AD8155ACPZ [ADI]

6.5 Gbps Dual Buffer Mux/Demux; 6.5 Gbps的双缓冲复用器/解复用器
AD8155ACPZ
型号: AD8155ACPZ
厂家: ADI    ADI
描述:

6.5 Gbps Dual Buffer Mux/Demux
6.5 Gbps的双缓冲复用器/解复用器

解复用器 ATM集成电路 SONET集成电路 SDH集成电路 电信集成电路 电信电路 异步传输模式
文件: 总36页 (文件大小:1037K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
6.5 Gbps  
Dual Buffer Mux/Demux  
AD8155  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Dual 2:1 mux/1:2 demux  
RECEIVE  
EQUALIZATION  
TRANSMIT  
PRE-  
EMPHASIS  
Optimized for dc to 6.5 Gbps NRZ data  
Per-lane P/N pair inversion for routing ease  
Programmable input equalization  
Compensates up to 40 inches of FR4  
Loss-of-signal detection  
Programmable output preemphasis up to 12 dB  
Programmable output levels with squelch and disable  
Accepts ac-coupled or dc-coupled differential CML inputs  
50 Ω on-chip termination  
EQ  
EQ  
Ix_A[1:0]  
Ix_B[1:0]  
2:1  
1:2  
Ox_C[1:0]  
Ix_C[1:0]  
Ox_A[1:0]  
Ox_B[1:0]  
EQ  
1:2 demux supports unicast or bicast operation  
Port-level loopback  
Port or single lane switching  
DUAL  
2:1  
MULTIPLEXER/  
1:2  
TRANSMIT  
PRE-  
EMPHASIS  
RECEIVE  
EQUALIZATION  
1.8 V to 3.3 V flexible core supply  
DEMULTIPLEXER  
User-settable I/O supply from VCC to 1.2 V  
Low power, typically 2.0 W in basic configuration  
64-lead LFCSP  
LB_A  
LB_B  
LB_C  
PE_A  
2
SCL  
SDA  
I2C_A[2:0]  
I C  
CONTROL  
LOGIC  
−40°C to +85°C operating temperature range  
PE_B  
PE_C  
EQ_A  
EQ_B  
EQ_C  
APPLICATIONS  
CONTROL  
LOGIC  
Low cost redundancy switch  
SEL[1:0]  
BICAST  
SEL4G  
RESET  
LOS_INT  
SONET OC48/SDH16 and lower data rates  
RXAUI, 4× Fibre Channel, Infiniband, and GbE over  
backplane  
OIF CEI 6.25 Gbps over backplane  
Serial data-level shift  
AD8155  
Figure 1.  
2-/4-/6-lane equalizers or redrivers  
The main application of the AD8155 is to support redundancy  
on both the backplane and the line interface sides of a serial  
link. The demultiplexing path implements unicast and bicast  
capability, allowing the part to support either 1 + 1 or 1:1  
redundancy.  
GENERAL DESCRIPTION  
The AD8155 is an asynchronous, protocol-agnostic, dual-lane  
2:1 switch with a total of six differential CML inputs and  
six differential CML outputs. The signal path supports NRZ  
signaling with data rates up to 6.5 Gbps per lane. Each lane  
offers programmable receive equalization, programmable  
output preemphasis, programmable output levels, and loss-of-  
signal detection.  
The AD8155 is also suited for testing high speed serial links  
because of its ability to duplicate incoming data. In a port-  
monitoring application, the AD8155 can maintain link  
connectivity with a pass-through connection from Port C to  
Port A while sending a duplicate copy of the data to test  
equipment on Port B.  
The nonblocking switch core of the AD8155 implements a  
2:1 multiplexer and 1:2 demultiplexer per lane and supports  
independent lane switching through the two select pins,  
SEL[1:0]. Each port is a two-lane link. Every lane implements  
an asynchronous path supporting dc to 6.5 Gbps NRZ data,  
fully independent of other lanes. The AD8155 has low latency  
and very low lane-to-lane skew.  
The rich feature set of the AD8155 can be controlled either  
through external toggle pins or by setting on-chip control  
registers through the I2C® interface.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
AD8155  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
AD8155 Power Consumption .................................................. 22  
I2C Control Interface...................................................................... 24  
Serial Interface General Functionality..................................... 24  
I2C Interface Data Transfers: Data Write ................................ 24  
I2C Interface Data Transfers: Data Read ................................. 25  
Applications Information.............................................................. 26  
Output Compliance ................................................................... 27  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
I2C Timing Specifications............................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 15  
The Switch (Mux/Demux/Unicast/Bicast/Loopback)........... 16  
Receivers...................................................................................... 18  
Loss of Signal (LOS)................................................................... 20  
Transmitters ................................................................................ 21  
Signal Levels and Common-Mode Shift for AC-Coupled and  
DC-Coupled Outputs ................................................................ 28  
Supply Sequencing ..................................................................... 30  
Single Supply vs. Multiple Supply Operation ......................... 30  
Initialization Sequence for Low Power and LOS_INT  
Operation .................................................................................... 30  
Printed Circuit Board (PCB) Layout Guidelines ................... 31  
Register Map ................................................................................... 33  
Outline Dimensions....................................................................... 35  
Ordering Guide .......................................................................... 35  
REVISION HISTORY  
7/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 36  
 
AD8155  
SPECIFICATIONS  
VCC = VTTI = VTTO = 1.8 V, DVCC = 3.3 V, VEE = 0 V, RL = 50 Ω, basic configuration1, data rate = 6.5 Gbps, data pattern = PRBS7, ac-  
coupled inputs and outputs, differential input swing = 800 mV p-p, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Data Rate/Channel (NRZ)  
DC  
6.5  
Gbps  
Deterministic Jitter (No  
Channel)  
Data rate = 6.5 Gbps, EQ setting = 0  
22  
ps p-p  
Random Jitter (No Channel)  
RMS, data rate = 6.5 Gbps  
1
ps  
Residual Deterministic Jitter  
with Receive Equalization  
Data rate 6.5 Gbps, 20 inch FR4  
Data rate 6.5 Gbps, 40 inch FR4  
Data rate 6.5 Gbps, 10 inch FR4  
Data rate 6.5 Gbps, 30 inch FR4  
50% input to 50% output (maximum EQ)  
30  
40  
35  
42  
700  
90  
ps p-p  
ps p-p  
ps p-p  
ps p-p  
ps  
Residual Deterministic Jitter  
with Transmit Preemphasis  
Propagation Delay  
Lane-to-Lane Skew  
Signal path and switch architecture is balanced  
and symmetric (maximum EQ)  
ps  
Switching Time  
Output Rise/Fall Time  
INPUT CHARACTERISTICS  
Differential Input Voltage  
Swing  
50% logic switching to 50% output data  
20% to 80% (PE = lowest setting)  
150  
62  
ns  
ps  
2
VICM = VCC − 0.6 V, VCC = VMIN to VMAX, TA = TMIN to  
200  
590  
2000  
mV p-p  
diff  
TMAX  
,
LOS control register = 0x05  
Input Voltage Range  
Single-ended absolute voltage level, VL minimum  
Single-ended absolute voltage level, VH maximum  
VEE + 0.6  
VCC + 0.3  
V
V
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Differential, PE = 0, default output level, @ dc  
TX_HEADROOM = 0, VL minimum  
725  
820  
mV p-p  
diff  
V
Output Voltage Range, Single-  
Ended Absolute Voltage Level  
VCC − 1.1  
TX_HEADROOM = 0, VH maximum  
TX_HEADROOM = 1, VL minimum  
TX_HEADROOM = 1, VH maximum  
Port A/B/C, PE_A/B/C = minimum  
Port A/B/C, PE_A/B/C = 6 dB, VOD = 800 mV p-p  
VCC + 0.6  
VCC − 1.3  
VCC + 0.6  
16  
V
V
V
mA  
mA  
Output Current  
32  
TERMINATION CHARACTERISTICS  
Resistance  
Differential, VCC = VMIN to VMAX, TA = TMIN to TMAX  
90  
100  
110  
Ω
LOS CHARACTERISTICS  
DC Assert Level  
50  
mV p-p  
diff  
DC Deassert Level  
300  
21  
mV p-p  
diff  
ns  
LOS to Output Squelch  
LOS to Output Enable  
LOS control = 0, VID = 0 to 50% OP/ON settling,  
VCC = 1.8 V  
LOS control = 0, data present to first valid  
transition, VCC = 1.8 V  
67  
ns  
POWER SUPPLY  
Operating Range  
VCC  
VEE = 0 V, TX_HEADROOM = 0  
VEE = 0 V, TX_HEADROOM = 1  
DVCC ≥ VCC, VEE = 0 V  
1.6  
2.2  
1.6  
1.2  
1.2  
1.8 to 3.3  
3.3  
1.8 to 3.3  
3.6  
3.6  
3.6  
VCC + 0.3  
VCC + 0.3  
V
V
V
V
V
DVCC  
VTTI  
VTTO  
Rev. 0 | Page 3 of 36  
 
 
AD8155  
Parameter  
Supply Current  
ICC  
Conditions  
Min  
Typ  
Max  
Unit  
VCC = 1.8 V  
LB_x = 0, PE = 0 dB on all ports, low power mode3  
LB_x = 1, PE = 6 dB on all ports, low power mode3  
LB_x = 0, PE = 0 dB on all ports, default  
233  
406  
350  
690  
254  
435  
380  
735  
270  
480  
410  
800  
300  
500  
450  
850  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
LB_x = 1, PE = 6 dB on all ports, default  
VCC = 3.3 V  
LB_x = 0, PE = 0 dB on all ports, low power mode3  
LB_x = 1, PE = 6 dB on all ports, low power mode3  
LB_x = 0, PE = 0 dB on all ports, default  
LB_x = 1, PE = 6 dB on all ports, default  
ITTO  
VTTO = 1.8 V  
LB_x = 0, PE = 0 dB on all ports, low power mode3  
LB_x = 1, PE = 6 dB on all ports, low power mode3  
LB_x = 0, PE = 0 dB on all ports, default  
66  
186  
66  
183  
69  
195  
69  
193  
10  
2
82  
226  
82  
225  
85  
230  
84  
230  
20  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
LB_x = 1, PE = 6 dB on all ports, default  
VTTO = 3.3 V  
LB_x = 0, PE = 0 dB on all ports, low power mode3  
LB_x = 1, PE = 6 dB on all ports, low power mode3  
LB_x = 0, PE = 0 dB on all ports, default  
LB_x = 1, PE = 6 dB on all ports, default  
ITTI  
IDVCC  
THERMAL CHARACTERISTICS  
Operating Temperature Range  
θJA  
−40  
+85  
125  
°C  
°C/W  
Still air; JEDEC 4-layer test board, exposed pad  
soldered  
Still air; thermal resistance through exposed pad  
21.2  
1.1  
θJC  
°C/W  
°C  
Maximum Junction Temperature  
LOGIC CHARACTERISTICS4  
Input High (VIH)  
Input Low (VIL)  
Input High (VIH)  
Input Low (VIL)  
Output High (VOH)  
Output Low (VOL)  
I2C, SDA, SCL, control pins  
DVCC = 3.3 V  
DVCC = 3.3 V  
DVCC = 1.8 V  
DVCC = 1.8 V  
0.7 × DVCC  
VEE  
DVCC  
0.3 × DVCC  
DVCC  
V
V
V
V
V
V
0.8 × DVCC  
0.2 × DVCC  
DVCC  
VEE  
VEE  
2 kΩ pull-up resistor to DVCC  
IOL = +3 mA  
0.4  
1 Bicast is off, loopback is off on all ports, preemphasis is set to minimum on all ports, and equalization is set to minimum on all ports.  
2 VICM is the input common-mode voltage.  
3 Low power mode is obtained by following the steps identified in the Initialization Sequence for Low Power and LOS_INT Operation section.  
4 EQ control pins (EQ_A, EQ_B, EQ_C) require 5 kΩ in series when DVCC > VCC  
.
Rev. 0 | Page 4 of 36  
 
