AD80066 [ADI]

Complete 16-Bit CCD/CIS Signal Processor; 完整的16位CCD / CIS信号处理器
AD80066
型号: AD80066
厂家: ADI    ADI
描述:

Complete 16-Bit CCD/CIS Signal Processor
完整的16位CCD / CIS信号处理器

CD
文件: 总20页 (文件大小:333K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Complete 16-Bit  
CCD/CIS Signal Processor  
AD80066  
FEATURES  
GENERAL DESCRIPTION  
16-bit, 24 MSPS analog-to-digital converter (ADC)  
4-channel operation up to 24 MHz (6 MHz/channel)  
3-channel operation up to 24 MHz (8 MHz/channel)  
Selectable input range: 3 V or 1.5 V peak-to-peak  
Input clamp circuitry  
Correlated double sampling  
1×~6× programmable gain  
300 mV programmable offset  
Internal voltage reference  
The AD80066 is a complete analog signal processor for imaging  
applications. It features a 4-channel architecture designed to sample  
and condition the outputs of linear charged coupled device (CCD)  
or contact image sensor (CIS) arrays. Each channel consists of  
an input clamp, correlated double sampler (CDS), offset digital-  
to-analog converter (DAC), and programmable gain amplifier  
(PGA), multiplexed to a high performance 16-bit ADC. For  
maximum flexibility, the AD80066 can be configured as a  
4-channel, 3-channel, 2-channel, or 1-channel device.  
Multiplexed byte-wide output  
Optional single-byte output mode  
3-wire serial digital interface  
The CDS amplifiers can be disabled for use with sensors that  
do not require CDS, such as CIS and CMOS sensors.  
The 16-bit digital output is multiplexed into an 8-bit output word,  
which is accessed using two read cycles. There is an optional  
single-byte output mode. The internal registers are programmed  
through a 3-wire serial interface and enable adjustment of the  
gain, offset, and operating mode. The AD80066 operates from a  
5 V power supply, typically consumes 490 mW of power, and is  
packaged in a 28-lead SSOP.  
3 V/5 V digital I/O compatibility  
Power dissipation: 490 mW at 24 MHz operation  
Reduced power mode and sleep mode available  
28-lead SSOP package  
APPLICATIONS  
Flatbed document scanners  
Film scanners  
Digital color copiers  
Multifunction peripherals  
FUNCTIONAL BLOCK DIAGRAM  
AVDD AVSS  
CDS  
CML  
AVDD AVSS  
CAPT  
CAPB  
DRVDD DRVSS  
PGA  
PGA  
PGA  
BAND GAP  
REFERENCE  
VINA  
VINB  
VINC  
AD80066  
9-BIT  
DAC  
CDS  
CDS  
CDS  
16  
4:1  
MUX  
8
16-BIT  
ADC  
16:8  
MUX  
DOUT  
(D[0:7])  
9-BIT  
DAC  
CONFIGURATION  
REGISTER  
SCLK  
DIGITAL  
SLOAD  
SDATA  
9-BIT  
DAC  
CONTROL  
INTERFACE  
MUX  
REGISTER  
VIND  
PGA  
CH. A  
6
CH. B  
CH. C  
CH. D  
9-BIT  
DAC  
GAIN  
REGISTERS  
CH. A  
CH. B  
CH. C  
CH. D  
INPUT  
CLAMP  
BIAS  
9
OFFSET  
OFFSET  
REGISTERS  
CDSCLK1 CDSCLK2  
ADCCLK  
Figure 1.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
AD80066  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
1-Channel CDS Mode ............................................................... 13  
1-Channel SHA Mode ............................................................... 13  
Internal Register Map .................................................................... 14  
Internal Register Details................................................................ 15  
Configuration Register .............................................................. 15  
Mux Register............................................................................... 15  
PGA Gain Registers ................................................................... 15  
Offset Registers........................................................................... 15  
Circuit Operation ........................................................................... 17  
Analog Inputs—CDS Mode...................................................... 17  
External Input Coupling Capacitors........................................ 17  
Analog Inputs—SHA Mode...................................................... 18  
Programmable Gain Amplifiers (PGA) .................................. 18  
Applications Information.............................................................. 19  
Circuit and Layout Recommendations ................................... 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Analog Specifications................................................................... 3  
Digital Specifications ................................................................... 4  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 11  
Terminology .................................................................................... 12  
Theory of Operation ...................................................................... 13  
4-Channel CDS Mode................................................................ 13  
4-Channel SHA Mode................................................................ 13  
REVISION HISTORY  
4/10—Revision A: Initial Version  
Rev. A | Page 2 of 20  
 
