REFERENCE OUTPUT  
REF OUT Output Voltage  
REF OUT Error  
1.23  
±8  
1.23  
±8  
V nom  
% max  
REF OUT Temperature Coefficient  
REF OUT Output Impedance  
–100  
5
–100  
5
ppm/°C typ  
knom  
POWER REQUIREMENTS  
VDD (AVDD and DVDD  
)
3/5.5  
3/5.5  
V min to V max  
IDD (AIDD Plus DIDD  
Normal Mode  
System Standby (SSTBY) Mode  
Power-Down (PD) Mode  
@ +25°C  
)
Excluding Load Currents  
VIH = VDD, VIL = DGND  
VIH = VDD, VIL = DGND  
12  
250  
12  
250  
mA max  
µA  
0.8  
1.5  
0.8  
1.5  
µA max  
µA max  
VIH = VDD, VIL = DGND  
TMIN–TMAX  
Power Dissipation  
Normal Mode  
System Standby (SSTBY) Mode  
Power-Down (PD) Mode  
@ +25°C  
Excluding Power Dissipated in Load  
66  
1.38  
66  
1.38  
mW max  
mW max  
4.4  
8.25  
4.4  
8.25  
µW max  
µW max  
TMIN–TMAX  
NOTES  
1Temperature range is 40°C to +85°C.  
2Can be minimized using the Sub DAC.  
3VBIAS is the center of the output voltage swing and can be VDD/2, Internal Reference or REFIN as determined by MX1 and MX0 in the channel control register.  
Specifications subject to change without notice.  
–2–  
REV. A  
AD7804/AD7805/AD7808/AD7809  
AD7808/AD7809–SPECIFICATIONS (AV and DV  
DD = 3.3 V ؎ 10% to 5 V ؎ 10%; AGND = DGND = 0 V;  
Reference = Internal Reference; CL = 100 pF; RL = 2 kto GND. Sub DAC at Midscale. All specifications TMIN to TMAX unless otherwise noted.)  
DD  
Parameter  
B Grade1  
Units  
Comments  
STATIC PERFORMANCE  
MAIN DAC  
Resolution  
10  
±4  
±3  
±60  
±35  
9
Bits  
Relative Accuracy  
Gain Error  
LSB max  
% FSR max  
mV max  
mV max  
Bits  
Bias Offset Error2  
Zero-Scale Error  
Monotonicity  
DAC Code = 0.5 Full Scale  
DAC Code = 000H for Offset Binary  
and 200H for Twos Complement  
Coding  
Minimum Load Resistance  
SUB DAC  
2
kmin  
Resolution  
8
Bits  
Differential Nonlinearity  
±0.125  
±0.5  
LSB typ  
LSB max  
Refers to an LSB of the Main DAC  
OUTPUT CHARACTERISTICS  
Output Voltage Range3  
V
BIAS ± 15/16 × VBIAS  
V
V
Twos Complement Coding  
Offset Binary Coding  
Typically 1.5 µs  
VBIAS/16 to 31/16 × VBIAS  
4
Voltage Output Settling Time to 10 Bits  
Slew Rate  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
Digital Crosstalk  
Analog Crosstalk  
µs max  
V/µs typ  
nV-s typ  
nV-s typ  
nV-s typ  
LSB typ  
typ  
2.5  
1
0.5  
0.5  
±0.2  
2
1 LSB Change Around the Major Carry  
DC Output Impedance  
Power Supply Rejection Ratio  
0.002  
%/% typ  
VDD ± 10%  
DAC REFERENCE INPUTS  
REF IN Range  
1.0 to VDD/2  
V min to V max  
REF IN Input Leakage  
±1  
µA max  
Typically ±1 nA  
DIGITAL INPUTS  
Input High Voltage, VIH @ VDD = 5 V  
Input High Voltage, VIH @ VDD = 3.3 V  
Input Low Voltage, VIL @ VDD = 5 V  
Input Low Voltage, VIL @ VDD = 3.3 V  
Input Leakage Current  
2.4  
2.1  
0.8  
0.6  
±10  
8
V min  
V min  
V max  
V max  
µA max  
pF max  
Input Capacitance  
Input Coding  
Twos Comp/Binary  
REFERENCE OUTPUT  
REF OUT Output Voltage  
REF OUT Error  
1.23  
±8  
V nom  
% max  
REF OUT Temperature Coefficient  
REF OUT Output Impedance  
–100  
5
ppm/°C typ  
knom  
POWER REQUIREMENTS  
VDD (AVDD and DVDD  
)
3/5.5  
V min to V max  
IDD (AIDD Plus DIDD  
Normal Mode  
System Standby (SSTBY) Mode  
Power-Down (PD) Mode  
@ +25°C  
)
Excluding Load Currents  
VIH = VDD, VIL = DGND  
VIH = VDD, VIL = DGND  
18  
250  
mA max  
µA max  
1
3
µA max  
µA max  
VIH = VDD, VIL = DGND  
TMIN–TMAX  
Power Dissipation  
Normal Mode  
System Standby (SSTBY) Mode  
Power-Down (PD) Mode  
@ +25°C  
Excluding Power Dissipated in Load  
99  
1.38  
mW max  
mW max  
5.5  
16.5  
µW max  
µW max  
TMIN–TMAX  
NOTES  
1Temperature range is 40°C to +85°C.  
2Can be minimized using the Sub DAC.  
3VBIAS is the center of the output voltage swing and can be VDD/2, Internal Reference or REFIN as determined by MX1 and MX0 in the channel control register.  
Specifications subject to change without notice.  
–3–  
REV. A  
AD7804/AD7805/AD7808/AD7809  
1
(V = 3.3 V ؎ 10% to 5 V ؎ 10%; AGND = DGND = 0 V; Reference =  
DD  
AD7804/AD7808 TIMING CHARACTERISTICS  
Internal Reference. All specifications TMIN to TMAX unless otherwise noted.)  
Limit at TMIN, TMAX  
All Versions  
Parameter  
Units  
Description  
t1  
t2  
t3  
t4  
t5  
t6  
t6A  
t7  
100  
40  
40  
30  
30  
5
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns min  
ns min  
ns min  
CLKIN Cycle Time  
CLKIN High Time  
CLKIN Low Time  
FSIN Setup Time  
Data Setup Time  
Data Hold Time  
LDAC Hold Time  
FSIN Hold Time  
6
90  
20  
40  
100  
t8  
t9  
LDAC, CLR Pulsewidth  
LDAC Setup Time  
NOTES  
1Sample tested during initial release and after any redesign or process change that may affect this parameter. All input signals are specified with tr = tf = 5 ns and  
timed from a voltage of (VIL + VIH)/2.  
Specifications subject to change without notice.  
t1  
CLKIN(I)  
t2  
t3  
t4  
t7  
FSIN(I)  
t5  
t6  
DB0  
SDIN(I)  
DB15  
t6A  
t5  
1
LDAC  
t9  
2
LDAC  
t8  
t8  
CLR  
1
2
TIMING REQUIREMENTS FOR SYNCHRONOUS LDAC UPDATE OR LDAC MAY BE TIED PERMANENTLY LOW IF REQUIRED.  
TIMING REQUIREMENTS FOR ASYNCHRONOUS LDAC UPDATE.  
Figure 1. Timing Diagram for AD7804 and AD7808  
–4–  
REV. A  
AD7804/AD7805/AD7808/AD7809  
AD7805/AD7809 TIMING CHARACTERISTICS1  
(VDD = 3.3 V ؎ 10% to 5 V ؎ 10%; AGND = DGND = 0 V; Reference  
= Internal Reference. All specifications TMIN to TMAX unless otherwise noted.)  
Limit at TMIN, TMAX  
All Versions  
Parameter  
Unit  
Description  
t1  
t2  
t3  
t4  
t5  
t6  
t6A  
t7  
t8  
25  
4.5  
25  
4.5  
25  
4.5  
6
40  
0
40  
100  
40  
100  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
Mode Valid to Write Setup Time  
Mode Valid to Write Hold Time  
Address Valid to Write Setup Time  
Address Valid to Write Hold Time  
Data Setup Time  
Data Hold Time  
LDAC Valid to Write Hold Time  
Chip Select to Write Setup Time  
Chip Select to Write Hold Time  
Write Pulsewidth  
Time Between Successive Writes  
LDAC, CLR Pulsewidth  
t9  
t10  
t11  
t12  
Write to LDAC Setup Time  
NOTE  
1Sample tested during initial release and after any redesign or process change that may affect this parameter. All input signals are specified with tr = tf = 5 ns and  
timed from a voltage of (VIL + VIH)/2.  
Specifications subject to change without notice.  
t1  
t2  
MODE  
t4  
t3  
A0, A1, A2  
t8  
t7  
CS  
t10  
t9  
WR  
t6  
t5  
DATA  
t6A  
1
LDAC  
t11  
t12  
2
LDAC  
t11  
CLR  
1
2
TIMING REQUIREMENTS FOR SYNCHRONOUS LDAC UPDATE OR LDAC MAY BE TIED PERMANENTLY LOW IF REQUIRED.  
TIMING REQUIREMENTS FOR ASYNCHRONOUS LDAC UPDATE.  
Figure 2. Timing Diagram for AD7805/AD7809 Parallel Write  
REV. A  
–5–  
AD7804/AD7805/AD7808/AD7809  
ABSOLUTE MAXIMUM RATINGS1  
(TA = +25°C unless otherwise noted)  
PDIP (N-24) Package, Power Dissipation . . . . . . . . . 670 mW  
θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 105°C/W  
Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +260°C  
SOIC (R-28) Package, Power Dissipation . . . . . . . . . 875 mW  
θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 70°C/W  
Lead Temperature, Soldering  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
PDIP (N-28) Package, Power Dissipation . . . . . . . . . 875 mW  
θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 75°C/W  
Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +260°C  
SSOP (RS-28) Package, Power Dissipation . . . . . . . . 875 mW  
θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 110°C/W  
Lead Temperature, Soldering  
DVDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
AVDD to AGND . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . –0.3 V + 0.3 V  
Digital Input Voltage to DGND . . . . .0.3 V to DVDD + 0.3 V  
Analog Input Voltage to AGND . . . . . –0.3 V to AVDD + 0.3 V  
COMP to AGND . . . . . . . . . . . . . . . –0.3 V to AVDD + 0.3 V  
REF OUT to AGND . . . . . . . . . . . . . . . . . . –0.3 V to + AVDD  
REF IN to AGND . . . . . . . . . . . . . . . –0.3 V to AVDD + 0.3 V  
VOUT to AGND2 . . . . . . . . . . . . . . . . –0.3 V to AVDD + 0.3 V  
Input Current to Any Pin Except Supplies3 . . . . . . . . ±10 mA  
Operating Temperature Range  
AD7804/AD7805 Commercial Plastic  
(B, C Versions) . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
AD7808/AD7809 Commercial Plastic  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
TQFP (ST-44B) Package, Power Dissipation . . . . . . 450 mW  
θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 116°C/W  
Lead Temperature, Soldering  
(B, C Versions) . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
SOIC (R-16) Package, Power Dissipation . . . . . . . . . 450 mW  
θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 75°C/W  
Lead Temperature, Soldering  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
PDIP (N-16) Package, Power Dissipation . . . . . . . . . 670 mW  
θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 116°C/W  
Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +260°C  
SOIC (R-24) Package, Power Dissipation . . . . . . . . . 450 mW  
θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 75°C/W  
Lead Temperature, Soldering  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2The outputs may be shorted to voltages in this range provided the power dissipation  
of the package is not exceeded.  
3Transient currents of up to 100 mA will not cause SCR latch-up.  
Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C  
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C  
ORDERING GUIDE  
Supply  
Voltage  
Temperature  
Range  
Relative  
Accuracy  
Package  
Options  
Model  
Package Descriptions  
AD7804BN  
AD7804BR  
3.3 V to 5 V  
3.3 V to 5 V  
–40°C to +85°C  
–40°C to +85°C  
±3 LSB  
±3 LSB  
16-Lead Plastic DIP  
16-Lead Small Outline IC  
N-16  
R-16  
AD7805BN  
AD7805BR  
AD7805BRS  
AD7805CR  
3.3 V to 5 V  
3.3 V to 5 V  
3.3 V to 5 V  
3.3 V to 5 V  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
±3 LSB  
±3 LSB  
±3 LSB  
±3 LSB  
28-Lead Plastic DIP  
N-28  
R-28  
RS-28  
R-28  
28 Lead Small Outline IC  
28-Lead Shrink Small Outline Package  
28-Lead Small Outline IC  
AD7808BN  
AD7808BR  
AD7809BST  
3.3 V to 5 V  
3.3 V to 5 V  
3.3 V to 5 V  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
±4 LSB  
±4 LSB  
±4 LSB  
24-Lead Plastic DIP  
24 Lead Small Outline IC  
44-Lead Thin Plastic Quad Flatpack (TQFP)  
N-24  
R-24  
ST-44B  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although these devices feature proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–6–  
REV. A  
AD7804/AD7805/AD7808/AD7809  
AD7804/AD7808 PIN FUNCTION DESCRIPTION  
AD7804  
Pin No.  
AD7808  
Pin No. Mnemonic  
Description  
1
2, 3  
4
1, 6  
2, 3  
4
AGND  
OUTB, VOUT  
REFOUT  
Ground reference point for analog circuitry.  
Analog output voltage from the DACs.  
Reference Output. This is a bandgap reference and is typically 1.23 V.  
V
A
5
PD  
Active low input used to put the part into low power mode reducing current consumption  
to 1 µA.  
7, 8  
9
V
FSIN  
OUTF, VOUT  
E
Analog output voltages from the DACs.  
5
6
Level-triggered control input (active low). This is the frame synchronization signal for the  
input data. When FSIN goes low, it enables the input shift register and data is transferred  
