AD7961BCPZ [ADI]

16-Bit, 5 MSPS PULSAR® Differential ADC;
AD7961BCPZ
型号: AD7961BCPZ
厂家: ADI    ADI
描述:

16-Bit, 5 MSPS PULSAR® Differential ADC

转换器
文件: 总25页 (文件大小:616K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Bit, 5 MSPS PulSAR  
Differential ADC  
Data Sheet  
AD7961  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
REFIN  
REF VCM  
VDD1 VDD2  
VIO  
Throughput: 5 MSPS  
16-bit resolution with no missing codes  
Excellent ac and dc performance  
Dynamic range: 96 dB  
EN0  
EN1  
÷2  
CLOCK  
EN2  
LOGIC  
EN3  
SNR: 95.5 dB  
THD: −116 dB  
IN+  
IN–  
CAP  
DAC  
CNV+, CNV–  
INL: 0.2 LSB (typical), 0.55 LSB (maximum)  
DNL: 0.14 LSB (typical), 0.25 LSB (maximum)  
True differential analog input voltage range: 4.096 V or 5 V  
Low power dissipation  
D+, D–  
SERIAL  
LVDS  
SAR  
DCO+, DCO–  
CLK+, CLK–  
AD7961  
GND  
46.5 mW at 5 MSPS with external reference buffer  
(echoed clock mode)  
Figure 1.  
64.5 mW at 5 MSPS with internal reference buffer  
(echoed clock mode)  
39 mW at 5 MSPS with external reference buffer  
(self clocked mode, CNV in CMOS mode)  
SAR architecture  
GENERAL DESCRIPTION  
The AD7961 is a 16-bit, 5 MSPS, charge redistribution successive  
approximation (SAR), analog-to-digital converter (ADC). The  
SAR architecture allows unmatched performance both in noise  
and in linearity. The AD7961 contains a low power, high speed,  
16-bit sampling ADC, an internal conversion clock, and an  
internal reference buffer. On the CNV edge, the AD7961  
samples the voltage difference between the IN+ and IN− pins.  
The voltages on these pins swing in opposite phase between 0 V  
and 4.096 V and between 0 V and 5 V. The reference voltage is  
applied to the part externally. All conversion results are available  
on a single LVDS self clocked or echoed clock serial interface.  
No latency/pipeline delay  
External reference options: 2.048 V buffered to 4.096 V (internal  
reference buffer), 4.096 V, and 5 V  
Serial LVDS interface  
Self clocked mode  
Echoed clock mode  
LVDS or CMOS option for conversion control (CNV signal)  
Operating temperature range of −40°C to +85°C  
32-lead, 5 mm × 5 mm LFCSP (QFN)  
The AD7961 is available in a 32-lead LFCSP (QFN) with  
operation specified from −40°C to +85°C.  
APPLICATIONS  
Table 1. Fast PulSAR® ADC Selection  
Digital imaging systems  
Digital X-rays  
Computed tomography  
IR cameras  
MRI gradient control  
High speed data acquisition  
Spectroscopy  
1 MSPS to  
<2 MSPS  
2 MSPS to  
3 MSPS  
5 MSPS  
to 6 MSPS 10 MSPS  
Input Type  
Pseudo-  
Differential,  
16-Bit  
AD7653  
AD7667  
AD7980  
AD7983  
AD7671  
AD7985  
True Bipolar,  
16-Bit  
Test equipment  
Differential,1  
16-Bit  
Differential,1  
18-Bit  
AD7677  
AD7623  
AD7643  
AD7982  
AD7984  
AD7621  
AD7622  
AD7641  
AD7986  
AD7625  
AD7961  
AD7960  
AD7626  
1 Antiphase.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2013–2014 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
 
AD7961* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
REFERENCE MATERIALS  
Press  
• Industry’s Fastest 18-Bit SAR A/D Converter Unveiled  
Technical Articles  
EVALUATION KITS  
AD7961 Evaluation Kit  
Get ADC Data Beyond the Data Sheet  
Imaging Improvements: High performance data  
acquisition system enhances images for digital X-ray and  
MRI  
DOCUMENTATION  
Application Notes  
Increase Dynamic Range of SAR ADCs Using  
Oversampling  
AN-1279: How to Oversample 5 MSPS, 18-Bit/16-Bit  
Precision SAR Converters to Increase Dynamic Range  
• Let's Compare SAR & Δ-Σ Converters for a Mux'd DAS  
(Planet Analog, 12/2013)  
Data Sheet  
AD7961: 16-Bit, 5 MSPS PulSAR Differential ADC Data  
Sheet  
Which Is Better: SAR or Delta-Sigma ADCs  
User Guides  
DESIGN RESOURCES  
AD7961 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
UG-581: Evaluating the AD7961 16-Bit, 5 MSPS PulSAR  
Differential ADC  
SOFTWARE AND SYSTEMS REQUIREMENTS  
AD7961 Native FMC Card & Xilinx Reference Design  
DISCUSSIONS  
View all AD7961 EngineerZone Discussions.  
TOOLS AND SIMULATIONS  
AD7961Wiki : FMC Card & Xilinx Reference Design  
AD7961 IBIS Model  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD7961  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Circuit Information.................................................................... 14  
Converter Information .............................................................. 14  
Transfer Function....................................................................... 15  
Analog Inputs ............................................................................. 15  
Typical Applications................................................................... 16  
Voltage Reference Options........................................................ 17  
Power Supply............................................................................... 18  
Digital Interface.............................................................................. 19  
Conversion Control ................................................................... 19  
Applications Information.............................................................. 22  
Layout .......................................................................................... 22  
Evaluating AD7961 Performance............................................. 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Terminology .................................................................................... 13  
Theory of Operation ...................................................................... 14  
REVISION HISTORY  
3/14—Rev. A to Rev. B  
Changes to Table 4............................................................................ 7  
Deleted Table 6; Renumbered Sequentially .................................. 7  
Changes to Figure 19...................................................................... 11  
11/13—Rev. 0 to Rev. A  
Change to Table 1 ............................................................................. 1  
Changes to Table 2............................................................................ 3  
Change to Table 3 ............................................................................. 5  
Changes to Table 4............................................................................ 7  
Added Table 6; Renumbered Sequentially .................................... 7  
Change to Figure 4 ........................................................................... 8  
Changes to Figure 32...................................................................... 16  
Change to Voltage Reference Options Section ........................... 17  
8/13—Revision 0: Initial Version  
Rev. B | Page 2 of 24  
 