AD80066  
SPECIFICATIONS  
ANALOG SPECIFICATIONS  
TMIN to TMAX, AVDD = 5 V, DRVDD = 5 V, CDS mode, fADCCLK = 24 MHz, fCDSCLK1 = fCDSCLK2 = 6 MHz, PGA gain = 1, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
MAXIMUM CONVERSION RATE  
4-Channel Mode with CDS  
3-Channel Mode with CDS  
2-Channel Mode with CDS  
1-Channel Mode with CDS  
ACCURACY (ENTIRE SIGNAL PATH)  
ADC Resolution  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
No Missing Codes  
24  
24  
24  
12  
MSPS  
MSPS  
MSPS  
MSPS  
16  
+20/−5  
0.5  
Bits  
LSB  
LSB  
Guaranteed  
ANALOG INPUTS  
Input Signal Range1  
Allowable Reset Transient1  
Input Limits2  
1.5/3.0  
2.0  
V p-p  
V
V
AVSS − 0.3  
AVDD + 0.3  
Input Capacitance  
Input Bias Current  
10  
10  
pF  
nA  
AMPLIFIERS  
PGA Gain Range  
1
5.9  
V/V  
PGA Gain Resolution2  
PGA Gain Monotonicity  
Programmable Offset Range  
Programmable Offset Resolution  
Programmable Offset Monotonicity  
NOISE AND CROSSTALK  
Total Output Noise at PGA Minimum  
Total Output Noise at PGA Maximum  
Channel-to-Channel Crosstalk  
@ 24 MSPS  
64  
Steps  
Guaranteed  
−305  
+295  
mV  
Steps  
512  
Guaranteed  
9.5  
35  
LSB rms  
LSB rms  
70  
90  
dB  
dB  
@ 12 MSPS  
POWER SUPPLY REJECTION  
AVDD = 5 V 0.25 V  
VOLTAGE REFERENCE (TA = 25°C)  
CAPT − CAPB  
0.1  
% FSR  
V
0.75  
TEMPERATURE RANGE  
Operating  
Storage  
0
−65  
70  
+150  
°C  
°C  
POWER SUPPLIES  
AVDD  
DRVDD  
4.5  
3.0  
5.0  
3.3  
5.25  
5.25  
V
V
OPERATING CURRENT  
AVDD  
DRVDD  
95  
4
300  
mA  
mA  
μA  
Power-Down Mode Current  
Rev. A | Page 3 of 20  
 
AD80066  
Parameter  
Min  
Typ  
Max  
Unit  
POWER DISSIPATION  
4-Channel Mode at 24 MHz  
1-Channel Mode at 12 MHz  
4-Channel Mode at 8 MHz, Slow Power Mode3  
490  
300  
165  
mW  
mW  
mW  
1 The linear input signal range is up to 3 V p-p when the CCD reference level is clamped to 3 V by the AD80066 input clamp (see Figure 2).  
2 The PGA gain is approximately linear-in-dB but varies nonlinearly with register code (see the Programmable Gain Amplifiers (PGA) section for more information).  
3 Measured with Bit D1 of the configuration register set high for 8 MHz, low power operation.  
AVDD = 5V  
3V BIAS SET BY INPUT CLAMP  
2V TYP  
1.5V OR 3V p-p MAX INPUT SIGNAL RANGE  
GND  
RESET TRANSIENT  
Figure 2. Input Signal with the CCD Reference Level Clamped to 3 V  
DIGITAL SPECIFICATIONS  
TMIN to TMAX, AVDD = 5 V, DRVDD = 5 V, CDS mode, fADCCLK = 24 MHz, fCDSCLK1 = fCDSCLK2 = 6 MHz, CL = 10 pF, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
VIH  
VIL  
IIH  
IIL  
CIN  
2.0  
V
V
μA  
μA  
pF  
0.8  
10  
10  
10  
Input Capacitance  
LOGIC OUTPUTS (DRVDD = 5 V)  
High Level Output Voltage (IOH = 2 mA)  
Low Level Output Voltage (IOL = 2 mA)  
LOGIC OUTPUTS (DRVDD = 3 V)  
High Level Output Voltage (IOH = 2 mA)  
Low Level Output Voltage (IOL = 2 mA)  
VOH  
VOL  
4.5  
2.5  
V
V
0.5  
0.5  
VOH  
VOL  
V
V
Rev. A | Page 4 of 20  
 
AD80066  
TIMING SPECIFICATIONS  
TMIN to TMAX, AVDD = 5 V, DRVDD = 5 V.  
Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
CLOCK PARAMETERS  
4-Channel Pixel Rate  
1-Channel Pixel Rate  
ADCCLK Pulse Width  
CDSCLK1 Pulse Width  
tPRA  
tPRB  
tADCCLK  
tC1  
tC2  
tC1C2  
tADC2  
tC2ADR  
tC2ADF  
tC2C1  
tAD  
166  
83  
20  
15  
15  
0
0
5
20  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CDSCLK2 Pulse Width  
CDSCLK1 Falling1 to CDSCLK2 Rising  
ADCCLK Falling to CDSCLK2 Rising  
CDSCLK2 Rising to ADCCLK Rising  
CDSCLK2 Falling1 to ADCCLK Falling  
CDSCLK2 Falling1 to CDSCLK1 Rising  
Aperture Delay for CDS Clocks  
SERIAL INTERFACE  
2
Maximum SCLK Frequency, Write Operation  
Maximum SCLK Frequency, Read Operation  
SLOAD to SCLK Setup Time  
SCLK to SLOAD Hold Time  
SDATA to SCLK Rising Setup Time  
SCLK Rising to SDATA Hold Time  
SCLK Falling to SDATA Valid  
DATA OUTPUT  
fSCLK  
fSCLK  
tLS  
tLH  
tDS  
50  
25  
5
5
2
MHz  
MHz  
ns  
ns  
ns  
tDH  
tRDV  
2
10  
ns  
ns  
Output Delay  
tOD  
8
ns  
Latency (Pipeline Delay)  
3 (fixed)  
Cycles  
1 CDSCLKx falling edges should not occur within the first 10 ns following an ADCCLK edge.  
Timing Diagrams  
tPRA  
ANALOG  
PIXEL n (A,B,C,D)  
PIXEL (n + 1)  
tAD  
INPUTS  
CDSCLK1  
CDSCLK2  
tC1  
tAD  
tC2C1  
tC1C2  
tC2  
tC2ADF  
tADCCLK  
tC2ADR  
tADC2  
ADCCLK  
tOD  
tADCCLK  
OUTPUT  
DATA  
(D[7:0])  
B(n – 2) C(n – 2) C(n – 2) D(n – 2) D(n – 2) A(n – 1) A(n – 1) B(n – 1) B(n – 1) C(n – 1) C(n – 1) D(n – 1) D(n – 1)  
A(n)  
A(n)  
B(n)  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
Figure 3. 4-Channel CDS Mode Timing  
Rev. A | Page 5 of 20  
 
