AD802-155KR [ADI]

Clock Recovery and Data Retiming Phase-Locked Loop; 时钟恢复和数据重定时锁相环
AD802-155KR
型号: AD802-155KR
厂家: ADI    ADI
描述:

Clock Recovery and Data Retiming Phase-Locked Loop
时钟恢复和数据重定时锁相环

信号电路 锁相环或频率合成电路 光电二极管 时钟
文件: 总12页 (文件大小:255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Clock Recovery and Data Retiming  
Phase-Locked Loop  
a
AD800/AD802*  
FUNCTIO NAL BLO CK D IAGRAM  
FEATURES  
Standard Products  
C
D
44.736 Mbps—DS-3  
51.84 Mbps—STS-1  
155.52 Mbps—STS-3 or STM-1  
Accepts NRZ Data, No Pream ble Required  
Recovered Clock and Retim ed Data Outputs  
Phase-Locked Loop Type Clock Recovery—No Crystal  
Required  
Random J itter: 20؇ Peak-to-Peak  
Pattern J itter: Virtually Elim inated  
10KH ECL Com patible  
COMPENSATING  
ZERO  
LOOP  
DATA  
INPUT  
Ø
DET  
FILTER  
VCO  
RECOVERED  
CLOCK  
f
OUTPUT  
DET  
RETIMED  
DATA  
OUTPUT  
RETIMING  
DEVICE  
Single Supply Operation: –5.2 V or +5 V  
Wide Operating Tem perature Range: –40؇C to +85؇C  
AD800/AD802  
FRAC  
OUTPUT  
P RO D UCT D ESCRIP TIO N  
During the process of acquisition the frequency detector  
provides a Frequency Acquisition (FRAC) signal which  
indicates that the device has not yet locked onto the input data.  
T his signal is a series of pulses which occur at the points of cycle  
slip between the input data and the synthesized clock signal.  
Once the circuit has acquired frequency lock no pulses occur at  
the FRAC output.  
T he AD800 and AD802 employ a second order phase-locked  
loop architecture to perform clock recovery and data retiming  
on Non-Return to Zero, NRZ, data. T his architecture is  
capable of supporting data rates between 20 Mbps and 160  
Mbps. T he products described here have been defined to work  
with standard telecommunications bit rates. 45 Mbps DS-3 and  
52 Mbps ST S-1 are supported by the AD800-45 and  
AD800-52 respectively. 155 Mbps ST S-3 or ST M-1 are  
supported by the AD802-155.  
T he inclusion of a precisely trimmed VCO in the device  
eliminates the need for external components for setting center  
frequency, and the need for trimming of those components. T he  
VCO provides a clock output within ±20% of the device center  
frequency in the absence of input data.  
Unlike other PLL-based clock recovery circuits, these devices  
do not require a preamble or an external VCXO to lock onto  
input data. T he circuit acquires frequency and phase lock using  
two control loops. T he frequency acquisition control loop  
initially acquires the clock frequency of the input data. T he  
phase-lock loop then acquires the phase of the input data, and  
ensures that the phase of the output signals track changes in the  
phase of the input data. T he loop damping of the circuit is  
dependent on the value of a user selected capacitor; this defines  
jitter peaking performance and impacts acquisition time. T he  
devices exhibit 0.08 dB jitter peaking, and acquire lock on  
random or scrambled data within 4 × 105 bit periods when  
using a damping factor of 5.  
T he AD800 and AD802 exhibit virtually no pattern jitter, due  
to the performance of the patented phase detector. T otal loop  
jitter is 20° peak-to-peak. Jitter bandwidth is dictated by mask  
programmable fractional loop bandwidth. T he AD800, used for  
data rates < 90 Mbps, has been designed with a nominal loop  
bandwidth of 0.1% of the center frequency. T he AD802, used  
for data rates in excess of 90 Mbps, has a loop bandwidth of  
0.08% of center frequency.  
All of the devices operate with a single +5 V or –5.2 V supply.  
*P r otected by U.S. P atent No. 5,027,085.  
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
MIN to T , Loop Damping  
AD800/AD802–SPECIFICATIONS (FVact=orV= 5,tounVless, Vothe=rwGiNsDe,nTot=edT)  
EE  
MIN  
