AD8015ARZ-REEL7 [ADI]

155 Mbps Transimpedance Amplifier;
AD8015ARZ-REEL7
型号: AD8015ARZ-REEL7
厂家: ADI    ADI
描述:

155 Mbps Transimpedance Amplifier

电信 光电二极管 电信集成电路
文件: 总9页 (文件大小:195K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wideband/Differential Output  
Transimpedance Amplifier  
a
AD8015  
FUNCTIO NAL BLO CK D IAGRAM  
FEATURES  
Low Cost, Wide Bandw idth, Low Noise  
Bandw idth: 240 MHz  
Pulse Width Modulation: 500 ps  
Rise Tim e/ Fall Tim e: 1.5 ns  
Input Current Noise: 3.0 pA/ Hz @ 100 MHz  
Total Input RMS Noise: 26.5 nA to 100 MHz  
Wide Dynam ic Range  
AD8015  
+VS  
8
7
6
5
1
2
3
NC  
IIN  
10kΩ  
50Ω  
+OUTPUT  
–OUTPUT  
+1  
+1  
G = 30  
G = 3  
NC  
50Ω  
Optical Sensitivity: –36 dBm @ 155.52 Mbps  
Peak Input Current: ؎350 A  
Differential Outputs  
–VS  
VBYP  
– +  
+V  
S
4
1.7V  
NC = NO CONNECT  
Low Pow er: 5 V @ 25 m A  
Wide Operating Tem perature Range: –40؇C to +85؇C  
APPLICATIONS  
25.0E+3  
20.0E+3  
15.0E+3  
10.0E+3  
5.0E+3  
Fiber Optic Receivers: SONET/ SDH, FDDI, Fibre Channel  
Stable Operation w ith High Capacitance Detectors  
Low Noise Pream plifiers  
Single-Ended to Differential Conversion  
I-to-V Converters  
DIFFERENTIAL  
SINGLE-ENDED  
P RO D UCT D ESCRIP TIO N  
The AD8015 is a wide bandwidth, single supply transimpedance  
amplifier optimized for use in a fiber optic receiver circuit. It is a  
complete, single chip solution for converting photodiode current  
into a differential voltage output. The 240 MHz bandwidth enables  
AD8015 application in FDDI receivers and SONET /SDH  
receivers with data rates up to 155 Mbps. T his high bandwidth  
supports data rates beyond 300 Mbps. T he differential outputs  
drive ECL directly, or can drive a comparator/ fiber optic post  
amplifier.  
000.E+0  
10.0E+6  
100.0E+6  
FREQUENCY – Hz  
1.0E+9  
Figure 1. Differential/Single-Ended Transim pedance vs.  
Frequency  
5.0  
In addition to fiber optic applications, this low cost, silicon al-  
ternative to GaAs-based transimpedance amplifiers is ideal for  
systems requiring a wide dynamic range preamplifier or single-  
ended to differential conversion. T he IC can be used with a  
standard ECL power supply (–5.2 V) or a PECL (+5 V) power  
supply; the common mode at the output is ECL compatible.  
T he AD8015 is available in die form, or in an 8-pin SOIC  
package.  
3.0pF  
4.5  
4.0  
2.0pF  
1.5pF  
3.5  
3.0  
2.5  
1.0pF  
0.5pF  
2.0  
000.0E+0  
20.0E+6  
40.0E+6  
60.0E+6  
80.0E+6  
100.0E+6  
FREQUENCY – Hz  
Figure 2. Noise vs. Frequency (SO-8 Package with  
Added Capacitance)  
REV. A  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
© Analog Devices, Inc., 1996  
One Technology Way, P.O. Box 9106, Norw ood, 02062-9106, U.S.A.  
Tel: 617/ 329-4700 Fax: 617/ 326-8703  
AD8015* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DISCUSSIONS  
View all AD8015 EngineerZone Discussions.  
DOCUMENTATION  
Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
AD8015: Wideband/Differential Output Transimpedance  
Amplifier Data Sheet  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
REFERENCE MATERIALS  
Informational  
DOCUMENT FEEDBACK  
Optical and High Speed Networking ICs  
Submit feedback for this data sheet.  
DESIGN RESOURCES  
AD8015 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
(SO Package @ T = +25؇C and V = +5 V, unless otherwise noted)  
AD8015–SPECIFICATIONS  
A
S
AD 8015AR  
Typ  
P aram eter  
Conditions  
Min  
Max  
Units  
DYNAMIC PERFORMANCE  
Bandwidth  
Pulse Width Modulation  
Rise and Fall T ime  
Settling T ime1  
3 dB  
180  
240  
500  
1.5  
3
MHz  
ps  
ns  
10 µA to 200 µA Peak  
10% to 90%  
to 3%, 0.5 V Diff Output Step  
ns  
INPUT  
Linear Input Current Range  
Max Input Current Range  
Optical Sensitivity  
±2.5%, Nonlinearity  
Saturation  
155 Mbps, Avg Power  
Die, by Design  
±25  
±200  
±30  
±350  
–36  
0.2  
µA  
µA  
dBm  
pF  
Input Stray Capacitance  
SOIC, by Design  
+VS to IIN and VBYP  
0.4  
1.8  
pF  
V
Input Bias Voltage  
NOISE  
1.6  
2.0  
Die, Single Ended at POUT  
,
or Differential (POUT NOUT ),  
CST RAY = 0.3 pF  
f = 100 MHz  
Input Current Noise  
3.0  
pA/Hz  
T otal Input RMS Noise  
DC to 100 MHz  
26.5  
nA  
T RANSFER CHARACT ERIST ICS  
T ransresistance  
Single Ended  
Differential  
Single Ended  
Differential  
8
16  
10  
20  
37.0  
40  
12  
24  
kΩ  
kΩ  
dB  
dB  
Power Supply  
Rejection Ratio  
OUT PUT  
Differential Offset  
Output Common-Mode Voltage  
Voltage Swing (Differential)  
6
20  
–1.1  
mV  
V
V p-p  
mV p-p  
From Positive Supply  
Positive Input Current, RL = ∞  
Positive Input Current, RL = 50 Ω  
–1.5  
40  
–1.3  
1.0  
600  
50  
Output Impedance  
60  
POWER SUPPLY  
Operating Range  
TMIN to TMAX  
Single Supply  
Dual Supply  
+4.5  
±2.25  
+5  
25  
+11  
±5.5  
26  
V
V
mA  
Current  
NOT ES  
1Settling T ime is defined as the time elapsed from the application of a perfect step input to the time when the output has entered and remained within a specified error  
band symmetrical about the final value. T his parameter includes propagation delay, slew time, overload recovery, and linear settling times.  
Specifications subject to change without notice.  
NOT ES  
ABSO LUTE MAXIMUM RATINGS1  
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
Supply Voltage (+VS to –VS). . . . . . . . . . . . . . . . . . . . . . . 12 V  
permanent damage to the device. T his is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in the  
Internal Power Dissipation2  
operational section of this specification is not implied. Exposure to absolute  
Small Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.9 Watts  
Output Short Circuit Duration . . . . . . . . . . . . . . . Indefinite  
Maximum Input Current . . . . . . . . . . . . . . . . . . . . . . . . 10 mA  