on the falling edges of CLKIN.  
LDAC Input. When this digital input is taken low, all DAC registers are simultaneously  
updated with the contents of the data registers. If LDAC is tied permanently low, or is  
low on the sixteenth falling clock edge with timing similar to that of SDIN, an automatic  
update will take place.  
10  
LDAC  
7
11  
SDIN  
Serial Data Input. These devices accept a 16-bit word. Data is clocked into the input shift  
register on the falling edge of CLKIN.  
8
9
10  
12  
13  
14  
DGND  
DVDD  
CLKIN  
Ground reference point for digital circuitry.  
Digital Power Supply.  
Clock Input. Data is clocked into the input shift register on the falling edges of CLKIN.  
Duty Cycle should be between 40% and 60%.  
11  
15  
CLR  
Asynchronous CLR Input. When this input is taken low, all Main DAC outputs are  
cleared either to VBIAS or to VBIAS/16 volts. All Sub DACs are also cleared and thus the  
transfer function of the Main DAC will remain centered around the VBIAS point.  
16  
17, 18  
20  
NC  
No Connect. This pin should be left open circuit.  
Analog output voltages from the DACs.  
This is an external reference input for the DACs. When this reference is selected for a  
DAC in the control register, the analog output from the selected DAC swings around this  
point.  
VOUTH, VOUTG  
REFIN  
12  
13  
21  
COMP  
Compensation Pin. This pin provides an output from the internal VDD/2 divider and is  
provided for ac bypass purposes only. This pin should be decoupled with 1 nF capacitors  
to both AVDD and AGND. This pin can be overdriven with an external reference, thus  
giving the facility for two external references on the part.  
14, 15  
16  
22, 23  
19, 24  
V
AVDD  
OUTD, VOUT  
C
Analog output voltage from the DACs.  
Analog Power Supply. +3.3 V to +5 V.  
AD7808 PIN CONFIGURATION  
AD7804 PIN CONFIGURATION  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
AGND  
AV  
V
DD  
1
2
3
4
5
6
7
8
16 AV  
DD  
AGND  
C
V
B
A
OUT  
OUT  
V
B
A
15  
14  
13  
12  
11  
10  
9
V
C
OUT  
OUT  
3
V
V
D
OUT  
OUT  
V
V
D
OUT  
OUT  
4
COMP  
REFIN  
REFOUT  
AD7804  
TOP VIEW  
(Not to Scale)  
REFOUT  
COMP  
REFIN  
5
PD  
AD7808  
TOP VIEW  
(Not to Scale)  
FSIN  
LDAC  
SDIN  
6
AV  
DD  
AGND  
CLR  
V
F
E
7
V
G
OUT  
OUT  
CLKIN  
8
V
V
H
OUT  
OUT  
DGND  
DV  
DD  
9
16 NC  
15  
FSIN  
10  
11  
12  
LDAC  
SDIN  
CLR  
14  
13  
CLKIN  
DGND  
DV  
DD  
NC = NO CONNECT  
REV. A  
–7–  
AD7804/AD7805/AD7808/AD7809  
AD7805/AD7809 PIN FUNCTION DESCRIPTIONS  
AD7805 AD7809  
Pin No. Pin No.  
Mnemonic  
Description  
1, 11, 13,  
20, 33  
NC  
No Connect. These pins should be left open circuit.  
1
2, 3  
4
5–10,  
12, 13  
19, 20  
2, 5, 39, 40  
41, 42  
43  
3, 4, 6, 7, 9, DB9–DB2  
10, 15, 23  
AGND  
Ground reference point for analog circuitry.  
Analog output voltages from the DACs.  
Reference Output. This is a bandgap reference and is typically 1.23 V.  
Data Inputs. DB9 to DB2 are the 8 MSBs of the data word.  
V
OUTB, VOUT  
A
E
REFOUT  
24, 26  
DB1, DB0  
DB1 and DB0 function as the 2 LSBs of the 10-bit word in 10-bit parallel mode but  
have other functions when BYTE loading structure is used.  
Analog output voltages from the DACs.  
LDAC Input. When this digital input is taken low, all DAC registers are simultaneously  
updated with the contents of the DAC data registers. If LDAC is permanently tied low, or is  
low during the rising edge of WR similar to data inputs, an automatic update will take place.  
Ground reference point for digital circuitry.  
Digital Power Supply.  
Write Input WR is an active low logic input which is used in conjunction with CS and  
the address pins to write data to the relevant registers.  
8, 12  
14  
VOUTF, VOUT  
LDAC  
11  
14  
15  
16  
16  
17  
18  
DGND  
DVDD  
WR  
17  
18  
21  
19  
CS  
CLR  
Chip Select. Active low logic input.  
Asynchronous CLR Input. When this input is taken low, all Main DAC outputs are  
cleared either to VBIAS or to VBIAS/16 volts. All Sub DACs are also cleared and thus the  
transfer function of the MAIN DAC will remain centered around the VBIAS point.  
Analog output voltages from the DACs.  
22, 25  
VOUTH, VOUTG  
21, 22  
27, 29, 30  
A2, A1, A0  
DAC Address Inputs. These digital inputs are used in conjunction with CS and WR to  
determine which DAC channel control register or DAC data register is loaded from the  
input register. These address bits are don’t cares when writing to the system control register.  
Logic Input. Logic high enables writing to the DAC data registers, a logic low enables  
writing to the control registers.  
This is an external reference input for the DAC. When this reference is selected for the DAC  
in the control register, the analog output from the selected DAC swings around this point.  
Compensation Pin. This pin provides an output from the internal VDD/2 divider and is  
provided for ac bypass purposes only. This pin should be decoupled with 1 nF capacitors  
to both AVDD and AGND. This pin can be overdriven with an external reference, thus  
giving the facility for two external references on the part.  
23  
24  
25  
31  
32  
34  
MODE  
REFIN  
COMP  
26, 27  
28  
35, 36  
28, 37, 38  
44  
VOUTD, VOUT  
AVDD  
PD  
C
Analog output voltages from the DACs.  
Analog Power Supply.  
Active low input used to put the part into low power mode reducing current consump-  
tion to 1 µA.  
AD7805 PIN CONFIGURATION  
AD7809 PIN CONFIGURATION  
1
2
3
4
5
6
7
8
9
28  
27  
26  
25  
AGND  
AV  
V
DD  
V
B
A
C
OUT  
OUT  
44 43 42 41 40 39 38 37 36 35 34  
V
V
D
OUT  
OUT  
REFOUT  
DB9  
COMP  
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
NC  
NC  
PIN 1  
IDENTIFIER  
2
3
REFIN  
MODE  
A0  
AGND  
DB9  
24 REFIN  
DB8  
23  
22  
21  
MODE  
A0  
AD7805  
TOP VIEW  
(Not to Scale)  
4
DB8  
DB7  
5
AGND  
DB7  
A1  
AD7809  
TOP VIEW  
(Not to Scale)  
DB6  
A1  
6
AV  
DD  
DB5  
20 DB0  
7
A2  
DB6  
8
DB0  
V
F
DB4 10  
11  
19  
18  
17  
16  
15  
DB1  
OUT  
9
V
G
DB5  
DB4  
NC  
OUT  
LDAC  
CLR  
CS  
10  
11  
DB1  
DB2  
12  
13  
14  
DB3  
DB2  
WR  
DV  
12 13 14 15 16 17 18 19 20 21 22  
DGND  
DD  
NC = NO CONNECT  
–8–  
REV. A  
AD7804/AD7805/AD7808/AD7809  
TERMINOLOGY  
Relative Accuracy  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the digital inputs change state with the  
DAC selected and the LDAC used to update the DAC. It is  
normally specified as the area of the glitch in nV-s and is mea-  
sured when the digital input code is changed by 1 LSB at the  
major carry transition. Regardless of whether offset binary or twos  
complement coding is used, the major carry transition occurs at  
the analog output voltage change of VBIAS to VBIAS – 1 LSB  
or vice versa.  
For the DACs, relative accuracy or endpoint nonlinearity is a  
measure of the maximum deviation, in LSBs, from a straight  
line passing through the endpoints of the DAC transfer func-  
tion. Figures 32 and 33 show the linearity at 3 V and 5 V  
respectively.  
Differential Nonlinearity  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of ±1 LSB maxi-  
mum ensures monotonicity.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of a DAC from the digital inputs of the same  
DAC but is measured when the DAC is not updated. It is speci-  
fied in nV secs and is measured with a full-scale code change on  
the data bus, i.e., from all 0s to all 1s and vice versa.  
Bias Offset Error  
If the DACs are ideal, the output voltage of any DAC with  
midscale code loaded will be equal to VBIAS where VBIAS is se-  
lected by MX1 and MX0 in the control register. The DAC bias  
offset error is the difference between the actual output voltage  
and VBIAS, expressed in mV.  
Digital Crosstalk  
Digital crosstalk is the glitch impulse transferred to the output  
of one converter due to a digital code change to another DAC.  
It is specified in nV-s.  
Gain Error  
The difference between the actual and ideal analog output  
range, expressed as a percent of full-scale range. It is the devia-  
tion in slope of the DAC transfer characteristic from ideal.  
Analog Crosstalk  
Analog crosstalk is a change in output of any DAC in response  
to a change in the output of one or more of the other DACs. It  
is measured in LSBs.  
Zero-Scale Error  
The zero-scale error is the actual output minus the ideal output  
from any DAC when zero code is loaded to the DAC. If offset  
binary coding is used, the code loaded is 000Hex, and if twos  
complement coding is used, a code of 200HEX is loaded to the  
DAC to calculate the zero-scale error. Zero-scale error is ex-  
pressed in mV.  
Power Supply Rejection Ratio (PSRR)  
This specification indicates how the output of the DAC is af-  
fected by changes in the power supply voltage. Power-supply  
rejection ratio is quoted in terms of % change in output per %  
change in VDD for full-scale output of the DAC. VDD is varied  
±10%.  
AD7804/AD7808 INTERFACE SECTION  
sequence for the channel control register write, and Figures 6  
and 7 show the sequence for loading data to the Main and Sub  
DAC data registers. Figure 3 shows the internal registers associ-  
ated with the AD7804/AD7808 serial interface DACs. Only one  
DAC structure is shown for clarity.  
The AD7804 and AD7808 are serial input devices. Three lines  
control the serial interface, FSIN, CLKIN and SDIN. The timing  
diagram is shown in Figure 1.  
Two mode bits (MD1 and MD0) which are DB13 and DB14 of  
the serial word written to the AD7804/AD7808 are used to deter-  
mine whether writing is to the DAC data registers or the control  
registers of the device. These parts contain a system control  
register for controlling the operation of all DACs in the package  
as well as a channel control register for controlling the operation of  
each individual DAC. Table I shows how to access these registers.  
FSIN  
CLKIN  
SDIN  
16-BIT  
INPUT SHIFT REGISTER  
DECODER  
SYSTEM  
CONTROL  
REGISTER  
Table I. Register Selection Table for the AD7804/AD7808  
CHANNEL  
CONTROL  
REGISTER  
DATA REGISTER  
DATA REGISTER  
TO ALL  
CHANNELS  
MD1  
MD0  
Function  
10  
8
DAC REGISTER  
DAC REGISTER  
0
0
1
0
1
X
Write enable to system control register.  
Write enable to channel control register.  
Write enable to DAC data registers.  
SINGLE  
CHANNEL  
10  
8
8-BIT DAC  
(SUB DAC)  
10-BIT DAC  
(MAIN DAC)  
V
OUT  
V
INTERNAL V  
BIAS  
REF  
/2  
When the FSIN input goes low, data appearing on the SDIN  
line is clocked into the input register on each falling edge of  
CLKIN. Data to be transferred to the AD7804/AD7808 is  
loaded MSB first. Figure 4 shows the loading sequence for the  
AD7804/AD7808 system control register, Figure 5 shows the  
V
MUX  
DD  
REFIN  
Figure 3. AD7804/AD7808 Internal Registers  
REV. A  
–9–  
AD7804/AD7805/AD7808/AD7809  
MSB  
LSB  
X
MD0 = 0 MD1 = 0  
X
X
X
X
X
0
BIN/COMP  
PD SSTBY SCLR  
0
X
X
X = Don’t Care  
Figure 4. AD7804/AD7808 System Control Register Loading Sequence  
DB15 (MSB)  
DB0 (LSB)  
X
MD0 = 1 MD1 = 0 A2* A1  
A0  
MX1 MX0  
X
X
X
STBY  
CLR  
0
X
X
X = Don’t Care  
*Applicable to the AD7808 Only, and Are Don’t Care Conditions when Operating the AD7804.  