 
AD8155  
I2C TIMING SPECIFICATIONS  
SDA  
tF  
tR  
tBUF  
tR  
tSU;DAT  
tHD;STA  
tF  
tLOW  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tHIGH  
S
Sr  
P
S
NOTES  
1. S = START CONDITION.  
2. Sr = REPEAT START.  
3. P = STOP.  
Figure 2. I2C Timing Diagram  
Table 2. I2C Timing Parameters  
Parameter  
Symbol  
fSCL  
tHD;STA  
tSU;STA  
tLOW  
tHIGH  
tHD;DAT  
tSU;DAT  
tR  
Min  
0
Max  
Unit  
kHz  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
μs  
μs  
SCL Clock Frequency  
Hold Time for a Start Condition  
Setup Time for a Repeated Start Condition  
Low Period of the SCL Clock  
High Period of the SCL Clock  
Data Hold Time  
400+  
0.6  
0.6  
1.3  
0.6  
0
10  
1
1
Data Setup Time  
Rise Time for Both SDA and SCL  
Fall Time for Both SDA and SCL  
Setup Time for Stop Condition  
Bus Free Time Between a Stop and a Start Condition  
Bus Free Time After a Reset  
300  
300  
tF  
tSU;STO  
tBUF  
0.6  
1
1
Reset Pulse Width  
Capacitance for Each I/O Pin  
10  
5
ns  
pF  
Ci  
7
Rev. 0 | Page 5 of 36  
 
AD8155  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VCC to VEE  
3.7 V  
DVCC to VEE  
3.7 V  
VTTI  
Lower of (VCC + 0.6 V) or 3.6 V  
VTTO  
Lower of (VCC + 0.6 V) or 3.6 V  
VCC to DVCC  
0.6 V  
Internal Power Dissipation  
Differential Input Voltage  
Logic Input Voltage  
Storage Temperature Range  
Junction Temperature  
4.85 W  
2.0 V  
ESD CAUTION  
VEE − 0.3 V < VIN < VCC + 0.6 V  
−65°C to +125°C  
125°C  
Rev. 0 | Page 6 of 36  
 
 
AD8155  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
SEL4G  
1
2
3
4
5
6
7
8
9
48 LB_C  
V
46 OP_C0  
45 ON_C0  
V
47  
EE  
EE  
V
TTO  
ON_A1  
OP_A1  
V
44  
CC  
V
43 OP_C1  
42 ON_C1  
CC  
ON_A0  
OP_A0  
AD8155  
TOP VIEW  
(Not to Scale)  
V
V
41  
40  
TTO  
CC  
V
TTI  
IN_A1 10  
IP_A1 11  
39 IP_B0  
38 IN_B0  
V
V
12  
37  
CC  
CC  
IN_A0 13  
IP_A0 14  
36 IP_B1  
35 IN_B1  
V
V
15  
16  
34  
33  
EE  
TTI  
EE  
V
DV  
CC  
NC = NO CONNECT  
NOTES  
1. NC = NO CONNECT.  
2. THE EXPOSED PAD ON THE BOTTOM OF THE PACKAGE MUST BE  
ELECTRICALLY CONNECTED TO V  
.
EE  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
SEL4G  
VEE  
Type  
Description  
1
Control  
Power  
Set Transmitter for Low Speed PE, Active High.  
2, 15, 29, 33, 47, ePAD  
Negative Supply. The exposed pad on the bottom of the  
package must be electrically connected to VEE.  
3, 23, 41  
VTTO  
Power  
Output  
Output  
Power  
Output  
Output  
Power  
Input  
Port A, Port B, and Port C Output Termination Supply.  
High Speed Output Complement.  
High Speed Output.  
4
ON_A1  
OP_A1  
VCC  
5
6, 12, 26, 37, 40, 44, 55, 59  
Positive Supply.  
7
ON_A0  
OP_A0  
VTTI  
High Speed Output Complement.  
High Speed Output.  
8
9, 34, 56  
10  
11  
13  
14  
16  
17  
18  
19  
20  
21  
22  
24  
25  
27  
28  
Port A, Port B, and Port C Input Termination Supply.  
High Speed Input Complement.  
High Speed Input.  
IN_A1  
IP_A1  
IN_A0  
IP_A0  
DVCC  
Input  
Input  
High Speed Input Complement.  
High Speed Input.  
Input  
Power  
Control  
Control  
Control  
Control  
Control  
Control  
Output  
Output  
Output  
Output  
Digital Power Supply.  
I2C Clock Input.  
I2C Data Input/Output.  
I2C Address Input (LSB).  
I2C Address Input.  
I2C Address Input (MSB).  
SCL  
SDA  
I2C_A0  
I2C_A1  
I2C_A2  
RESET  
ON_B1  
OP_B1  
ON_B0  
OP_B0  
Device Reset, Active Low.  
High Speed Output Complement.  
High Speed Output.  
High Speed Output Complement.  
High Speed Output.  
Rev. 0 | Page 7 of 36  
 
AD8155  
Pin No.  
30  
Mnemonic  
EQ_A  
Type  
Description  
Control  
Control  
Control  
Input  
Port A Equalizer Control Input.  
Port B Equalizer Control Input.  
Port C Equalizer Control Input.  
High Speed Input Complement.  
High Speed Input.  
31  
EQ_B  
32  
EQ_C  
35  
IN_B1  
IP_B1  
36  
Input  
38  
IN_B0  
IP_B0  
Input  
High Speed Input Complement.  
High Speed Input.  
39  
Input  
42  
ON_C1  
OP_C1  
ON_C0  
OP_C0  
LB_C  
Output  
Output  
Output  
Output  
Control  
Control  
Control  
Interrupt  
High Speed Output Complement.  
High Speed Output.  
43  
45  
High Speed Output Complement.  
High Speed Output.  
46  
48  
Port A Loopback Control Input, Active High.  
Port B Loopback Control Input, Active High.  
Port C Loopback Control Input, Active High.  
49  
LB_B  
50  
LB_A  
51  
LOS_INT  
Loss of Signal Interrupt, Active High. Initialization sequence  
required; see the Applications Information section.  
52  
53  
54  
57  
58  
60  
61  
62  
63  
64  
PE_C  
PE_B  
Control  
Control  
Control  
Input  
Port A Preemphasis Control Input, Active High.  
Port B Preemphasis Control Input, Active High.  
Port C Preemphasis Control Input, Active High.  
High Speed Input Complement.  
PE_A  
IN_C1  
IP_C1  
IN_C0  
IP_C0  
SEL1  
Input  
High Speed Input.  
Input  
High Speed Input Complement.  
Input  
High Speed Input.  
Control  
Control  
Control  
Lane 1 A/B Switch Control Input.  
SEL0  
Lane 0 A/B Switch Control Input.  
BICAST  
Enable Bicast for Port A and Port B Outputs, Active High.  
Rev. 0 | Page 8 of 36  
AD8155  
TYPICAL PERFORMANCE CHARACTERISTICS  
50CABLES  
50CABLES  
2
2
2
2
INPUT  
PIN  
OUTPUT  
PIN  
DATA OUT  
50Ω  
HIGH SPEED  
SAMPLING  
AD8155  
AC-COUPLED  
EVALUATION  
BOARD  
PATTERN  
GENERATOR  
TP1  
TP2  
OSCILLOSCOPE  
Figure 4. Standard Test Circuit (No Channel)  
25ps/DIV  
25ps/DIV  
Figure 5. 6.5 Gbps Input Eye (TP1 from Figure 4)  
Figure 6. 6.5 Gbps Output Eye, No Channel (TP2 from Figure 4)  
Rev. 0 | Page 9 of 36  
 
 
AD8155  
50CABLES  
50CABLES  
50CABLES  
2
2
2
2
2
2
INPUT OUTPUT  
PIN PIN  
DATA OUT  
FR4 TEST BACKPLANE  
50Ω  
HIGH  
SPEED  
SAMPLING  
OSCILLOSCOPE  
DIFFERENTIAL  
STRIPLINE TRACES  
8mils WIDE, 8mils SPACE,  
8mils DIELECTRIC HEIGHT  
TRACE LENGTHS = 20 INCHES,  
40 INCHES  
AD8155  
AC-COUPLED  
EVALUATION  
BOARD  
PATTERN  
GENERATOR  
TP1  
TP2  
TP3  
25ps/DIV  
REFERENCE EYE DIAGRAM AT TP1  
Figure 7. Input Equalization Test Circuit  
25ps/DIV  
25ps/DIV  
Figure 8. 6.5 Gbps Input Eye, 20 Inch FR4 Input Channel (TP2 from Figure 7)  
Figure 10. 6.5 Gbps Output Eye, 20 Inch FR4 Input Channel (TP3 from Figure 7)  
25ps/DIV  
25ps/DIV  
Figure 9. 6.5 Gbps Input Eye, 40 Inch FR4 Input Channel (TP2 from Figure 7)  
Figure 11. 6.5 Gbps Output Eye, 40 Inch FR4 Input Channel (TP3 from Figure 7)  
Rev. 0 | Page 10 of 36  
 
AD8155  
50CABLES  
50CABLES  
50CABLES  
2
2
2
2
2
2
INPUT OUTPUT  
PIN PIN  
DATA OUT  
FR4 TEST BACKPLANE  
50Ω  
HIGH  
SPEED  
SAMPLING  
OSCILLOSCOPE  
DIFFERENTIAL  
STRIPLINE TRACES  
8mils WIDE, 8mils SPACE,  
8mils DIELECTRIC HEIGHT  
TRACE LENGTHS = 20 INCHES,  
30 INCHES  
AD8155  
AC-COUPLED  
EVALUATION  
BOARD  
PATTERN  
GENERATOR  
TP1  
TP2  
TP3  
25ps/DIV  
REFERENCE EYE DIAGRAM AT TP1  
Figure 12. Output Preemphasis Test Circuit  
25ps/DIV  
25ps/DIV  
Figure 13. 6.5 Gbps Output Eye, 20 Inch FR4 Input Channel, PE = 0  
(TP3 from Figure 12)  
Figure 15. 6.5 Gbps Output Eye, 20 Inch FR4 Input Channel, PE = Best Setting,  
Default Output Level (TP3 from Figure 12)  
25ps/DIV  
25ps/DIV  
Figure 14. 6.5 Gbps Output Eye, 30 Inch FR4 Input Channel, PE = 0  
(TP3 from Figure 12)  
Figure 16. 6.5 Gbps Output Eye, 30 Inch FR4 Input Channel, PE = Best Setting,  
200 mV Output Level (TP3 from Figure 12)  
Rev. 0 | Page 11 of 36  
 