MAX CC  
A
MAX  
AD 800-45BQ  
AD 800-52BR  
AD 802-155KR/BR  
P aram eter1  
Condition  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Units  
NOMINAL CENT ER FREQUENCY  
OPERAT ING T EMPERAT URE K Grade  
44.736  
51.84  
155.52  
MHz  
0
–40  
70  
85  
°C  
°C  
RANGE (T MIN to T MAX  
T RACKING RANGE  
CAPT URE RANGE  
)
B Grade  
–40  
43  
85  
–40  
49  
85  
53  
53  
45.5  
45.5  
155  
155  
156  
156  
Mbps  
Mbps  
43  
49  
ST AT IC PHASE ERROR  
ρ = 1, T A = +25°C,  
VEE = –5.2 V  
ρ = 1  
2
3
10  
11.5  
2
3
10  
11.5  
14  
18  
30  
37  
Degrees  
Degrees  
RECOVERED CLOCK SKEW  
SET UP T IME  
tRCS (Figure 1)  
tSU (Figure 1)  
0.2  
0.6  
1
0.2  
0.6  
1
0.2  
0.8  
1
ns  
2.06  
2.37  
ns  
T RANSIT IONLESS DAT A RUN  
OUT PUT JIT T ER  
240  
240  
240  
Bit Periods  
ρ = 1  
2
2.5  
2.5  
2
2.5  
2.5  
3.5  
5.4  
5.4  
Degrees rms  
Degrees rms  
Degrees rms  
27–1 PRN Sequence  
223–1 PRN Sequence  
4.7  
4.7  
4.7  
4.7  
9.7  
9.7  
JIT T ER T OLERANCE  
f = 10 Hz  
f = 2.3 kHz  
f = 30 kHz  
f = 1 MHz  
f = 30 Hz  
f = 300 Hz  
f = 2 kHz  
f = 20 kHz  
f = 6.5 kHz  
f = 65 kHz  
2,500  
2,500  
3,000  
Unit Intervals  
Unit Intervals  
Unit Intervals  
Unit Intervals  
Unit Intervals  
Unit Intervals  
Unit Intervals  
Unit Intervals  
Unit Intervals  
Unit Intervals  
6.5  
0.47  
0.47  
830  
83  
7.4  
0.47  
2.0  
0.26  
7.6  
0.9  
JIT T ER T RANSFER  
Damping Factor  
Capacitor, CD  
ζ = 1, Nominal  
ζ = 5, Nominal  
ζ = 10, Nominal  
Peaking  
8.2  
0.22  
0.82  
6.8  
0.15  
0.68  
2.2  
0.047  
0.22  
nF  
µF  
µF  
ζ = 1, Nominal  
ζ = 5, Nominal  
ζ = 10, Nominal  
Bandwidth  
T A = +25°C, VEE = –5.2 V  
T A = +25°C, VEE = –5.2 V  
T A = +25°C, VEE = –5.2 V  
2
2
2
dB  
dB  
dB  
kHz  
0.08  
0.02  
45  
0.08  
0.02  
52  
0.08  
0.02  
130  
ACQUISIT ION T IME  
ρ = 1/2  
T A = +25°C  
ζ = 1  
ζ = 5  
ζ = 10  
1 × 104  
1 × 104  
1.5 × 104  
Bit Periods  
3 × 105 8 × 105  
8 × 105  
3 × 105 8 × 105  
8 × 105  
4 × 105 8 × 105 Bit Periods  
VEE = –5.2 V  
1.4 × 106  
Bit Periods  
POWER SUPPLY  
Voltage (VMIN to VMAX  
Current  
)
T A = +25°C  
T A = +25°C, VEE = –5.2 V  
–4.5  
–5.2  
125  
–5.5  
170  
180  
–4.5  
–5.2  
125  
–5.5  
170  
180  
–4.5  
–5.2  
140  
–5.5  
180  
205  
Volts  
mA  
mA  
INPUT VOLT AGE LEVELS  
Input Logic High, VIH  
Input Logic Low, VIH  
T A = +25°C  
T A = +25°C  
T A = +25°C  
–1.084  
–1.95  
–0.72  
–1.594 –1.95  
–1.084  
–0.72  
–1.594 –1.95  
–1.084  
–0.72  
–1.594 Volts  
Volts  
OUT PUT VOLT AGE LEVELS  
Output Logic High, VOH  
Output Logic Low, VOL  
–1.084  
–1.95  
–0.72  
–1.60  
–1.084  
–1.95  
–0.72  
–1.60  
–1.084  
–1.95  
–0.72  
–1.60  
Volts  
Volts  
INPUT CURRENT LEVELS  
Input Logic High, IIH  
Input Logic Low, IIL  
125  
80  
125  
80  
125  
80  
µA  
µA  
OUT PUT SLEW T IMES  
Rise T ime (tR)  
Fall T ime (tF)  
T A = +25°C  
20%–80%  
80%–20%  
0.75  
0.75  
1.5  
1.5  
0.75  
0.75  
1.5  
1.5  
0.75  
0.75  
1.5  
1.5  
ns  
ns  
SYMMET RY  
ρ = 1/2, T A = +25°C  
Recovered Clock Output  
VEE = –5.2 V  
45  
55  
45  
55  
45  
55  
%
NOT ES  
1Refer to Glossary for parameter definition.  
Specifications subject to change without notice.  
–2–  
REV. B  
AD800/AD802  
ABSO LUTE MAXIMUM RATINGS*  
TH ERMAL CH ARACTERISTICS  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –6 V  
θJC  
θJA  
Input Voltage (Pin 16 or Pin 17 to VCC  
Maximum Junction T emperature  
) . . . . VEE to +300 mV  
SOIC Package  
Cerdip Package  
22°C/W  
25°C/W  
75°C/W  
90°C/W  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Ceramic DIP Package . . . . . . . . . . . . . . . . . . . . . . +175°C  
Storage T emperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature Range (Soldering 60 sec) . . . . . . . +300°C  
ESD Rating  