 
AD80066  
PIXEL n (A, B, C)  
PIXEL (n + 1)  
PIXEL (n + 2)  
ANALOG  
INPUTS  
tAD  
tAD  
tC2C1  
tPRA  
tC1  
CDSCLK1  
CDSCLK2  
ADCCLK  
tC1C2  
tC2  
tC2ADF  
tADCCLK  
tADC2  
tC2ADR  
tOD  
tADCCLK  
OUTPUT  
DATA  
(D[7:0])  
A(n – 2) B(n – 2) B(n – 2) C(n – 2) C(n – 2) A(n – 1) A(n – 1) B(n – 1) B(n – 1) C(n – 1) C(n – 1)  
A(n)  
A(n)  
B(n)  
B(n)  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
Figure 4. 3-Channel CDS Mode Timing  
PIXEL n  
PIXEL (n + 1)  
PIXEL (n + 2)  
ANALOG  
INPUTS  
tAD  
tAD  
tPRA  
tC2C1  
tC1  
CDSCLK1  
CDSCLK2  
ADCCLK  
tC1C2  
tC2  
tC2ADR  
tADC2  
tC2ADF  
tADCCLK  
tADCCLK  
OUTPUT  
DATA  
(D[7:0])  
CH 1 (n – 2)  
CH 2 (n – 2)  
CH 1 (n – 1)  
CH 2 (n – 1)  
CH 1 (n)  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
Figure 5. 2-Channel CDS Mode Timing  
Rev. A | Page 6 of 20  
AD80066  
PIXEL n  
PIXEL (n + 1)  
PIXEL (n + 2)  
ANALOG  
INPUTS  
tAD  
tAD  
tC2C1  
t
C1  
t
PRB  
CDSCLK1  
CDSCLK2  
ADCCLK  
tC1C2  
t
C2  
t
C2ADR  
tC2ADF  
tADCCLK  
tADCCLK  
t
OD  
OUTPUT  
DATA  
(D[7:0])  
PIXEL (n – 4)  
PIXEL (n – 4)  
PIXEL (n – 3)  
PIXEL (n – 3)  
PIXEL (n – 2)  
PIXEL (n – 2)  
LOW  
BYTE  
LOW  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
HIGH  
BYTE  
HIGH  
BYTE  
NOTES  
1. IN 1-CHANNEL CDS MODE. THE CDSCLK1 FALLING EDGE AND THE CDSCLK2 RISING EDGE MUST OCCUR WHILE ADCCLK IS LOW.  
Figure 6. 1-Channel CDS Mode Timing  
PIXEL n (A, B, C, D)  
tAD  
PIXEL (n + 1)  
ANALOG  
INPUTS  
tPRA  
tC2  
tC2ADF  
CDSCLK2  
ADCCLK  
tADCCLK  
tADC2  
tC2ADR  
tOD  
tADCCLK  
OUTPUT  
DATA  
(D[7:0])  
B(n – 2) C(n – 2) C(n – 2) D(n – 2) D(n – 2) A(n – 1) A(n – 1) B(n – 1) B(n – 1) C(n – 1) C(n – 1)  
D(n)  
D(n)  
A(n)  
A(n)  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
Figure 7. 4-Channel SHA Mode Timing  
Rev. A | Page 7 of 20  
 
 
AD80066  
PIXEL n  
tAD  
PIXEL (n + 1)  
ANALOG  
INPUTS  
tPRB  
tC2  
CDSCLK2  
ADCCLK  
tC2ADR  
tC2ADF  
tADCCLK  
tADCCLK  
tOD  
OUTPUT  
DATA  
(D[7:0])  
PIXEL (n – 4)  
HIGH BYTE  
PIXEL (n – 4)  
LOW BYTE  
PIXEL (n – 3)  
HIGH BYTE  
PIXEL (n – 3)  
LOW BYTE  
PIXEL (n – 2)  
HIGH BYTE  
PIXEL (n – 2)  
LOW BYTE  
Figure 8. 1-Channel SHA Mode Timing  
ADCCLK  
tOD  
tOD  
OUTPUT DATA  
(D[7:0])  
HIGH BYTE  
(DB[15:8])  
LOW BYTE  
(DB[7:0])  
HIGH BYTE  
(DB[15:8])  
LOW BYTE  
(DB[7:0])  
LOW BYTE  
(DB[7:0])  
HIGH BYTE  
(DB[15:8])  
PIXEL n  
PIXEL n  
PIXEL (n + 1)  
PIXEL (n + 1)  
PIXEL (n + 2)  
PIXEL (n + 3)  
Figure 9. Digital Output Data Timing  
ADCCLK  
tOD  
OUTPUT DATA  
HIGH BYTE  
(DB[15:8])  
HIGH BYTE  
(DB[15:8])  
HIGH BYTE  
(DB[15:8])  
(D[7:0])  
PIXEL n  
PIXEL (n + 1)  
PIXEL (n + 2)  
Figure 10. Single-Byte Mode Digital Output Data Timing  
R/W  
SDATA  
A3  
A2  
A1  
A0  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
tDH  
tDS  
SCLK  
tLS  
tLH  
SLOAD  
Figure 11. Serial Write Operation Timing  
R/W  
A3  
A2  
A1  
A0  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDATA  
tRDV  
SCLK  
t
tLH  
LS  
SLOAD  
Figure 12. Serial Read Operation Timing  
Rev. A | Page 8 of 20  
 