Data Sheet  
AD7961  
SPECIFICATIONS  
VDD1 = 5 V; VDD2 = 1.8 V; VIO = 1.8 V; REF = 5 V or 4.096 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
RESOLUTION  
16  
Bits  
ANALOG INPUT  
Voltage Range  
Operating Input Voltage  
Common-Mode Input Range1  
CMRR  
VIN+ − VIN−  
VIN+, VIN− to GND  
−VREF  
−0.1  
+VREF  
VREF + 0.1  
VREF/2 + 0.05  
V
V
V
dB  
nA  
VREF/2 − 0.05 VREF/2  
fIN = 500 kHz  
Acquisition phase  
70  
60  
Input Leakage Current  
THROUGHPUT  
Complete Cycle  
Throughput Rate  
DC ACCURACY  
200  
0
ns  
MSPS  
5
No Missing Codes  
Integral Linearity Error  
Differential Linearity Error  
Transition Noise  
Zero Error  
Zero Error Drift1  
Gain Error  
16  
−0.55  
−0.25  
Bits  
LSB  
LSB  
LSB  
LSB  
ppm/°C  
LSB  
ppm/°C  
LSB  
LSB  
0.2  
0.14  
0.5  
+0.55  
+0.25  
−2.5  
−0.25  
−8.5  
−0.5  
+2.5  
+0.25  
+8.5  
+0.5  
0.01  
1
0.05  
0.25  
0.5  
Gain Error Drift1  
Power Supply Sensitivity2  
VDD1 = 5 V 5%  
VDD2 = 1.8 V 5%  
AC ACCURACY  
fIN = 1 kHz, −0.5 dBFS, VREF = 5 V  
Dynamic Range  
Signal-to-Noise Ratio  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
Signal-to-Noise-and-Distortion Ratio  
fIN = 1 kHz, −0.5 dBFS, VREF = 4.096 V  
Dynamic Range  
95  
94.5  
96  
dB  
dB  
dB  
dB  
dB  
95.5  
118  
−116  
95  
94  
94  
93.5  
95  
dB  
dB  
dB  
dB  
dB  
MHz  
dB  
ns  
Signal-to-Noise Ratio  
94.5  
114  
−112  
94  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
Signal-to-Noise-and-Distortion Ratio  
−3 dB Input Bandwidth3  
Oversampled Dynamic Range4  
Aperture Delay5  
93  
EN2 = 0  
OSR = 256, REF = 5 V  
28  
115  
1.6  
1
Aperture Jitter5  
ps  
REFERENCE BUFFER  
REFIN Input Voltage Range1  
REF Output Voltage Range  
2.042  
4.086  
2.048  
4.096  
2.054  
4.106  
V
V
REF at 25°C, EN3 to EN0 = XX01 or  
XX10  
Line Regulation  
Gain Drift1  
VDD1 = 5 V 5%, VDD2 = 1.8 V 5%  
20  
4
µV  
ppm/°C  
−25  
+25  
Rev. B | Page 3 of 24  
 
AD7961  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
EXTERNAL REFERENCE  
Voltage Range  
REFIN pin, EN1 to EN0 = 01  
REF pin, EN1 to EN0 = 106  
REF pin, EN1 to EN0 = 016  
5 MSPS, REF = 4.096 V  
5 MSPS, REF = 5 V  
2.048  
4.096  
5
1.05  
1.36  
V
V
V
mA  
mA  
Current Drain  
1.11  
1.43  
VCM PIN  
VCM Output  
VCM Error  
Output Impedance  
LVDS I/O (ANSI-644)  
Data Format  
REF/2  
5.1  
−0.01  
+0.01  
V
kΩ  
Serial LVDS twos complement  
Differential Output Voltage, VOD  
Common-Mode Output Voltage, VOCM  
Differential Input Voltage, VID  
Common-Mode Input Voltage, VICM  
POWER SUPPLIES  
Specified Performance  
VDD1  
VDD2  
VIO  
Operating Currents8  
RL = 100 Ω  
RL = 100 Ω  
245  
9807  
100  
800  
290  
1130  
454  
1375  
650  
mV  
mV  
mV  
mV  
1575  
4.75  
1.71  
1.71  
5
1.8  
1.8  
5.25  
1.89  
1.89  
V
V
V
Static—Not Converting, Internal  
Reference Buffer Disabled  
Self clocked mode, CNV in CMOS  
mode9  
VDD1  
VDD2  
VIO  
8
8
5
40  
70  
5.3  
μA  
μA  
mA  
Static—Not Converting, Internal  
Reference Buffer Enabled  
Self clocked mode, CNV in CMOS  
mode9  
VDD1  
VDD2  
VIO  
2.6  
9
4.4  
2.9  
72  
5.3  
mA  
μA  
mA  
Converting: Internal Reference Buffer  
Disabled  
Echoed clock mode, CNV in LVDS  
mode  
VDD1  
VDD2  
VIO  
2
11.4  
9
2.2  
13.5  
10.3  
mA  
mA  
mA  
Converting: Internal Reference Buffer  
Enabled  
Echoed clock mode, CNV in LVDS  
mode  
VDD1  
VDD2  
VIO  
5.6  
11.4  
9
6
13.5  
10.3  
mA  
mA  
mA  
Converting: Internal Reference Buffer  
Disabled  
Self clocked mode, CNV in CMOS  
mode9  
VDD1  
VDD2  
VIO  
2
11.4  
4.9  
2.2  
13.5  
5.6  
mA  
mA  
mA  
Snooze Mode  
VDD1  
VDD2  
2
1
0.1  
4.1  
40.3  
4.8  
μA  
μA  
μA  
VIO  
Rev. B | Page 4 of 24  
 
Data Sheet  
AD7961  
Parameter  
Power-Down  
VDD1  
Test Conditions/Comments  
Min  
Typ  
Max  
2.8  
Unit  
EN3 to EN0 = X000  
1
1
0.2  
μA  
μA  
μA  
VDD2  
VIO  
37.8  
4.6  
Power Dissipation  
Static—Not Converting, Internal  
Reference Buffer Disabled  
Static—Not Converting, Internal  
Reference Buffer Enabled  
Self clocked mode, CNV in CMOS  
mode9  
Self clocked mode, CNV in CMOS  
mode9  
9
10.3  
25  
mW  
mW  
mW  
mW  
mW  
21  
Converting: Internal Reference Buffer  
Disabled  
Converting: Internal Reference Buffer  
Enabled  
Converting: Internal Reference Buffer  
Disabled  
Echoed clock mode, CNV in ꢀVDS  
mode  
Echoed clock mode, CNV in ꢀVDS  
mode  
Self clocked mode, CNV in CMOS  
mode9  
46.5  
64.5  
39  
56.2  
76.4  
47.4  
Power-Down  
EN3 to EN0 = X000  
7.2  
7.8  
94.5  
9.5  
μW  
nJ/sample  
Energy per Conversion  
TEMPERATURE RANGE  
Specified Performance  
Self clocked, CNV in CMOS mode9  
TMIN to TMAX  
−40  
+85  
°C  
1 The minimum and maximum values are guaranteed by characterization.  
2 Using an external reference.  
3 See Table 9 for logic levels of enable pins. When EN2 = 1, the −3 dB input bandwidth is 9 MHz. Use this lower bandwidth only when the throughput rate is 2 MSPS or  
lower.  
4 The oversampled dynamic range is the ratio of the peak signal power to the noise power (for a small input) measured in the ADC output FFT from dc up to fS/(2 × OSR),  
where fS is the ADC sample rate and OSR is the oversampling ratio.  
5 Guaranteed by design.  
6 The REFIN pin is tied to 0 V in this mode.  
7 The ANSI-644 ꢀVDS specification has a minimum common-mode output (VOCM) of 1125 mV.  
8 The current dissipated in the VCM circuitry when enabled is REF/20 kΩ and is not included in the operating currents listed.  
9 CNV+ works as a CMOS input when CNV− is grounded. See Table 7 for additional information.  
TIMING SPECIFICATIONS  
VDD1 = 5 V; VDD2 = 1.8 V; VIO = 1.71 V to 1.89 V; REF = 5 V or 4.096 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
tCYC  
Min  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
ns  
ns  
Time Between Conversions  
Acquisition Time  
CNV High Time  
CNV to D (MSB) Ready  
CNV to ꢀast CꢀK (ꢀSB) Delay  
CꢀK Period1  
200  
tACQ  
tCNVH  
tMSB  
tCꢀKꢀ  
tCꢀK  
fCꢀK  
tDCO  
tD  
tCYC − 115  
10  
0.6 × tCYC  
200  
160  
(tCYC − tMSB + tCꢀKꢀ)/n  
300  
5
1
5
3.33  
0
4
250  
3
0
3
CꢀK Frequency  
CꢀK to DCO Delay (Echoed Clock Mode)  
DCO to D Delay (Echoed Clock Mode)  
CꢀK to D Delay  
tCꢀKD  
0
ns  
1 For the maximum CꢀK period, the window available to read data is tCYC − tMSB + tCꢀKꢀ. Divide this time by the number of bits (n) to be read giving the maximum CꢀK  
frequency that can be used for a given conversion CNV frequency. In echoed clock interface mode, n = 16; in self clocked interface mode, n = 18.  
Rev. B | Page 5 of 24  
 