AD8155  
100  
80  
60  
40  
20  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 3.3V  
CC  
= 1.8V  
2.0  
CC  
0
0
2
4
6
8
0
0.5  
1.0  
1.5  
2.5  
3.0  
3.5  
4.0  
4.5  
DATA RATE (GHz)  
INPUT COMMON-MODE (V)  
Figure 17. Deterministic Jitter vs. Data Rate  
Figure 20. Deterministic Jitter vs. Input Common Mode  
100  
80  
60  
40  
20  
100  
80  
60  
40  
20  
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
DIFFERENTIAL INPUT SWING (V p-p)  
V
CC  
Figure 18. Deterministic Jitter vs. Input Swing  
Figure 21. Deterministic Jitter vs. VCC  
100  
80  
60  
40  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
(V = 3.3V)  
CC  
MIN OUTPUT SWING  
(V = 3.3V)  
CC  
DEFAULT OUTPUT SWING  
(V = 1.8V)  
CC  
MIN OUTPUT SWING  
(V = 1.8V)  
CC  
DEFAULT OUTPUT SWING  
0
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
TEMPERATURE (°C)  
V
VOLTAGE (V)  
TTO  
Figure 19. Deterministic Jitter vs. Temperature  
Figure 22. Deterministic Jitter vs. Output Termination Voltage (VTTO  
)
Rev. 0 | Page 12 of 36  
AD8155  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
(V = 3.3V)  
CC  
DEFAULT OUTPUT SWING  
(V = 1.8V)  
CC  
DEFAULT OUTPUT SWING  
(V = 1.8V)  
CC  
200mV OUTPUT VOLTAGE  
(V  
= 3.3V)  
CC  
200mV OUTPUT VOLTAGE  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
1.4  
1.9  
2.4  
2.9  
3.4  
V
VOLTAGE (V)  
CORE VOLTAGE (V)  
OCM  
Figure 23. Deterministic Jitter vs. Output Common-Mode Voltage (VOCM  
)
Figure 26. Output Amplitude (Default Setting) vs. VCC  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
Rj  
RjHist  
Timebase  
0.0ns  
Prescaler  
Trigger  
0
1
2
3
4
5
6
7
200k#/div  
2.00ps/div  
11.28839M#  
CIS  
320kS  
20.0ns/div Stop  
630fs/S  
RATE (Gbps)  
Figure 24. Random Jitter Histogram  
Figure 27. Output Amplitude vs. Rate  
100  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
90  
80  
70  
60  
50  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
1.6  
2.1  
2.6  
3.1  
3.6  
TEMPERATURE (°C)  
CORE SUPPLY VOLTAGE (V)  
Figure 25. tR/tF vs. Temperature  
Figure 28. Propagation Delay vs. Core Supply  
Rev. 0 | Page 13 of 36  
AD8155  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0" DEFAULT OUTPUT SWING  
10" DEFAULT OUTPUT SWING  
20" DEFAULT OUTPUT SWING  
30" DEFAULT OUTPUT SWING  
30" 200mV OUTPUT LEVEL  
500  
–60  
0
1
2
3
4
5
6
7
–40  
–20  
0
20  
40  
60  
80  
100  
PE SETTING  
TEMPERATURE (°C)  
Figure 29. Propagation Delay vs. Temperature  
Figure 32. Deterministic Jitter vs. PE Setting  
0"  
140  
120  
100  
80  
10"  
20"  
30"  
40"  
10  
9
8
7
6
5
4
3
2
1
0
0" DEFAULT OUTPUT SWING  
10" DEFAULT OUTPUT SWING  
20" DEFAULT OUTPUT SWING  
30" DEFAULT OUTPUT SWING  
30" MINIMUM OUTPUT SWING  
60  
40  
20  
0
NO  
DUT  
0
1
2
3
4
5
6
7
8
9
EQ SETTING  
0
1
2
3
4
5
6
7
8
PE SETTING  
Figure 30. Deterministic Jitter vs. EQ Setting  
Figure 33. Random Jitter vs. PE Setting  
10  
9
8
7
6
5
4
3
2
1
0
0
–2  
0"  
10"  
20"  
30"  
40"  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
6"  
10"  
20"  
30"  
40"  
0
1
2
3
4
5
6
7
8
9
10  
100k  
1M  
10M  
100M  
1G  
EQ SETTING  
FREQUENCY (Hz)  
Figure 31. Random Jitter vs. EQ Setting vs. Trace  
Figure 34. S21 Test Traces  
Rev. 0 | Page 14 of 36  
 
 
 
AD8155  
THEORY OF OPERATION  
features, together with programmable transmitter output levels,  
allow for a wide range of dc- and ac-coupled I/O configurations.  
The AD8155 is a buffered, asynchronous, three-port transceiver  
that allows 2:1 multiplexing and 1:2 demultiplexing among its  
ports. The 1:2 demux path supports bicast operation, allowing  
the AD8155 to operate as a port replicator as well as a redundancy  
switch. The AD8155 offers loopback on each lane, allowing the  
part to be configured as a six-lane equalizer or redriver with FFE.  
The AD8155 supports several control and configuration modes,  
shown in Table 5. The pin control mode offers access to a subset  
of the total feature list but allows for a much simplified control  
scheme. Table 6 compares the features in all control modes.  
MUX  
The primary advantage of using the serial control interface is  
that it allows finer resolution in setting receive equalization,  
transmitter preemphasis, loss-of-signal (LOS) behavior, and  
output levels.  
RXA  
RXB  
TXC  
DEMUX  
By default, the AD8155 starts in the pin control mode. Strobing  
RESET  
the  
pin sets all on-chip registers to their default values  
TXA  
TXB  
RXC  
and uses pins to configure switch connectivity, PE, and EQ  
levels. In mixed mode, switch connectivity is still controlled  
through the SEL[1:0], LB_[A:C], and BICAST pins. The user  
can override PE and EQ settings in mixed mode. In serial  
mode, all functions are accessed through registers and the  
Figure 35. Mux/Demux Paths, Port A to Port C  
The part offers extensively programmable transmit output levels  
and preemphasis settings as well as squelch or full disable. The  
receivers integrate a programmable, multizero transfer function  
for aggressive equalization and a programmable loss-of-signal  
feature. The AD8155 provides a balanced, high speed switch  
core that maintains low lane-to-lane skew while preserving  
edge rates.  
RESET  
control pin inputs are ignored, except  
.
The AD8155 register set is controlled through a 2-wire I2C  
interface. The AD8155 acts only as an I2C slave device. The 7-bit  
slave address for the AD8155 I2C interface contains the static  
value b1010 for the upper four bits. The lower three bits are  
controlled by the input pins, I2C_A[2:0].  
The I/O on-chip termination resistors are tied to user-settable  
supplies for increased flexibility. The AD8155 supports a wide  
primary supply range; VCC can be set from 1.8 V to 3.3 V. These  
Table 5. Control Interface Mode Register  
Address  
Default Register Name Bit  
Bit Name  
Reserved  
Mode[1:0]  
Functionality Description  
0x0F  
0x00  
Control  
7:2  
1:0  
Set to 0.  
interface mode  
00: toggle pin control. Asynchronous control through toggle pins only.  
10: mixed control. Switch configuration via toggle pins, register-based  
control through the I2C serial interface.  
11: serial control. Register-based control through the I2C serial interface.  
Rev. 0 | Page 15 of 36  
 
 
AD8155  
Table 6. Features Available Through Toggle Pin or Serial Control  
Feature  
Pin Control  
Serial Control  
Switch Features  
BICAST  
One pin  
One bit  
A/B Lane Select  
Loopback  
Two pins  
Three pins  
Two bits  
Three bits  
Rx Features  
EQ Levels  
N/P Swap  
Two settings  
Not available  
Enabled  
10 settings  
Available  
Three bits  
Squelch  
Tx Features  
Programmable Output Levels  
PE Levels  
400 mV diff fixed1  
Two settings  
200 mV diff/ 300 mV diff/ 400 mV diff/ 600 mV diff  
>7 settings  
1
400 mV diff indicates a 400 mV amplitude signal measured between two differential nodes. The voltage swing at differential I/O pins is described in this data sheet  
both in terms of the differentially measured voltage range ( 400 mV diff, for example) and in terms of peak-to-peak differential swing, denoted as mV p-p diff. An  
output level setting of 400 mV diff delivers a differential peak-to-peak output voltage of 800 mV p-p diff.  
When the device is in unicast mode, the output lanes on either  
THE SWITCH  
Port A or Port B are in an idle state. In the idle state, the  
transmitter output current is set to 0, and the P and N sides of  
(MUX/DEMUX/UNICAST/BICAST/LOOPBACK)  
The mux and demux functions of the AD8155 can be controlled  
either with the toggle pins or through the register map. The  
multiplexer path switches received data from Input Port A or  
Input Port B to Output Port C. The SEL[1:0] pins allow switching  
lanes independently. The demultiplexer path switches received  
data from Input Port C to Output Port A, Output Port B, or (if  
bicast mode is enabled) to both Output Port A and Output Port B.  
the lane are pulled up to the output termination voltage through  
the on-chip termination resistors. To save power, the unused  
receiver automatically disables.  
The AD8155 supports port-level loopback, illustrated in Figure 36.  
The loopback control pins override the lane select (SEL[1:0])  
and bicast control (BICAST) pin settings at the port level. In serial  
control mode, Bits [6:4] of Register 0x01 control loopback and  
are equivalent to asserting Pin LB_A, Pin LB_B, and Pin LB_C.  
Table 8 summarizes the different loopback configurations.  
Table 7. Port Selection and Configuration with All  
Loopbacks Disabled  
Output  
Port A  
Output  
Port B  
Output  
Port C  
The loopback feature is useful for system debug, self-test, and  
initialization, allowing system ASICs to compare Tx and Rx  
data sent over a single bidirectional link. Loopback can also be  
used to configure the device as a two- to six-lane receive  
equalizer or backplane redriver.  
BICAST  
SELx  
0
0
1
1
0
1
0
1
Ix_C[1:0]  
Idle  
Ix_C[1:0]  
Ix_C[1:0]  
Idle  
Ix_A[1:0]  
Ix_B[1:0]  
Ix_A[1:0]  
Ix_B[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Rev. 0 | Page 16 of 36  
 
 
 
AD8155  
X4  
X4  
Ox_A[1:0]  
Ox_B[1:0]  
X4  
Ix_C[1:0]  
1:2 DEMUX  
PORT A LOOPBACK  
PORT B LOOPBACK  
PORT C LOOPBACK  
X4  
X4  
Ix_A[1:0]  
X4  
2:1 MUX  
Ox_C[1:0]  
Ix_B[1:0]  
Figure 36. Port-Level Loopback  
Table 8. Switch Connectivity vs. Loopback, BICAST, and Port Select Settings  
LB_A  
LB_B  
LB_C  
BICAST  
SEL[1:0]  
00  
11  
00  
1
Output Port A Output Port B Output Port C  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
Ix_C[1:0]  
Idle  
Idle  
Ix_A[1:0]  
Ix_B[1:0]  
Ix_A[1:0]  
Ix_B[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_A[1:0]  
Ix_B[1:0]  
Ix_A[1:0]  
Ix_B[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_A[1:0]  
Ix_B[1:0]  
Ix_A[1:0]  
Ix_B[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_A[1:0]  
Ix_B[1:0]  
Ix_A[1:0]  
Ix_B[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Idle  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Idle  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Idle  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Idle  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_A[1:0]  
Ix_A[1:0]  
Ix_A[1:0]  
Ix_A[1:0]  
Ix_A[1:0]  
Ix_A[1:0]  
Ix_A[1:0]  
Ix_A[1:0]  
Ix_A[1:0]  
Ix_A[1:0]  
Ix_A[1:0]  
Ix_A[1:0]  
Ix_A[1:0]  
Ix_A[1:0]  
Ix_A[1:0]  
Ix_A[1:0]  
00  
11  
00  
11  
00  
11  
00  
11  
00  
11  
00  
11  
00  
11  
00  
11  
00  
11  
00  
11  
00  
11  
00  
11  
00  
11  
00  
11  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_B[1:0]  
Ix_B[1:0]  
Ix_B[1:0]  
Ix_B[1:0]  
Ix_B[1:0]  
Ix_B[1:0]  
Ix_B[1:0]  
Ix_B[1:0]  
Idle  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Idle  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_C[1:0]  
Ix_B[1:0]  
Ix_B[1:0]  
Ix_B[1:0]  
Ix_B[1:0]  
Ix_B[1:0]  
Ix_B[1:0]  
Ix_B[1:0]  
Ix_B[1:0]  
Rev. 0 | Page 17 of 36  
 