 
AD80066  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
Parameter  
VINx, CAPT, CAPB  
Digital Inputs  
SDATA  
AVDD  
DRVDD  
AVSS  
Digital Outputs  
(D[7:0])  
Temperature  
Junction  
With Respect To Rating  
AVSS  
−0.3 V to AVDD + 0.3 V  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
AVSS  
DRVSS  
AVSS  
−0.3 V to AVDD + 0.3 V  
−0.3 V to DRVDD  
−0.5 V to +6.5 V  
Table 5. Thermal Resistance  
Package Type  
28-Lead, 5.3 mm SSOP  
θJA  
θJC  
Unit  
DRVSS  
DRVSS  
DRVSS  
−0.5 V to +6.5 V  
−0.3 V to +0.3 V  
−0.3 V to DRVDD + 0.3 V  
109  
39  
°C/W  
ESD CAUTION  
150°C  
Storage  
Lead (10 sec)  
−65°C to +150°C  
300°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 9 of 20  
 
AD80066  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
AVDD  
CDSCLK1  
CDSCLK2  
ADCCLK  
DRVDD  
DRVSS  
(MSB) D7  
D6  
AVSS  
VINA  
3
OFFSET  
VINB  
4
5
CML  
6
VINC  
AD80066  
7
CAPT  
CAPB  
VIND  
TOP VIEW  
8
(Not to Scale)  
9
D5  
10  
11  
12  
13  
14  
D4  
AVSS  
AVDD  
SLOAD  
SCLK  
SDATA  
D3  
D2  
D1  
(LSB) D0  
Figure 13. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
AVDD  
CDSCLK1  
CDSCLK2  
ADCCLK  
DRVDD  
DRVSS  
D7 (MSB)  
D6  
D5  
D4  
D3  
D2  
Type1  
P
DI  
DI  
DI  
P
P
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DI/DO  
DI  
DI  
P
P
AI  
AO  
AO  
AI  
AO  
AI  
AO  
AI  
P
Description  
1
2
3
4
5
6
7
8
5 V Analog Supply.  
CDS Reference Level Sampling Clock.  
CDS Data Level Sampling Clock.  
ADC Sampling Clock.  
Digital Output Driver Supply (3 V or 5 V).  
Digital Output Driver Ground.  
Data Output MSB. ADC DB15 high byte; ADC DB7 low byte.  
Data Output. ADC DB14 high byte; ADC DB6 low byte.  
Data Output. ADC DB13 high byte; ADC DB5 low byte.  
Data Output. ADC DB12 high byte; ADC DB4 low byte.  
Data Output. ADC DB11 high byte; ADC DB3 low byte.  
Data Output. ADC DB10 high byte; ADC DB2 low byte.  
Data Output. ADC DB9 high byte; ADC DB1 low byte.  
Data Output LSB. ADC DB8 high byte; ADC DB0 low byte.  
Serial Interface Data Input/Output.  
Serial Interface Clock Input.  
Serial Interface Load Pulse.  
5 V Analog Supply.  
Analog Ground.  
Analog Input, D Channel.  
ADC Bottom Reference Voltage Decoupling.  
ADC Top Reference Voltage Decoupling.  
Analog Input, C Channel.  
Internal Bias Level Decoupling.  
Analog Input, B Channel.  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
D1  
D0 (LSB)  
SDATA  
SCLK  
SLOAD  
AVDD  
AVSS  
VIND  
CAPB  
CAPT  
VINC  
CML  
VINB  
OFFSET  
VINA  
AVSS  
Clamp Bias Level Decoupling.  
Analog Input, A Channel.  
Analog Ground.  
1 AI = analog input, AO = analog output, DI = digital input, DO = digital output, and P = power.  
Rev. A | Page 10 of 20  
 
AD80066  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
15  
10  
5
0.5  
0
–0.5  
–1.0  
0
–5  
0
12,800  
25,600  
38,400  
51,200  
64,000  
0
12,800  
25,600  
38,400  
51,200  
64,000  
ADC OUTPUT CODE  
ADC OUTPUT CODE  
Figure 16. Typical INL Performance  
Figure 14. Typical DNL Performance  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
15  
30  
45  
63  
PGA REGISTER VALUE (Decimal)  
Figure 15. Output Noise vs. PGA Gain  
Rev. A | Page 11 of 20  
 
AD80066  
TERMINOLOGY  
Input-Referred Noise  
Integral Nonlinearity (INL)  
The rms output noise is measured using histogram techniques. The  
standard deviation of the ADC output codes is calculated in LSB  
and converted to an equivalent voltage, using the relationship  
1 LSB = 1.5 V/65,536 = 23 μV. The noise is then referred to the  
input of the AD80066 by dividing by the PGA gain.  
Integral nonlinearity error refers to the deviation of each  
individual code from a line drawn from zero scale through  
positive full scale. The point used as zero scale occurs ½ LSB  
before the first code transition. Positive full scale is defined as a  
level 1½ LSB beyond the last code transition. The deviation is  
measured from the middle of each particular code to the true  
straight line.  
Channel-to-Channel Crosstalk  
In an ideal 3-channel system, the signal in one channel does not  
influence the signal level of another channel. The channel-to-  
channel crosstalk specification is a measure of the change that  
occurs in one channel as the other two channels are varied. In  
the AD80066, one channel is grounded and the other two channels  
are exercised with full-scale input signals. The change in the output  
codes from the first channel is measured and compared with the  
result when all three channels are grounded. The difference is  
the channel-to-channel crosstalk, stated in LSB.  
Differential Nonlinearity (DNL)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value; therefore, every  
code must have a finite width. No missing codes guaranteed to  
16-bit resolution indicates that all 65,536 codes must be present  
over all operating ranges.  
Offset Error  
The first ADC code transition should occur at a level ½ LSB above  
the nominal zero-scale voltage. The offset error is the deviation  
of the actual first code transition level from the ideal level.  
Aperture Delay  
The aperture delay is the delay that occurs from when a sampling  
edge is applied to the AD80066 until the actual sample of the  
input signal is held. Both CDSCLK1 and CDSCLK2 sample the  
input signal during the transition from high to low; therefore,  
the aperture delay is measured from each falling edge of the  
clock to when the internal sample is taken.  
Gain Error  
The last code transition should occur for an analog value  
1½ LSB below the nominal full-scale voltage. Gain error is the  
deviation of the actual difference between the first and last code  
transitions and the ideal difference between the first and last  
code transitions.  
Power Supply Rejection  
The power supply rejection specifies the maximum full-scale  
change that occurs from the initial value when the supplies are  
varied over the specified limits.  
Rev. A | Page 12 of 20  
 