 
AD7961  
Data Sheet  
Timing Diagrams  
SAMPLE N  
SAMPLE N + 1  
tCYC  
tCNVH  
CNV–  
CNV+  
tACQ  
ACQUISITION  
ACQUISITION  
ACQUISITION  
tCLKL  
tCLK  
15  
16  
1
2
15  
16  
1
2
3
CLK–  
CLK+  
tDCO  
1
15  
16  
1
2
15  
16  
2
3
DCO–  
DCO+  
tMSB  
tD  
tCLKD  
D+  
D–  
D1  
N – 1  
D0  
N – 1  
D15  
N
D14  
N
D1  
N
D0  
N
D15  
N + 1  
D14  
D13  
0
0
N + 1 N + 1  
Figure 2. Echoed Clock Interface Mode Timing Diagram  
SAMPLE N  
SAMPLE N + 1  
tCYC  
tCNVH  
CNV–  
CNV+  
tACQ  
ACQUISITION  
ACQUISITION  
ACQUISITION  
tCLKL  
tCLK  
17  
18  
1
2
3
4
17  
18  
1
2
3
CLK–  
CLK+  
tMSB  
tCLKD  
D+  
D15  
N + 1  
D14  
N
D1  
N
D0  
N
D1  
N – 1  
D0  
N – 1  
D15  
N
0
1
0
0
1
0
D–  
Figure 3. Self-Clocked Interface Mode Timing Diagram  
Rev. B | Page 6 of 24  
Data Sheet  
AD7961  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 4.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Analog Inputs/Outputs  
IN+, IN− to GND  
REF1 to GND  
−0.3 V to VDD1  
−0.3 V to +6 V  
−0.3 V to +6 V  
−0.3 V to +6 V  
Table 5. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
VCM to GND  
32-Lead LFCSP_VQ  
40  
4
°C/W  
REFIN to GND  
Supply Voltages  
VDD1  
VDD2, VIO  
Digital Inputs to GND  
Digital Outputs to GND  
−0.3 V to +6 V  
ESD CAUTION  
−0.3 V to +2.1 V  
−0.3 V to VIO + 0.3 V  
−0.3 V to VIO + 0.3 V  
10 ꢀA  
Input Current to Any Pin  
Except Supplies  
Operating Teꢀperature  
Range (Coꢀꢀercial)  
−40°C to +85°C  
Storage Teꢀperature Range  
Junction Teꢀperature  
ESD Ratings  
−65°C to +150°C  
150°C  
Huꢀan Body Model  
Machine Model  
Field-Induced Charged-  
Device Model  
4 kV  
200 V  
1.25 kV  
1 Transient currents of up to 100 ꢀA do not cause SCR latch-up.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. B | Page 7 of 24  
 
 
 
 
AD7961  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
VDD1  
VDD2  
REFIN  
EN0  
EN1  
EN2  
1
2
3
4
5
6
7
8
24 GND  
23  
22 IN–  
IN+  
AD7961  
TOP VIEW  
(Not to Scale)  
21 VCM  
20  
19  
18  
VDD1  
VDD1  
VDD2  
EN3  
CNV–  
17 CLK+  
NOTES  
1. CONNECT THE EXPOSED PAD TO THE  
GROUND PLANE OF THE PCB  
USING MULTIPLE VIAS.  
Figure 4. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
1, 19, 20  
2, 18, 25  
12  
13, 24  
26, 27, 28  
Mnemonic  
Type1  
Description  
VDD1  
VDD2  
VIO  
GND  
P
P
P
P
P
Analog 5 V Supply. Decouple the 5 V supply with a 100 nF capacitor.  
Analog 1.8 V Supply. Decouple this pin with a 100 nF capacitor.  
Input/Output Interface Supply. Use a 1.8 V supply and decouple this pin with a 100 nF capacitor.  
Ground.  
Reference Ground. Connect the capacitors on the REF pin between REF and REF_GND. Tie REF_GND to  
GND.  
REF_GND  
3
REFIN  
AI  
Prebuffer Reference Voltage. It is driven with an external reference voltage of 2.048 V. When driving an  
external 2.048 V reference, a 100 nF capacitor is required. If using an external 5 V or 4.096 V reference  
(connected to REF), connect this pin to ground.  
Enable.2 The logic levels of these pins set the operation of the device as described in Table 9.  
4, 5, 6, 7  
8, 9  
EN0, EN1,  
EN2,2 EN3  
CNV−, CNV+  
DI  
DI  
Convert Input. These pins act as the conversion control pin. On the rising edge of these pins, the analog  
inputs are sampled and a conversion cycle is initiated. CNV+ works as a CMOS input when CNV− is  
grounded; otherwise, CNV+ and CNV− are differential LVDS inputs.  
10, 11  
14, 15  
D−, D+  
DCO−, DCO+  
DO  
DO  
LVDS Data Outputs. The conversion data is output serially on these pins.  
LVDS Buffered Clock Outputs. When DCO+ is grounded, the self-clocked interface mode is selected. In this  
mode, the 16-bit results on D are preceded by an initial 0 (which is output at the end of the previous  
conversion), followed by a 2-bit header (10) to allow synchronization of the data by the digital host with  
extra logic. The 1 in this header provides the reference to acquire the subsequent conversion result  
correctly. When DCO+ is not grounded, the echoed clock interface mode is selected. In this mode, DCO is  
a copy of CLK . The data bits are output on the falling edge of DCO+ and can be captured in the digital  
host on the next rising edge of DCO+.  
16, 17  
21  
CLK−, CLK+  
VCM  
DI  
AO  
LVDS Clock Inputs. This clock shifts out the conversion results on the falling edge of CLK+.  
Common-Mode Output. When using any reference scheme, this pin produces one-half the voltage present  
on the REF pin, which can be useful for driving the common mode of the input amplifiers.  
22  
23  
IN−  
IN+  
AI  
AI  
Differential Negative Analog Input. Referenced to and must be driven 180° out of phase with IN+.  
Differential Positive Analog Input. Referenced to and must be driven 180° out of phase with IN−.  
29, 30, 31, REF  
32  
AI/O  
Buffered Reference Voltage. When using the 2.048 V external reference (REFIN input), the 4.096 V system  
reference is produced at this pin. When using an external reference of 4.096 V or 5 V on this pin, the  
internal reference buffer must be disabled. Connect the REF pins with the shortest trace possible to a  
single 10 μF, low ESR, low ESL capacitor. The other side of the capacitor must be placed close to GND.  
33  
EP  
Exposed Pad. The exposed pad is located on the underside of the package. Connect the exposed pad to  
the ground plane of the PCB using multiple vias.  
1 AI = analog input; AI/O = bidirectional analog; AO = analog output; DI = digital input; DO = digital output; P = power.  
2 EN2 = 0 sets the 28 MHz of input bandwidth and EN2 = 1 sets the 9 MHz of input bandwidth. EN3 = 1 enables the VCM reference output.  
Rev. B | Page 8 of 24  
 
 
 