maximum rating conditions for extended periods may affect device reliability.  
2Specification is for device in free air: 8-pin SOIC package: θJA = 155°C/W.  
Storage T emperature Range . . . . . . . . . . . . –65°C to +125°C  
Operating T emperature Range (TMIN to T MAX  
AD8015ACHIP/AR . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Maximum Junction T emperature . . . . . . . . . . . . . . . . . +165°C  
Lead T emperature Range (Soldering 10 sec) . . . . . . . . +300°C  
O RD ERING GUID E  
)
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
Model  
AD8015AR  
–40°C to +85°C 8-Pin Plastic SOIC SO-8  
AD8015ACHIPS –40°C to +85°C Die Form  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD8015 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–2–  
REV. A  
AD8015  
+VS  
1.7V  
P IN CO NFIGURATIO N  
+VS  
AD8015  
10kΩ  
AD8015  
V1  
1
2
3
8
7
6
+VS  
8
7
6
5
1
2
3
NC  
IIN  
10kΩ  
LPF:  
3dB@  
0.7 x F  
R
R
50Ω  
50Ω  
+1  
+1  
CLK  
DATA  
CLOCK  
RECOVERY  
+OUTPUT  
–OUTPUT  
–VS  
+1  
+1  
G = 30  
LPF:  
3dB@  
0.7 x F  
G = 30  
G = 3  
G = 3  
QUANTIZER  
50Ω  
NC  
50Ω  
R > 40Ω  
C1 >100pF  
4.5V < VS < 11V  
.
+
+V  
S
4
5
VBYP  
– +  
+V  
S
4
1.7V  
C1  
1.7V  
NC = NO CONNECT  
Figure 3. Fiber Optic Receiver Application: Photodiode  
Referred to Positive Supply  
METALIZATIO N P H O TO GRAP H  
D imensions shown in microns. N ot to scale.  
+V  
S
OPTIONAL  
+V CONNECTION  
P H O TO D IO D E REFERRED TO NEGATIVE SUP P LY  
Figure 4 shows the AD8015 used in a circuit where the photo-  
diode is referred to the negative supply. T his results in a larger  
back bias voltage than when referring the photodiode to the  
positive supply. T he larger back bias voltage on the photodiode  
decreases the photodiode’s capacitance thereby increasing its  
bandwidth. T he R2, C2 network shown in Figure 4 is added to  
decouple the photodiode to the positive supply. T his improves  
PSRR.  
S
I
IN  
+OUTPUT  
838µ  
998µ  
+VS  
–OUTPUT  
+VS  
AD8015  
V1  
1
2
3
8
7
6
10kΩ  
LPF:  
3dB@  
0.7 x F  
C2  
R
R
50Ω  
+1  
+1  
CLK  
CLOCK  
RECOVERY  
+VS  
1.7V  
G = 30  
LPF:  
3dB@  
0.7 x F  
DATA  
G = 3  
QUANTIZER  
50Ω  
R2  
R > 40Ω  
C1 >100pF  
4.5V < VS < 11V  
R2 AND C2 OPTIONAL  
FOR IMPROVED PSRR  
V
BYP  
–V  
S
+
+V  
S
4
5
813µ  
973µ  
1.7V  
C1  
NOTE:  
FOR BEST PERFORMANCE ATTACH PACKAGE  
SUBSTRATE TO +V .  
S
MATERIAL AT BACK OF DIE IS SILICON. USE OF  
+V OR –V FOR DIE ATTACH IS ACCEPTABLE.  
Figure 4. Fiber Optic Receiver Application: Photodiode  
Referred to Negative Supply  
S
S
FIBER O P TIC SYSTEM NO ISE P ERFO RMANCE  
T he AD8015 maintains 26.5 nA referred to input (RT I) to 100  
MHz. Calculations below translate this specification into mini-  
mum power level and bit error rate specifications for SONET  
and FDDI systems. T he dominant sources of noise are: 10 kΩ  
feedback resistor current noise, input bipolar transistor base  