AD80066  
THEORY OF OPERATION  
The AD80066 can be operated in several different modes,  
including 4-channel CDS mode, 4-channel SHA mode, 1-channel  
CDS mode, and 1-channel SHA mode. Each mode is selected  
by programming the configuration register through the serial  
interface. For more information on CDS or SHA mode operation,  
see the Circuit Operation section.  
SHAs are modified by the offset DACs and then scaled by the  
four PGAs. The outputs of the PGAs are then multiplexed  
through the 16-bit ADC. The ADC sequentially samples the  
PGA outputs on the falling edges of ADCCLK.  
The input signal is sampled with respect to the voltage applied to  
the OFFSET pin (see Figure 19). With the OFFSET pin grounded,  
a 0 V input corresponds to the zero-scale output of the ADC.  
The OFFSET pin can also be used as a coarse offset adjustment  
pin. A voltage applied to this pin is subtracted from the voltages  
applied to the A, B, C, and D inputs in the first amplifier stage  
of the AD80066. The input clamp is disabled in this mode. For  
more information, see the Analog Inputs—SHA Mode section.  
4-CHANNEL CDS MODE  
In 4-channel CDS mode, the AD80066 simultaneously samples  
the A, B, C, and D input voltages from the CCD outputs. The  
sampling points for each CDS are controlled by CDSCLK1 and  
CDSCLK2 (see Figure 17 and Figure 18). The CDSCLK1 falling  
edge samples the reference level of the CCD waveform, and the  
CDSCLK2 falling edge samples the data level of the CCD wave-  
form. Each CDS amplifier outputs the difference between the  
CCD reference level and the data level. The output voltage of  
each CDS amplifier is then level-shifted by an offset DAC. The  
voltages are scaled by the four PGAs before being multiplexed  
through the 16-bit ADC. The ADC sequentially samples the  
PGA outputs on the falling edges of ADCCLK.  
The offset and gain values for the A, B, C, and D channels are  
programmed using the serial interface. The order in which the  
channels are switched through the multiplexer is selected by  
programming the mux register.  
Timing for this mode is shown in Figure 7. The CDSCLK1 pin  
should be grounded in this mode. Although not required, the  
falling edge of CDSCLK2 should occur coincident with or before  
the rising edge of ADCCLK. The rising edge of CDSCLK2 should  
not occur before the previous falling edge of ADCCLK, as shown  
by tADC2. The output data latency is 3 ADCCLK cycles.  
The offset and gain values for the A, B, C, and D channels are  
programmed using the serial interface. The order in which the  
channels are switched through the multiplexer is selected by  
programming the mux register.  
1-CHANNEL CDS MODE  
Timing for this mode is shown in Figure 3. The falling edge of  
CDSCLK2 should occur coincident with or before the rising  
edge of ADCCLK. However, this is not required to satisfy the  
minimum timing constraints. The rising edge of CDSCLK2  
should not occur before the previous falling edge of ADCCLK,  
as shown by tADC2. The output data latency is 3 ADCCLK cycles.  
The 1-channel CDS mode operates in the same way as the  
4-channel CDS mode, except the multiplexer remains fixed.  
Only the channel specified in the mux register is processed.  
Timing for this mode is shown in Figure 6.  
1-CHANNEL SHA MODE  
The 1-channel SHA mode operates in the same way as the  
4-channel SHA mode, except the multiplexer remains fixed.  
Only the channel specified in the mux register is processed.  
4-CHANNEL SHA MODE  
In 4-channel SHA mode, the AD80066 simultaneously samples  
the A, B, C, and D input voltages. The sampling point is controlled  
by CDSCLK2. The falling edge of CDSCLK2 samples the input  
waveforms on each channel. The output voltages from the three  
Timing for this mode is shown in Figure 8. The CDSCLK1 pin  
should be grounded in this mode of operation.  
Rev. A | Page 13 of 20  
 
AD80066  
INTERNAL REGISTER MAP  
Table 7. Internal Register Map  
Address  
Data Bits  
D3  
Register Name  
Configuration  
Mux  
A3  
0
0
A2 A1 A0 D8  
D7  
0
0
0
0
D6  
0
0
0
0
D5  
D4  
D2  
D1  
D0  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
MSB  
MSB  
MSB  
MSB  
VREF  
0
MSB  
MSB  
MSB  
MSB  
2/1 byte  
Ch. order  
CDS on  
Ch. A  
Input range  
Ch. B  
Fast/slow  
Ch. C  
Power on  
Ch. D  
LSB  
Gain A  
0
Gain B  
0
LSB  
Gain C  
0
0
0
0
0
LSB  
Gain D  
0
LSB  
Offset A  
Offset B  
Offset C  
Offset D  
0
0
1
1
LSB  
LSB  
LSB  
LSB  
Rev. A | Page 14 of 20  
 