Use of a heatsink may be required depending on operating  
environment.  
GLO SSARY  
AD800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1500 V  
Maxim um and Minim um Specifications  
AD802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 V  
*Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only; functional operation  
of the device at these or any other conditions above those indicated in the  
operational section of this specification is not implied. Exposure to an absolute  
maximum rating condition for an extended period may adversely affect device  
reliability.  
Maximum and minimum specifications result from statistical  
analyses of measurements on multiple devices and multiple test  
systems. T ypical specifications indicate mean measurements.  
Maximum and minimum specifications are calculated by adding  
or subtracting an appropriate guardband from the typical  
specification. Device-to-device performance variation and test  
system-to-test system variation contribute to each guardband.  
Nom inal Center Fr equency  
DATAOUT 50%  
(PIN 2)  
T his is the frequency that the VCO will operate at with no input  
signal present and the loop damping capacitor, CD, shorted.  
CLKOUT 50%  
(PIN 5)  
Tr acking Range  
T his is the range of input data rates over which the PLL will  
remain in lock.  
SETUP TIME  
tSU  
RECOVERED CLOCK  
SKEW, tRCS  
Captur e Range  
T his is the range of input data rates over which the PLL can  
acquire lock.  
Figure 1. Recovered Clock Skew and Setup  
(See Previous Page)  
Static P hase Er r or  
P IN D ESCRIP TIO NS  
T his is the steady-state phase difference, in degrees, between the  
recovered clock sampling edge and the optimum sampling  
instant, which is assumed to be halfway between the rising and  
falling edges of a data bit. Gate delays between the signals that  
define static phase error, and IC input and output signals  
prohibit direct measurement of static phase error.  
Num ber Mnem onic  
D escription  
1
DATAOUT Differential Retimed Data Output  
2
DAT AOUT Differential Retimed Data Output  
3
VCC2  
Digital Ground  
4
5
6
CLKOUT  
CLKOUT  
VEE  
Differential Recovered Clock Output  
Differential Recovered Clock Output  
Digital VEE  
Digital VEE  
Digital Ground  
D ata Tr ansition D ensity,   
T his is a measure of the number of data transitions, from “0” to  
“1” and from “1” to “0,” over many clock periods. ρ is the ratio  
(0 ≤ ρ ≤ 1) of data transitions to clock periods.  
7
VEE  
8
VCC1  
Jitter  
9
AVEE  
Analog VEE  
T his is the dynamic displacement of digital signal edges from  
their long term average positions, measured in degrees rms, or  
Unit Intervals (UI). Jitter on the input data can cause dynamic  
phase errors on the recovered clock sampling edge. Jitter on the  
recovered clock causes jitter on the retimed data.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
ASUBST  
CF2  
CF1  
AVCC  
VCC1  
Analog Substrate  
Loop Damping Capacitor Input  
Loop Damping Capacitor Input  
Analog Ground  
Digital Ground  
Digital VEE  
Differential Data Input  
Differential Data Input  
Digital Substrate  
Differential Frequency Acquisition  
Indicator Output  
VEE  
O utput Jitter  
DAT AIN  
DATAIN  
SUBST  
FRAC  
T his is the jitter on the retimed data, in degrees rms, due to a  
specific pattern or some psuedo-random input data sequence  
(PRN Sequence).  
Jitter Toler ance  
Jitter tolerance is a measure of the PLL’s ability to track a jittery  
input data signal. Jitter on the input data is best thought of as  
phase modulation, and is usually specified in unit intervals.  
20  
FRAC  
Differential Frequency Acquisition  
Indicator Output  
O RD ERING GUID E  
Fractional Loop  
D evice  
Center Frequency Bandwidth  
D escription  