 
Data Sheet  
AD7961  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD1 = 5 V; VDD2 = 1.8 V; VIO = 1.8 V; all specifications T = 25°C, unless otherwise noted.  
0.3  
0.2  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.1  
–0.2  
0
10000  
20000  
30000  
CODE  
40000  
50000  
60000  
0
10000  
20000  
30000  
CODE  
40000  
50000  
60000  
Figure 5. Integral Nonlinearity vs. Code and Temperature, REF = 5 V  
Figure 8. Differential Nonlinearity vs. Code and Temperature, REF = 5 V  
0.2  
0.3  
–40°C  
+25°C  
+85°C  
–40°C  
0.2  
+25°C  
+85°C  
0.1  
0
0.1  
0
–0.1  
–0.2  
–0.3  
–0.1  
–0.2  
0
10000  
20000  
30000  
CODE  
40000  
50000  
60000  
0
10000  
20000  
30000  
CODE  
40000  
50000  
60000  
Figure 9. Differential Nonlinearity vs. Code and Temperature, REF = 4.096 V  
Figure 6. Integral Nonlinearity vs. Code and Temperature, REF = 4.096 V  
150000  
250000  
216380  
200000  
128593  
125000  
116886  
100000  
75000  
50000  
150000  
100000  
50000  
25000  
16577  
24701  
20940  
66  
86  
0
0
57  
0
2
0
0
0
2C0  
2C1  
2C2  
2C3  
2C4  
2C5  
2C6  
2C1  
2C2  
2C3  
2C4  
2C5  
2C6  
2C7  
CODE (HEX)  
CODE (HEX)  
Figure 7. Histogram of DC Input at Code Center, REF = 5 V  
Figure 10. Histogram of DC Input at Code Transition, REF = 5 V  
Rev. B | Page 9 of 24  
 
AD7961  
250000  
200000  
150000  
100000  
50000  
Data Sheet  
160000  
140000  
120000  
100000  
80000  
60000  
40000  
20000  
0
215449  
136440  
124393  
24360  
E573  
22331  
E571  
535  
0
0
776  
0
3
1
0
0
0
E56F  
E570  
E572  
CODE (HEX)  
E574  
E575  
E56F  
E570  
E571  
E572  
CODE (HEX)  
E573  
E574  
E575  
Figure 11. Histogram of DC Input at Code Center, REF = 4.096 V  
Figure 14. Histogram of DC Input at Code Transition, REF = 4.096 V  
0
0
–20  
–40  
INPUT FREQENCY = 20kHz  
SNR = 95.9dB  
SINAD = 95.8dB  
THD = –115.5dB  
SFDR = 117dB  
–20  
–40  
INPUT FREQENCY = 20kHz  
SNR = 96.2dB  
SINAD = 96.1dB  
THD = –121dB  
SFDR = 122dB  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. 20 kHz, −0.5 dBFS Input Tone FFT, Wide View, REF = 5 V  
Figure 15. 20 kHz, −6 dBFS Input Tone FFT, Wide View, REF = 5 V  
0
0
INPUT FREQENCY = 20kHz  
SNR = 95.2dB  
SINAD = 95.1dB  
THD = –110.8dB  
SFDR = 113.4dB  
–20  
–40  
–20  
–40  
INPUT FREQENCY = 20kHz  
SNR = 95.9dB  
SINAD = 95.8dB  
THD = –115.5dB  
SFDR = 117dB  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
Figure 16. 20 kHz, −0.5 dBFS Input Tone FFT, Wide View, REF = 4.096 V  
Figure 13. 20 kHz, −0.5 dBFS Input Tone FFT, Zoomed View, REF = 5 V  
Rev. B | Page 10 of 24  
Data Sheet  
AD7961  
0
96.0  
95.8  
95.6  
95.4  
95.2  
95.0  
–20  
INPUT FREQENCY = 20kHz  
SNR = 95.2dB  
SINAD = 95.1dB  
THD = –110.8dB  
SFDR = 113.4dB  
–40  
SNR  
SINAD  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
Figure 20. SNR and SINAD vs. Temperature, REF = 5 V  
Figure 17. 20 kHz, −0.5 dBFS Input Tone FFT, Zoomed View, REF = 4.096 V  
–110  
–112  
–114  
–116  
–118  
–120  
–122  
0
–20  
–40  
INPUT FREQENCY = 20kHz  
SNR = 95.5dB  
SINAD = 95.4dB  
THD = –119.9dB  
SFDR = 119.7dB  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY (MHz)  
Figure 18. 20 kHz, −6 dBFS Input Tone FFT, Wide View, REF = 4.096 V  
Figure 21. THD vs. Temperature, REF = 5 V  
–120  
–115  
–110  
–105  
–100  
–95  
96.00  
95.75  
95.50  
95.25  
95.00  
126  
124  
122  
120  
118  
116  
114  
112  
SNR  
THD  
–90  
–85  
–80  
0
50  
100  
150  
200  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
Figure 19. SNR and THD vs. Frequency, −0.5 dBFS, REF = 5 V  
Figure 22. SFDR vs. Temperature, REF = 5 V  
Rev. B | Page 11 of 24  
AD7961  
Data Sheet  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
10  
8
VDD2  
VDD1  
VIO  
GAIN ERROR  
6
4
2
ZERO ERROR  
0
0
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
TEMPERATURE (  
40  
60  
80  
̊
TEMPERATURE (°C)  
Figure 23. Zero Error and Gain Error vs. Temperature, REF = 5 V  
Figure 26. Power-Down Current vs. Temperature, REF = 5 V  
0.3  
0.2  
0.1  
12  
10  
VDD2  
0
IN+  
8
–0.1  
–0.2  
6
IN–  
VIO  
–0.3  
4
–0.4  
–0.5  
–0.6  
–0.7  
2
VDD1  
0
0
1
2
3
4
5
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
DIFFERENTIAL INPUT VOLTAGE (V)  
THROUGHPUT (MHz)  
Figure 27. Supply Current vs. Throughput, Self Clocked Mode, CNV in CMOS  
Mode, Internal Reference Buffer Disabled  
Figure 24. Input Current (IN+, IN−) vs. Differential Input Voltage, REF = 5 V  
14  
12  
VDD2  
10  
8
6
VIO  
4
VDD1  
2
0
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 25. Supply Current vs. Temperature, REF = 5 V, Self Clocked Mode,  
CNV in CMOS Mode, Internal Reference Buffer Disabled  
Rev. B | Page 12 of 24  
Data Sheet  
AD7961  
TERMINOLOGY  
Power Supply Rejection Ratio (PSRR)  
Differential Nonlinearity (DNL) Error  
Variations in power supply affect the full-scale transition but not  
the linearity of the converter. PSRR is the maximum change in  
the full-scale transition point due to a change in power supply  
voltage from the nominal value.  
In an ideal ADC, code transitions are 1 LSB apart. Differential  
nonlinearity is the maximum deviation from this ideal value. It  
is often specified in terms of resolution for which no missing  
codes are guaranteed.  
Signal-to-Noise Ratio (SNR)  
Integral Nonlinearity (INL) Error  
SNR is the ratio of the rms value of the actual input signal to  
the rms sum of all other spectral components below the Nyquist  
frequency, excluding harmonics and dc. The value for SNR is  
expressed in decibels.  
Linearity error refers to the deviation of each individual code  
from a line drawn from negative full scale through positive full  
scale. The point used as negative full scale occurs ½ LSB before  
the first code transition. Positive full scale is defined as a level  
1½ LSB beyond the last code transition. The deviation is meas-  
ured from the middle of each code to the true straight line.  
Signal-to-Noise-and-Distortion (SINAD) Ratio  
SINAD is the ratio of the rms value of the actual input signal to  
the rms sum of all other spectral components below the Nyquist  
frequency, including harmonics but excluding dc. The value for  
SINAD is expressed in decibels.  
Dynamic Range  
Dynamic range is the ratio of the rms value of the full scale to  
the rms noise measured for an input typically at −60 dB. The  
value for dynamic range is expressed in decibels.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the difference, in decibels, between the rms amplitude  
of the input signal and the peak spurious signal (including  
harmonics).  
Effective Number of Bits (ENOB)  
ENOB is a measurement of the resolution with a sine wave  
input. It is related to SINAD and is expressed in bits by  
Total Harmonic Distortion (THD)  
ENOB = [(SINADdB − 1.76)/6.02]  
THD is the ratio of the rms sum of the first five harmonic  
components to the rms value of a full-scale input signal and  
is expressed in decibels.  
Gain Error  
The first transition (from 100 … 000 to 100 …001) should occur  
at a level ½ LSB above nominal negative full scale (−4.0959844 V  
for the 4.096 V range). The last transition (from 011 … 110 to  
011 … 111) occurs for an analog voltage 1½ LSB below the  
nominal full scale (+4.095953 V for the 4.096 V range). The  
gain error is the deviation of the difference between the actual  
level of the last transition and the actual level of the first  
transition from the difference between the ideal levels.  
Zero Error  
Zero error is the difference between the ideal midscale input  
voltage (0 V) and the actual voltage producing the midscale  
output code.  
Zero Error Drift  
The ratio of the zero error change due to a temperature change  
of 1°C and the full scale code range (2N). It is expressed in parts  
per million.  
Gain Error Drift  
The ratio of the gain error change due to a temperature change  
of 1°C and the full-scale range (2N). It is expressed in parts per  
million.  
Least Significant Bit (LSB)  
The least significant bit, or LSB, is the smallest increment that  
can be represented by a converter. For a fully differential input  
ADC with N bits of resolution, the LSB expressed in volts is  
VINp-p  
LSB (V) =  
2N  
Rev. B | Page 13 of 24  
 