AD80066  
INTERNAL REGISTER DETAILS  
the CDSCLK2 pulse always resets the multiplexer to sample the  
A channel first. When Bit D4 is set high, the channel order is  
reversed to D, C, B, and A. The CDSCLK2 pulse always resets the  
multiplexer to sample the D channel first. Bits D[3:0] are used  
when operating in 1-channel mode. Bit D3 is set high to sample  
the A channel. Bit D2 is set high to sample the B channel. Bit D1  
is set high to sample the C channel. Bit D0 is set high to sample the  
D channel. The multiplexer remains stationary in 1-channel mode.  
CONFIGURATION REGISTER  
The configuration register controls the AD80066 operating mode  
and bias levels. The D8, D7, and D6 bits should always be set low.  
Bit D2 sets the full-scale input voltage range of the AD80066 ADC  
to either 3 V (high) or 1.5 V (low). Bit D5 controls the internal  
voltage reference. If the AD80066 internal voltage reference is  
used, this bit is set low. Setting Bit D5 high disables the internal  
voltage reference, allowing an external voltage reference to be  
used. Setting Bit D3 low enables the CDS mode of operation and  
setting this bit high enables the SHA mode of operation. If Bit D4  
is set high, the 16-bit ADC output is multiplexed into two bytes.  
The most significant byte is output on the ADCCLK rising edge,  
and the least significant byte is output on the ADCCLK falling  
edge (see Figure 10). If Bit D1 is set high, the AD80066 is con-  
figured for slow operation (8 MHz) to reduce power consumption.  
Bit D0 controls the power-down mode. Setting Bit D0 low places the  
AD80066 into a very low power sleep mode. All register contents  
are retained while the AD80066 is in the power-down state.  
PGA GAIN REGISTERS  
There are four PGA registers for individually programming the  
gain for the A, B, C, and D channels. The D8, D7, and D6 bits in  
each register must be set low, and the D5 through D0 bits control  
the gain range in 64 increments. See Figure 22 for the PGA gain vs.  
the PGA register value. The coding for the PGA registers is straight  
binary, with a word of all 0s corresponding to the minimum gain  
setting (1×) and a word of all 1s corresponding to the maximum  
gain setting (5.9×).  
OFFSET REGISTERS  
MUX REGISTER  
There are four offset registers for individually programming the  
offset in the A, B, C, and D channels. The D8 through D0 bits  
control the offset range from −300 mV to +300 mV in 512 incre-  
ments. The coding for the offset registers is sign magnitude, with  
D8 as the sign bit. Table 11 shows the offset range as a function  
of the D8 through D0 bits.  
The mux register controls the sampling channel order in the  
AD80066. The D8, D7, D6, and D5 bits should always be set  
low. Bit D4 is used when operating in 4-channel mode. Setting  
Bit D4 low sequences the multiplexer to sample the A channel  
first, and then the B, C, and D channels. When in this mode,  
Table 8. Configuration Register Settings  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Set to 0 Set to 0 Set to 0  
Internal voltage 2/1 byte output CDS operation Input range  
reference  
Fast/slow  
Power mode  
1 = disabled  
0 = enabled1  
1 = one byte  
0 = two bytes1  
1 = SHA mode  
1 = 3 V  
1 = 8 MHz  
0 = 24 MHz1  
1 = on (normal)  
0 = off1  
0 = CDS mode1 0 = 1.5 V1  
1 Power-on default.  
Table 9. Mux Register Settings  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Set to 0 Set to 0 Set to 0 Set to 0 Mux order  
1 = D, C, B, A  
Channel A  
1 = channel used 1 = channel used  
0 = not used1 0 = not used1  
Channel B  
Channel C  
1 = channel used  
0 = not used1  
Channel D  
1 = channel used  
0 = not used1  
0 = A, B, C, D1  
D
1 Power-on default.  
Table 10. PGA Gain Register Settings  
(MSB)  
D5  
0
(LSB)  
D0  
02  
D81  
0
D71  
0
D61  
0
D4  
0
D3  
0
D2  
D1  
0
Gain (V/V)  
1.0  
Gain (dB)  
0.0  
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
1
0
1.013  
5.56  
0.12  
14.9  
0
0
0
1
1
1
1
1
1
5.9  
15.56  
1 Must be set to 0.  
2 Power-on default.  
Rev. A | Page 15 of 20  
 
 
AD80066  
Table 11. Offset Register Settings  
(MSB)  
D8  
0
(LSB)  
D0  
01  
1
D7  
0
0
D6  
0
0
D5  
0
0
D4  
0
0
D3  
0
0
D2  
0
0
D1  
0
0
Offset (mV)  
0
0
+1.2  
+300  
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
−1.2  
−300  
1 Power-on default value.  
Rev. A | Page 16 of 20  
 