 
AD8155  
Equalizer Settings  
RECEIVERS  
Every input lane offers a low power, asynchronous, programma-  
ble receive equalizer for NRZ data up to 6.5 Gbps. The pin control  
interface allows two levels of receive equalization. Register-based  
control allows the user 10 equalizer settings. Register and pin  
control boost settings are listed in Table 10. Equalization capa-  
bility and resulting jitter performance are illustrated in Figure 30,  
Figure 31, and Figure 34. Figure 34 shows the loss characteristic  
of various reference channels, and Figure 30 and Figure 31 show  
resulting DJ and RJ performance vs. equalizer setting against these  
channels.  
The AD8155 receivers incorporate 50 ꢀ on-chip termination,  
ESD protection, and a multizero equalization function capable  
of delivering up to 18 dB of boost at 4.25 GHz. The AD8155 can  
compensate signal degradation at 6.5 Gbps from over 40 inches  
of FR4 backplane trace. The receive path also incorporates a  
loss-of-signal (LOS) function that squelches the associated  
transmitter when the midband differential voltage falls below a  
specified threshold value. Finally, the receivers implement a sign-  
swapping option (P/N swap), which allows the user to invert the  
sign of the input signal path and eliminates the need for board-  
level crossovers in the receive channels.  
The two LSBs of Register 0x41, Register 0x81, and Register 0xC1  
allow programming of all the equalizers in a port simultane-  
ously (see Table 13). The 0x42, 0x82, and 0xC2 registers allow  
per-lane programming of the equalizers (see Table 22). Be  
aware that writing to the port-level equalizer registers updates  
and overwrites per-lane settings.  
Input Structure and Allowed Input Levels  
The AD8155 tolerates an input common-mode range (meas-  
ured with zero differential input) of  
V
EE + 0.6 V < VICM < VCC + 0.3 V  
Typical supply configurations include, but are not limited to,  
those listed in Table 9.  
Table 10. Equalizer Settings  
Equalization Boost (dB)  
EQ Register Setting  
EQ Pin  
0
N/A  
N/A  
N/A  
1
N/A  
N/A  
N/A  
N/A  
N/A  
0
2
4
6
0
1
2
3
4
5
6
7
8
9
Table 9. Typical Input Supply Configurations  
Configuration  
DVCC  
VCC  
VTTI  
Low VTTI, AC-Coupled Input  
Single 1.8 V Supply  
3.3 V Core  
3.3 V − 1.8 V  
3.3 V − 1.8 V  
3.3 V  
1.8 V  
1.8 V  
3.3 V  
3.3 V  
1.6 V  
1.8 V  
1.8 V  
3.3 V  
8
10  
12  
14  
16  
18  
Single 3.3 V Supply  
3.3 V  
When dc-coupling with LVDS, CML, or ECL signals, it can be  
advantageous to operate with split or negative supplies (see the  
Applications Information section). In these applications, it is  
necessary to observe the maximum voltage ratings between VCC  
and VEE and to select supply voltages for VTTO and VTTI in the  
range of VCC to VEE to avoid activating the ESD protection  
devices.  
V
CC  
ESD  
ON-CHIP TERMINATION  
V
THRESH  
V
TTI  
RP  
RN  
R
V
LOSS  
OF  
CC  
R
SIG  
TERM  
TERM  
IP_xx  
IN_xx  
SIGNAL  
DETECT  
V
TTI  
RLN  
RL  
RLP  
RL  
RP  
52  
RN  
52Ω  
R1  
750Ω  
EQ OUT  
EQUALIZER  
IP_xx  
IN_xx  
Q1  
R3  
1kΩ  
Q2  
R2  
750Ω  
V
EE  
I1  
Figure 38. Functional Diagram of the AD8155 Receiver  
V
EE  
Figure 37. Simplified Receiver Input Structure  
Rev. 0 | Page 18 of 36  
 
 
 
 
AD8155  
Lane Inversion: P/N Swap  
Lane Disables  
The receiver P/N swap function is a convenience intended to  
allow the user to implement the equivalent of a board-level  
routing crossover in a much smaller area while eliminating vias  
(impedance discontinuities) that compromise the high frequency  
integrity of the signal path. Using this feature to correct an  
inversion downstream of the receiver may require the user to be  
aware of the sign of the data when switching connectivity (the  
mux/demux path). The feature is available on a per-lane setting  
through Register 0x44, Register 0x84, and Register 0xC4.  
Setting the bit true flips the sign sense of the P and N inputs for  
the associated lane. The default setting is 0 (no inversion).  
By default, the receivers and transmitters enable in an on-demand  
fashion according to the state of the SEL[1:0], LB_[A:C], and  
BICAST pins or to the state of the equivalent registers in serial  
control mode. Register 0x40, Register 0x80, and Register 0xC0  
implement per-lane disables for the receivers, and Register 0x48,  
Register 0x88, and Register 0xC8 implement per-lane transmit-  
ter disables. These disables override the default settings. Each  
bit in the register is named for the lane and function it disables.  
For example, RXDIS B0 disables the receiver on Lane 0 of Port B  
whereas TXDIS C1 disables the Lane 1 transmitter of Port C  
(see Table 11).  
Table 11. Per-Lane Disables  
Address  
Port  
Default  
Register Name  
Bit  
7:4  
3:2  
1
Bit Name  
Functionality Description  
0x40  
0x80  
0xC0  
Port A  
Port B  
Port C  
0x00  
0x00  
0x00  
RX[A/B/C] disable  
Reserved  
Reserved  
RXDIS [A/B/C]1  
Set to 0  
0: RX Port [A/B/C], Lane 1, enabled  
1: RX Port [A/B/C], Lane 1, disabled  
0: RX Port [A/B/C], Lane 0, enabled  
1: RX Port [A/B/C], Lane 0, disabled  
Set to 0  
0
RXDIS [A/B/C]0  
0x48  
0x88  
0xC8  
Port A  
Port B  
Port C  
0x00  
0x00  
0x00  
TX[A/B/C] disable  
7:4  
3:2  
1
Reserved  
Reserved  
TXDIS [A/B/C]1  
0: TX Port [A/B/C], Lane 1, enabled  
1: TX Port [A/B/C], Lane 1, disabled  
0: TX Port [A/B/C], Lane 0, enabled  
1: TX Port [A/B/C], Lane 0, disabled  
0
TXDIS [A/B/C]0  
Table 12. Lane Inversion  
Address  
Port  
Default  
Register Name  
Bit  
7:2  
1
Bit Name  
Reserved  
PN[A/B/C]1  
Functionality Description  
Set to 0  
0: Lane 1, noninverted  
1: Lane 1, inverted  
0: Lane 0, noninverted  
1: Lane 0, inverted  
0x44  
0x84  
0xC4  
Port A  
Port B  
Port C  
0x00  
0x00  
0x00  
RX[A/B/C] P/N swap  
0
PN[A/B/C]0  
Table 13. Port-Level EQ Setting  
Address  
Port  
Default  
Register Name  
Bit  
7:4  
3:0  
Bit Name  
Functionality Description  
0x41  
0x81  
0xC1  
Port A  
Port B  
Port C  
0x00  
0x00  
0x00  
RX[A/B/C] EQ setting  
Reserved  
[A/B/C]EQ[3:0]  
Set to 0  
Rev. 0 | Page 19 of 36  
 
 
AD8155  
The LOS_INT pin evaluates a logical OR of all LOS status  
register bits for all enabled receivers (LOS status registers are  
located at 0x45, 0x85, and 0xC5). The upper two bits in the  
RXA, RXB, and RXC LOS status registers are sticky, whereas  
the two LSBs are continuously updated to indicate the instantan-  
eous status of LOS for an enabled receiver. The sticky bits are  
cleared by writing 0 to the RXA, RXB, and RXC LOS status  
registers. The LOS_INT pin remains high after an LOS event  
until all sticky registers are cleared and all active status registers  
(for example, Bits[1:0]) read 0. The LOS_INT pin requires that  
an initialization sequence be enabled (see the Applications  
Information section).  
LOSS OF SIGNAL (LOS)  
The serial control interface allows access to the AD8155 loss of  
signal features (LOS is not available in pin control mode). Each  
receiver includes a low power, loss-of-signal detector. The loss-  
of-signal circuit monitors the received data stream and generates a  
system interrupt when the received signal power falls below a  
fixed threshold. The threshold is 50 mV p-p diff, referred to the  
input pins. The LOS circuit monitors the equalized receive wave-  
form and integrates the rms power of the equalized waveform  
over a selectable interval of either 2 ns or 10 ns. The detectors are  
enabled on a per-port basis with Bit 0 of the RXA/B/C LOS control  
registers (0x51, 0x91, 0xD1).  
The LOS_INT pin can be used to generate an interrupt for the  
system control software. In a standard implementation, when  
LOS_INT goes high, the system software registers the interrupt  
and polls the RXA, RXB, and RXC LOS status registers to  
determine which input lost signal and whether the signal has  
been restored.  
By default, when the receiver detects an LOS event, it squelches  
its associated transmitter, lowering the output current to  
submicroamps. This prevents the high gain, wide bandwidth  
signal path from turning low level system noise on an undriven  
input pair into a source of hostile crosstalk at the transmitter.  
The squelch feature can be disabled with Bit 3 of the global  
squelch control register (0x04).  
Table 14. Global Loss-of-Signal Squelch Control Register  
Address  
Default  
Register Name  
Bit  
7:4  
3
Bit Name  
Functionality Description  
Set to 0  
0: LOS auto squelch disabled  
1: LOS auto squelch enabled  
Set to 1  
0x04  
0x0F  
Global Squelch Ctrl  
Reserved  
GSQLCH_ENB  
2:0  
Reserved  
Table 15. Port-Level Loss-of-Signal Control Registers  
Address  
Port  
Default  
Register Name  
Bit  
7:3  
2
Bit Name  
Reserved  
LOS_FILT  
Functionality Description  
Set to 0  
0: LOS filter time constant = 2 ns  
1: LOS filter time constant = 10 ns  
Set to 0  
0x51  
0x91  
0xD1  
Port A  
Port B  
Port C  
0x05  
0x05  
0x05  
RX[A/B/C] LOS  
control  
1
0
Reserved  
LOS_ENB  
0: LOS disabled  
1: LOS enabled  
Table 16. Port-Level Loss-of-Signal Status Registers  
Address  
Port  
Default  
Register Name  
Bit  
7:6  
5:4  
Bit Name  
Functionality Description  
0x45  
0x85  
0xC5  
Port A  
Port B  
Port C  
Read only  
Write 0 to clear  
Reserved  
RX[A/B/C] LOS  
status  
LOS[A/B/C][1:0]  
sticky  
00: LOS event has not occurred.  
01: LOS event has occurred on Lane 0.  
10: LOS event has occurred on Lane 1.  
11: LOS event has occurred on both lanes.  
Read only; write 0 to clear.  
3:2  
1:0  
Reserved  
LOS[A/B/C][1:0]  
active  
00: active signals on both lanes.  
01: inactive signal on Lane 0.  
10: inactive signal on Lane 1.  
11: inactive signals on both lanes.  
Read only.  
Rev. 0 | Page 20 of 36  
 