current noise, and input voltage noise.  
FIBER O P TIC RECEIVER AP P LICATIO NS  
In a fiber optic receiver, the photodiode can be placed from the  
IIN pin to either the positive or negative supply. T he AD8015  
converts the current from the photodiode to a differential volt-  
age in these applications. T he voltage at the VBYP pin is 1.8 V  
below the positive supply. T his node must be bypassed with a  
capacitor (C1 in Figures 3 and 4 below) to the signal ground. If  
large levels of power supply noise exist, then connecting C1 to  
+VS is recommended for improved noise immunity. For opti-  
mum performance, choose C1 such that C1 > 1/(2 π × 1000 ×  
T he AD8015 has dielectrically isolated devices and bond pads  
that minimize stray capacitance at the IIN pin. Input voltage  
noise is negligible at lower frequencies, but can become the  
dominant noise source at high frequencies due to IIN pin stray  
capacitance. Minimizing the stray capacitance at the IIN pin is  
critical to maintaining low noise levels at high frequencies. T he  
pins surrounding the IIN pin (Pins 1 and 3) have no internal  
connection and should be left unconnected in an application.  
T his minimizes IIN pin package capacitance. It is best to have no  
ground plane or metal runs near Pins 1, 2, and 3 and to mini-  
mize capacitance at the IIN pin.  
fMIN); where fMIN is the minimum useful  
frequency in Hz.  
P H O TO D IO D E REFERRED TO P O SITIVE SUP P LY  
Figure 3 shows the AD8015 used in a circuit where the photo-  
diode is referred to the positive supply. T he back bias voltage on  
the photodiode is 1.8 V. T his method of referring the photo-  
diode provides greater power supply noise immunity (PSRR)  
than referring the photodiode to the negative supply. T he signal  
path is referred to the positive rail, and the photodiode capaci-  
tance is not modulated by high frequency noise that may exist  
on the negative rail.  
T he AD8015AR (8-pin SOIC) IIN pin total stray capacitance is  
0.4 pF without the photodiode. Photodiodes used for SONET  
or FDDI systems typically add 0.3 pF, resulting in roughly  
0.7 pF total stray capacitance.  
REV. A  
–3–  
AD8015  
SO NET O C-3 SENSITIVITY ANALYSIS  
Sensitivity (minimum power level) = 492/0.85 nW  
= 579 nW (peak)  
OC-3 Minimum Bandwidth = 0.7 × 155 MHz 110 MHz  
Total Current Noise = (π/2) × 26.5 nA  
= –32.4 dBm (peak)  
= 42 nA (assuming single pole response)  
T o maintain a BER < 1 × 10–10 (1 error per 10 billion bits):  
= –35.4 dBm (average)  
T he FDDI specification allows for a minimum power level of  
–28 dBm peak, or –31 dBm average. Using the AD8015 pro-  
vides 4.4 dB margin.  
Minimum current level needs to be > 13 × Total Current Noise  
= 541 nA (peak)  
Assume a typical photodiode current/power conversion ratio  
TH EO RY O F O P ERATIO N  
= 0.85 A/W  
T he simplified schematic is shown in Figure 5. Q1 and Q3 make  