AD80066  
CIRCUIT OPERATION  
ANALOG INPUTS—CDS MODE  
EXTERNAL INPUT COUPLING CAPACITORS  
Figure 17 shows the analog input configuration for the CDS  
mode of operation. Figure 18 shows the internal timing for the  
sampling switches. The CCD reference level is sampled when  
CDSCLK1 transitions from high to low, opening S1. The CCD  
data level is sampled when CDSCLK2 transitions from high to  
low, opening S2. S3 is then closed, generating a differential  
output voltage that represents the difference between the two  
sampled levels.  
The recommended value for the input coupling capacitors is  
0.1 μF. Although it is possible to use a smaller capacitor, this  
larger value is preferable for several reasons:  
Signal attenuation: The input coupling capacitor creates  
a capacitive divider using the input capacitance from an  
integrated CMOS circuit, which, in turn, attenuates the  
CCD signal level. CIN should be large relative to the 10 pF  
input capacitance of the IC in order to minimize this effect.  
Linearity: Some of the input capacitance of a CMOS IC is  
junction capacitance, which varies nonlinearly with applied  
voltage. If the input coupling capacitor is too small, the  
attenuation of the CCD signal varies nonlinearly with signal  
level. This degrades the system linearity performance.  
Sampling errors: The internal 2 pF sampling capacitors retain  
a memory of the previously sampled pixel. There is a charge  
redistribution error between CIN and the internal sample  
capacitors for larger pixel-to-pixel voltage swings. As the  
value of CIN is reduced, the resulting error in the sampled  
voltage increases. With a CIN value of 0.1 μF, the charge  
redistribution error is less than 1 LSB for a full-scale, pixel-  
to-pixel voltage swing.  
The input clamp is controlled by CDSCLK1. When CDSCLK1  
is high, S4 closes and the internal bias voltage is connected to  
the analog input. The bias voltage charges the external 0.1 μF  
input capacitor, level-shifting the CCD signal into the input  
common-mode range of the AD80066. The time constant of the  
input clamp is determined by the internal 5 kΩ resistance and  
the external 0.1 μF input capacitance.  
AD80066  
S1  
2pF  
VINA  
CCD SIGNAL  
CML  
CML  
C
IN  
0.1µF  
S3  
5k  
S2  
2pF  
AVDD  
S4  
1.7kΩ  
2.2kΩ  
6.9kΩ  
OFFSET  
0.1µF  
+
1µF  
3V  
Figure 17. CDS Mode Input Configuration (All Four Channels Are Identical)  
S1, S4 CLOSED  
S1, S4 CLOSED  
CDSCLK1  
CDSCLK2  
S1, S4 OPEN  
S2 CLOSED  
S2 CLOSED  
S2 OPEN  
S3 OPEN  
S3 CLOSED  
S3 CLOSED  
Q3  
(INTERNAL)  
Figure 18. CDS Mode Internal Switch Timing  
Rev. A | Page 17 of 20  
 
 
 
 
 
AD80066  
ANALOG INPUTS—SHA MODE  
AD80066  
Figure 19 shows the analog input configuration for the SHA  
mode of operation. Figure 20 shows the internal timing for the  
sampling switches. The input signal is sampled when CDSCLK2  
transitions from high to low, opening S1. The voltage on the  
OFFSET pin is also sampled on the falling edge of CDSCLK2,  
when S2 opens. S3 is then closed, generating a differential  
output voltage that represents the difference between the  
sampled input voltage and the OFFSET voltage. The input  
clamp is disabled during SHA mode operation.  
VINA  
VINB  
VINC  
A OFFSET  
B OFFSET  
C OFFSET  
SHA  
SHA  
SHA  
VOLTAGE  
REFERENCE  
FROM CIS  
MODULE  
AVDD  
OFFSET  
0.1µF  
R1  
DC OFFSET  
R2  
AD80066  
S1  
2pF  
VINA  
CML  
A
INPUT SIGNAL  
S3  
S2  
2pF  
OFFSET  
VINB  
Figure 21. SHA Mode Used with External DC Offset  
CML  
OPTIONAL DC OFFSET  
(OR CONNECT TO GND)  
PROGRAMMABLE GAIN AMPLIFIERS (PGA)  
CML  
The AD80066 uses one PGA for each channel. Each PGA has a  
gain range from 1× (0 dB) to 5.8× (15.5 dB), adjustable in  
64 steps. Figure 22 shows the PGA gain as a function of the  
PGA register value. Although the gain curve is approximately  
linear-in-dB, the gain in V/V varies nonlinearly with register  
code, following the equation  
B
CML  
VINC  
VIND  
CML  
C
CML  
5.9  
Gain =  
CML  
63 G  
1 + 4.9  
D
63  
CML  
where G is the decimal value of the gain register contents and  
varies from 0 to 63.  
Figure 19. SHA Mode Input Configuration (All Four Channels Are Identical)  
1
5
5.9  
5.0  
4.0  
3.0  
2.0  
1.0  
S1, S2 CLOSED  
S1, S2 OPEN  
S1, S2 CLOSED  
CDSCLK2  
12  
9
S3 CLOSED  
S3 CLOSED  
Q3  
S3 OPEN  
(INTERNAL)  
Figure 20. SHA Mode Internal Switch Timing  
Figure 21 shows how the OFFSET pin can be used in a CIS  
application for coarse offset adjustment. Many CIS signals have  
dc offsets ranging from several hundred millivolts to more than  
1 V. By connecting the appropriate dc voltage to the OFFSET pin,  
the large dc offset is removed from the CIS signal. Then, the  
signal can be scaled using the PGA to maximize the dynamic  
range of the ADC.  
6
3
0
0
4
8 12 16 20 24 28 32 36 40 44 48 52 56 60 63  
PGA REGISTER VALUE (Decimal)  
Figure 22. PGA Gain Transfer Function  
Rev. A | Page 18 of 20  
 
 
 
 
 