O perating Tem perature  
P ackage O ption  
AD800-45BQ  
AD800-52BR  
AD802-155BR 155.52 MHz  
AD802-155KR 155.52 MHz  
44.736 MHz  
51.84 MHz  
0.1%  
0.1%  
0.08%  
0.08%  
20-Pin Cerdip  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
0°C to +70°C  
Q-20  
R-20  
R-20  
R-20  
20-Pin Plastic SOIC  
20-Pin Plastic SOIC  
20-Pin Plastic SOIC  
REV. B  
–3–  
AD800/AD802  
T he PLL must provide a clock signal which tracks this phase  
modulation in order to accurately retime jittered data. In order  
for the VCO output to have a phase modulation which tracks  
the input jitter, some modulation signal must be generated at  
the output of the phase detector (see Figure 21). T he  
modulation output from the phase detector can only be  
produced by a phase error between the data input and the clock  
input. Hence, the PLL can never perfectly track jittered data.  
However, the magnitude of the phase error depends on the gain  
around the loop. At low frequencies the integrator provides very  
high gain, and thus very large jitter can be tracked with small  
phase errors between input data and recovered clock. At  
frequencies closer to the loop bandwidth, the gain of the  
integrator is much smaller, and thus less input jitter can be  
tolerated. T he PLL data output will have a bit error rate less  
than 1 ϫ 10–10 when in lock and retiming input data that has the  
specified jitter applied to it.  
Sym m etr y  
Symmetry is calculated as (100 ϫ on time)/period, where on  
time equals the time that the clock signal is greater than the  
midpoint between its “0” level and its “1” level.  
Bit Er r or Rate vs. Signal-to-Noise Ratio  
T he AD800 and AD802 were designed to operate with standard  
ECL signal levels at the data input. Although not recom-  
mended, smaller input signals are tolerable. Figure 8, 14, and  
20 show the bit error rate performance versus input signal-to-  
noise ratio for input signal amplitudes of full 900 mV ECL, and  
decreased amplitudes of 80 mV and 20 mV. Wideband ampli-  
tude noise is summed with the data signals as shown in Figure  
2. T he full ECL and 80 mV signals give virtually indistinguish-  
able results. T he 20 mV signals also provide adequate perfor-  
mance when in lock, but signal acquisition may be impaired.  
POWER  
COMBINER  
Jitter Tr ansfer  
DATA IN  
T he PLL exhibits a low-pass filter response to jitter applied to  
its input data.  
0.47µF  
0.47µF  
50Ω  
50Ω  
DIFFERENTIAL  
SIGNAL  
SOURCE  
D.U.T.  
AD800/AD802  
Bandwidth  
T his describes the frequency at which the PLL attenuates  
sinusoidal input jitter by 3 dB.  
DATA IN  
POWER  
COMBINER  
75Ω  
180Ω  
1.0µF  
P eaking  
POWER  
SPLITTER  
T his describes the maximum jitter gain of the PLL in dB.  
–5.2V  
GND  
D am ping Factor ,  
describes how the PLL will track an input signal with a phase  
step. A greater value of corresponds to less overshoot in the  
ζ
100MHz – AD802-155  
33MHz – AD800-52  
FILTER  
ζ
PLL response to a phase step.  
order feedback systems.  
ζ is a standard constant in second  
NOISE  
SOURCE  
Acquisition Tim e  
T his is the transient time, measured in bit periods, required for  
the PLL to lock on input data from its free-running state.  
Figure 2. Bit Error Rate vs. Signal-to-Noise Ratio Test:  
Block Diagram  
USING TH E AD 800 AND TH E AD 802 SERIES  
Gr ound P lanes  
Tr ansm ission Lines  
Use of one ground plane for connections to both analog and  
digital grounds is recommended. Output signal sensitivity to  
power supply noise (PECL configuration, Figure 22) is less  
using one ground plane than when using separate analog and  
digital ground planes.  
Use of 50 transmission lines are recommended for DAT AIN,  
CLKOUT , DAT AOUT , and FRAC signals.  
Ter m inations  