AD8155  
Preemphasis can be programmed per port or per lane. Register  
0x49, Register 0x89, and Register 0xC9 set all outputs in a port  
at once. Registers 0x4A, 0x8A, and 0xCA allow setting PE on a  
per-lane basis. The following equation sets preemphasis boost:  
TRANSMITTERS  
The AD8155 transmitter offers programmable preemphasis,  
programmable output levels, output disable, and transmit  
squelch. The SEL4G pin lets the user lower the transmitter  
frequency of maximum boost from 3.25 GHz to 2.0 GHz,  
allowing the AD8155 to offer exceptional transmit channel  
compensation for legacy applications (4.5 Gbps and slower).  
VSW PE VSW DC  
(1)  
Gain[dB] = 20× log10 (1+  
)
VSW DC  
Table 18. Setting Transmitter Preemphasis  
V
V
CC  
ON-CHIP TERMINATION  
ESD  
PE  
V3  
VC  
TTO  
Output Level Pin  
PE_[A/B/C]  
Bit  
PE[2:0]  
Boost  
(%)  
PE Boost  
(dB)  
(mV diff)  
200  
200  
200  
200  
200  
200  
200  
300  
300  
300  
300  
300  
300  
300  
400  
400  
400  
400  
400  
400  
400  
600  
600  
600  
600  
600  
600  
600  
RP  
RN  
R
R
TERM  
TERM  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
N/A  
N/A  
N/A  
1
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
000  
001  
010  
011  
100  
101  
110  
000  
001  
010  
011  
100  
101  
110  
000  
001  
010  
011  
100  
101  
110  
000  
001  
010  
011  
100  
101  
110  
0
50  
0
OP_xx  
ON_xx  
V2  
VP  
V1  
VN  
3.52  
6.02  
7.96  
9.54  
10.88  
12.04  
0
100  
150  
200  
250  
300  
0
Q1  
Q2  
IT  
PE  
I
+ I  
DC  
V
EE  
Figure 39. Simplified Transmitter Structure  
33  
67  
2.5  
Output Level Programming and Output Structure  
4.44  
6.02  
7.36  
8.52  
9.54  
0
1.94  
3.52  
4.86  
6.02  
7.04  
7.96  
0
1.34  
2.5  
3.52  
4.44  
5.26  
6.02  
100  
133  
167  
200  
0
25  
50  
75  
100  
125  
150  
0
17  
33  
50  
67  
83  
100  
The output level of the transmitter of each lane is independently  
programmable. In pin control mode, a default output amplitude  
of 800 mV p-p diff ( 400 mV diff) is delivered (see Table 17).  
Register-based control allows the user to set the transmitter  
output levels on a per-port or per-lane basis to four predefined  
levels. Port-level programming overwrites lane-level configuration.  
The ALEV, BLEV, and CLEV bits in Register 0x49, Register 0x89,  
and Register 0xC9, respectively, are used to set the output levels  
for all transmitters. The A[1:0]OLEV[1:0], B[1:0]OLEV[1:0],  
and C[1:0]OLEV[1:0] bits in Register 0x4C, Register 0x8C, and  
Register 0xCC allow per-lane settings (see Table 22).  
Table 17. Predefined Output Levels  
[A/B/C][1:0]OLEV[1] [A/B/C][1:0]OLEV[0] Output Level  
0
0
1
0
1
0
200 mV diff  
300 mV diff  
400 mV diff  
(default)  
1
1
600 mV diff  
Squelch and Disable  
Note that the choice of output level influences the output  
common-mode level. A 600 mV diff output level with a full PE  
range requires a supply and output termination voltage of 2.5 V  
or higher (VTTO, VCC ≥ 2.5 V).  
Each transmitter is equipped with disable and squelch controls.  
Disable is a full power-down state: the transmitter current is  
reduced to zero and the output pins pull up to VTTO, but there  
is a delay of approximately 1 μs associated with reenabling  
the transmitter. Squelch keeps the output current enabled such  
that both output pins are at the output common-mode voltage.  
The transmitter recovers from squelch in less than 64 ns.  
Preemphasis  
Transmitter preemphasis levels can be set by pin control or  
through the control registers. Pin control allows two settings of  
PE, 0 dB and 6 dB. The control registers provide seven levels of  
PE. Note that a larger range of boost settings is available for lower  
output levels. Note that toggle pin control of PE is limited to the  
400 mV diff output level settings. Table 18 lists the available  
preemphasis settings for each output level.  
Speed Select  
The SEL4G pin lets the user lower the transmitter frequency of  
maximum boost from 3.25 GHz to 2.0 GHz, allowing the  
AD8155 to offer exceptional transmit channel compensation for  
legacy applications (4.5 Gbps and slower). SEL4G = 1 lowers the  
Rev. 0 | Page 21 of 36  
 
 
 
 
AD8155  
frequency of maximum boost without sacrificing the amount of  
boost delivered.  
The final section is the outputs section. For an individual  
output, the programmed output current flows through two  
separate paths. One is the on-chip termination resistor, and the  
other is the transmission line and the destination termination  
resistor. The nominal parallel impedance of these two paths is  
25 ꢀ. The sum of these two currents flows through the switches  
and the current source of the AD8155 output circuit and out  
through VEE. The power dissipated in the transmission line and the  
destination resistor is not dissipated in the AD8155 but must be  
supplied from the power supply and is a factor in overall system  
power. The current in the on-chip termination resistors and the  
output current source dissipate power in the AD8155 itself.  
AD8155 POWER CONSUMPTION  
There are several sections of the AD8155 that draw varying  
power depending on the supply voltages, the type of I/O coupling  
used, and the status of the AD8155 operation. Figure 40 shows a  
block diagram of these sections. An initialization sequence is  
required to enable the AD8155 in a low power mode (see the  
Applications Information section).  
The first section consists of the input termination resistors. The  
power dissipated in the termination resistors is due to the input  
differential swing and any common-mode current resulting  
from dc-coupling the input.  
Outputs  
The output current is set by a combination of output level and  
preemphasis settings (see Table 19). For the two logic switch  
states, this current flows through an on-chip termination  
resistor and a parallel path to the destination device and its  
termination resistor. The power in this parallel path is not  
dissipated by the AD8155. With preemphasis enabled, some  
current always flows in both the P and N termination resistors.  
This preemphasis current gives rise to an output common-  
mode shift, which varies with ac-coupling or dc-coupling and  
which is calculated for both cases in Table 19.  
In the next section (the receiver section), each input is powered  
only when it is selected, and the disable bits are set to 0. If a  
receiver is not selected, it is powered down. Thus, the total  
number of active inputs affects the total power consumption.  
Furthermore, the loss-of-signal detection circuits can be  
disabled independent of the receiver for even greater power  
savings.  
The core of the device performs the multiplexer and demulti-  
plexer switching functions. It draws a fixed quiescent current of  
2 mA whenever the AD8155 is powered from VCC to VEE. The  
switch draws an additional 4 × 4.6 mA in normal mux/demux  
operation and an additional 6 × 4.6 mA with all ports in loop-  
back or with bicast selected. The switch core can be disabled to  
save power.  
Perhaps the most direct method for calculating power dissi-  
pated in the output is to calculate the power that would be  
dissipated if all of ITOT were to flow on-die from VTTO to VEE  
and to subtract from this the power dissipated off die in the  
destination device termination resistors and the channel.  
For this purpose, the destination device and channel can be  
modeled as 50 ꢀ load resistors, RL, in parallel with the AD8155  
termination resistors.  
An output predriver section draws a current, IPRED, that is  
related to the programmed output current, ITTO. The predriver  
current always flows from VCC to VEE. It is treated separately  
from the output current, which flows from VTTO and may not be  
the same voltage as VCC  
.
.
V
DV  
CC  
V
V
TTO  
CC  
VTT  
TTI  
OUTPUT  
TERMINATIONS  
I
OUT  
2
P =  
× 50Ω  
50Ω  
50Ω  
50Ω  
50Ω  
EQUALIZER  
IP_xx  
IN_xx  
OPTIONAL COUPLING  
CAPACITORS  
LOSS OF  
SIGNAL  
INPUT  
TERMINATION  
P = (V ) (I  
)
OL OUT  
2
)
AC-COUPLING CAPS  
(OPTIONAL)  
(V  
IN_DIFF_RMS  
I
OUT  
V
= V  
– (I  
× 25)  
P =  
RECEIVER  
SWITCH  
OL  
TTO OUT  
100Ω  
V
EE  
Figure 40. AD8155 Power Distribution Block Diagram  
Rev. 0 | Page 22 of 36  
 