AD7961  
Data Sheet  
THEORY OF OPERATION  
IN+  
GND  
SWITCHES  
CONTROL  
SW+  
LSB  
MSB  
16,384C  
4C  
4C  
2C  
2C  
C
C
C
C
32,768C  
CLK+, CLK–  
DCO+, DCO–  
D+, D–  
REF  
(4.096V)  
DATA  
TRANSFER  
CONTROL  
LOGIC  
COMP  
GND  
OUTPUT CODE  
32,768C  
MSB  
16,384C  
SW–  
LSB  
CNV+, CNV–  
LVDS INTERFACE  
GND  
CONVERSION  
CONTROL  
IN–  
Figure 28. ADC Simplified Schematic  
When the conversion phase begins, SW+ and SW− are opened  
first. The two-capacitor arrays are then disconnected from the  
inputs and connected to the GND input. Therefore, the differential  
voltage between the inputs (IN+ and IN−) captured at the end  
of the acquisition phase is applied to the comparator inputs,  
causing the comparator to become unbalanced. By switching  
each element of the capacitor array between GND and REF  
(the reference voltage), the comparator input varies by binary  
weighted voltage steps (VREF/2, VREF/4 … VREF/262,144). The  
control logic toggles these switches, MSB first, to bring the  
comparator back into a balanced condition. At the completion  
of this process, the control logic generates the ADC output code.  
CIRCUIT INFORMATION  
The AD7961 is a 5 MSPS, high precision, power efficient, 16-bit  
ADC that uses SAR-based architecture to provide performance  
of 95.5 dB SNR, 0.2 LSB INL, and 0.14 LSB DNL. The AD7961  
does not exhibit any pipeline delay or latency, making it ideal  
for multiplexed channel applications.  
The AD7961 is capable of converting 5,000,000 samples per  
second (5 MSPS). The device typically consumes 46.5 mW of  
power. The AD7961 offers the added functionality of an on-  
chip reference buffer. If the internal reference buffer is enabled,  
the AD7961 consumes approximately an additional 18 mW of  
power.  
The AD7961 digital interface uses low voltage differential  
signaling (LVDS) to enable high data transfer rates.  
The AD7961 is specified for use with 5 V and 1.8 V supplies  
(VDD1, VDD2). The interface from the digital host to the  
AD7961 uses 1.8 V logic only. The AD7961 uses an LVDS  
interface to transfer data conversions. The CNV+ and CNV−  
inputs to the part activate the conversion of the analog input.  
The CNV+ and CNV− pins can be applied using a CMOS or  
LVDS source.  
The AD7961 conversion result is available for reading after tMSB  
(time from the conversion start until MSB is available) elapses.  
The user must apply a burst LVDS CLK signal to the AD7961  
to transfer data to the digital host.  
The CLK signal outputs the ADC conversion result onto the  
data output D . The bursting of the CLK signal, illustrated in  
Figure 35 and Figure 36, is characterized as follows:  
The AD7961 is housed in a space-saving, 32-lead, 5 mm ×  
5 mm LFCSP package.  
Hold the differential voltage on CLK in a steady state in  
the window of time between tCLKL and tMSB  
The AD7961 has two data read modes. For more  
information about the echoed clock and self clocked  
interface modes, see the Digital Interface section.  
CONVERTER INFORMATION  
.
The AD7961 is a 5 MSPS ADC that uses SAR-based archi-  
tecture based on a charge redistribution DAC. Figure 28 shows  
a simplified schematic of the ADC. The capacitive DAC consists  
of two identical arrays of 16 binary weighted capacitors that are  
connected to the two comparator inputs.  
During the acquisition phase, the terminals of the array tied  
to the input of the comparator are connected to GND via SW+  
and SW−. All independent switches are connected to the analog  
inputs. In this way, the capacitor arrays are used as sampling  
capacitors and acquire the analog signal on the IN+ and IN−  
inputs. A conversion phase is initiated when the acquisition  
phase is complete and the CNV input goes high. Note that the  
AD7961 can receive a CMOS or LVDS format CNV signal.  
Rev. B | Page 14 of 24  
 
 
 