Figure 5. AD7804/AD7808 Channel Control Register Loading Sequence  
DB15 (MSB)  
DB0 (LSB)  
MAIN/SUB MD0 = X MD1 = 1 A2* A1 A0  
DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
DB1 DB0  
X = Don’t Care  
*Applicable to the AD7808 Only, and Are Don’t Care Conditions when Operating the AD7804.  
Figure 6. AD7804/AD7808 Main DAC Data Register Loading Sequence (MAIN/SUB = 0)  
DB15 (MSB)  
DB0 (LSB)  
MAIN/SUB MD0 = X MD1 = 1 A2* A1 A0  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
X
X
X = Don’t Care  
*Applicable to the AD7808 Only, and Are Don’t Care Conditions when Operating the AD7804.  
Figure 7. AD7804/AD7808 Sub DAC Data Register Loading Sequence (MAIN/SUB = 1)  
AD7804/AD7808 SYSTEM CONTROL REGISTER (MD1 = 0,  
MD0 = 0)  
The bits in this register allow control over all DACs in the  
package. The control bits include power down (PD), DAC input  
coding select (BIN/COMP), system standby (SSTBY) and a  
system clear (SCLR). The function of these bits is as follows:  
When the system control register is selected by writing zeros to  
the mode bits, MD1 and MD0 the address bits are ignored as  
the system control register controls all DACs in the package.  
When MD1 = 0 and MD0 = 1, writing is to the channel control  
register. Only the DAC selected by the address bits will be af-  
fected by writing to this register. Each individual DAC has a  
channel control register.  
Power Down (PD)  
This bit in the control register is used to shut down the complete  
device. With a 0 in this position, the reference and all DACs are  
put into low power mode. Writing a 1 to this bit puts the part in  
the normal operating mode. When in power-down mode, the  
contents of all registers are retained and are valid when the  
device is put back into normal operation.  
The DACs data registers are addressed by writing a one to  
MD1 (DB13); the condition of MD0 (DB14) does not matter  
when writing to the data registers. DB15 determines whether  
writing is to the Main DAC data register or to the Sub DAC  
data register. The Main DAC is 10 bits wide and the Sub DAC  
is 8 bits wide. Thus when writing to the Sub DAC DB1 and  
DB0 become don’t cares. The Sub DAC is used to offset the  
complete transfer function of the Main DAC around its VBIAS  
point. The Sub DAC has 1/8 LSB resolution and will enable the  
transfer function of the Main DAC to be offset by ± VBIAS/32.  
Coding (BIN/COMP)  
This bit in the system control register allows the user to select  
one of two input coding schemes. The available schemes are  
Twos complement coding and offset binary coding. All DACs  
will be configured with the same input coding scheme. Writing  
a zero to the control register selects twos complement coding,  
while writing a 1 to this bit in the control register selects offset  
binary coding.  
When the LDAC line goes low, all DAC registers in the device  
are simultaneously loaded with the contents of their respective  
DAC data registers, and the outputs change accordingly.  
Bringing the CLR line low resets the DAC data and DAC regis-  
With twos complement coding selected the output voltage from  
the Main DAC is of the form :  
ters. This hardware clear affects both the Main and Sub DACs.  
This operation sets the analog output of the Main DAC to VBIAS  
16 when offset binary coding is selected and the output is set to  
VBIAS when twos complement coding is used. VBIAS is the output  
of the internal multiplexer as shown in Figure 3. The output of  
the Sub DAC is used to shift the transfer function of the Main  
DAC around the VBIAS point and the contribution from the Sub  
DAC is zero following an external hardware clear. Software  
clears affect the Main DACs only.  
/
VOUT = VBIAS ± VSWING  
where  
15  
16  
VSWING is  
×VBIAS  
With Offset Binary coding selected the output voltage from the  
Main DAC ranges from:  
VBIAS  
16  
31  
16  
V
×
BIAS  
VOUT  
=
to VOUT  
=
–10–  
REV. A  
AD7804/AD7805/AD7808/AD7809  
VBIAS can be the internal bandgap reference, the internal VDD/2  
reference or the external REFIN as determined by MX1 and  
MX0 in the channel control register. A second external refer-  
ence can be used if required by overdriving the VDD/2 reference  
which appears at the COMP pin.  
Standby (STBY)  
This bit allows the selected DAC in the package to be put into  
low power mode. Writing a zero to the STBY bit in the channel  
control register puts the selected DAC into standby mode. On  
writing a zero to this bit all linear circuitry is switched off and  
the DAC output is connected through a high impedance to  
ground. The DAC is returned to normal operation by writing a  
one to the STBY bit.  
System Standby (SSTBY)  
This bit allows all the DACs in the package to be put into low  
power mode simultaneously but the reference is not affected.  
Writing a one to the SSTBY bit in the system control register  
puts all DACs into standby mode. On writing a one to this bit  
all linear circuitry is switched off and the DAC outputs are  
connected through a high impedance to ground. The DACs come  
out of standby mode when a 0 is written to the SSTBY bit.  
Software Clear Function (CLR)  
This function allows the user to clear the contents of the se-  
lected DAC’s data in software. Writing a one to the CLR bit in  
the control register clears the DAC’s output. A zero in the CLR  
bit position puts the DAC in normal operating mode. This  
software CLR operation clears only the Main DAC, the con-  
tents of the Sub DAC is unaffected by a CLR operation. The  
output of the Main DAC can be cleared to one of two places  
depending on the input coding used. An LDAC pulse is re-  
quired to activate the channel clear function and must be ap-  
plied after the bit in the channel control register is set or reset. If  
twos complement coding is selected, then issuing a software  
clear will reset the output of the Main DAC to midscale (VBIAS).  
If offset binary coding is selected, the Main DAC output will be  
reset to VBIAS/16 following the execution of a software clear.  
System Clear Function (SCLR)  
This function allows the user to clear the contents of all data  
and DAC registers in software. Writing a one to the SCLR bit  
in the control register clears the DAC’s outputs. A zero in this  
bit position puts the DAC in normal operating mode. The out-  
put of the Main DACs are cleared to one of two voltages de-  
pending on the input coding used. If twos complement coding  
is selected, then issuing a software clear will reset the output of  
the Main DAC to midscale (VBIAS). If offset binary coding is  
selected, the Main DAC output will be reset to VBIAS /16 follow-  
ing the execution of a software clear. This system clear function  
does not affect the Sub DAC; the Sub DAC data register retains  
its value during a system software clear (SCLR).  
Multiplexer Selection (MX1, MX0)  
These two bits are used to select the reference input for the  
selected DAC. Table III shows the options available.  
Table III. Multiplexer Output Selection  
AD7804/AD7808 CHANNEL CONTROL REGISTER (MD1 = 0,  
MD0 = 1)  
MX1  
MX0  
VBIAS  
This register allows the user to have control over individual  
DACs in the package. The control bits in this register include  
the address bits for the selected DAC, standby (STBY), indi-  
vidual DAC clear (CLR) and multiplexer output selection  
(MX1 and MX0). The function of these bits follows.  
0
0
1
1
0
1
0
1
VDD/2  
INTERNAL VREF  
REFIN  
Undetermined  
DAC Selection (A2, A1, A0)  
AD7804/AD7808 SUB DAC DATA REGISTER  
Bits A2, A1 and A0 in the input registers are used to address a  
specific DAC. Table IIa shows the selection table for the DACs  
of the AD7804. Table IIb shows the selection table for the  
DACs of the AD7808.  
Figure 7 shows the loading sequence for writing to the data  
registers of the DACs. DB15 determines whether writing is to  
the Main or Sub DAC’s data register. A one in this position  
selects the addressed Sub DAC’s data register. The Sub DAC is  
8 bits wide and thus DB1 and DB0 of the 16-bit input word are  
don’t cares when writing to the Sub DAC. This Sub DAC al-  
lows the complete transfer function of each individual DAC to  
be offset around the VBIAS point. This is achieved by either  
adding or subtracting to the output of the Main DAC. This Sub  
DAC has a span of ±VBIAS/32 with 1/8-bit resolution. The  
coding scheme for the Sub DAC is the same as that for the  
Main DAC. With offset binary coding the transfer function for  
the Sub DAC is  
Table IIa. DAC Selection Table for the AD7804  
A2  
A1  
A0  
Function  
X
X
X
X
0
0
1
1
0
1
0
1
DAC A Selected  
DAC B Selected  
DAC C Selected  
DAC D Selected  
Table IIb. DAC Selection Table for the AD7808  
VBIAS  
16  
A2  
A1  
A0  
Function  
(NB 128)  
×
256  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DAC A Selected  
DAC B Selected  
DAC C Selected  
DAC D Selected  
DAC E Selected  
DAC F Selected  
DAC G Selected  
DAC H Selected  
where NB is the digital code written to the Sub DAC and varies  
from 0 to 255.  
With twos complement coding the transfer function for the Sub  
DAC is  
VBIAS  
16  
NB  
×
(
)
256  
where NB is the digital code written to the Sub DAC and varies  
from –128 to 127. VBIAS can be either the internal bandgap  
reference, the internal VDD/2 reference or the external REFIN as  
REV. A  
–11–  
AD7804/AD7805/AD7808/AD7809  
determined by MX1 and MX0 in the channel control register as  
shown in Table III. The internal VDD/2 reference is provided at  
the COMP pin. This internal reference can be overdriven with  
an external reference thus providing the facility for two external  
references.  
POWER-UP  
WRITE TO SYSTEM  
CONTROL REGISTER  
SYSTEM  
CONFIGURATION  
WRITE TO CHANNEL  
CONTROL REGISTER  
CHANNEL  
CONFIGURATION  
AD7804/AD7808 POWER-UP CONDITIONS  
When power is applied to the device, the device will come up in  
standby mode where all the linear circuitry excluding the refer-  
ence are switched off. Figure 8 shows the relevant default val-  
ues for the system control register. Since a write to the system  
control register is required to remove the standby condition the  
only bits for which default conditions are applicable are PD and  
SSTBY. Figure 9 details the relevant default conditions for the  
Channel Control Register.  
N
ALL CHANNELS  
CONFIGURED  
Y
WRITE TO SELECTED  
MAIN OR SUB DAC  
DATA REGISTERS  
DATA WRITE  
N
DATA LOADING  
COMPLETE  
PD  
SSTBY  
1
1
Y
CHANGE  
CHANNEL  
Figure 8. Default Conditions for System Control Register  
on Power-Up  
Y
Y
CONFIGURATION  
N
STBY  
CLR  
MX1  
MX0  
CHANGE  
SYSTEM  
CONFIGURATION  
1
1
0
0
Figure 9. Default Conditions for Channel Control Register  
on Power-Up  
N
END  
After power has been applied to the device the following proce-  
dure should be followed to communicate and set up the device.  
First, a write to the system control register is required to clear  
the SSTBY bit and change the input coding scheme if required.  
Figure 10. Flowchart for Controlling the DAC Following  
Power-Up  
AD7805/AD7809 INTERFACE SECTION  
For example, to remove standby and set up offset binary input  
coding 0060Hex should be written to the input register, if twos  