up the input stage, with Q3 running at 300 µA and Q1 running  
at 2.7 mA. Q3 runs essentially as a grounded emitter. A large  
capacitor (0.01 µF) placed from VBYP to the positive supply  
shorts out the noise of R17, R21, and Q16. T he first stage of the  
amplifier (Q3, R2, Q4, and C1) functions as an integrator, inte-  
grating current into the IIN pin. T he integrator drives a differen-  
tial stage (Q5, Q6, R5, R3, and R4) with gains of +3 and –3.  
T he differential stage then drives emitter followers (Q41, Q42,  
Q60 and Q61). T he positive output of the differential stage pro-  
vides the feedback by driving RFB. T he differential outputs are  
buffered using Q7 and Q8.  
Sensitivity (minimum power level) = 541/0.85 nW  
= 637 nW (peak)  
= –32.0 dBm (peak)  
= –35.0 dBm (average)  
T he SONET OC-3 specification allows for a minimum power  
level of –31 dBm peak, or –34 dBm average. Using the AD8015  
provides 1 dB margin.  
FD D I SENSITIVITY ANALYSIS  
FDDI Minimum Bandwidth = 0.7 × 125 MHz 88 MHz  
T he bandwidth of the AD8015 is set to within +20% of the  
nominal value, 240 MHz, by factory trimming R5 to 60 . T he  
following formula describes the AD8015 bandwidth:  
88 MHz  
Total Current Noise = (π / 2) ×  
× 26.5 nA  
100 MHz  
Bandwidth = 1/(2 π × C1 × RFB × (R5 + 2 re)/R4)  
= 39 nA (assuming single pole response)  
where re (of Q5 and Q6) = 9 each, constant over temperature,  
and RFB/R4 = 43.5, constant over temperature.  
T o maintain a BER < 2.5 × 10–10 (1 error per 4 billion bits):  
T he bandwidth equation simplifies, and the bandwidth depends  
only on the value of C1:  
Minimum current level needs to be > 12.6 × Total Current Noise  
= 492 nA (peak)  
Bandwidth = 1/(2 π × 3393 × C1).  
Assume a typical photodiode current/power conversion ratio  
= 0.85 A/W  
+VS  
R17  
635  
R1  
300  
R2  
3k  
R3  
230  
R4  
230  
330  
Q4  
Q42  
R21  
1.8k  
Q41  
INPUT  
CLAMPS  
+OUTPUT  
Q8  
Q16  
R44 50  
Q7  
Q60  
V
I
Q3  
Q1  
BYP  
IN  
Q5  
Q6  
C1 0.2pF  
330  
+V  
S
–OUTPUT  
R5 60  
R43 50  
I10  
Q61  
0.75MA  
Q56  
RFB  
10k  
I5  
I2  
3MA  
I3  
1MA  
I4  
3MA  
I6  
1MA  
I7  
1MA  
I8  
1MA  
I9  
1MA  
I1  
1.5MA  
3MA  
–VS  
Figure 5. AD8015 Sim plified Schem atiic  
–4–  
REV. A  
AD8015  
1.5  
1.0  
9
+85°C  
+85°C  
– 40°C  
+ 25°C  
0.5  
–40°C AND 0°C  
5
0
4k  
IN  
–0.5  
–1.0  
–1.5  
VOUT  
0
50Ω  
AD8015  
–100 –80 –60 –40 –20  
0
20  
40  
60  
80  
100  
1000  
1
10  
100  
FREQUENCY – MHz  
INPUT CURRENT – µA  
Figure 6. Differential Output vs. Input Current  
Figure 9. Gain vs. Frequency  
0
10  
–0.5  
+85°C  
+25°C  
PIN 7  
5V, +25°C  
–1.0  
–1.5  
–2.0  
–2.5  
–40°C  
0
–40°C  
PIN 6  
+25°C  
+85°C  
–100 –80 –60 –40 –20  
0
20  
40  
60  
80 100  
10  
100  
1000  
INPUT CURRENT – µA  
FREQUENCY – MHz  
Figure 10. Group Delay vs. Frequency  
Figure 7. Single-Ended Output vs. Input Current  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