 
AD8155  
saving is achieved by using the TX and RX disable registers to  
turn off an unused lane as opposed to relying on the AD8155  
transmit squelch feature.  
Power Saving Considerations  
Whereas the AD8155 power consumption is very low compared  
to similar devices, careful control of its operating conditions can  
yield further power savings. Significant power reduction can be  
realized by operating the part at a lower voltage. Compared to  
3.3 V operation, a supply voltage of 1.8 V can result in power  
savings of ~45%. There is no performance penalty when oper-  
ting at lower voltage. An initialization sequence is required to  
enable the AD8155 in a low power mode (see the Applications  
Information section).  
Because the majority of the power dissipated is in the output  
stage, some of its flexibility can be used to lower the power  
consumption. First, the output current and output preemphasis  
settings can be programmed to the smallest amount required to  
maintain BER performance. If an output circuit always has a  
short length and the receiver has good sensitivity, then a lower  
output current can be used.  
A second measure is to disable transmitters when they are not  
being used. This can be done on a static basis if the output is  
not used or on a dynamic basis if the output does not have a  
constant stream of traffic. On transmit disable (Register 0x48,  
Register 0x88, Register 0xC8), both the predriver and output  
switch currents are disabled. The LOS-activated squelch  
disables only the output switch current, ITOT. Superior power  
It is also possible to lower the voltage on VTTO to lower the  
power dissipation. The amount that VTTO can be lowered is  
dependent on the lowest of all the outputs VOL and VCC. This  
is determined by the output that is operating at the highest  
programmed output current. Table 1 and Table 19 list minimum  
output levels.  
Rev. 0 | Page 23 of 36  
AD8155  
I2C CONTROL INTERFACE  
6. Wait for the AD8155 to acknowledge the request.  
7. Send the data (eight bits) to be written to the register whose  
address was set in Step 5. This transfer should be MSB first.  
8. Wait for the AD8155 to acknowledge the request.  
9. Do one or more of the following:  
SERIAL INTERFACE GENERAL FUNCTIONALITY  
The AD8155 register set is controlled through a 2-wire I2C  
interface. The AD8155 acts only as an I2C slave device. The  
7-bit slave address for the AD8155 I2C interface contains the  
static value b1010 for the upper four bits. The lower three bits  
are controlled by the input pins, I2C_A[2:0].  
a. Send a stop condition (while holding the SCL line  
high, pull the SDA line high) and release control of  
the bus.  
Therefore, the I2C bus in the system must include an I2C master  
to configure the AD8155 and other I2C devices that may be on  
the bus. Data transfers are controlled through the use of the two  
I2C wires: the SCL input clock pin and the SDA bidirectional  
data pin.  
b. Send a repeated start condition (while holding the  
SCL line high, pull the SDA line low) and continue  
with Step 2 in this procedure to perform another write.  
c. Send a repeated start condition (while holding the  
SCL line high, pull the SDA line low) and continue  
with Step 2 of the read procedure (in the I2C Interface  
Data Transfers: Data Read section) to perform a read  
from another address.  
d. Send a repeated start condition (while holding the  
SCL line high, pull the SDA line low) and continue  
with Step 8 of the read procedure (in the I2C Interface  
Data Transfers: Data Read section) to perform a read  
from the same address set in Step 5.  
The AD8155 I2C interface can be run in the standard (64 kHz)  
and fast (400 kHz) modes. The SDA line changes value only  
when the SCL pin is low, with two exceptions. To indicate the  
beginning or continuation of a transfer, the SDA pin is driven  
low while the SCL pin is high, and to indicate the end of a  
transfer, the SDA line is driven high while the SCL line is high.  
Therefore, it is important to control the SCL clock to toggle  
only when the SDA line is stable unless indicating a start,  
repeated start, or stop condition.  
In Figure 41, the AD8155 write process is shown. The SCL  
signal is shown along with a general write operation and a  
specific example. In this example, the value 0x92 is written to  
Address 0x6D of an AD8155 device with a part address of 0x53.  
The part address is seven bits wide and is composed of the  
AD8155 static upper four bits (b1010) and the pin-programmable  
lower three bits (I2C_A[2:0]). The address pins are set to b011.  
In Figure 41, the corresponding step number is visible in the  
circle under the waveform. The SCL line is driven by the I2C  
master and never by the AD8155 slave. As for the SDA line, the  
data in the shaded polygons is driven by the AD8155, whereas  
the data in the nonshaded polygons is driven by the I2C master.  
The end phase case shown is that of Step 9a.  
I2C INTERFACE DATA TRANSFERS: DATA WRITE  
To write data to the AD8155 register set, a microcontroller or  
any other I2C master must send the appropriate control signals  
to the AD8155 slave device. The following steps must be taken,  
where the signals are controlled by the I2C master, unless other-  
wise specified. For a diagram of the procedure, see Figure 41.  
1. Send a start condition (while holding the SCL line high,  
pull the SDA line low).  
2. Send the AD8155 part address (seven bits) whose upper  
four bits are the static value b1010 and whose lower three  
bits are controlled by the I2C_A[2:0] input pins. This  
transfer should be MSB first.  
It is important to note that the SDA line changes only when the  
SCL line is low, except for the case of sending a start, stop, or  
repeated start condition (Step 1 and Step 9 in this case).  
3. Send the write indicator bit (0).  
4. Wait for the AD8155 to acknowledge the request.  
5. Send the register address (eight bits) to which data is to be  
written. This transfer should be MSB first.  
SCL  
ADDR  
[2:0]  
START  
b1010  
R/W ACK  
REGISTER ADDR  
ACK  
DATA  
ACK  
STOP  
SDA  
SDA  
1
2
2
3
4
5
6
7
8
9a  
Figure 41. I2C Write Diagram  
Rev. 0 | Page 24 of 36  
 
 
 
AD8155  
I2C INTERFACE DATA TRANSFERS: DATA READ  
b. Send a repeated start condition (while holding the  
SCL line high, pull the SDA line low) and continue  
with Step 2 of the write procedure (see the I2C  
Interface Data Transfers: Data Write section) to  
perform a write.  
To read data from the AD8155 register set, a microcontroller or  
any other I2C master must send the appropriate control signals  
to the AD8155 slave device. The following steps must be taken,  
where the signals are controlled by the I2C master, unless other-  
wise specified. For a diagram of the procedure, see Figure 42.  
c. Send a repeated start condition (while holding the  
SCL line high, pull the SDA line low) and continue  
with Step 2 of this procedure to perform a read from  
another address.  
1. Send a start condition (while holding the SCL line high,  
pull the SDA line low).  
d. Send a repeated start condition (while holding the  
SCL line high, pull the SDA line low) and continue  
with Step 8 of this procedure to perform a read from  
the same address.  
2. Send the AD8155 part address (seven bits) whose upper  
four bits are the static value b1010 and whose lower three  
bits are controlled by the I2C_A[2:0] input pins. This  
transfer should be MSB first.  
3. Send the write indicator bit (0).  
In Figure 42, the AD8155 read process is shown. The SCL signal is  
shown along with a general read operation and a specific example.  
In this example, the value 0x49 is read from Address 0x6D of  
an AD8155 device with a 0x53 part address. The part address  
is seven bits wide and is composed of the AD8155 static upper  
four bits (b1010) and the pin-programmable lower three bits  
(I2C_A[2:0]). The address pins are set to b011. In Figure 42, the  
corresponding step number is visible in the circle under the  
waveform. The SCL line is driven by the I2C master and never  
by the AD8155 slave. As for the SDA line, the data in the shaded  
polygons is driven by the AD8155, whereas the data in the  
nonshaded polygons is driven by the I2C master. The end phase  
case shown is that of Step 13a.  
4. Wait for the AD8155 to acknowledge the request.  
5. Send the register address (eight bits) from which data is to  
be read. This transfer should be MSB first. The register  
address is kept in memory in the AD8155 until the part is  
reset or the register address is written over with the same  
procedure (Step 1 to Step 6).  
6. Wait for the AD8155 to acknowledge the request.  
7. Send a repeated start condition (while holding the SCL line  
high, pull the SDA line low).  
8. Send the AD8155 part address (seven bits) whose upper  
four bits are the static value b1010 and whose lower three  
bits are controlled by the I2C_A[2:0] input pins. This  
transfer should be MSB first.  
9. Send the read indicator bit (1).  
It is important to note that the SDA line changes only when  
the SCL line is low, except for the case of sending a start, stop,  
or repeated start condition, as in Step 1, Step 7, and Step 13.  
In Figure 42, A is the same as ACK. Equally, Sr represents a  
repeated start where the SDA line is brought high before SCL  
is raised. SDA is then dropped while SCL is still high.  
10. Wait for the AD8155 to acknowledge the request.  
11. The AD8155 then serially transfers the data (eight bits)  
held in the register indicated by the address set in Step 5.  
12. Acknowledge the data.  
13. Do one or more of the following:  
a. Send a stop condition (while holding the SCL line high,  
pull the SDA line high) and release control of the bus.  
SCL  
ADDR R/  
ADDR  
[2:0]  
R/  
W
START  
b1010  
A
REGISTER ADDR  
A
6
Sr  
b1010  
A
DATA  
A
STOP  
SDA  
SDA  
[2:0]  
W
1
2
2
3
4
5
7
8
8
9
10  
11  
12  
13a  
Figure 42. I2C Read Diagram  
Rev. 0 | Page 25 of 36  
 
 
 
AD8155  
APPLICATIONS INFORMATION  
to support either 1 + 1 or 1:1 redundancy. Also, the AD8155 can  
enable module redundancy, as shown in Figure 44, and can be  
used as a four- or six-lane signal conditioning device to enable  
high speed serial communication over long copper links.  
The main application of the AD8155 is to support redundancy  
on both the backplane side and the line interface side of a serial  
link. Each port consists of four lanes to support standards such  
as RXAUI. Figure 43 illustrates redundancy in an RXAUI  
backplane system. Each line card is connected to two switch  
fabrics (primary and redundant). The device can be configured  
FABRIC INTERFACE  
TRAFFIC MANAGERS  
NETWORK PROCESSOR  
PHYSICAL  
INTERFACE  
MACs  
FRAMERS  
PRIMARY  
SWITCH  
FABRIC  
AD8155  
LINE CARDS  
FABRIC CARDS  
FABRIC INTERFACE  
TRAFFIC MANAGERS  
NETWORK PROCESSOR  
REDUNDANT  
SWITCH  
FABRIC  
PHYSICAL  
INTERFACE  
MACs  
FRAMERS  
BACKPLANE  
AD8155  
Figure 43. Using the AD8155 for Switch Redundancy  
PRIMARY  
MODULE  
FABRIC INTERFACE  
TRAFFIC MANAGERS  
NETWORK PROCESSOR  
MACs  
FRAMERS  
REDUNDANT  
MODULE  
AD8155  
LINE CARD  
Figure 44. Using the AD8155 for Module Redundancy  
Z
Z
0
0
EQ  
EQ  
PE  
PE  
IN 1  
IN 2  
OUT 1  
OUT 2  
IN 3  
Z
Z
Z
Z
0
0
0
0
Z
Z
Z
Z
0
0
0
ASIC 1  
ASIC 2  
0
OUT 3  
OUT 4  
PE  
PE  
EQ  
EQ  
Z
Z
Z
Z
0
0
0
0
IN 4  
Z
Z
0
0
LOSSY CHANNEL  
LOSSY CHANNEL  
Figure 45. Using the AD8155 for Signal Conditioning  
Rev. 0 | Page 26 of 36  
 
 
 
 
AD8155  
0 dB or 6 dB. Table 19 shows that with preemphasis disabled,  
OUTPUT COMPLIANCE  
a dc-coupled transmitter causes a 200 mV common-mode shift  
across the termination resistors, whereas an ac-coupled transmitter  
causes twice the common-mode shift. Notice that with VCC and  
VTTO powered from a 1.8 V supply, the single-ended output voltage  
swings between 1.8 V and 1.4 V when dc-coupled and between  
1.6 V and 1.2 V when ac-coupled. In both cases, these levels are  
greater than the minimum VL limit of 725 mV, and VCC satisfies  
the minimum VCC limit of 1.8 V with the TX_HEADROOM bit  
set to 0. Note that setting TX_HEADROOM = 1 violates the  
minimum VCC limit of 2.5 V.  
In low voltage applications, users must pay careful attention  
to both the differential and common-mode signal levels. The  
choice of output voltage swing, preemphasis setting, supply  
voltages (VCC and VTTO), and output coupling (ac or dc) affect  
peak and settled single-ended voltage swings and the common-  
mode shift measured across the output termination resistors.  
These choices also affect output current and, consequently,  
power consumption. For certain combinations of supply voltage  
and output coupling, output voltage swing and preemphasis  
settings may violate the single-ended absolute output low  
voltage, as specified in Table 1. Under these conditions, the  
performance is degraded; therefore, these settings are not  
recommended. Table 19 includes annotations that identify these  
settings.  
Example 2: 1.8 V, PE = 6 dB  
With a PE setting of 6.02 dB, the ac-coupled transmitter has  
single-ended swings from 1.4 V to 0.6 V, whereas the dc-  
coupled transmitter outputs swing between 1.8 V and 1 V. The  
peak minimum single-ended swing (VL-PE) of the ac-coupled  
transmitter, in this case, exceeds the minimum VL limit of  
725 mV by 125 mV. While theoretically in violation of the  
specification, in practice, this setting is viable, especially at high  
data rates. The transmitter theoretical peak voltage is rarely  
achieved in practice because the high frequency characteristic  
of the preemphasis is attenuated at the output pins by the low-  
pass nature of the PC board environment and the channel. For  
6.5 Gbps PE (SEL4G = 0), a 30% reduction of overshoot as  
measured at the PC board is possible. For an output level of  
400 mV diff and a PE setting of 6 dB, the user can calculate a  
maximum overshoot of 400 mV diff but can measure only a  
270 mV overshoot. With the preemphasis configured for  
4.25 Gbps operation (SEL4G = 1), the measured overshoot  
more closely matches the theoretical maximum. In this case, the  
peak minimum voltage limit should be more closely observed.  
Table 19 shows the change in output common mode (ΔVOCM  
=
VCC − VOCM) with output level (VSW) and preemphasis setting.  
Table 19 also shows the minimum and maximum peak single-  
ended output levels (VL-PE and VH-PE, respectively). The single-  
ended output levels are calculated for VTTO supplies of 3.3 V and  
1.8 V for both ac- and dc-coupled outputs to illustrate the  
practical challenges of reducing the supply voltage.  
TX_HEADROOM  
For output levels greater than 400 mV diff (800 mV p-p diff),  
setting the TX_HEADROOM bit to 1 allows the transmitter an  
extra 200 mV of output compliance range. When the TX_  
HEADROOM bit is enabled, a core supply voltage, VCC ≥ 2.5 V,  
is required. Enabling TX_HEADROOM increases the core  
supply current. TX_HEADROOM can be enabled on a per-port  
basis through Bits[6:4] in Register 0x05. A value of 0 disables the  
headroom-generating circuitry; a value of 1 enables it.  
Example 1: 1.8 V, PE Disabled  
Consider a typical application using pin control mode. In this  
case, the default output level of 400 mV diff (800 mV p-p diff)  
is selected, and the user can choose preemphasis settings of  
Rev. 0 | Page 27 of 36  
 