complement coding is required 0020Hex should be written to  
the input register. MD1 and MD0 are decoded in the input  
register and this allows the data to be written to the system  
control register.  
The AD7805 and AD7809 are parallel data input devices and  
contain both control registers and data registers. The system  
control register has global control over all DACs in the package  
while the channel control register allows control over individual  
DACs in the package. Two data registers are also available, one  
for the 10-bit Main DAC and the second for the 8-bit Sub  
DAC. In the parallel mode, CS and WR, in association with the  
address pins, control the loading of data. Data is transferred  
from the data register to the DAC register under the control of  
the LDAC signal. Only data contained in the DAC register deter-  
mines the analog output of any DAC. The timing diagram for  
10-bit parallel loading is shown in Figure 2. The MODE pin on  
the device determines whether writing is to the data registers or  
to the control registers. When MODE is at a logic one, writing  
is to the data registers. In the next write to the data registers a  
bit in the channel control register determines whether the Main  
DAC or the Sub DAC is addressed. This means that to address  
either the Main or the Sub DAC the Main/Sub bit in the control  
register has to be set appropriately before the data register write.  
A logic zero on the mode pin enables writing to the control  
register. Bit MD0 determines whether writing is to the system  
control register or to the addressed channel control register.  
Step two requires writing to the channel control register, which  
allows individual control over each DAC in the package and  
allows the VBIAS for the DAC to be selected as well as individual  
DAC standby and clear functions. For example, if channel A is  
to be configured for normal operation with internal reference  
selected then 4110Hex should be written to the input register.  
In the input register, the MD1 and MD0 bits are decoded in  
association with the address bits to give access to the required  
channel control register. The third and final step is to write data  
to the selected DAC. To write half scale to channel A Main  
DAC, 2200Hex should be written to the input register, the  
MSB in the sixteen bit stream selects the Main DAC and the  
next three bits address the DAC and the final 10 bits contain  
the data. To write half scale to channel A Sub DAC, then A200  
should be written to the input register. The flowchart in Figure  
10 shows in graphic form the steps required in communicating  
with the AD7804/AD7808.  
Bringing the CLR line low resets the DAC registers to one of  
two known conditions depending on the coding scheme se-  
lected. The hardware clear affects both the Main and Sub  
DAC registers. With offset binary coding a clear sets the output  
–12–  
REV. A  
AD7804/AD7805/AD7808/AD7809  
DB9  
DB0  
DB0  
X
of the Main DAC to the bottom of the transfer function, VBIAS/16.  
With twos complement coding the output of the DAC is cleared  
to midscale which is VBIAS. A hardware clear always clears the  
output of the Sub DAC to midscale thus the output of the Sub  
DAC makes zero contribution to the output of the channel.  
DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
X = Don’t Care  
X
Figure 14. AD7805/AD7809 Main DAC Data Register (Top)  
and Sub DAC Data Register (Bottom) Configuration  
(MODE = 1, 10/8 = 0)  
MODE ADDR  
D9 D2 D1  
D0  
CS  
WR  
LDAC  
CONTROL  
LOGIC  
INPUT REGISTER  
Figure 15 shows the bit allocations when 8-bit parallel operation  
is selected in the system control register. DB9 to DB2 are re-  
tained as data bits. DB1 acts as a high byte or low byte enable.  
When DB1 is low, the eight MSBs of the data word are loaded  
to the input register. When DB1 is high, the low byte consisting  
of the two LSBs are loaded to the input register. DB0 is used to  
select either the Main or Sub DAC when in the byte mode.  
DECODER  
SYSTEM  
CONTROL  
REGISTER  
CHANNEL  
CONTROL  
REGISTER  
DATA REGISTER  
DATA REGISTER  
TO ALL  
CHANNELS  
10  
8
DAC REGISTER  
DAC REGISTER  
SINGLE  
CHANNEL  
DB9  
DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
DB1 DB0  
DB2 DB1  
DB0  
MAIN/SUB  
MAIN/SUB  
10  
8
8-BIT DAC  
(SUB DAC)  
10-BIT DAC  
(MAIN DAC)  
V
0
1
OUT  
V
INTERNAL V  
BIAS  
REF  
/2  
X
X
X
X
X
X
V
MUX  
DD  
X = Don’t Care  
REFIN  
Figure 15. AD7805/AD7809 Main DAC Data Register Con-  
figuration (MODE = 1, 10/8 = 1, MAIN/SUB = 0)  
Figure 11. AD7805/AD7809 Internal Registers  
Figure 16 shows the bit allocations for writing to the Sub DAC.  
AD7805/AD7809 CONTROL REGISTERS  
Access to the control registers of the AD7805/AD7809 is  
achieved by taking the mode pin to a logic low. The control  
register of these DACs are configured as in Figures 12 and 13.  
There are two control registers associated with the part. System  
control register which looks after the input coding, data format,  
power down, system clear and system standby. The channel  
control register contains bits that affect the operation of the  
selected DAC. The external address bits are used to select the  
DACs. These registers are eight bits wide and the last two bits  
are control bits. The mode pin must be low to have access to the  
control registers.  
DB9  
DB2 DB1  
DB0  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
X = Don’t Care  
X
MAIN/SUB  
Figure 16. AD7805/AD7809 Sub DAC Data Register Con-  
figuration (MODE = 1, MAIN/SUB = 1)  
Each DAC has a separate channel control register. The follow-  
ing is a brief discussion on the bits in each of the control registers.  
DAC Selection (A2, A1, A0)  
The external address pins in conjunction with CS, WR and  
MODE are used to address the various DAC data and control  
registers. Table IVa shows how these DAC registers can be  
addressed on the AD7805. Table IVb shows how these registers  
are addressed on the AD7809. Refer to Figures 12 to 16 for infor-  
mation on the registers.  
DB9  
DB2 DB1  
DB0  
X
X
10/8 BIN/COMP PD SSTBY SCLR  
0
X
MD0 = 0  
X = Don’t Care  
Figure 12. AD7805/AD7809 System Control Register Con-  
figuration, (MODE = 0)  
Table IVa. AD7805 DAC Data/Control Register  
Selection Table  
DB9  
DB2  
DB1 DB0  
X MD0 = 1  
MODE  
A1  
A0  
Function Selected  
MX1 MX0 MAIN/SUB X  
X
STBY CLR  
0
X = Don’t Care  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DAC A Control Registers  
DAC B Control Registers  
DAC C Control Registers  
DAC D Control Registers  
DAC A Data Registers  
DAC B Data Registers  
DAC C Data Registers  
DAC D Data Registers  
Figure 13. AD7805/AD7809 Channel Control Register Con-  
figuration (MODE = 0)  
The external mode pin must be taken high to allow data to be  
written to the DAC data registers. Figure 14 shows the bit allo-  
cations when 10-bit parallel operation is selected in the system  
control register.  
REV. A  
–13–  
AD7804/AD7805/AD7808/AD7809  
Table IVb. AD7809 DAC Data/Control Register  
Selection Table  
System Clear  
SCLR  
0
1
Normal operation.  
MODE  
A2  
A1  
A0  
Function Selected  
All DACs in the package are cleared to a known state  
depending on the coding scheme selected. The SCLR bit  
clears the Main DACs only; the Sub DACs are unaf-  
fected by the system clear function. The main DAC is  
cleared to different levels depending on the coding  
scheme. With offset binary coding the Main DAC output  
is cleared to the bottom of the transfer function VBIAS/16.  
With twos complement coding the Main DAC output is  
cleared to midscale VBIAS. The channel output will be the  
sum of the Main DAC and Sub DAC contributions.  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DAC A Control Register  
DAC B Control Register  
DAC C Control Register  
DAC D Control Register  
DAC E Control Register  
DAC F Control Register  
DAC G Control Register  
DAC H Control Register  
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DAC A Data Register  
DAC B Data Register  
DAC C Data Register  
DAC D Data Register  
DAC E Data Register  
DAC F Data Register  
DAC G Data Register  
DAC H Data Register  
AD7805/AD7809 CHANNEL CONTROL REGISTER  
This register allows the user to have control over individual  
DACs in the package. The control bits in this register include  
multiplexer output selection (MX1 and MX0), Main or Sub  
DAC selection (MAIN/SUB), standby (STBY) and individual  
DAC clear (CLR). The function of these bits is as follows.  
Multiplexer Selection (MX1, MX0)  
Table V shows the VBIAS selection using MX1 and MX0 bits in  
the channel control register.  
AD7805/AD7809 SYSTEM OR CHANNEL CONTROL  
REGISTER SELECTION  
Table V. VBIAS Selection Table  
MD0  
0
This enables writing to the system control register.  
The contents of this are shown in Figure 12. Mode  
must be low to access this control register.  
MX1  
MX0  
VBIAS  
0
0
1
1
0
1
0
1
VDD/2 (Default on Power-Up)  
INTERNAL VREF  
REFIN  
1
This enables writing to the channel control register.  
The contents of this are shown in Figure 13. Mode  
must also be low to access this control register.  
Undetermined  
Main DAC or Sub DAC Selection  
MAIN/SUB  
AD7805/AD7809 SYSTEM CONTROL REGISTER  
The bits in this register allow control over all DACs in the pack-  
age. The control bits include data format (10/8), power down  
(PD), DAC input coding select (BIN/COMP), system standby  
(SSTBY) and a system clear (SCLR). The function of these bits  
is as follows:  
0
Writing a 0 to this bit means that the data in the next  
data register write is transferred to the selected Main  
DAC.  
1
Writing a 1 to this bit means that the data in the next  
data register write is transferred to the selected Sub DAC.  
Data Format  
10/8  
This applies to the 10-bit parallel load feature. In byte  
load mode, (Figure 15) DB0 selects the Main or Sub  
DAC data registers.  
0
1
10-bit parallel loading structure.  
Byte loading structure. (8+2 loading).  
Standby  
STBY  
Input Coding  
BIN/COMP  
0
Places the selected DAC and its associated linear cir-  
cuitry in Standby Mode.  
0
1
Twos complement coding.  
Offset Binary Coding.  
1
Normal operation (default on power-up).  
Clear  
CLR  
Power Down  
PD  
0
1
Normal operation.  
0
1
Complete power-down of device.  
Normal operation (default on power-up).  
Clears the output of the selected Main DAC to one  
of two conditions depending on the input coding se-  
lected. With offset binary coding the Main DAC out-  
put is cleared to the bottom of the transfer function,  
VBIAS/16 and with twos complement coding the Main  
DAC output is cleared to midscale VBIAS. The Sub  
DAC is unaffected by a clear operation. An LDAC  
signal has to be applied to the DAC for a channel clear  
to be implemented.  
System Standby  
SSTBY  
0
1
Normal operation.  
All DACs in the package put in standby mode (default  
on power-up).  
–14–  
REV. A  
AD7804/AD7805/AD7808/AD7809  
POWER-UP CONDITIONS (POWER-ON RESET)  
When power is applied to the AD7805/AD7809 the device  
powers up in a known condition. The device powers up in sys-  
tem standby (SSTBY) mode where all DACs in the package are  