300  
290  
280  
270  
260  
250  
240  
230  
220  
210  
200  
11.0V  
5.0V  
4.5V  
–40 –30 –20 –10  
0
10 20 30  
40 50  
60 70  
80  
10.0E+6  
100.0E+6  
1.0E+9  
TEMPERATURE – °C  
FREQUENCY – Hz  
Figure 8. Bandwidth vs. Tem perature  
Figure 11. Differential Gain vs. Supply  
REV. A  
–5–  
AD8015  
100  
AP P LICATIO N  
155 Mbps Fiber O ptic Receiver  
5V, +25°C  
T he AD8015 and AD807 can be used together for a complete  
155 Mbps Fiber Optic Receiver (T ransimpedance Amplifier,  
Post Amplifier with Signal Detect Output, and Clock Recovery  
and Data Retiming) as shown in Figure 16.  
PIN 7  
50  
T he PIN diode front end is connected to a single mode, 1300 nm  
laser source. T he PIN diode has 3.3 V reverse bias, 0.8 A/W  
responsivity, 0.7 pF capacitance, and 2.5 GHz bandwidth.  
PIN 6  
T he AD8015 outputs (POUT and NOUT ) drive a differential, con-  
stant impedance (50 ) low-pass π filter with a 3 dB cutoff of  
100 MHz. T he outputs of the low-pass filter are ac coupled to  
the AD807 inputs (PIN and NIN). T he AD807 PLL damping  
factor is set at 10 using a 0.22 µF capacitor.  
0
1000  
1
10  
100  
FREQUENCY – MHz  
T he entire circuit was enclosed in a shielded box. T able I sum-  
marizes results of tests performed using a 223–1 PRN sequence,  
and varying the average power at the PIN diode.  
Figure 12. Output Im pedance vs. Frequency  
T he circuit acquires and maintains lock with an average input  
100  
power as low as –39.25 dBm.  
30 DEVICES, 2 LOTS:  
(+OUT, –OUT) × (25°C, –40°C, 85°C) × (5V, 4.5V, 11.0V)  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
0
–100  
0
10  
20  
TIME – ns  
10  
0
Figure 13. Sm all Signal Pulse Response  
2
0
FREQUENCY – Hz  
1pF  
–2  
Figure 15. Bandwidth Distribution Matrix  
–4  
–6  
5pF  
8pF  
0pF  
3pF  
–8  
–10  
–12  
10.0E+6  
100.0E+6  
1.0E+9  
FREQUENCY – Hz  
Figure 14. Differential Gain vs. Input Capacitance  
–6–  
REV. A  
AD8015  
C1  
0.1µF  
SDOUT  
TP7  
TP8  
C1  
100pF  
C2  
0.1µF  
R1 R2  
R11 R10  
154 154  
R17  
C12  
R16  
301  
R5 100  
R6 100  
C13  
0.1µF  
100 100  
3.65k 2.2µF  
1
2
3
VEE 16  
15  
DATAOUTN  
DATAOUTP  
VCC2  
DATAOUTN  
DATAOUTP  
C3  
0.1µF  
SDOUT  
C11  
C4  
0.1µF  
AVCC 14  
PIN 13  
R14  
50  
R15  
50  
C7  
R7 100  
R8 100  
4
5
6
CLKOUTN  
CLKOUTP  
VCC1  
CLKOUTN  
CLKOUTP  
NIN 12  
C10  
TP6  
C5  
0.1µF  
11  
10  
9
AVCC  
THRADJ  
AVEE  
C8  
TP1  
R4  
100  
R3  
100  
CF1  
7
8
C15  
0.1µF 0.1µF  
C14  
CD  
R13  
THRADJ  
100  
pF  
R11  
154  
R12  
154  
CF2  
TP2  
AD807  
TP5  
C6  
0.1µF  
DAMPING  
CAP,0.22µF  
C9  
10µF  
50Ω  
LINE  
50Ω  
LINE  
GND  
TP4  
0.1µF  
10µF  
5V  
TP3  
ABB HAFO  
1A227  
FC HOUSING  
1
2
NC  
+VS  
8
7
6
5
150nH  
15pF  
IIN  
+OUT  
NOTES  
0.8 A/W, 0.7pF  
2.5GHz  
1. ALL CAPS ARE CHIP,  
15pF ARE MICA.  
NC  
3
4
–OUT  
–VS  
150nH  
15pF  
VBYP  
2. 150 nH ARE SMT  