 
Data Sheet  
AD7961  
maximum. However, if the supplies of the input buffer amplifier  
are different from the VDD1/GND supply, the analog input  
signal may eventually exceed the supply rails by more than  
0.3 V. In such a case (for example, an input buffer with a short  
circuit), the current limitation can be used to protect the part.  
VDD1  
TRANSFER FUNCTION  
The AD7961 uses a 5 V or a 4.096 V reference. The AD7961  
converts the differential voltage of the antiphase analog inputs  
(IN+ and IN−) into a digital output. IN+ and IN− require a  
REF/2 V common-mode voltage.  
The 16-bit conversion result is in MSB first, twos complement  
format. The ideal transfer functions for the AD7961 are shown  
in Figure 29 and Table 8.  
26pF  
185Ω  
IN+  
OR IN–  
Figure 30. Equivalent Analog Input Circuit  
011 ... 111  
011 ... 110  
011 ... 101  
The analog input structure allows the sampling of the true  
differential signal between IN+ and IN−. By using these differ-  
ential inputs, signals common to both inputs are rejected. The  
AD7961 shows some degradation in THD with higher analog  
input frequencies.  
100  
100 ... 010  
100 ... 001  
100 ... 000  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–FSR  
–FSR + 1LSB  
+FSR – 1LSB  
+FSR – 1.5LSB  
–FSR + 0.5LSB  
ANALOG INPUT  
Figure 29. ADC Ideal Transfer Functions (FSR = Full-Scale Range)  
ANALOG INPUTS  
The analog inputs applied to the AD7961, IN+ and IN−, must be  
180° out of phase with each other. Figure 30 shows an equivalent  
circuit of the input structure of the AD7961.  
The two diodes provide ESD protection for IN+ and IN−. Care  
must be taken to ensure that the analog input signals do not exceed  
the supply rails of the AD7961 by more than 0.3 V (VDD1 and  
GND). If the analog input signals exceed this level, the diodes  
become forward-biased and start conducting current. These  
diodes can handle a forward-biased current of 130 mA  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 31. Analog Input CMRR vs. Frequency  
Table 8. Output Codes and Ideal Input Voltages  
Analog Input (IN+ − IN−), Analog Input (IN+ − IN−),  
Description  
FSR − 1 LSB  
Midscale + 1 LSB  
Midscale  
Midscale − 1 LSB  
−FSR + 1 LSB  
−FSR  
REF = 5 V  
+4.999847 V  
+152.6 μV  
0 V  
REF = 4.096 V  
+4.095875 V  
+125 μV  
Digital Output Code, Twos Complement (Hex)  
0x7FFF  
0x0001  
0x0000  
0xFFFF  
0x8001  
0x8000  
0 V  
−152.6 μV  
−4.999847 V  
−5 V  
−125 μV  
−4.095875 V  
−4.096 V  
Rev. B | Page 15 of 24  
 
 
 
 
 
AD7961  
Data Sheet  
edge to the multiplexer inputs switching event results in no  
TYPICAL APPLICATIONS  
corruption. If the analog inputs are multiplexed during this  
quiet conversion time, the current conversion may be corrupted  
by up to 4 LSBs.  
Figure 32 shows an example of a typical connection diagram for  
driving the AD7961 using the two single-ended ADA4899-1  
devices. The alternative ADC drivers are two single-ended  
ADA4897-1 op amps or a differential amplifier ADA4932-1  
that can drive the inputs of the AD7961.  
If the analog inputs are multiplexed early enough, the inputs  
can slew fast enough to a full-scale signal and settle the input  
within the allowed time.  
The AD7961 is an ideal fit for high speed multiplexed applica-  
tions such as digital X-ray, computed tomography, and infrared  
cameras that require superior performance in terms of noise,  
power, and throughput, which significantly reduces cost in  
these types of applications. The AD7961 has a quiet time  
requirement of 90 ns to 110 ns during the conversion, where the  
switching of multiplexer inputs (channels) must not occur to  
avoid the corruption of conversion. In other words, a delay of  
less than 90 ns and greater than 110 ns from the CNV rising  
The AD7961 offers extremely low noise floor relative to its full-  
scale input. The combination of high throughput rate, low noise  
floor, and linearity also makes this part suitable for oversampling  
applications such as spectroscopy, MRI gradient control, and  
gas chromatography. The wide dynamic range of the AD7961  
allows accurate measurements of both small and large signals  
from multiple channels.  
+V  
S
+5V  
AD8031  
0.1µF  
2
+7V  
ADR4550  
0.1µF  
10µF  
0.1µF  
+5V  
0.1µF  
+1.8V  
0.1µF  
+1.8V  
0.1µF  
–V  
S
+V  
S
33Ω  
0V TO 5 V  
1
REFIN REF  
VDD1  
VDD2  
VIO  
CNV±  
VCM = 2.5V  
56pF  
100Ω  
–V  
ADA4899-1  
S
IN+  
100Ω  
100Ω  
D±  
AD7961  
DCO±  
IN–  
+V  
–V  
S
100Ω  
CLK±  
33Ω  
GND  
VCM  
2.5V  
VCM = 2.5V  
56pF  
0V TO 5 V  
0.1µF  
S
ADA4899-1  
+V  
S
3
VCM  
AD8031  
0.1µF  
–V  
S
1
2
3
SEE THE VOLTAGE REFERENCE OPTIONS SECTION. CONNECTION TO EXTERNAL REFERENCE SIGNALS IS DEPENDENT ON THE EN1  
AND EN0 SETTINGS.  
A 10µF CAPACITOR WITH LOW ESL AND ESR IS USUALLY CONNECTED BETWEEN THE REF PIN AND REF_GND. CONNECT REF_GND TO  
THE COMMON GROUND OF THE BOARD. THE REF AND REFIN PINS ARE DECOUPLED REGARDLESS OF EN1 AND EN0 SETTINGS.  
BUFFERED VCM PIN OUTPUT GIVES THE REQUIRED 2.5V COMMON-MODE SUPPLY FOR ANALOG INPUTS.  
Figure 32. Typical Application Diagram  
Rev. B | Page 16 of 24  
 
 
Data Sheet  
AD7961  
Table 8. Voltage Reference Options  
EN3 EN2 EN1 EN0 REFIN  
Reference Mode Description  
X1  
X1  
0
0
0
0
0
1
X1  
Power-down mode. Everything is powered down, including the LVDS interface.  
Interface powered up. Reference buffer disabled. An external 5 V reference is applied to the REF pin.  
Connect REFIN to 0 V in this mode. The bandwidth of the input sampling network is set to 28 MHz.  
Internal reference buffer enabled. An external 2.048 V reference applied to REFIN pin is required. A  
buffered 4.096 V reference is available on the REF pin. The bandwidth of the input sampling  
network is set to 28 MHz.  
0 V  
X1  
0
0
1
2.048 V  
X1  
X1  
0
0
1
1
0
1
0 V  
0 V  
Internal reference buffer disabled. Drive the REF pins with a 4.096 V external reference. Connect  
REFIN to 0 V in this mode. The bandwidth of the input sampling network is set to 28 MHz.  
Snooze mode.2 LVDS powers down. The chip is unresponsive to CNV start pulses. The wake-up  
time is fast (5 μs) when EN3 to EN0 are set to XX01 or XX10. Ensure that the CNV start pulse is low  
when transitioning in and out of this mode.  
Test patterns output on LVDS. The ADC output is not available on the interface.  
Invalid mode.  
Reference buffer disabled. Drive the REF pins with a 5 V external reference. The bandwidth of the  
input sampling network is set to narrow (9 MHz).  
0
1
X1  
1
1
1
0
0
0
0
0
1
X1  
X1  
0 V  
X1  
X1  
X1  
1
1
1
0
1
1
1
0
1
2.048 V  
0 V  
Internal reference buffer enabled and driving REF pin to 4.096 V. The bandwidth of the input  
sampling network is set to narrow (9 MHz).  
Reference buffer disabled. Drive the REF pins with a 4.096 V external reference. The bandwidth of  
the input sampling network is set to narrow (9 MHz).  
Snooze mode.2 LVDS powers down. The chip is unresponsive to CNV start pulses. The wake-up  
time is fast (5 μs) when EN3 to EN0 are set to XX01 or XX10.  
0 V  
1 X = don’t care.  
2 The snooze mode is not useful when the internal reference buffer is used because the fast wake-up is not possible due to the settling of the internal reference buffer.  
Wake-Up Time from Power-Down and Snooze Modes  
VOLTAGE REFERENCE OPTIONS  
The AD7961 allows buffering of the reference voltage. The  
AD7961 conversions are referred to a 5 V or 4.096 V reference  
voltage. There are three options for using an external reference:  
The AD7961 powers down when EN3 to EN0 = X000 and operates  
in snooze mode when EN3 to EN0 = XX11 using the correct  
reference choice as shown in Table 8. Typical wake-up times for  
the selected reference settings from power-down and snooze  
mode are shown in Table 9 and Table 10. Each wake-up time  
represents the duration from the EN3 to EN0 logic transition to  
when the ADC is ready for a CNV rising edge. For example,  
the user must wait 1.4 ms from power-down before applying  
CNV pulses to receive data conversion results when using  
REFIN = 0 V.  
Externally buffered reference source of 5 V applied to the  
REF pin.  
Externally buffered reference source of 4.096 V applied to  
the REF pin.  
External reference of 2.048 V applied to the REFIN pin  
(high impedance input). The on-chip buffer gains this by 2  
and drives the REF pin with 4.096 V.  
Table 9. Wake-Up Time from Power-Down Mode, EN3 to  
EN0 = X000  
The recommended external references for the AD7961 are the  
ADR4520/ADR4540/ADR4550 and ADR440/ADR444/ADR445.  
The various options for creating this reference are controlled by  
the EN1 and EN0 pins (see Table 8). The −3 dB input bandwidth  
is controlled by EN2. EN2 = 0 sets a −3 dB input bandwidth of  
28 MHz, and EN2 = 1 sets a −3 dB input bandwidth of 9 MHz.  
Use this lower bandwidth (9 MHz) only when the sample rate is  
2 MSPS or lower. EN3 = 1 enables the VCM reference output,  
and EN3 = 0 disables the VCM reference output voltage. The  
best SNR and dynamic range performance is achieved by using  
the larger 5 V external voltage reference option. The improvement  
achieved is approximately 1.7 dB and is calculated using the  
following equation:  
To Active Mode  
Wake-Up Time  
EN3 to EN0 = XX01, REFIN = 0 V  
EN3 to EN0 = XX01, REFIN = 2.048 V  
EN3 to EN0 = XX10, REFIN = 0 V  
1.4 ms  
8 ms  
1.4 ms  
Table 10. Wake-Up Time from Snooze Mode, EN3 to EN0 =  
XX11  
To Active Mode  
Wake-Up Time  
EN3 to EN0 = XX01, REFIN = 0 V  
EN3 to EN0 = XX01, REFIN = 2.048 V  
EN3 to EN0 = XX10, REFIN = 0 V  
5 μs  
8 ms  
5 μs  
5.0  
4.096  
SNR 20 log  
Rev. B | Page 17 of 24  
 