in low power mode, the reference is active and the outputs of  
the DACs are connected internally through a high impedance to  
ground. Figure 17 show the default conditions for the system  
control register. Since a write to the system control register is  
required to remove the standby condition, relevant default con-  
ditions are only applicable for PD and SSTBY in the system  
control register. The following are the bits in the channel con-  
trol register for which default conditions are applicable, STBY,  
CLR, MX1 and MX0. Figure 18 shows the default conditions  
for the channel control register.  
START  
WRITE TO SYSTEM  
CONTROL REGISTER  
Y
WRITE TO  
MAIN DAC  
WRITE TO CHANNEL  
CONTROL REGISTER  
N
Y
WRITE TO  
SUB DAC  
WRITE TO MAIN DAC  
DATA REGISTER  
WRITE TO CHANNEL  
CONTROL REGISTER  
N
WRITING  
COMPLETE  
Y
WRITE TO SUB DAC  
DATA REGISTER  
RECONFIGURE  
SYSTEM  
Y
N
PD  
SSTBY  
N
WRITING  
COMPLETE  
END  
1
1
Y
Figure 17. Default Conditions for the AD7805/AD7809  
System Control Register on Power-Up  
Figure 19. Flowchart for Controlling the AD7805/AD7809  
DACs in 10-Bit Parallel Mode Following Power-Up  
STBY  
CLR  
MX1  
MX0  
mode as the selection can be made using the hardware bit DB0 and  
this will reduce the software overheads when accessing the DACs.  
1
1
0
0
CLEAR FUNCTIONS  
Figure 18. Default Conditions for the AD7805/AD7809  
Channel Control Register on Power-Up  
There are three methods of clearing the output of the Main  
DAC in these devices. The first is the external hardware clear.  
An active low logic signal applied to this pin clears all the DACs  
in the package. The voltage to which the output is cleared will  
depend on the input coding selected. The Main DAC outputs  
are cleared to midscale (VBIAS) in twos complement format and  
to the bottom of the transfer function (VBIAS/16) in offset binary  
format. The second way of clearing the main DACs is a software  
clear by asserting the SCLR bit in the system control register of  
the part. Writing a one to this bit clears all DACs in the pack-  
age. The third method of clearing a DAC is to write a one to the  
CLR bit in the channel control register. This differs from that of  
the system control register in that only the selected DACs out-  
put is cleared. The channel clear requires an LDAC pulse to  
activate it.  
The flowchart in Figure 19 shows the steps necessary to control  
the AD7805/AD7809 following power-on. This flowchart de-  
tails the necessary steps when using the AD7805/AD7809 in its  
10-bit parallel mode. The first step is to write to the system  
control register to clear the SSTBY bit and to configure the part  
for 10-bit parallel mode and select the required coding scheme.  
The next step is to determine whether writing is to the Main or  
Sub DAC. This is achieved by writing to the channel control  
register. Other bits that need to be configured in the channel  
control register are MX1 and MX0 which determine the source  
of the VBIAS for the selected DAC and the channel STBY and  
channel CLR bits need to be configured as desired. Once writ-  
ing to the channel control register is complete, data can now be  
written to the selected Main or Sub DAC.  
There is only one way of clearing the output of the Sub DAC  
and that is to use the external hardware clear. The output of the  
Sub DAC is cleared to midscale (0 V) regardless of the input  
coding being used. Figure 20 shows a simplified diagram of the  
implementation of the clear functions for a single DAC in the  
package.  
Parallel data can also be written to the device in 8+2 format to  
allow interface to 8-bit processors. Eight-bit mode is invoked by  
writing a one to the 10/8 bit in the system control register.  
When in the 8-bit mode the two unused data bits (DB1 and  
DB0) are used as hardware control bits and have the same tim-  
ing characteristics as the address inputs. DB1 is a don’t care bit  
when writing to both the system and channel control registers;  
DB0 acts as the mode select bit and must be low to enable writ-  
ing to the system control register and when high enables access  
to the channel control register.  
EXT CLR  
SYSTEM CLR  
CLR  
SUB DAC  
CHANNEL CLR  
LDAC  
CLR  
When in the 8-bit data write mode, DB1 acts as a low byte and  
high byte enable, when low data is written to the 8 MSBs of the  
DAC and when high data is written to the two LSBs. DB0 acts  
as a bit to select writing to the Main or Sub DAC. When DB0 is  
low, writing is to the Main DAC, and when high, writing is to  
the Sub DAC data register. In the 8+2 mode the channel con-  
trol register does not have to be accessed to switch between  
writing to the Main and Sub DACs as in the 10-bit parallel  
A2  
MAIN DAC  
ADDR  
A1  
DECODER  
A0  
ALL OTHER CIRCUITRY OMITTED FOR CLARITY  
Figure 20. CLR Functions for Main and Sub DACs  
REV. A  
–15–  
AD7804/AD7805/AD7808/AD7809  
POWER-DOWN AND STANDBY FUNCTIONS  
ANALOG OUTPUTS  
There are two distinct low power modes on the device, power-  
down mode and standby mode. When in power-down mode all  
circuitry including the reference are put into low power mode  
and power dissipation from the package is at its minimum.  
The AD7804 and AD7805 DACs contain four independent  
voltage output Main DACs with 10-bit resolution. The AD7808  
and AD7809 contain eight independent voltage output main  
DACs with 10-bit resolution. Each Main DAC has an associ-  
ated Sub DAC with 8-bit resolution which can be used to offset  
the complete transfer function of the Main DAC around the  
VBIAS point. These DACs produce an output voltage in the form  
SYSTEM PD  
STANDBY  
SYSTEM STBY  
INT  
REFERENCE  
of VBIAS ±VSWING where VSWING is 15/16 of VBIAS  
.
CHANNEL STBY  
The digital input code to these DACs can be in twos comple-  
ment or offset binary form. All DACs will be configured with  
the same input coding scheme which is programmed through  
the system control register. The default condition on power-up  
is for offset binary coding.  
STANDBY  
A2  
MAIN & SUB  
ADDR  
A1  
A0  
DAC  
DECODER  
ONLY ONE DAC SHOWN FOR CLARITY  
Figure 21. Implementation of Power-Down and Standby  
Functions  
TWOS COMPLEMENT CODING  
Table VI shows the twos complement transfer function for the  
Main DAC.  
The standby functions allow either the selected DAC or all DACs  
in the package to be put into low power mode. The reference is  
not switched off when any of the standby functions are invoked.  
Table VI. Twos Complement Code Table for Main DAC  
Digital Input  
MSB . . . LSB  
Analog Output  
The PD bit in the system control register is used to shut down  
the complete device. With a 0 in this position the reference and all  
DACs are put into low power mode. Writing a 1 to this bit puts the  
part in the normal operating mode. When in power-down mode  
the contents of all registers are retained and are valid when the  
device is taken out of power down. The SSTBY bit which resides  
in the system control register can be used to put all DACs and  
their associated linear circuitry into standby mode, the SSTBY  
function does not power down the reference. The STBY bit in  
the channel control register can be used to put a selected DAC  
and its associated linear circuitry into standby mode. Figure 18  
shows a simplified diagram of how the power-down and standby  
functions are implemented for a single DAC in the package.  
0111111111  
0111111110  
V
BIAS(1+1.875 × 511/1024)  
VBIAS(1+1.875 × 510/1024)  
0000000001  
0000000000  
VBIAS(1+1.875 × 1/1024)  
VBIAS  
1111111111  
VBIAS(1–1.875 × 1/1024)  
1000000001  
1000000000  
V
BIAS(1–1.875 × 511/1024)  
VBIAS(1–1.875 × 512/1024)  
Figure 22 shows the Main DAC transfer function for twos  
complement coding. Any Main DAC output voltage can be  
expressed as:  
LDAC FUNCTION  
V
OUT' = VBIAS + 1.875 × VBIAS × NA/1024  
LDAC input is a logic input that allows all DAC registers to be  
simultaneously updated with the contents of the DAC data  
registers. LDAC input has two operating modes, a synchronous  
mode and an asynchronous mode. The LDAC input condition is  
sampled on the sixteenth falling edge on the AD7804/AD7808 and  
is sampled on the rising edge of write on the AD7805/AD7809. If  
LDAC is low on the sixteenth falling clock edge or on the rising  
edge of WR, an automatic or synchronous update will take place.  
LDAC input can be tied permanently low or have timing similar  
to that of the data inputs to operate in the synchronous mode.  
where NA is the decimal equivalent of the twos complement  
input code. NA ranges from –512 to +511.  
31  
V
BIAS  
16  
V
BIAS  
If LDAC is high during the sample period, the AD7804/AD7805/  
AD7808/AD7809 assumes an asynchronous update. When in  
the asynchronous mode, an LDAC setup time has to be allowed  
following the sixteenth falling clock edge or the rising edge of  
WR before the LDAC can be activated.  
V
BIAS  
16  
200 201  
3FF  
001  
000  
1FE 1FF  
DAC INPUT CODE  
Figure 22. Main DAC Output Voltage vs. DAC Input Codes  
(HEX) for Twos Complement Coding  
–16–  
REV. A  
AD7804/AD7805/AD7808/AD7809  
Configuring the AD7805/AD7809 for Twos Complement Coding  
Figure 24 shows a typical configuration for the AD7805/AD7809.  
The circuit can be used for either 3.3 V or 5 V operation and uses  
the internal VDD/2 as the reference for the part and 10-bit paral-  
lel interfacing is used. The following are the steps required to  
operate the Main DACs in this part.  
Table VII shows the twos complement transfer function for the  
Sub DAC. Figure 23 shows the Sub DAC transfer function for  
twos complement coding. Any Sub DAC output voltage can be  
expressed as:  
V
OUT" = VBIAS/16 × (NB/256)  
where NB is the decimal equivalent of the twos complement  
input code. NB ranges from –128 to +127.  
+3.3V/+5V  
Table VII. Twos Complement Code Table for Sub DAC  
0.1F  
0.1F  
10F  
Digital Input  
MSB . . . LSB  
Analog Input  
0.01F  
0.01F  
AV  
DV  
DD  
DD  
COMP  
REFIN  
01111111  
01111111  
00000001  
00000000  
11111111  
10000001  
10000000  
(VBIAS/16) × (127/256)  
(VBIAS/16) × (126/256)  
(VBIAS/16) × (1/256)  
0
(–VBIAS/16) × (1/256)  
(–VBIAS/16) × (127/256)  
(–VBIAS/16) × (128/256)  
REFOUT  
A2*  
A0  
AD7805/  
AD7809  
V
A
B
OUT  
A1  
D9  
D0  
DIGITAL  
INTERFACE  
V
OUT  
MODE  
CS  
V
C
D
OUT  
V
127  
256  
BIAS  
16  
WR  
؋
V
DV  
DD  
CLR  
OUT  
LDAC  
AGND  
DGND  
*USED ON THE  
AD7809 ONLY  
0
Figure 24. Typical Configuration for AD7805/AD7809  
System Control Register Write:  
MODE = 0, address inputs (A2, A1, A0) are don’t cares.  
V
128  
256  
BIAS  
16  
Write 020 Hex Configure part for 10-bit parallel, twos  
complement coding, normal operation  
؋
Channel Control Register Write:  
80  
81  
FF  
01  
7F  
DAC INPUT CODE  
00  
7E  
MODE = 0, address inputs (A2, A1, A0) select desired channel.  
Figure 23. Sub DAC Output Voltage vs. DAC Input Codes  
(HEX) for Twos Complement Coding  
Write 011 Hex  
Internal VDD/2 selected as VBIAS for  
DAC, and any DAC data writes that  
follow are to the Main DAC.  
The total output for a single channel when using twos comple-  
ment coding is the sum of the voltage from the Main DAC and  