AD8015  
NC = NO CONNECT  
0.1µF  
0.01µF  
Figure 16. 155 Mbps Fiber Optic Receiver Schem atic  
Table I. AD 8015, AD 807 Fiber O ptic Receiver Circuit:  
O utput Bit Error Rate & O utput Jitter vs. Average Input P ower  
Average O ptical  
Input P ower (dBm )  
O utput Bit  
Error Rate  
O utput Jitter  
(ps rm s)  
–6.4  
Loses Lock  
1.2 × 10–2  
7.5 × 10–3  
9.4 × 10–4  
1 × 10–14  
–6.45  
–6.50  
–6.60  
–6.70  
–7.0 to  
–35.50  
–36.00  
1 × 10–14  
< 40  
< 40  
3.0 × 10–12  
–36.50  
–37.00  
–37.50  
–38.00  
–38.50  
–39.00  
–39.1  
–39.20  
–39.25  
39.30  
4.8 × 10–10  
2.8 × 10–8  
8.2 × 10–7  
1.3 × 10–5  
1.1 × 10–4  
1.0 × 10–3  
1.3 × 10–3  
1.9 × 10–3  
2.2 × 10–3  
Loses Lock  
REV. A  
–7–  
AD8015  
AC CO UP LED P H O TO D IO D E AP P LICATIO N FO R  
IMP RO VED D YNAMIC RANGE  
and typical sensitivity of –35 dBm. AC coupling the input also  
results in improved pulse width modulation performance.  
AC coupling the photodiode current input to the AD8015 (Fig-  
ure 17) extends fiber optic receiver overload by 3 dB while sacri-  
ficing only 1 dB of sensitivity (increasing receiver dynamic range  
by 2 dB). T his application results in typical overload of –4 dBm,  
Careful attention to minimize parasitic capacitance at the  
AD8015 input (from the photodetector input), RAC and CAC are  
critical for sensitivity performance in this application. Note that  
CAC of 0.01 µF was chosen for a low frequency cutoff equal to  
2.2 kHz.  
+VS  
+VS  
AD8015  
V1  
1
2
3
8
7
6
10kΩ  
LPF:  
3dB@  
0.7 x F  
C
R
AC  
R
50Ω  
+1  
+1  
CLK  
CLOCK  
RECOVERY  
G = 30  
0.01µF  
LPF:  
3dB@  
0.7 x F  
DATA  
R
AC  
7k  
G = 3  
QUANTIZER  
50Ω  
R > 40Ω  
C1 >100pF  
4.5V < VS < 11V  
+
+V  
S
4
5
1.7V  
C1  
Figure 17. AC Coupled Photodiode Application for Im proved Dynam ic Range  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
8-Lead Sm all O utline IC P ackage (SO -8)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.0196 (0.50)  
0.0099 (0.25)  
x 45°  
0.0098 (0.25)  
0.0040 (0.10)  
8°  
0°  
0.020 (0.51)  
0.013 (0.33)  
0.0500  
(1.27)  
BSC  
SEATING  
PLANE  
0.0500 (1.27)  
0.0160 (0.41)  
0.0098 (0.25)  
0.0075 (0.19)  
–8–  
REV. A  

相关型号:

AD8016

Low Power, High Output Current xDSL Line Driver
ADI

AD8016ARB

Low Power, High Output Current xDSL Line Driver
ADI

AD8016ARB-EVAL

Low Power, High Output Current xDSL Line Driver
ADI

AD8016ARB-REEL

Low Power, High Output Current xDSL Line Driver
ADI

AD8016ARBZ

Low Power, High Output
ADI

AD8016ARBZ-REEL

Low Power, High Output
ADI

AD8016ARE

Low Power, High Output Current xDSL Line Driver
ADI

AD8016ARE-EVAL

Low Power, High Output Current xDSL Line Driver
ADI

AD8016ARE-REEL

Low Power, High Output Current xDSL Line Driver
ADI

AD8016ARE-REEL7

Low Power, High Output Current xDSL Line Driver
ADI

AD8016AREZ

Low Power, High Output
ADI

AD8016AREZ-REEL

Low Power, High Output
ADI