T ermination resistors should be used for DAT AIN, CLKOUT ,  
DAT AOUT , and FRAC signals. Metal, thick film, 1% tolerance  
resistors are recommended. T ermination resistors for the  
DAT AIN signals should be placed as close as possible to the  
DAT AIN pins.  
P ower Supply Connections  
Use of a 10 µF tantalum capacitor between VEE and ground is  
recommended.  
Use of 0.1 µF ceramic capacitors between IC power supply or  
substrate pins and ground is recommended. Power supply  
decoupling should take place as close to the IC as possible.  
Refer to schematics, Figure 22 and Figure 26, for advised  
connections.  
Connections from VEE to lead resistors for DAT AIN, DAT A-  
OUT , FRAC, and CLKOUT signals should be individual, not  
daisy chained. T his will avoid crosstalk on these signals.  
Loop D am ping Capacitor , C D  
A ceramic capacitor may be used for the loop damping  
capacitor.  
Sensitivity of IC output signals (PECL configuration,  
Figure 22) to high frequency power supply noise (at 2 ϫ the  
nominal data rate) can be reduced through the connection of  
signals AVCC and VCC1, and the addition of a bypass network.  
T he type of bypass network to consider depends on the noise  
tolerance required. T he more complex bypass network schemes  
tolerate greater power supply noise levels. Refer to Figures 23  
and 24 for bypassing schemes and power supply sensitivity  
curves.  
Input Buffer  
Use of an input buffer, such as a 10H116 Line Receiver IC, is  
suggested for an application where the DAT AIN signals do not  
come directly from an ECL gate, or where noise immunity on  
the DAT AIN signals is an issue.  
–4–  
REV. B  
AD800/AD802  
Typical Characteristics–  
52  
50  
48  
46  
44  
42  
40  
38  
10  
9
8
7
6
5
4
3
2
1
0
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE – °C  
TEMPERATURE – °C  
Figure 3. AD800-45 Center Frequency vs. Tem perature  
Figure 4. AD800-45 J itter vs. Tem perature  
100  
52  
50  
48  
46  
44  
42  
40  
38  
AD800-45  
10  
DS-3 MASK  
1
0.1  
1
2
3
4
5
6
0
10  
10  
10  
10  
10  
10  
10  
–40  
–20  
0
20  
40  
60  
80  
100  
JITTER FREQUENCY – Hz  
TEMPERATURE – °C  
Figure 6. AD800-45 J itter Tolerance  
Figure 5. AD800-45 Capture and Tracking Range vs.  
Tem perature  
1E-1  
55  
C
D
= 0.68µF  
5E-2  
3E-2  
2E-2  
53  
51  
49  
47  
45  
43  
41  
39  
37  
35  
20  
80  
1E-2  
1
2
1
S
N
erfc  
2
2
1E-3  
80  
1E-4  
1E-5  
ECL  
20  
1E-7  
1E-9  
1E-11  
10  
12  
14  
16  
S/N – dB  
18  
20  
22  
24  
0
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
INPUT JITTER – UI p-p  
Figure 7. AD800-45 Acquisition Range vs. Input J itter  
Figure 8. AD800-45 Bit Error Rate vs. Input J itter  
REV. B  
–5–  
AD800/AD802  
10  
9
8
7
6
5
4
3
2
1
0
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE –  
°C  
TEMPERATURE – °C  
Figure 9. AD800-52 Center Frequency vs. Tem perature  
Figure 10. AD800-52 J itter vs. Tem perature  
100  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
AD800-52  
10  
OC-1 MASK  
1
0.1  
0
1
2
3
4
5
–40  
–20  
0
20  
40  
60  
80  
100  
10  
10  
10  
10  
10  
10  
TEMPERATURE –  
°
C
JITTER FREQUENCY – Hz  
Figure 11. AD800-52 Capture and Tracking Range vs.  
Tem perature  
Figure 12. AD800-52 J itter Tolerance  
60  
1E-1  
C
D
= 0.68µF  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
5E-2  
3E-2  
2E-2  
80  
20  
1E-2  
1
2
1
S
N
erfc  
2
2
1E-3  
1E-4  
80  
ECL  
1E-5  
1E-6  
20  
1E-8  
1E-10  
0
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
10  
12  
14  
16  
S/N – dB  
18  
20  
22  
24  
INPUT JITTER – UI p-p  
Figure 13. AD800-52 Acquisition Range vs. Input J itter  
Figure 14. AD800-52 Bit Error Rate vs. Input J itter  
–6–  
REV. B  
AD800/AD802  
180  
170  
160  
150  
140  
130  
120  
110  
10  
9
8
7
6