the Sub DAC.  
DAC Data Register Write:  
MODE = 1, address inputs (A2, A1, A0) select desired channel.  
VOUT = VOUT' + VOUT  
"
= VBIAS + 1.875 × VBIAS × (NA/1024) + VBIAS/16 × (NB/256)  
Write XXX Hex With MODE = 1 all data writes are to  
the selected DAC. XXX is the required  
= VBIAS × (1 + 1.875 × NA/1024 + NB/4096)  
data. 200 Hex will give zero scale and 1FF  
Hex will give full scale from the DAC.  
where NA ranges from –512 to +511 and NB ranges from –128 to  
+127. Figure 28 shows a pictorial view of the transfer function for  
any DAC.  
REV. A  
–17–  
AD7804/AD7805/AD7808/AD7809  
Table VI and Figure 22 show the analog outputs available for  
the above configuration. The following is the procedure re-  
quired if the complete transfer function needs to be offset  
around the VBIAS point. Table VII and Figure 23 show the ana-  
log output variations available from the Sub DAC.  
OFFSET BINARY CODING  
Table VIII shows the offset binary transfer function for the Main  
DAC.  
Table VIII. Offset Binary Code Table for Main DAC  
Digital Inputs  
MSB . . . LSB  
Analog Output  
System Control Register Write:  
MODE = 0, address inputs (A2, A1, A0) are don’t cares.  
1111111111  
1111111110  
1000000001  
1000000000  
0111111111  
0000000001  
0000000000  
VBIAS+1.875 × VBIAS(1023–512)/1024  
Write 020 Hex Configure part for 10-bit parallel, twos  
complement coding, normal operation  
VBIAS+1.875 × VBIAS(1022–512)/1024  
VBIAS+1.875 × VBIAS/1024  
VBIAS  
VBIAS+1.875 × VBIAS(511–512)/1024  
VBIAS+1.875 × VBIAS(1–512)/1024  
VBIAS/16  
Channel Control Register Write:  
MODE = 0, address inputs (A2, A1, A0) select desired channel.  
Write 091 Hex  
Internal VDD/2 selected as VBIAS for  
DAC, and any DAC data writes that  
follow are to the Sub DAC.  
NOTE: The span range is (30/16) × VBIAS = 1.875 × VBIAS  
DAC Data Register Write:  
31  
V
BIAS  
16  
MODE = 1, address inputs (A2, A1, A0) select desired channel.  
Write XX Hex  
With MODE = 1 all data writes are to  
the selected DACs Sub DAC. XX is the  
required data. 7F Hex will give zero scale  
and 80 Hex will give full scale from the  
Sub DAC.  
V
BIAS  
Channel Control Register Write:  
MODE = 0, address inputs (A2, A1, A0) select desired channel.  
Write 011 Hex  
Internal VDD/2 selected as VBIAS for  
DAC, and any DAC data writes that  
follow are to the Main DAC.  
V
BIAS  
16  
DAC Data Register Write:  
000 001  
1FF  
201  
200  
3FE 3FF  
DAC INPUT CODE  
MODE = 1, address inputs (A2, A1, A0) select desired channel.  
Figure 25. Main DAC Output Voltage vs. DAC Input Codes  
(HEX) for Offset Binary Coding  
Write XXX Hex With MODE = 1 all data writes are to  
the selected Main DAC. XXX is the  
required data. 1FF Hex will give zero  
scale and 200 Hex will give full scale  
from the DAC.  
Figure 25 shows the Main DAC transfer function when offset  
binary coding is used. With offset binary coding selected the  
output voltage can be calculated as follows:  
V
OUT' = VBIAS + 1.875 × VBIAS × ((NA-512)/1024)  
where NA is the decimal equivalent of the offset binary input  
code. NA ranges from 0 to 1023.  
Table IX shows the offset binary transfer function for the Sub  
DAC. Figure 26 shows the Sub DAC transfer function for  
offset binary coding. Any Sub DAC output voltage can be  
expressed as:  
V
OUT" = VBIAS/16 × [(NB-128)/256]  
where NB is the decimal equivalent of the offset binary input  
code. NB ranges from 0 to 255.  
–18–  
REV. A  
AD7804/AD7805/AD7808/AD7809  
Table IX. Offset Binary Code Table for Sub DAC  
+3.3V/+5V  
Digital Input  
MSB . . . LSB  
Analog Output  
0.1F  
0.1F  
10F  
6.8k⍀  
11111111  
11111110  
10000001  
10000000  
01111111  
00000001  
00000000  
V
BIAS/16 × 127/256  
0.01F  
0.01F  
AV  
DV  
DD  
DD  
VBIAS/16 × 126/256  
VBIAS/16 × 1/256  
0
–VBIAS/16 × 1/256  
–VBIAS/16 × 127/256  
–VBIAS/32  
COMP  
REFIN  
AD589  
AD7804/  
AD7808  
FSIN  
REFOUT  
SERIAL  
INTERFACE  
SDIN  
CLKIN  
V
A
B
OUT  
V
OUT  
V
C
D
OUT  
V
127  
128  
BIAS  
32  
؋
V
DV  
DD  
CLR  
OUT  
LDAC  
DGND  
AGND  
0
Figure 27. Typical Configuration for AD7804/AD7808  
Using an AD589 1.23 V Reference for the AD7804/AD7808  
System Control Register Serial Write:  
Write 0060 Hex Mode bits select system control register  
and configure system for offset binary  
V
BIAS  
32  
coding and normal operation.  
Channel Control Register Serial Write:  
00  
01  
7F 80 81  
FF  
DAC INPUT CODE  
FE  
Write 4210 Hex Mode bits select channel control register,  
channel A is configured for operation with  
external reference.  
Figure 26. Sub DAC Output Voltage vs. DAC Input Codes  
(HEX) for Offset Binary Coding  
Configuring the AD7804/AD7808 for Offset Binary Coding  
Figure 27 shows a typical configuration for the AD7804/AD7808.  
This circuit can be used for both 3.3 V or 5 V operation and  
uses an external AD589 as the reference for the part and serial  
interfacing with offset binary coding is used. The MX1 and  
MX0 bits in the system control register have to be set to enable  
selection of the AD589 as the reference. The following are the  
steps required to operate the DACs in this part. Figures 4 to 7  
show the contents of the registers on the AD7804/AD7808.  
Main DAC Data Register Serial Write:  
Write 23FF Hex This 16-bit write selects writing to channel  
A and writes full scale to the Main DAC.  
Sub DAC Data Register Serial Write:  
Write A3FF Hex This 16-bit write selects writing to channel  
A Sub DAC and writes full scale to the  
Sub DAC.  
Table VIII and Figure 25 show the analog outputs available for  
the above configuration when writing to the Main DAC only  
while Table IX and Figure 26 show the contributions from the  
Sub DAC to the overall transfer function. The total output for a  
single channel when using offset binary coding is the sum of that  
from the Main DAC and the Sub DAC.  
VOUT = VOUT' + VOUT  
"
= VBIAS + 1.875 × VBIAS × ((NA-512)/1024) + VBIAS/16  
= × [(NB-128)/256]  
= VBIAS × (1 + 1.875 × ((NA-512)/1024) + (NB-128)/  
4096)  
where NA ranges from 0 to +1023 and NB ranges from 0 to  
+255. Figure 28 shows a pictorial view of the transfer function  
for any DAC channel.  
REV. A  
–19–  
AD7804/AD7805/AD7808/AD7809  
MAIN DAC RANGE  
32  
2
62  
V
32  
V
32  
V
32  
BIAS  
BIAS  
BIAS  
1
31  
63  
3
33  
61  
V
V
V
V
V
BIAS  
V
32  
BIAS  
BIAS  
BIAS  
32  
32  
32  
32 BIAS  
32  
BIAS  
SUB DAC  
RANGE  
CHANNEL RANGE MIN CODE LOADED TO SUB DAC  
CHANNEL RANGE CENTER CODE LOADED TO SUB DAC  
CHANNEL RANGE MAX CODE LOADED TO SUB DAC  
Figure 28. Pictorial View of Transfer Function for Any DAC Channel  
Grounding and Layout Techniques  
should be shielded with analog ground. To reduce the noise on  
this reference it should be decoupled with a 0.01 µF capacitor to  
analog ground, keeping the capacitor as close as possible to the  
device. The comp pin which is the output from the internal  
VDD/2 reference is located next to VOUTD on the DAC and is  
sensitive to noise pickup and feedthrough from the DAC output  
and thus should be shielded with analog ground to keep this  
reference point as quiet as possible. The comp pin should be  
decoupled both to AVDD and AGND with 1–10 nF ceramic  
capacitors. The external REFIN pin should also be shielded  
with analog ground from the digital pins located next to it.  
To obtain optimum performance from the AD7804/AD7805/  
AD7808/AD7809 care should be taken with the layout. Causes  
for concern would be feedthrough from the interface bus onto  
the analog circuitry particularly the reference pins and ground  
loops. The board should be designed such that the analog and  
digital sections are separated as much as possible. Ground plan-  
ing and shielding should be used as much as possible. Digital  
and analog ground planes should only be joined in one place to  
avoid ground loops. The ideal place to join the ground planes is  
at the analog and digital ground pins of the DAC. Alternatively  
a star ground should be established on the board to which all  
other grounds are returned. Good decoupling is important in  
achieving optimum performance. All supplies, analog or digital,  
should be decoupled with 10 µF tantalum and 0.1 µF ceramic  
capacitors to their respective grounds, and should be as close as  
possible to the pins of the device. The main aim of the bypass-  
ing element is to maximize the charge stored in the bypass loop  
while simultaneously minimizing the inductance of this loop.  
Inductance in the loop acts as an impedance to high frequency  
transients and results in power supply spiking. By keeping the  
decoupling as close as possible to the device, the loop area is kept  
to a minimum thus reducing the possibility of power supply spikes.  
The same precautions should be taken with the reference pins  
on the AD7804/AD7808 to reduce the risk of noise pickup and  
feedthrough.  
Reference Settling Time  
With the REFOUT on the AD7804/AD7805/AD7808/AD7809  
decoupled with a 0.01 µF capacitor to AGND it takes the  
REFOUT approximately 2 ms to fully settle after taking the  
device out of power down. When this capacitor is reduced to  
1 nF the settling time reduces to 150 µs. The size of the capaci-  
tor required on the REFOUT depends to a large extent on the  
layout, if the REFOUT is well shielded with AGND the size of  
the capacitor can be reduced thus reducing the settling time for  
the reference. The internal VDD/2 reference provided at the  
comp pin when decoupled with a 1 nF capacitor to both AVDD  
and AGND has very fast settling time, typically less than 500 ns.  
On the AD7805 the REFOUT pin of the device is located next  
to the DB9 of the data bus, to reduce the risk of digital feed-  
through and noise being coupled from the digital section onto  
the reference, the REFOUT pin and any trace connected to it  
–20–  
REV. A  
Typical Performance Characteristics–AD7804/AD7805/AD7808/AD7809  
0.150000  
0.125000  
0.100000  
0.075000  
0.050000  
0.025000  
0.000000  
2.0  
MAIN DAC = ZERO SCALE  
SUB DAC = MID SCALE  
AV = DV = 5V  
DD  
DD  
1.5  
1.0  
V
T
= V /2  
DD  
BIAS  
V
= V /2  
BIAS  
DD  
= +25؇C  
A
T
= +25؇C  
A
SUB DAC LOADED WITH  
1/2 SCALE  
V
= 5.5V  
0.5  
DD  
0.0  
–0.5  
–1.0  
–1.5  
–2.0  
V
= 3V  
DD  
SINK CURRENT  
0.1 0.2 0.3  
SOURCE CURRENT  
–0.5 –0.4 –0.3 –0.2 –0.1 0.0  
0.4 0.5  
0
100 200 300 400 500 600 700 800 900 1023  
DAC CODE  
CURRENT – mA  
Figure 29. Sink and Source Current with Zero Scale  
Loaded to DAC. VDD = 5 V and VDD = 3 V  
Figure 32. Integral Linearity with 5 V Operation  
5.200000  
2.0  
V
= 5.5V  
DD  
AV = DV = 3V  
DD  
DD  
MAIN DAC = FULL SCALE  
SUB DAC = MID SCALE  
1.5  
1.0  
V
T
= V /2  
DD  
BIAS  
5.180000  
5.160000  
5.140000  
5.120000  
5.100000  
= +25؇C  
V
= V /2  
A
BIAS  
DD  
SUB DAC LOADED WITH  
1/2 SCALE  
T
= +25؇C  
A
R
=
L
0.5  
0.0  
R
= 2k⍀  
L
–0.5  
–1.0  
–1.5  
–2.0  
SOURCE CURRENT SINK CURRENT  
–6.0  
–4.0  
–2.0  
0.0  
2.0  
4.0  
6.0  
0
100 200 300 400 500 600 700 800 900 1023  
DAC CODE  
CURRENT – mA  
Figure 30. Sink and Source Current at Full Scale with  
Figure 33. Integral Linearity with 3 V Operation  
VDD = 5 V  
2.850000  
2.830000  
2.810000  
2.790000  
2.770000  