AD8155  
SIGNAL LEVELS AND COMMON-MODE SHIFT FOR AC-COUPLED AND DC-COUPLED OUTPUTS  
Table 19. Output Voltage Range and Output Common-Mode Shift vs. Output Level and PE Setting  
AC-Coupled Transmitter  
DC-Coupled Transmitter  
VCC = VTTO = 3.3 V VCC = VTTO = 1.8 V  
Register  
Setting  
Output  
Current  
Output Levels and PE Boost  
PE  
VCC = VTTO = 3.3 V VCC = VTTO = 1.8 V  
TX[A/B/C]  
Level/PE  
1
1
1
1
1
1
1
1
1
1
1
1
VSW-DC  
(mV)  
VSW-PE  
(mV)  
Boost  
(%)  
ΔVOCM VH-PE  
VL-PE  
(V)  
VH-PE  
(V)  
VL-PE  
(V)  
ΔVOCM VH-PE  
VL-PE VH-PE  
VL-PE  
(V)  
PE (dB) Control2  
ITTO1 (mA) (mV)  
(V)  
(mV)  
100  
150  
200  
250  
300  
350  
400  
150  
200  
250  
300  
350  
400  
450  
200  
250  
300  
350  
400  
450  
500  
300  
350  
400  
450  
500  
550  
600  
(V)  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
(V)  
3.1  
3
(V)  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
200  
200  
200  
200  
200  
200  
200  
300  
300  
300  
300  
300  
300  
300  
400  
400  
400  
400  
400  
400  
400  
600  
600  
600  
600  
600  
600  
600  
200  
300  
400  
500  
600  
700  
800  
300  
400  
500  
600  
700  
800  
900  
400  
500  
600  
700  
800  
900  
1000  
600  
700  
800  
900  
1000  
1100  
1200  
0.00  
0.00  
3.52  
6.02  
7.96  
9.54  
10.88  
12.04  
0.00  
2.50  
4.44  
6.02  
7.36  
8.52  
9.54  
0.00  
1.94  
3.52  
4.86  
6.02  
7.04  
7.96  
0.00  
1.34  
2.50  
3.52  
4.44  
5.26  
6.02  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
8
200  
300  
400  
500  
600  
700  
800  
300  
400  
500  
600  
700  
800  
900  
400  
500  
600  
700  
800  
900  
1000  
600  
700  
800  
900  
1000  
1100  
1200  
3.2  
3
1.7  
1.5  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
50.00  
100.00  
150.00  
200.00  
250.00  
300.00  
0.00  
12  
16  
20  
24  
28  
32  
12  
16  
20  
24  
28  
32  
36  
16  
20  
24  
28  
32  
36  
40  
24  
28  
32  
36  
40  
44  
48  
3.15  
3.1  
2.85  
2.7  
1.65  
1.6  
1.35  
1.2  
2.9  
2.8  
2.7  
2.6  
2.5  
3
3.05  
3
2.55  
2.4  
1.55  
1.5  
1.05  
0.9  
2.95  
2.9  
2.25  
2.1  
1.45  
1.4  
0.75  
0.6  
3.15  
3.1  
2.85  
2.7  
1.65  
1.6  
1.35  
1.2  
1.5  
1.4  
1.3  
1.2  
1.1  
1
33.33  
66.67  
100.00  
133.33  
166.67  
200.00  
0.00  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.13  
3.05  
3
2.55  
2.4  
1.55  
1.5  
1.05  
0.9  
2.95  
2.9  
2.25  
2.1  
1.45  
1.4  
0.75  
0.6  
2.85  
3.1  
1.95  
2.7  
1.35  
1.6  
0.45  
1.2  
0.9  
1.4  
1.3  
1.2  
1.1  
1
25.00  
50.00  
75.00  
100.00  
125.00  
150.00  
0.00  
3.05  
3
2.55  
2.4  
1.55  
1.5  
1.05  
0.9  
2.95  
2.9  
2.25  
2.13  
1.45  
0.75  
0.6  
1.4  
2.85  
2.8  
1.954 1.35  
0.45  
0.3  
0.9  
0.8  
1.2  
1.1  
1
1.84  
1.3  
3
2.4  
1.5  
0.9  
16.67  
33.33  
50.00  
66.67  
83.33  
100.00  
2.95  
2.9  
2.25  
2.13  
1.45  
0.75  
0.65  
1.4  
2.85  
2.8  
1.954 1.35  
1.84  
1.3  
1.654 1.25  
1.54  
1.2  
0.454  
0.34  
0.154  
04  
0.9  
0.8  
0.7  
0.65  
2.75  
2.7  
1 Symbol definitions are shown in Table 20.  
2 TX[A/B/C] level/PE control registers are port level control registers at Address 0x49, Address 0x89, and Address 0xC9. Per-lane level and PE control are in separate  
registers.  
3 This setting requires TX_HEADROOM = 1 to ensure adequate output compliance.  
4 This setting is not recommended for ac-coupled outputs because the theoretical output low level is below the minimum output voltage limit listed in Table 1.  
5 This setting is not recommended because the output level is below the minimum output voltage limit listed in Table 1. Use VCC = 2.5 V and TX_HEADROOM = 1.  
Rev. 0 | Page 28 of 36  
 
 
 
 
 
 
 
AD8155  
Table 20. Symbol Definitions  
Symbol  
Formula  
Definition  
IDC  
IPE  
ITTO  
Programmable  
Programmable  
IDC + IPE  
Output current that sets output level  
Output current for PE delayed tap  
Total transmitter output current  
VDPP-DC  
25 Ω × IDC × 2  
Peak-to-peak differential voltage swing of  
nonpreemphasized waveform  
VDPP-PE  
25 Ω × ITTO × 2  
Peak-to-peak differential voltage swing of preemphasized  
waveform  
VSW-DC  
VSW-PE  
∆VOCM_DC-COUPLED  
∆VOCM_AC-COUPLED  
VOCM  
VH-DC  
VL-DC  
VH-PE  
VL-PE  
VDPP-DC/2 = VH-DC – VL-DC  
VDPP-PE/2 = VH-PE – VL-PE  
25 Ω × ITTO/2  
DC single-ended voltage swing  
Preemphasized single-ended voltage swing  
Output common-mode shift, dc-coupled outputs  
Output common-mode shift, ac-coupled outputs  
Output common-mode voltage  
DC single-ended output high voltage  
DC single-ended output low voltage  
Maximum single-ended output voltage  
Minimum single-ended output voltage  
50 Ω × ITTO/2  
VTTO − ∆VOCM = ( VH-DC + VL-DC )/2  
VTTO − ∆VOCM + VDPP-DC/2  
VTTO − ∆VOCM − VDPP-DC/2  
VTTO − ∆VOCM + VDPP-PE/2  
VTTO − ∆VOCM − VDPP-PE/2  
V
TTO  
V
H-PE  
V
H-DC  
V
V
V
SW-PE  
OCM  
SW-DC  
V
L-DC  
tPE  
V
L-PE  
Figure 46. VH, VL, and VOCM  
Rev. 0 | Page 29 of 36  
AD8155  
SUPPLY SEQUENCING  
Table 21. Alternate Supply Configuration Examples  
Ideally, all power supplies should be brought up to the appropri-  
ate levels simultaneously (power supply requirements are set by  
the supply limits in Table 1 and the absolute maximum ratings  
listed in Table 3). In the event that the power supplies to the  
AD8155 are brought up separately, the supply power-up sequence  
is as follows: DVCC is powered first, followed by VCC, and lastly  
Signal Level  
VCC, VTTI, VTTO  
VEE  
1.2 V CML  
GND − 400 mV diff  
1.2 V  
GND  
−2.1 V ≤VEE ≤ −0.6 V  
−3.3 V ≤VEE ≤ −1.8 V  
The AD8155 control signals are always referenced between  
DVCC and VEE and, when using a split supply configuration,  
logic level-shift circuits should be used. The evaluation board  
design shows the use of the Analog Devices, Inc., ADUM1250  
I2C isolator and a level shifter to level-shift the SCL and SDA  
signals (for information about the evaluation board, see the  
Ordering Guide).  
VTTI and VTTO. The power-down sequence is reversed, with VTTI  
and VTTO being powered off first.  
VTTI and VTTO contain ESD protection diodes to the VCC power  
domain (see Figure 38 and Figure 39). To avoid a sustained high  
current condition in these devices (ISUSTAINED < 64 mA), the VTTI  
and VTTO supplies should be powered on after VCC and should  
Evaluation of DC-Coupled Links  
When evaluating the AD8155 dc-coupled, note that most lab  
equipment is ground referenced whereas the AD8155 high  
speed I/O are connected by 50 ꢀ on-die termination resistors to  
be powered off before VCC  
.
If the system power supplies have a high impedance in the  
powered off state, then supply sequencing is not required  
provided the following limits are observed:  
VTTI and VTTO. To interface the AD8155 to ground-referenced,  
high speed instrumentation (for example, the 50 ꢀ inputs of a  
high speed oscilloscope), it is necessary to level-shift the outputs by  
either using a dc-blocking network or powering the AD8155  
between ground and a negative supply.  
Peak current from VTTI or VTTO to VCC < 200 mA  
Sustained current from VTTI or VTTO to VCC < 64 mA  
SINGLE SUPPLY vs. MULTIPLE SUPPLY  
OPERATION  
For example, to evaluate 1.8 V dc-coupled transmitter perfor-  
mance with a 50 ꢀ ground-referenced oscilloscope, use the  
following supply configuration:  
The AD8155 supports a flexible supply voltage of 1.8 V to 3.3 V.  
For some dc-coupled links, 1.2 V or ground-referenced signaling  
may be desired. In these cases, the AD8155 can be run with a  
split supply configuration. An example is shown in Figure 47.  
V
V
CC = VTTO = VTTI = Ground  
EE = −1.8 V  
Ground < DVCC < 1.5 V  
0V  
INITIALIZATION SEQUENCE FOR LOW POWER  
AND LOS_INT OPERATION  
V
V
V
TTO  
CC  
DV  
TTI  
CC  
TX  
The following programming sequence is required to initialize  
the device in a low power mode and to enable the LOS_INT:  
set the reserved bits to Logic 1 in the RX and TX control  
registers by writing the value 0x0C to the 0x40, 0x48, 0x80,  
0x88, 0xC0, and 0xC8 registers.  
50  
50Ω  
50Ω  
50Ω  
Z
Z
Z
Z
RX  
0
0
+
CML  
0
0
V
V
= 0mV  
OH  
OL  
AD8155  
= –400mV  
V
= –3.3V (OR –1.8V)  
EE  
MCU_V  
DV  
CC  
DD  
2
I C_SCL  
TO AD8155  
MCU  
ADuM1250  
2
I C_SDA  
V
MCU_V  
EE  
SS  
Figure 47. Multiple Supply Operation  
Rev. 0 | Page 30 of 36  
 