5
4
3
2
1
0
100  
–40  
–20  
0
20  
40  
60  
80  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE – °C  
TEMPERATURE – °C  
Figure 15. AD802-155 Center Frequency vs. Tem perature  
Figure 16. AD802-155 Output J itter vs. Tem perature  
200  
100  
190  
180  
AD802-155  
10  
170  
160  
150  
140  
130  
1
CCITT G.958 STM1 TYPE A MASK  
0.1  
2
3
4
5
6
7
8
–40  
–20  
0
20  
40  
60  
80  
100  
10  
10  
10  
10  
10  
10  
10  
TEMPERATURE –  
°
C
JITTER FREQUENCY – Hz  
Figure 17. AD802-155 Capture Range, Tracking Range vs.  
Tem perature  
Figure 18. AD802-155 J itter Tolerance  
100  
1E-1  
5E-2  
3E-2  
2E-2  
80mV  
20mV  
10  
AD802 – 155  
ECL  
1E-2  
1
2
1
S
N
erfc  
2
2
1
1E-3  
1E-4  
1E-5  
1E-6  
80mV  
&
ECL  
CCITT G.958 STM1 TYPE A MASK  
0.1  
20mV  
1E-8  
1E-10  
1E-12  
0
1
10  
100  
1000  
10  
12  
14  
16  
S/N – dB  
18  
20  
22  
24  
JITTER FREQUENCY – Hz  
Figure 19. AD802-155 Minim um Acquisition Range vs.  
J itter Frequency, TMIN to TMAX VMIN to VMAX  
Figure 20. AD802-155 Bit Error Rate vs. Input J itter  
REV. B  
–7–  
AD800/AD802  
TH EO RY O F O P ERATIO N  
T he damping ratio of the phase-locked loop is user program-  
mable with a single external capacitor. At 155 MHz a damping  
ratio of 10 is obtained with a 0.22 µF capacitor. More generally,  
T he AD800 and AD802 are phase-locked loop circuits for re-  
covery of clock from NRZ data. T he architecture uses a fre-  
quency detector to aid initial frequency acquisition, refer to  
Figure 21 for a block diagram. Note the frequency detector is al-  
ways in the circuit. When the PLL is locked, the frequency error  
is zero and the frequency detector has no further effect. Since  
the frequency detector is always in circuit, no control functions  
are needed to initiate acquisition or change mode after acquisi-  
tion. T he frequency detector also supplies a frequency acquisi-  
tion (FRAC) output to indicate when the loop is acquiring lock.  
During the frequency acquisition process the FRAC output is a  
series of pulses of width equal to the period of the VCO. T hese  
pulses occur on the cycle slips between the data frequency and  
the VCO frequency. With a maximum density (1010 . . .) data  
pattern, every cycle slip will produce a pulse at FRAC. How-  
ever, with random data, not every cycle slip produces a pulse.  
T he density of pulses at FRAC increases with the density of  
data transitions. T he probability that a cycle slip will produce a  
pulse increases as the frequency error approaches zero. After the  
frequency error has been reduced to zero, the FRAC output will  
have no further pulses. At this point the PLL begins the process  
of phase acquisition, with a settling time of roughly 2000 bit pe-  
riods. Valid retimed data can be guaranteed by waiting 2000 bit  
periods after the last FRAC pulse has occurred.  
1. 7 × f DATA × CD  
the damping ratio scales as  
. At 155 MHz a  
damping ratio of 1 is obtained with a 2.2 nF capacitor. A lower  
damping ratio allows a faster frequency acquisition; generally  
the acquisition time scales directly with the capacitor value.  
However, at damping ratios approaching one, the acquisition  
time no longer scales directly with the capacitor value. T he  
acquisition time has two components: frequency acquisition and  
phase acquisition. T he frequency acquisition always scales with  
capacitance, but the phase acquisition is set by the loop  
bandwidth of the PLL and is independent of the damping ratio.  
T hus, the 0.08% fractional loop bandwidth sets a minimum  
acquisition time of 15,000 bit periods. Note the acquisition time  
for a damping factor of 1 is specified as 15,000 bit periods. T his  
comprises 13,000 bit periods for frequency acquisition and  