2.750000  
1.225  
V
= 3V  
DD  
V
= 3V  
DD  
MAIN DAC = FULL SCALE  
SUB DAC = MID SCALE  
1.224  
1.223  
1.222  
1.221  
1.220  
1.219  
1.218  
1.217  
1.216  
R
= 2k||100pF  
L
CODE CHANGE  
011111 1111 TO  
100000 0000  
V
= V /2  
BIAS  
DD  
T
= +25؇C  
A
T
= +25؇C  
A
R
=
L
R
= 2k⍀  
L
SOURCE CURRENT  
–4.0 –2.0  
SINK CURRENT  
2.0  
–6.0  
0.0  
4.0  
6.0  
0
20  
40  
60  
80 100 120 140 160 180 200  
ns  
CURRENT – mA  
Figure 31. Sink and Source Current at Full Scale with  
DD = 3 V  
Figure 34. Digital-to-Analog Glitch Impulse  
V
REV. A  
–21–  
AD7804/AD7805/AD7808/AD7809  
MICROPROCESSOR INTERFACING  
AD7804*/  
AD7808  
AD7804/AD7808–ADSP-2101/ADSP-2103 Interface  
Figure 35 shows a serial interface between the AD7804/AD7808  
and the ADSP-2101/ADSP-2103. The ADSP-2101/ADSP-  
2103 should be set up to operate in the SPORT Transmit Alter-  
nate Framing Mode. The ADSP-2101/ADSP-2103 SPORT is  
programmed through the SPORT control register and should be  
configured as follows: Internal Clock Operation, Active Low  
Framing, 16-bit Word Length. Transmission is initiated by  
writing a word to the TX register after the SPORT has been  
enabled. The data is clocked out on each rising edge of the serial  
clock and clocked into the AD7804/AD7808 on the falling edge  
of the SCLK.  
68HC11/68L11*  
PC5  
CLR  
PC6  
LDAC  
FSIN  
PC7  
SCK  
CLKIN  
SDIN  
MOSI  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 36. AD7804/AD7808–68HC11/68L11 Interface  
AD7804/AD7808–80C51/80L51 Interface  
Figure 37 shows a serial interface between the AD7804/AD7808  
and the 80C51/80L51 microcontroller. The setup for the inter-  
face is as follows, TXD of the 80C51/80L51 drives CLKIN of  
the AD7804/AD7808 while RXD drives the serial data line of  
the part. The FSIN signal is again derived from a bit program-  
mable pin on the port in this case port line P3.3 is used. When  
data is to be transmitted to the part, P3.3 is taken low. Data on  
RXD is valid on the falling edge of TXD. The 80C51/80L51  
transmits data in eight bit bytes thus only eight falling clock  
edges occur in the transmit cycle. To load data to the DAC,  
P3.3 is left low after the first eight bits are transmitted and a  
second write cycle is initiated to transmit the second byte of  
data, P3.3 is taken high following the completion of this cycle.  
The 80C51/80L51 outputs the serial data in a format which has  
the LSB first. The AD7804/AD7808 requires its data with the  
MSB as the first bit received. The 80C51/80L51 transmit rou-  
tine should take this into account. In the diagram shown LDAC  
and CLR are also controlled from the bit programmable lines of  
the 80C51/80L51 port. The user can bring LDAC low after  
every two bytes have been transmitted to update that particular  
DAC which has been programmed or alternatively it is possible  
to wait until all the input registers have been loaded before  
updating takes place.  
AD7804*/  
AD7808  
ADSP-2101/  
ADSP-2103*  
+5V  
CLR  
FO  
TFS  
DT  
LDAC  
FSIN  
SDIN  
CLKIN  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 35. ADSP-2101/ADSP-2103 Interface  
AD7804/AD7808–68HC11/68L11 Interface  
Figure 36 shows a serial interface between the AD7804/AD7808  
and the 68HC11/68L11 microcontroller. SCK of the 68HC11/  
68L11 drives the CLKIN of the AD7804/AD7808, while the  
MOSI output drives the serial data line of the DAC. The FSIN  
signal is derived from a port line (PC7). The setup conditions  
for correct operation of this interface are as follows: the  
68HC11/68L11 should be configured so that its CPOL bit is a 0  
and its CPHA bit is a 1. When data is being transmitted to the  
DAC the FSIN line is taken low (PC7). When the 68HC11/  
68L11 is configured as above, data appearing on the MOSI  
output is valid on the falling edge of SCK. Serial data from the  
68HC11/68L11 is transmitted in 8-bit bytes with only eight  
falling clock edges occurring in the transmit cycle. Data is trans-  
mitted MSB first. In order to load data to the AD7804/AD7808,  
PC7 is left low after the first eight bits are transferred and a  
second serial write operation is performed to the DAC and then  
PC7 is taken high at the end of this procedure. In the diagram  
shown LDAC and CLR are also controlled from the bit pro-  
grammable lines of the 68HC11/68L11. The user can bring  
LDAC low after every two bytes have been transmitted to up-  
date that particular DAC which has been programmed or alter-  
natively it is possible to wait until all the input registers have  
been loaded before updating takes place.  
AD7804*/  
80C51/80L51*  
AD7808  
CLR  
P3.5  
P3.4  
P3.3  
TXD  
LDAC  
FSIN  
SCLK  
SDIN  
RXD  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 37. AD7804/AD7808–80C51/80L51 Interface  
–22–  
REV. A  
AD7804/AD7805/AD7808/AD7809  
Again fast interface timing allows the AD7805/AD7809 inter-  
face directly to the processor. Data is loaded to the AD7805/  
AD7809 input latch using the following instruction:  
AD7805/AD7809–ADSP-2101 Interface  
Figure 38 shows a parallel interface between the AD7805/AD7809  
and the ADSP-2101/ADSP-2103 digital signal processor.  
OUT DAC, D.  
Fast interface timing allows the AD7805/AD7809 interface  
directly to the DSP. In this interface an external timer is used to  
update the DACs.  
DAC = Decoded DAC Address.  
D = Data Memory Address.  
Certain applications may require that the updating of the DAC  
latch be controlled by the microprocessor rather than the exter-  
nal timer. One option as shown in the TMS32020 interface is to  
decode the LDAC from the address bus so that a write opera-  
tion to the DAC latch (at a separate address to the input latch)  
updates the output.  
TIMER  
DMA14  
ADDRESS BUS  
DMA0  
A2**  
A0 A1  
ADDR  
DECODE  
LDAC  
MODE  
DMS  
EN  
AD7805/AD7809–8051/8088 Interface  
CS  
Figure 40 shows a parallel interface between the AD7805/  
AD7809 and the 8051/8088 processors.  
AD7805*/  
AD7809  
ADSP-2101*/  
ADSP-2103*  
WR  
WR  
DB9  
DB0  
A15  
ADDRESS BUS  
A8  
A0 A1 A2**  
ADDR  
DMD15  
DMD0  
DATA BUS  
CS  
DECODE  
MODE  
PSEN OR DEN  
EN  
LDAC  
**ADDITIONAL PINS OMITTED FOR CLARITY  
**A2 CONTAINED ON THE AD7809 ONLY  
WR  
WR  
Figure 38. AD7805/AD7809–ADSP-2101/ADSP-2103  
Interface  
AD7805*/  
AD7809  
8051/8088  
ALE  
OCTAL  
LATCH  
DB9  
DB0  
Data is loaded to the AD7805/AD7809 input register using the  
following instruction:  
DM(DAC) = MR0,  
AD7  
AD0  
ADDRESS/DATA BUS  
MR0 = ADSP-2101 MR0 Register.  
DAC = Decoded DAC Address.  
**ADDITIONAL PINS OMITTED FOR CLARITY  
**A2 CONTAINED ON THE AD7809 ONLY  
Figure 40. AD7805/AD7809–8051/8088 Interface  
AD7805/AD7809–TMS32020 Interface  
Figure 39 shows a parallel interface between the AD7805/AD7809  
and the TMS32020 processor.  
A15  
ADDRESS BUS  
A0  
A0 A1 A2**  
ADDR  
CS  
DECODE  
EN  
IS  
AD7805*/  
AD7809  
TMS32020  
LDAC  
STRB  
WR  
R/W  
DB9  
DB0  
D15  
D0  
DATA BUS  
**ADDITIONAL PINS OMITTED FOR CLARITY  
**A2 CONTAINED ON THE AD7809 ONLY  
Figure 39. AD7805/AD7809–TMS32020 Interface  
REV. A  
–23–  
AD7804/AD7805/AD7808/AD7809  
APPLICATIONS  
AD7808  
CLKIN  
SDIN  
Opto-Isolated Interface for Process Control Applications  
The AD7804/AD7808 has a versatile serial three-wire serial  
interface making it ideal for generating accurate voltages in  
process control and industrial applications. Due to noise, safety  
requirements, or distance, it may be necessary to isolate the  
AD7804/AD7808 from the controller. This can easily be  
achieved by using opto-isolators which will provide isolation in  
excess of 3 kV. The serial loading structure of the AD7804/  
AD7808 makes it ideally suited for use in opto-isolated appli-  
cations. Figure 41 shows an opto-isolated interface to the  
AD7804/AD7808 where SDIN, CLKIN and FSIN are driven  
from optocouplers. LDAC is hardwired low to reduce the number  
of interface lines and this ensures that each DAC is updated follow-  
ing the sixteenth serial clock of a write cycle.  
FSIN  
SDIN  
V
V
CLKIN  
DD  
LDAC  
LDAC  
LDAC  
CC  
1Y0  
1Y1  
1Y2  
AD7808  
1G  
1A  
1B  
ENABLE  
FSIN  
SDIN  
CODED  
ADDRESS  
CLKIN  
1Y3  
74HC139  
DGND  
AD7808  
FSIN  
SDIN  
CLKIN  
+5V  
REGULATOR  
0.1F  
10F  
POWER  
AD7808  
V
V
DD  
FSIN  
AV  
DV  
DD  
DD  
10k⍀  
SDIN  
CLKIN  
REFOUT  
CLKIN  
FSIN  
CLKIN  
FSIN  
LDAC  
1 TO 10nF  
REFIN  
AD7804/  
AD7808  
DD  
10k⍀  
V
V
A
B
OUT  
Figure 42. Decoding Multiple AD7808s Using the FSIN Pin  
AD7805 As a Digitally Programmable Window Detector  
A digitally programmable upper/lower limit detector using two  
DACs in the AD7805 is shown in Figure 43. The upper and  
lower limits for the test are loaded to DACs A and B that in  
turn set the limits on the CMP04. If a signal at the VIN input is  
not within the programmed window an LED will indicate the  
fail condition. Only one limit detector is shown below but can  
easily be adapted for a dual channel system by using the extra  
DACs on the AD7805 and the two unused comparators on the  
CMP04.  
OUT  
V
DD  
10k⍀  
V
V
C
D
OUT  
OUT  
SDIN  
DATA  
CLR  
V
1
DD  
LDAC  
DGND  
AGND  
Figure 41. AD7804/AD7808 Opto-Isolated Interface  
+5V  
10F  
0.1F  
Decoding Multiple AD7808s  
1k⍀  
1k⍀  
PASS  
FAIL  
The FSIN pin on the AD7808s can be used in applications to  
decode a number of DACs. In this application all DACs in the  
system receive the same serial clock and serial data, but only the  
FSIN to one of the DACs will be active at any one time allowing  
access to eight channels in this thirty-two channel system. The  
74HC139 is used as a 2- to 4-line decoder to address any of the  
DACs in the system. To prevent timing errors from occurring  
the enable input should be brought to its inactive state while the  
coded address inputs are changing state. Figure 42 shows a  
system decoding multiple AD7808s in a multichannel system.  
V
IN  
0.01F  
0.01F  
1/2  
CMP04  
AV  
DV  
DD  
DD  
COMP  
V
A
B
OUT  
OUT  
PASS/  
FAIL  
AD7805  
D9  
D0  
V
MODE  
1/6  
74HC05  
V
V
C
D
OUT  
CS  
WR  
OUT  
DV  
DD  
CLR  
LDAC  
DGND  
AGND  
Figure 43. Digitally Programmable Window Detector  
–24–  
REV. A  
AD7804/AD7805/AD7808/AD7809  
Low Cost, Two-Channel Mixer Using AD7805, SSM2164 and  
OP275  
Dual External Reference Input Capability  
It is possible to operate the AD7804/AD7805/AD7808/AD7809  
with two externally applied references. Figure 45 shows the  
connections for the AD7804. Reference one, the AD589, is  
connected to the REFIN pin of the part; the second reference,  
the AD780, is used to overdrive the internal VDD/2 reference  
which is provided at the COMP pin of the device. With the  
circuit shown in Figure 45 it is possible to configure two of the  
channels for operation with the AD780 2.5 V reference and the  
other two with the AD589 1.23 V reference. The channel con-  
trol register allows the user to select the reference for the indi-  
vidual channels.  
The SSM2164 is a quad voltage controlled amplifier (VCA)  
with 120 dB of gain control range. Each VCA in the package is  
a current in, current out device with a –33 mV/dB voltage con-  
trol input port. Figure 44 shows a basic application circuit  