 
AD80066  
APPLICATIONS INFORMATION  
CDSCLK2 should occur coincident with or before the rising  
CIRCUIT AND LAYOUT RECOMMENDATIONS  
edge of ADCCLK (see Figure 3 through Figure 8 for timing).  
All 0.1 μF decoupling capacitors should be located as close as  
possible to the AD80066 pins. When operating in 1-channel  
mode, the unused analog inputs should be grounded.  
Figure 23 shows the recommended circuit configuration for  
4-channel CDS mode operation. The recommended input  
coupling capacitor value is 0.1 μF (see the Analog Inputs—CDS  
Mode section). A single ground plane is recommended for the  
AD80066. A separate power supply can be used for DRVDD,  
the digital driver supply, but this supply pin should still be  
decoupled to the same ground plane as the rest of the AD80066.  
The loading of the digital outputs should be minimized, either  
by using short traces to the digital ASIC or by using external  
digital buffers. To minimize the effect of digital transients  
during major output code transitions, the falling edge of  
Figure 24 shows the recommended circuit configuration for  
4-channel SHA mode. All of the previously explained consid-  
erations also apply to this configuration, except that the analog  
input signals are directly connected to the AD80066 without the  
use of coupling capacitors. Before connecting the signals, the  
analog input signals must be dc-biased between 0 V and 1.5 V  
or 3 V (see the Analog Inputs—SHA Mode section).  
5V  
0.1µF  
0.1µF  
A INPUT  
0.1µF  
CLOCK  
AVDD  
B INPUT  
AVSS  
VINA  
INPUTS  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
CDSCLK1  
CDSCLK2  
ADCCLK  
DRVDD  
DRVSS  
(MSB) D7  
D6  
OFFSET  
VINB  
3
3.3V  
1.0µF  
0.1µF  
4
0.1µF  
10µF  
0.1µF  
CML  
5
VINC  
0.1µF  
6
C INPUT  
D INPUT  
AD80066  
0.1µF  
0.1µF  
CAPT  
CAPB  
VIND  
7
TOP VIEW  
(Not to Scale)  
8
0.1µF  
D5  
0.1µF  
9
D4  
AVSS  
AVDD  
SLOAD  
SCLK  
SDATA  
10  
11  
12  
13  
14  
D3  
0.1µF  
D2  
D1  
5V  
(LSB) D0  
DATA  
INPUTS  
SERIAL  
INTERFACE  
Figure 23. Recommended Circuit Configuration, 4-Channel CDS Mode  
5V  
0.1µF  
A INPUT  
B INPUT  
AVDD  
CDSCLK1  
CDSCLK2  
ADCCLK  
DRVDD  
DRVSS  
(MSB) D7  
D6  
AVSS  
VINA  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
2
CLOCK  
INPUTS  
OFFSET  
VINB  
3
3.3V  
4
0.1µF  
CML  
5
VINC  
0.1µF  
6
C INPUT  
D INPUT  
0.1µF  
0.1µF  
CAPT  
CAPB  
VIND  
AD80066  
7
TOP VIEW  
0.1µF  
10µF  
8
(Not to Scale)  
D5  
9
D4  
AVSS  
AVDD  
SLOAD  
SCLK  
SDATA  
10  
11  
12  
13  
14  
D3  
0.1µF  
D2  
D1  
5V  
(LSB) D0  
DATA  
INPUTS  
SERIAL  
INTERFACE  
Figure 24. Recommended Circuit Configuration, 4-Channel SHA Mode (Analog Inputs Sampled with Respect to Ground)  
Rev. A | Page 19 of 20  
 
 
 
AD80066  
OUTLINE DIMENSIONS  
10.50  
10.20  
9.90  
15  
28  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
1
14  
0.25  
0.09  
1.85  
1.75  
1.65  
2.00 MAX  
0.05 MIN  
8°  
4°  
0°  
0.95  
0.75  
0.55  
0.38  
0.22  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.65 BSC  
COMPLIANT TO JEDEC STANDARDS MO-150-AH  
Figure 25. 28-Lead Shrink Small Outline Package [SSOP]  
(RS-28)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
0°C to 70°C  
0°C to 70°C  
Package Description  
28-Lead SSOP  
28-Lead SSOP  
Package Option  
RS-28  
RS-28  
AD80066KRSZ  
AD80066KRSZRL  
1 Z = RoHS Compliant Part.  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08552-0-4/10(A)  
Rev. A | Page 20 of 20  
 

相关型号:

AD80066KRSZ

Complete 16-Bit CCD/CIS Signal Processor
ADI

AD80066KRSZRL

Complete 16-Bit CCD/CIS Signal Processor
ADI

AD8007

Ultralow Distortion High Speed Amplifiers
ADI

AD8007AKS-R2

Ultralow Distortion High Speed Amplifiers
ADI

AD8007AKS-REEL

Ultralow Distortion High Speed Amplifiers
ADI

AD8007AKS-REEL7

Ultralow Distortion High Speed Amplifiers
ADI

AD8007AKS-REEL7

OP-AMP, 4000 uV OFFSET-MAX, PDSO5, MO-203AA, SC-70, 5 PIN
ROCHESTER

AD8007AKS-RL

IC OP-AMP, 4000 uV OFFSET-MAX, PDSO5, SC-70, 5 PIN, Operational Amplifier
ADI

AD8007AKS-RL7

IC OP-AMP, 4000 uV OFFSET-MAX, PDSO5, SC-70, 5 PIN, Operational Amplifier
ADI

AD8007AKSZ-R2

OP-AMP, 4000 uV OFFSET-MAX, PDSO5, ROHS COMPLIANT, MO-203AA, SC70-5
ROCHESTER

AD8007AKSZ-R2

Ultralow Distortion, High Speed Amplifiers
ADI

AD8007AKSZ-R21

Ultralow Distortion,High Speed Amplifiers
ADI