2,000 periods for phase acquisition. Compare this to the  
400,000 bit periods acquisition time specified for a damping  
ratio of 5; this consists entirely of frequency acquisition, and the  
2,000 bit periods of phase acquisition is negligible.  
While lower damping ratio affords faster acquisition, it also  
allows more peaking in the jitter transfer response (jitter  
peaking). For example, with a damping ratio of 10 the jitter  
peaking is 0.02 dB, but with a damping factor of 1, the peaking  
is 2 dB.  
Jitter caused by variations of density of data transitions (pattern  
jitter) is virtually eliminated by use of a new phase detector  
(patented). Briefly, the measurement of zero phase error does  
not cause the VCO phase to increase to above the average run  
rate set by the data frequency. T he jitter created by a 27–1  
pseudo-random code is 1/2 degree, and this is small compared  
to random jitter.  
DATA  
INPUT  
1
S
Ø
TS + 1  
DET  
VCO  
f
RECOVERED  
DET  
T he jitter bandwidth for the AD802-155 is 0.08% of the center  
frequency. T his figure is chosen so that sinusoidal input jitter at  
130 kHz will be attenuated by 3 dB. T he jitter bandwidths of  
the AD800-45 and AD800-52 are 0.1% of the respective center  
frequencies. T he jitter bandwidth of the AD800 or the AD802 is  
mask programmable from 0.01% to 1% of the center frequency.  
A device with a very low loop bandwidth (0.01% of the center  
frequency) could effectively filter (clean up) a jittery timing  
reference. Consult the factory if your application requires a  
special loop bandwidth.  
CLOCK OUTPUT  
RETIMED  
DATA OUTPUT  
RETIMING  
DEVICE  
FRAC OUTPUT  
Figure 21. AD800 and AD802 Block Diagram  
–8–  
REV. B  
AD800/AD802  
5.0V  
C5  
0.1  
5.0V  
C13 0.1  
R13  
154  
R14  
154  
5.0V  
R1  
100  
R2  
100  
R10  
154  
R9  
154  
R18  
100  
R17  
100  
C17 0.1  
C14 0.1  
C3 0.1  
R15 100  
R16 100  
J1  
J2  
R5 100  
R6 100  
1
2
3
4
FRAC  
FRAC  
20  
19  
18  
17  
DATAOUT  
DATAOUT  
DATAOUT  
FRAC  
FRAC  
DATAOUT  
VCC2  
5.0V  
C15 0.1  
C4 0.1  
1
16  
15  
14  
13  
12  
11  
10  
9
C9  
0.1  
SUBST  
R12  
154  
2
3
C6 0.1  
R19  
130  
R20  
130  
J3  
R11  
154  
CLKOUT  
CLKOUT  
DATAIN  
CLKOUT  
CLKOUT  
R7 100  
5
6
16  
15  
14  
13  
12  
DATAIN  
VEE  
J4  
4
5
6
7
8
Z2  
10H116  
R23  
VEE  
R8 100  
C7 0.1  
R21  
80.6  
R22  
80.6  
130  
R24  
VCC1  
R4  
100  
R3  
7
8
VEE  
130  
C19  
100  
C12  
0.1  
5.0V  
AVCC  
VCC1  
AVEE  
C8  
0.1  
5.0V  
0.1  
C10  
0.1  
J5  
5.0V  
C11  
9
DATAIN  
DATAIN  
CF1  
CF2  
C16  
0.1  
J6  
CD  
10  
11  
ASUBST  
Z1  
C20  
0.1  
AD800/802  
IN  
OUT  
R26  
80.6  
R25  
80.6  
BYPASS  
NETWORK  
5.0V  
C2  
10µF  
C21 0.1  
5.0V  
Figure 22. Evaluation Board Schem atic, Positive Supply  
Table I. Evaluation Board, P ositive Supply: Com ponents List  
D escription  
Reference  
D esignator  
Quantity  
R1–8, R15–18  
R9–14  
Resistor, 100 , 1%  
Resistor, 154 , 1%  
12  
6
R19, 20, 23, 24  
Resistor, 130 , 1%  
4
R21, 22, 25, 26  
Resistor, 80.6 , 1%  
4
CD  
C2  
C3–C21  
Z1  
Capacitor, Loop Damping (See Specifications Page)  
Capacitor, 10 µF, T antalum  
Capacitor, 0.1 µF, Ceramic Chip  
AD800/AD802  
1
1
17  
1
Z2  
10H116, ECL Line Receiver  
1
3.0  
(A)  
IN  
TO  
DEVICE  
0.1µF  
(A)  
TO DEVICE  
2.5  
2.0  
1.5  
BEADS WITH ONE LOOP  
(B)  
IN  
(B)  
BYPASS  
NETWORK  
(A, B, C,  
OR D)  
TO  
DEVICE  
0.1µF  
(C)  
BEAD WITH  
BEAD WITH  
IN  
ONE LOOP TWO LOOPS  
(C)  
IN  
TO  
DEVICE  
C2  
10µF  
0.1µF  
1.0  
0.5  
(D)  
5.0V  
BEAD WITH  
TWO LOOPS TWO LOOPS  
BEAD WITH  
(D)  
IN  
TO  
DEVICE  
0.1µF  
BYPASS NETWORK  
COMPONENTS:  
CAPACITOR ..........CERAMIC CHIP  
FERRITE BEAD......1/4 IN. STACKPOLE CARBO 57-1392  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