 
 
 
 
 
 
AD7961  
Data Sheet  
Power-Up  
POWER SUPPLY  
As is best practice for all ADCs, power on the core supplies  
prior to applying an external reference (where applicable).  
Apply the analog inputs last.  
The AD7961 uses both 5 V (VDD1) and 1.8 V (VDD2) power  
supplies, as well as a digital input/output interface supply (VIO).  
Drive the EN0 to EN3 pins with a 1.8 V logic level. VIO and  
VDD2 can be taken from the same 1.8 V source; however, it is  
best practice to isolate the VIO and VDD2 pins using separate  
traces as well as to decouple each pin separately.  
When powering up the AD7961 device, first apply 1.8 V (VDD2,  
VIO) to the device, then ramp 5 V (VDD1). Set the reference  
configuration pins, EN0, EN1, and EN2, to the correct values.  
When an internal reference buffer is used (governed by the EN1  
and EN0 values), apply the external reference of 2.048 V to the  
REFIN pin or 5 V/4.096 V to the REF pin.  
The 5 V and 1.8 V supplies required for the AD7961 can be  
generated using Analog Devices, Inc., LDOs such as the  
ADP7104-5 and the ADP124-1.8. Figure 33 shows the PSRR vs.  
supply frequency of the AD7961. The AD7961 core power  
scales with throughput as shown in Figure 34, offering  
significant power budget savings at lower speed operation.  
45  
40  
35  
30  
25  
20  
15  
10  
5
110  
VDD2 = 1.8V  
VIO = 1.8V  
VDD1 = 5.0V  
100  
90  
80  
70  
60  
50  
40  
0
0
1
2
3
4
5
THROUGHPUT (MHz)  
Figure 34. ADC Core Power Dissipation vs. Throughput, Self Clocked Mode,  
CNV in CMOS Mode, Internal Reference Buffer Disabled  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 33. PSRR vs. Supply Frequency  
Rev. B | Page 18 of 24  
 
 
 
Data Sheet  
AD7961  
DIGITAL INTERFACE  
The clock DCO is a buffered copy of CLK and is synchronous  
to the data, D , which is updated on the falling edge of DCO  
(tD). By maintaining good propagation delay matching between  
D and DCO through the board and the digital host, DCO can  
be used to latch D with good timing margin for the shift register.  
CONVERSION CONTROL  
All analog-to-digital conversions are controlled by the CNV  
signal. This signal can be applied in the form of a CNV+/CNV−  
LVDS signal, or it can be applied in the form of a 1.8 V CMOS  
logic signal to the CNV+ pin when CNV− is grounded. The  
conversion is initiated by the rising edge of the CNV signal.  
Conversions are initiated by a rising edge of the CNV pulse.  
The CNV pulse must be returned low (≤tCNVH maximum) for  
valid operation. After a conversion begins, it continues until  
completion. Additional CNV pulses are ignored during the  
conversion phase. After tMSB elapses, the host begins to burst the  
CLK . Note that tMSB is the maximum time for the MSB of the  
new conversion result. Use tMSB as the gating device for CLK .  
The echoed clock, DCO , and the data, D , are driven in phase  
with D being updated on the falling edge of DCO ; the host  
uses the rising edge of DCO to capture D . The only require-  
ment is that the 16 CLK pulses finish before tCLKL of the next  
conversion phase elapses, or the data is lost. After all 16 bits are  
read, up to tMSB, D and DCO are driven to 0. Set CLK to idle  
low between CLK bursts.  
After the AD7961 is powered up, the first conversion result  
generated is valid. The key beneficial feature of the AD7961 is  
that the user can return to the acquisition phase before the end  
of the conversion.  
The two methods for acquiring the digital data output of the  
AD7961 via the LVDS interface are described in the Echoed  
Clock Interface Mode and Self Clocked Mode sections.  
Echoed Clock Interface Mode  
The digital operation of the AD7961 in echoed clock interface  
mode is shown in Figure 35. This interface mode, requiring  
only a shift register on the digital host, can be used with many  
digital hosts (such as FPGA, shift register, and microprocessor).  
It requires three LVDS pairs (D , CLK , and DCO ) between  
each AD7961 and the digital host.  
SAMPLE N  
SAMPLE N + 1  
tCYC  
tCNVH  
CNV–  
CNV+  
tACQ  
ACQUISITION  
ACQUISITION  
ACQUISITION  
tCLKL  
tCLK  
15  
16  
1
2
15  
16  
1
2
3
CLK–  
CLK+  
tDCO  
1
15  
16  
1
2
15  
16  
2
3
DCO–  
DCO+  
tMSB  
tD  
tCLKD  
D+  
D–  
D1  
N – 1  
D0  
N – 1  
D15  
N
D14  
N
D1  
N
D0  
N
D15  
N + 1  
D14  
D13  
0
0
N + 1 N + 1  
Figure 35. Echoed Clock Interface Mode Timing Diagram  
Rev. B | Page 19 of 24  
 
 
 