which can be used to implement a low cost stereo, two channel  
mixer. A 30 kresistor converts the input voltage to an input  
current for the VCA. The 500 resistor and 560 pF capacitor  
on the input are added to ensure stable operation of the  
SSM2164. The IOUT pin of the SSM2164 should be maintained  
at virtual ground and thus the OP275 is operated in its inverting  
mode. Its wide bandwidth, high slew rate and low power make it  
ideal for a current to voltage converter. A 30 kfeedback resis-  
tor is chosen to match the input resistor and thus give unity gain  
for a zero volt control voltage input. The 100 pF capacitors  
reduce high frequency noise and can be increased to reduce the  
low pass cutoff frequency for further noise reduction. The  
AD7805 in the circuit is used to control the attenuation of the  
VCA, this application circuit only gives attenuation. The voltage  
output from the AD7805 provides a low impedance drive to the  
SSM2164 so attenuation can be controlled accurately. With a  
5 V VDD and a VBIAS of VDD/2 the AD7805 has an LSB size of  
approximately 4.5 mV. Therefore, the attenuation can be con-  
trolled with a resolution of 0.136 dB/bit and thus 750 codes are  
required to provide the full 100 dB of attenuation.  
+5V  
0.1F  
10F  
0.1F  
6.8k⍀  
V
AV  
DV  
DD  
IN  
DD  
V
O
COMP  
REFIN  
AD780  
GND  
0.01F  
AD589  
AD7804  
REFOUT  
FSIN  
SERIAL  
SDIN  
V
V
V
V
A
INTERFACE  
OUT  
OUT  
OUT  
OUT  
CLKIN  
B
C
D
DV  
DD  
CLR  
LDAC  
DGND AGND  
Figure 45. Two Externally Applied References  
+5V  
V
1
V
2
IN  
IN  
10F  
0.1F  
30k⍀  
30k⍀  
100pF  
+15V  
500⍀  
500⍀  
30k⍀  
0.01F  
0.01F  
AV  
DV  
DD  
DD  
560pF  
560pF  
+15V  
+V  
COMP  
1/2  
OP275  
IN  
1
AD7805  
V 1  
C
V
A
OUT  
V
A
B
OUT  
IN  
2
D9  
D0  
–15V  
100pF  
V 2  
C
V
OUT  
IN  
3
MODE  
CS  
V 3  
C
30k⍀  
+15V  
V
C
OUT  
WR  
IN  
4
1/2  
OP275  
DV  
DD  
CLR  
V 4  
C
V
D
OUT  
LDAC  
SSM2164  
V
B
OUT  
DGND AGND  
–V  
500⍀  
500⍀  
–15V  
560pF  
560pF  
–15V  
30k⍀  
30k⍀  
V
3 V 4  
IN  
IN  
Figure 44. Low Cost, Two-Channel Mixer  
REV. A  
–25–  
AD7804/AD7805/AD7808/AD7809  
PAGE INDEX  
PAGE INDEX  
(AD7804/AD7808 SERIAL INTERFACE PART)  
Topic  
(AD7805/AD7809 PARALLEL INTERFACE PART)  
Topic  
Page No.  
Page No.  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 3  
Timing Information  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 3  
Timing Information  
Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Terminology  
Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . 6  
Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Terminology  
Relative Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Differential Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Bias Offset Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Gain Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Zero-Scale Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Digital-to-Analog Glitch Impulse . . . . . . . . . . . . . . . . . . . . 9  
Digital Feedthrough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Digital Crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Analog Crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power Supply Rejection Ratio . . . . . . . . . . . . . . . . . . . . . . 9  
Interface Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
System Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Channel Control Register . . . . . . . . . . . . . . . . . . . . . . . . . 11  
SUB DAC Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Power-Up Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Clear Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power-Down and Standby Functions . . . . . . . . . . . . . . . . . 16  
LDAC Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Analog Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Transfer Functions  
Pictorial View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Twos Complement (Main DAC) . . . . . . . . . . . . . . . . . . . 16  
Twos Complement (Sub DAC) . . . . . . . . . . . . . . . . . . . . 17  
Complete Channel Transfer Function . . . . . . . . . . . . . . . 17  
Offset Binary (Main DAC) . . . . . . . . . . . . . . . . . . . . . . . . 18  
Offset Binary (Sub DAC) . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Grounding and Layout Techniques . . . . . . . . . . . . . . . . . . . 20  
Reference Settling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Typical Performance Characteristics . . . . . . . . . . . . . . . . . . 21  
Microprocessor Interfacing  
Relative Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Differential Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Bias Offset Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Gain Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Zero-Scale Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Digital-to-Analog Glitch Impulse . . . . . . . . . . . . . . . . . . . 9  
Digital Feedthrough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Digital Crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Analog Crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power Supply Rejection Ratio . . . . . . . . . . . . . . . . . . . . . 9  
Interface Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
System Control Registers . . . . . . . . . . . . . . . . . . . . . . . . 14  
Channel Control Register . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power-Up Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Clear Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power-Down and Standby Functions . . . . . . . . . . . . . . . . 16  
LDAC Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Analog Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Transfer Functions  
Pictorial View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Twos Complement (Main DAC) . . . . . . . . . . . . . . . . . . 16  
Twos Complement (Sub DAC) . . . . . . . . . . . . . . . . . . . 17  
Complete Channel Transfer Function . . . . . . . . . . . . . . 17  
Offset Binary (Main DAC) . . . . . . . . . . . . . . . . . . . . . . . 18  
Offset Binary (Sub DAC) . . . . . . . . . . . . . . . . . . . . . . . . 19  
Grounding and Layout Techniques . . . . . . . . . . . . . . . . . . 20  
Reference Settling Time . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Typical Performance Characteristics . . . . . . . . . . . . . . . . . 21  
Microprocessor Interfacing  
ADSP-2101/ADSP-2103 . . . . . . . . . . . . . . . . . . . . . . . . 23  
TMS32020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8051/8088 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Applications  
Programmable Window Detector . . . . . . . . . . . . . . . . . . 24  
Low Cost Two-Channel Mixer . . . . . . . . . . . . . . . . . . . 25  
Dual External Reference Input Capability . . . . . . . . . . . 25  
Outline Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 27, 28  
ADSP-2101/ADSP-2103 . . . . . . . . . . . . . . . . . . . . . . . . . 22  
68HC11/68L11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
80C51/80L51 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Applications  
Opto-Isolated Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Decoding Multiple ICs . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Outline Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27, 28  
–26–  
REV. A  
AD7804/AD7805/AD7808/AD7809  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Plastic DIP (N-28)  
Plastic DIP (N-16)  
0.840 (21.33)  
0.745 (18.93)  
28  
1
15  
14  
0.580 (14.73)  
0.485 (12.32)  
16  
1
9
8
0.280 (7.11)  
0.240 (6.10)  
PIN 1  
0.325 (8.25)  
0.300 (7.62)  
0.195 (4.95)  
0.115 (2.93)  
0.060 (1.52)  
0.015 (0.38)  
1.565 (39.70)  
1.380 (35.10)  
PIN 1  
0.060 (1.52)  
0.015 (0.38)  
0.250  
(6.35)  
MAX  
0.210 (5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.150  
(3.81)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.200 (5.05)  
0.125 (3.18)  
0.015 (0.381)  
0.008 (0.204)  
0.070 (1.77) SEATING  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
0.022 (0.558)  
0.014 (0.356)  
0.100  
(2.54)  
BSC  
0.070 (1.77)  
MAX  
SEATING  
PLANE  
PLANE  
0.045 (1.15)  
0.625 (15.87)  
0.600 (15.24)  
0.195 (4.95)  
0.125 (3.18)  
SOIC (R-16)  
0.015 (0.381)  
0.008 (0.204)  
0.4133 (10.50)  
0.3977 (10.00)  
SOIC (R-28)  
16  
9
28  
15  
1
8
0.2992 (7.60)  
0.2914 (7.40)  
0.1043 (2.65)  
0.0926 (2.35)  
0.4193 (10.65)  
0.3937 (10.00)  
0.0291 (0.74)  
PIN 1  
PIN 1  
x 45°  
0.0118 (0.30)  
0.0040 (0.10)  
0.0098 (0.25)  
14  
1
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.1043 (2.65)  
0.0500  
(1.27)  
BSC  
0.7125 (18.10)  
0.6969 (17.70)  
0.0192 (0.49)  
0.0926 (2.35)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
0.0291 (0.74)  
0.0098 (0.25)  
0.0138 (0.35)  
x 45°  
0.0500 (1.27)  
8°  
0°  
0.0157 (0.40)  
0.0118 (0.30)  
0.0040 (0.10)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0500 (1.27)  
BSC  
0.0125 (0.32)  
0.0091 (0.23)  
SSOP (RS-28)  
28  
15  
0.212 (5.38)  
0.205 (5.207)  
0.311 (7.9)  
0.301 (7.64)  
PIN 1  
1
14  
0.07 (1.78)  
0.407 (10.34)  
0.397 (10.08)  
0.066 (1.67)  
0.03 (0.762)  
8°  
0°  
0.022 (0.558)  
0.008 (0.203)  
0.002 (0.050)  
0.0256 (0.65)  
BSC  
0.015 (0.38)  
0.010 (0.25)  
0.009 (0.229)  
0.005 (0.127)  
1. LEAD NO. 1 IDENTIFIED BY A DOT.  
2. LEADS WILL BE EITHER TIN PLATED OR SOLDER DIPPED  
IN ACCORDANCE WITH MIL-M-38510 REQUIREMENTS  
REV. A  
–27–  
AD7804/AD7805/AD7808/AD7809  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
TQFP (ST-44B)  
Plastic DIP (N-24)  
0.047 (1.20)  
MAX  
0.472 (12.00) SQ  
13  
24  
0.030 (0.75)  
0.018 (0.45)  
0.280 (7.11)  
0.240 (6.10)  
PIN 1  
33  
23  
12  
1
34  
22  
SEATING  
PLANE  
1.275 (32.30)  
1.125 (28.60)  
0.325 (8.25)  
0.300 (7.62)  
0.015  
(0.38)  
MIN  
0.210  
(5.33)  
MAX  
0.195 (4.95)  
0.115 (2.93)  
0.394  
(10.0)  
SQ  
TOP VIEW  
(PINS DOWN)  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.92)  
0.015 (0.381)  
0.008 (0.203)  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
0.100 (2.54)  
BSC  
SEATING  
PLANE  
44  
12  
1
11  
0.006 (0.15)  
0.002 (0.05)  
0.018 (0.45)  
0.012 (0.30)  
0.031 (0.80)  
BSC  
0.04134 (1.05)  
0.0374 (0.95)  
SOIC (R-24)  
0.614 (15.6)  
0.598 (15.2)  
24  
13  
0.299 (7.6) 0.419 (10.65)  
0.291 (7.4) 0.394 (10.00)  
1
12  
PIN 1  
0.104 (2.65)  
0.093 (2.35)  
0.03 (0.75)  
0.01 (0.25)  
8؇  
0؇  
0.012 (0.3) 0.0500 (1.27)  
0.004 (0.1)  
0.019 (0.49)  
SEATING  
PLANE  
0.014 (0.35)  
0.0500 (1.27)  
0.0157 (0.40)  
0.013 (0.32)  
0.009 (0.25)  
BSC  
–28–  
REV. A  

相关型号:

AD7809_15

3.3 V to 5 V Quad/Octal 10-Bit DACs
ADI

AD780AN

2.5 V/3.0 V High Precision Reference
ADI

AD780ANZ

2.5 V/3.0 V High Precision Reference
ADI

AD780AR

2.5 V/3.0 V High Precision Reference
ADI

AD780AR-REEL7

2.5 V/3.0 V High Precision Reference
ADI

AD780ARZ

2.5 V/3.0 V High Precision Reference
ADI

AD780ARZ-REEL7

2.5 V/3.0 V High Precision Reference
ADI

AD780BN

2.5 V/3.0 V High Precision Reference
ADI

AD780BNZ

2.5 V/3.0 V High Precision Reference
ADI

AD780BR

2.5 V/3.0 V High Precision Reference
ADI

AD780BR-REEL

2.5 V/3.0 V High Precision Reference
ADI

AD780BR-REEL7

2.5 V/3.0 V High Precision Reference
ADI