NOISE – V p-p @ 311MHz  
Figure 23. Bypass Network Schem es  
Figure 24. AD802-155 Output J itter vs. Supply Noise  
(PECL Configuration)  
REV. B  
–9–  
AD800/AD802  
NOISE IN SENSE  
AD802-155  
50Ω  
0.47µF  
BYPASS  
NETWORK  
(A, B, C,  
OR D)  
0.47µF  
PINS  
8, 13,  
14  
10 TURNS  
IN  
TO  
DEVICE  
5V  
PINS  
6, 7, 9  
10, 15,  
18  
10µF  
MICRO  
METALS  
T50-10  
PIN  
3
Figure 25. Power Supply Noise Sensitivity Test Circuit, PECL Configuration  
–5.2V  
–5.2V  
C3  
0.1  
C12  
0.1  
R2  
100  
R1  
100  
R10  
154  
R9  
154  
R21  
274  
R22  
274  
J1  
J2  
DATAOUT  
DATAOUT  
R5 100  
FRAC  
DATAOUT  
DATAOUT  
FRAC 20  
1
2
3
4
5
6
R6 100  
FRAC  
19  
18  
17  
FRAC  
SUBST  
DATAIN  
–5.2V  
–5.2V  
—5.2V  
C8 0.1  
C9 0.1  
C4  
0.1  
1
16  
15  
14  
13  
12  
11  
10  
9
V
CC2  
R12  
154  
R15  
130  
C11  
0.1  
R16  
130  
2
3
R11  
154  
CLKOUT  
CLKOUT  
J3  
CLKOUT  
CLKOUT  
R7 100  
DATAIN 16  
J4  
Z2  
10H116  
4
5
6
7
8
V
V
15  
14  
–5.2V  
EE  
EE  
R8 100  
R20  
130  
R19  
130  
C7  
0.1  
R4  
100  
R3  
100  
V
R14  
80.6  
V
V
R13  
80.6  
7
8
CC1  
EE  
C5  
0.1  
AV  
13  
12  
CC1  
CC  
J5  
J6  
9
CF  
DATAIN  
DATAIN  
AV  
–5.2V  
1
EE  
C
D
–5.2V  
10  
CF  
11  
ASUBST  
2
C2  
10  
Z1  
AD800/802  
C6  
0.1  
–5.2V  
R18  
80.6  
R17  
80.6  
C10  
0.1  
Figure 26. Evaluation Board Schem atic, Negative Supply  
Table II. Evaluation Board, Negative Supply: Com ponents List  
Reference  
D esignator  
D escription  
Quantity  
R1–8  
R9–12  
Resistor, 100 , 1%  
Resistor, 154 , 1%  
8
4
R13, 14, 17, 18  
Resistor, 80.6 , 1%  
4
R15, 16, 19, 20  
Resistor, 130 , 1%  
4
R21, 22  
CD  
C2  
C3–C12  
Z1  
Resistor, 274 , 1%  
2
1
1
10  
1
Capacitor, Loop Damping (See Specifications Page)  
Capacitor, 10 µF, T antalum  
Capacitor, 0.1 µF, Ceramic Chip  
AD800/AD802  
Z2  
10H116, ECL Line Receiver  
1
–10–  
REV. B  
AD800/AD802  
Figure 27. Negative Supply Configuration: Com ponent  
Side (Top Layer)  
Figure 29. Positive Supply Configuration: Com ponent  
Side (Top Layer)  
Figure 30. Positive Supply Configuration: Solder Side  
Figure 28. Negative Supply Configuration: Solder Side  
REV. B  
–11–  
AD800/AD802  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
20-P in Sm all O utline IC P ackage (R-20)  
0.512 (13.00)  
0.496 (12.60)  
20  
11  
0.300 (7.60)  
0.292 (7.40)  
0.419 (10.65)  
0.394 (10.00)  
1
10  
0.019 (0.48)  
0.014 (0.36)  
0.50 (1.27)  
BSC  
0.104 (2.64)  
0.093 (2.36)  
0.011 (0.28)  
0.004 (0.10)  
0.015 (0.38)  
0.007 (0.18)  
0.050 (1.27)  
0.016 (0.40)  
20-P in Cer dip P ackage (Q -20)  
0.005 (0.13) MIN  
0.098 (2.49) MAX  
20  
11  
0.310 (7.87)  
PIN 1  
0.220 (5.59)  
10  
1
0.320 (8.13)  
0.290 (7.37)  
1.060 (26.92) MAX  
0.060 (1.52)  
0.200  
(5.08)  
MAX  
0.015 (0.38)  
0.150  
(3.81)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
0.200 (5.08)  
0.125 (3.18)  
15  
°
0
°
0.100  
(2.54)  
BSC  
0.023 (0.58)  
0.014 (0.36)  
0.070 (1.78)  
0.030 (0.76)  
SEATING  
PLANE  
–12–  
REV. B  

相关型号:

AD802-155KR-REEL

暂无描述
ADI

AD8021

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021AR

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021AR-REEL

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021AR-REEL7

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021ARM

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021ARM-REEL

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021ARM-REEL7

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021ARMZ

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021ARMZ-REEL

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021ARMZ-REEL7

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI

AD8021ARZ

Low Noise, High Speed Amplifier for 16-Bit Systems
ADI