 
AD7961  
Data Sheet  
Self Clocked Mode  
The self-clocked mode data capture method allows the digital  
host to adapt its result capture timing to accommodate varia-  
tions in propagation delay through any AD7961, for example,  
where data is captured from multiple AD7961 devices sharing  
a common input clock.  
The digital operation of the AD7961 in self-clocked interface  
mode is shown in Figure 36. This interface mode reduces the  
number of traces between the ADC and the digital host to two  
LVDS pairs (CLK and D ) or to a single pair if sharing a  
common CLK . Multiple AD7961 devices can share a common  
CLK signal. This can be useful in reducing the number of  
LVDS connections to the digital host.  
Conversions are initiated by a CNV pulse. The CNV pulse  
must be returned low (tCNVH maximum) for valid operation.  
After a conversion begins, it continues until completion. Addi-  
tional CNV pulses are ignored during the conversion phase.  
After the time, tMSB, elapses, the host begins to burst the CLK  
signal to the AD7961. All 18 CLK pulses must be applied in  
the window of time framed by tMSB and the subsequent tCLKL. The  
required 18 CLK pulses must finish before tCLKL (referenced to  
the next conversion phase) elapses. Otherwise, the data is lost  
because it is overwritten by the next conversion result.  
When the self-clocked interface mode is used, each ADC  
data-word is preceded by a 010 header sequence. After tMSB has  
elapsed, the first bit of the header, 0, automatically appears on  
D , and the remaining two bits of the header, 10, are then  
clocked out by the first two CLK falling edges at the beginning  
of the next sample. This header (010) is used to synchronize D  
of each conversion in the digital host because, in this mode,  
there is no clock output synchronous to the data (D ) to allow  
the digital host to acquire the data output.  
Set CLK to idle high between bursts of 18 CLK pulses. The  
header bit and conversion data of the next ADC result are  
output on subsequent falling edges of CLK during the next  
burst of the CLK signal.  
Synchronization of the D data to the acquisition clock of the  
digital host is accomplished by using one state machine per  
AD7961 device. For example, using a state machine that runs at  
the same speed as CLK incorporates three phases of this clock  
frequency (120° apart). Each phase acquires the D data as  
output by the ADC.  
When the self-clocked interface mode is used, the AD7961 also  
allows the user to provide an extra (19th) clock pulse to see a  
guaranteed 0 state at the end of the frame, as shown in Figure 37.  
After tMSB has elapsed, the first bit of the header sequence, 0,  
automatically appears on D and the remaining two bits of the  
header, 10, are then clocked out by the first two CLK falling  
edges at the beginning of the next sample. This header (010) is  
used to synchronize D of each conversion in the digital host  
because, in this mode, there is no clock output synchronous to  
the data (D ) to allow the digital host to acquire the data output.  
The AD7961 data captured on each phase of the state  
machine clock is then compared. The location of the 1 in  
the header in each set of acquired data allows the user to  
choose the state machine clock phase that occurs during  
the data valid window of D .  
SAMPLE N  
SAMPLE N + 1  
tCYC  
tCNVH  
CNV–  
CNV+  
tACQ  
ACQUISITION  
tCLK  
ACQUISITION  
ACQUISITION  
tCLKL  
17  
18  
1
2
3
4
17  
18  
1
2
3
CLK–  
CLK+  
tMSB  
tCLKD  
D+  
D–  
D15  
N + 1  
D14  
N
D1  
N
D0  
N
D1  
N – 1  
D0  
N – 1  
D15  
N
0
1
0
0
1
0
Figure 36. Self Clocked Interface Mode Timing Diagram  
Rev. B | Page 20 of 24  
 
 
Data Sheet  
AD7961  
SAMPLE N  
SAMPLE N + 1  
tCYC  
tCNVH  
CNV–  
CNV+  
tACQ  
ACQUISITION  
ACQUISITION  
ACQUISITION  
tCLKL  
tCLK  
19  
20  
21  
1
2
3
4
17  
18  
19  
1
2
3
CLK–  
CLK+  
tMSB  
tCLKD  
D+  
D15  
N + 1  
D1  
N – 1  
D0  
N – 1  
D15  
N
D14  
N
D1  
N
D0  
N
0
1
0
0
1
0
D–  
Figure 37. Self Clocked Interface Mode with Extra Clock Pulse Timing Diagram  
Rev. B | Page 21 of 24  
 
AD7961  
Data Sheet  
APPLICATIONS INFORMATION  
Finally, decouple the VDD1, VDD2, and VIO power supplies of  
the AD7961 with ceramic capacitors, typically 100 nF, placed  
close to the AD7961 and connected using short, wide traces to  
provide low impedance paths and to reduce the effect of glitches  
on the power supply lines.  
LAYOUT  
Design the printed circuit board that houses the AD7961 so that  
the analog and digital sections are separated and confined to  
certain areas of the board. Avoid running digital lines under the  
device because these couple noise onto the device, unless a  
ground plane under the AD7961 is used as a shield. Do not run  
fast switching signals, such as CNV or CLK , near analog  
signal paths. Avoid crossover of digital and analog signals. Use  
at least one ground plane. It can be common or split between  
the digital and analog sections. In the latter case, join the planes  
underneath the AD7961 devices.  
EVALUATING AD7961 PERFORMANCE  
Other recommended guidelines for the AD7961 schematic and  
layout are outlined in the user guide of the EVAL-AD7961FMCZ  
board (UG-581). The fully assembled and tested evaluation  
board, user guide, and software for controlling the EVAL -  
AD7961FMCZ board from a PC via the EVAL-SDP-CH1Z are  
available from the Analog Devices website at www.analog.com.  
The AD7961 voltage reference input pin, REF, has dynamic  
input impedance. Decouple REF with minimal parasitic  
inductances by placing the reference decoupling ceramic  
capacitor close to and, ideally, right up against the REF and  
REF_GND pins and connecting them with wide, low impedance  
traces.  
Rev. B | Page 22 of 24  
 
 
 
Data Sheet  
AD7961  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
25  
24  
32  
1
INDICATOR  
0.50  
BSC  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
17  
16  
8
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.  
Figure 38. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
5 mm × 5 mm Body, Very Very Thin Quad  
(CP-32-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
AD7961BCPZ  
AD7961BCPZ-RL7  
EVAL-AD7961FMCZ  
−40°C to +85°C  
−40°C to +85°C  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
Evaluation Board  
CP-32-7  
CP-32-7  
1 Z = RoHS Compliant Part.  
Rev. B | Page 23 of 24  
 
 
 
AD7961  
NOTES  
Data Sheet  
©2013–2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10888-0-3/14(B)  
Rev. B | Page 24 of 24  

相关型号:

AD796AN

IC DUAL OP-AMP, 500 uV OFFSET-MAX, 2 MHz BAND WIDTH, PDIP8, MINI, PLASTIC, DIP-8, Operational Amplifier
ADI

AD796AR

IC DUAL OP-AMP, 500 uV OFFSET-MAX, 2 MHz BAND WIDTH, PDSO8, SOIC-8, Operational Amplifier
ADI

AD796BN

IC DUAL OP-AMP, 300 uV OFFSET-MAX, 2 MHz BAND WIDTH, PDIP8, MINI, PLASTIC, DIP-8, Operational Amplifier
ADI

AD796SQ-883B

IC DUAL OP-AMP, 500 uV OFFSET-MAX, 2 MHz BAND WIDTH, CDIP8, CERDIP-8, Operational Amplifier
ADI

AD797

Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD797*

Ultralow Distortion. Ultralow Noise Op Amp
ETC

AD797ACHIPS

IC OP-AMP, 125 uV OFFSET-MAX, 110 MHz BAND WIDTH, UUC8, DIE-8, Operational Amplifier
ADI

AD797AN

Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD797ANZ

Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD797AR

Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD797AR-REEL

Ultralow Distortion, Ultralow Noise Op Amp
ADI

AD797AR-REEL7

Ultralow Distortion, Ultralow Noise Op Amp
ADI