 
AD8155  
It is recommended that a via array of 4 × 4 or 5 × 5 with a  
PRINTED CIRCUIT BOARD (PCB) LAYOUT  
GUIDELINES  
diameter of 0.3 mm to 0.33 mm be used to set a pitch between  
1.0 mm and 1.2 mm. A representative of these arrays is shown in  
Figure 49.  
The high speed differential inputs and outputs should be routed  
with 100 ꢀ controlled impedance differential transmission  
lines. The transmission lines, either microstrip or stripline,  
should be referenced to a solid low impedance reference plane.  
An example of a PCB cross-section is shown in Figure 48. The  
trace width (W), differential spacing (S), height above reference  
plane (H), and dielectric constant of the PCB material determine  
the characteristic impedance. Adjacent channels should be kept  
apart by a distance greater than 3 W to minimize crosstalk.  
THERMAL  
VIA  
W
S
W
THERMAL  
PADDLE  
SOLDERMASK  
Figure 49. PCB Thermal Paddle and Via  
SIGNAL (MICROSTRIP)  
PCB DIELECTRIC  
REFERENCE PLANE  
PCB DIELECTRIC  
SIGNAL (STRIPLINE)  
H
Stencil Design for the Thermal Paddle  
To effectively remove heat from the package and to enhance  
electrical performance, the thermal paddle must be soldered  
(bonded) to the PCB thermal paddle, preferably with minimum  
voids. However, eliminating voids may not be possible because  
of the presence of thermal vias and the large size of the thermal  
paddle for larger size packages. Also, outgassing during the  
reflow process may cause defects (splatter, solder balling) if the  
solder paste coverage is too big. It is recommended that smaller  
multiple openings in the stencil be used instead of one big  
opening for printing solder paste on the thermal paddle region.  
This typically results in 50% to 80% solder paste coverage.  
Figure 50 shows how to achieve these levels of coverage.  
PCB DIELECTRIC  
REFERENCE PLANE  
PCB DIELECTRIC  
W
S
W
Figure 48. Example of a PCB Cross-Section  
Thermal Paddle Design  
The LFCSP is designed with an exposed thermal paddle to  
conduct heat away from the package and into the PCB. By  
incorporating thermal vias into the PCB thermal paddle,  
Voids within solder joints under the exposed paddle can have  
an adverse affect on high speed and RF applications, as well as  
on thermal performance. Because the LFCSP package incor-  
porates a large center paddle, controlling solder voiding within  
this region can be difficult. Voids within this ground plane can  
increase the current path of the circuit. The maximum size for a  
void should be less than via pitch within the plane. This assures  
that any one via is not rendered ineffectual when any void  
increases the current path beyond  
heat is dissipated more effectively into the inner metal layers  
of the PCB. To ensure device performance at elevated  
temperatures, it is important to have a sufficient number of  
thermal vias incorporated into the design. An insufficient  
number of thermal vias results in a θJA value larger than  
specified in Table 1. Additional PCB footprint and assembly  
guidelines are described in the AN-772 Application Note, A  
Design and Manufacturing Guide for the Lead Frame Chip Scale  
Package (LFCSP).  
the distance to the next available via.  
Rev. 0 | Page 31 of 36  
 
 
 
AD8155  
COPPER  
PLATING  
SOLDER  
MASK  
VIA  
1.35mm × 1.35mm SQUARES  
AT 1.65mm PITCH  
COVERAGE: 68%  
(A)  
(B)  
(C)  
(D)  
Figure 51. Solder Mask Options for Thermal Vias: (a) Via Tenting from the  
Top; (b) Via Tenting from the Bottom; (c)Via Plugging, Bottom; and (d) Via  
Encroaching, Bottom  
Figure 50.Typical Thermal Paddle Stencil Design  
Large voids in the thermal paddle area should be avoided. To  
control voids in the thermal paddle area, solder masking may be  
required for thermal vias to prevent solder wicking inside the  
via during reflow, thus displacing the solder away from the  
interface between the package thermal paddle and thermal  
paddle land on the PCB. There are several methods employed  
for this purpose, such as via tenting (top or bottom side), using  
dry film solder mask; via plugging with liquid photo-imagible  
(LPI) solder mask from the bottom side; or via encroaching.  
These options are depicted in Figure 51. In case of via tenting,  
the solder mask diameter should be 100 microns larger than the  
via diameter.  
A stencil thickness of 0.125 mm is recommended for 0.4 mm and  
0.5 mm pitch parts. The stencil thickness can be increased to  
0.15 mm to 0.2 mm for coarser pitch parts. A laser-cut, stainless  
steel stencil is recommended with electropolished trapezoidal  
walls to improve the paste release. Because not enough space is  
available underneath the part after reflow, it is recommended  
that no clean Type 3 paste be used for mounting the LFCSP.  
Inert atmosphere is also recommended during reflow.  
Rev. 0 | Page 32 of 36  
 
 
AD8155  
REGISTER MAP  
All registers are port-level and global registers, unless otherwise noted.  
Table 22. Register Definitions  
Mnemonic  
Addr. Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
Reset  
0x00  
RESET  
Switch  
Control 1  
0x01  
LBC  
LBB  
LBA  
Set to 0  
Set to 0  
SELAb/B[1]  
SELAb/B[0]  
0x00  
0x00  
0x0F  
Switch  
Control 2  
0x02  
SEL4G  
BICAST  
Global  
Squelch Ctrl  
0x04  
0x05  
0x0F  
0x40  
0x41  
0x51  
0x421  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
GSQLCH_ENB Reserved;  
set to 1  
Reserved;  
set to 1  
Reserved;  
set to 1  
Switch Core/  
Headroom  
TX_HEAD  
ROOM_C  
TX_HEAD  
ROOM_B  
TX_HEAD  
ROOM_A  
XCORE_ENB 0x01  
Mode  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved; set  
to 0  
Reserved;  
set to 0  
MODE[1]  
RXDIS A1  
AEQ[1]  
MODE[0]  
RXDIS A0  
AEQ[0]  
0x00  
0x00  
0x00  
0x05  
0x00  
RXA Disable  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved  
Reserved  
RXA EQ  
Setting  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
AEQ[3]  
AEQ[2]  
RXA LOS  
Control  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved; set  
to 0  
LOS_FILT  
A0EQ[2]  
Reserved;  
set to 0  
LOS_ENB  
A0EQ[0]  
RXA Lane 1/  
RXA Lane 0  
EQ Setting  
A1EQ[3]  
A1EQ[2]  
A1EQ[1]  
A1EQ[0]  
A0EQ[3]  
A0EQ[1]  
RXA P/N  
Swap  
0x441  
0x451  
0x48  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved; set  
to 0  
Reserved;  
set to 0  
PNA1  
PNA0  
0x00  
RXA LOS  
Status  
Reserved  
Reserved  
LOSA1  
sticky  
LOSA0  
sticky  
Reserved  
Reserved  
Reserved  
APE[2]  
LOSA1  
active  
LOSA0  
active  
TXA Disable  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved  
TXDIS A1  
TXDIS A0  
0x00  
0x20  
0x00  
TXA Level/PE  
Control  
0x49  
ALEV[1]  
ALEV[0]  
APE[1]  
APE[0]  
TXA Lane1/  
TXA Lane 0  
PE Setting  
0x4A1  
A1PE[2]  
A1PE[1]  
A1PE[0]  
A0PE[2]  
A0PE[1]  
A0PE[0]  
TXA Per-Lane  
Level Setting  
0x4C1 Reserved  
Reserved  
Reserved  
Reserved  
A1OLEV[1]  
Reserved  
BEQ[3]  
A1OLEV[0]  
Reserved  
BEQ[2]  
A0OLEV[1]  
RXDIS B1  
BEQ[1]  
A0OLEV[0]  
RXDIS B0  
BEQ[0]  
0xAA  
0x00  
0x00  
0x05  
0x00  
RXB Disable  
0x80  
0x81  
0x91  
0x821  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
RXB EQ  
Setting  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
RXB LOS Ctrl  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved; set  
to 0  
LOS_FILT  
B0EQ[2]  
Reserved;  
set to 0  
LOS_ENB  
B0EQ[0]  
RXB Lane 1/  
RXB Lane 0  
EQ Setting  
B1EQ[3]  
B1EQ[2]  
B1EQ[1]  
B1EQ[0]  
B0EQ[3]  
B0EQ[1]  
RXB P/N  
Swap  
0x841  
0x851  
0x88  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved; set  
to 0  
Reserved;  
set to 0  
PNB1  
PNB0  
0x00  
RXB LOS  
Status  
Reserved  
Reserved  
LOSB1  
sticky  
LOSB0  
sticky  
Reserved  
Reserved  
Reserved  
BPE[2]  
LOSB1  
active  
LOSB0  
active  
TXB Disable  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved  
TXDIS B1  
TXDIS B0  
0x00  
0x20  
0x00  
TXB Level/PE  
Control  
0x89  
BLEV[1]  
BLEV[0]  
BPE[1]  
BPE[0]  
TXB Lane1/  
TXB Lane 0  
PE Setting  
0x8A1  
B1PE[2]  
B1PE[1]  
B1PE[0]  
B0PE[2]  
B0PE[1]  
B0PE[0]  
TXB Per-Lane  
Level Setting  
0x8C1 Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
B1OLEV[1]  
Reserved  
B1OLEV[0]  
Reserved  
B0OLEV[1]  
RXDIS C1  
B0OLEV[0]  
RXDIS C0  
0xAA  
0x00  
RXC Disable  
0xC0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Rev. 0 | Page 33 of 36  
 
 
AD8155  
Mnemonic  
Addr. Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
RXC EQ  
Setting  
0xC1  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
CEQ[3]  
CEQ[2]  
CEQ[1]  
CEQ[0]  
0x00  
RXC LOS Ctrl  
0xD1  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved; set  
to 0  
LOS_FILT  
C0EQ[2]  
Reserved;  
set to 0  
LOS_ENB  
C0EQ[0]  
0x05  
0x00  
RXC Lane 1/  
RXC Lane 0  
Setting  
0xC21 C1EQ[3]  
C1EQ[2]  
C1EQ[1]  
C1EQ[0]  
C0EQ[3]  
C0EQ[1]  
RXC P/N  
Swap  
0xC41 Reserved;  
set to 0  
0xC51 Reserved  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved; set  
to 0  
Reserved;  
set to 0  
PNC1  
PNC0  
0x00  
RXC LOS  
Status  
Reserved  
LOSC1  
sticky  
LOSC0  
sticky  
Reserved  
Reserved  
Reserved  
CPE[2]  
LOSC1  
active  
LOSC0  
active  
TXC Disable  
0xC8  
0xC9  
0xCA1  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved;  
set to 0  
Reserved  
TXDIS C1  
TXDIS C0  
0x00  
0x20  
0x00  
TXC Level/PE  
Control  
CLEV[1]  
CLEV[0]  
CPE[1]  
CPE[0]  
TXC Lane1/  
TXC Lane 0  
PE Setting  
C1PE[2]  
C1PE[1]  
C1PE[0]  
C0PE[2]  
C0PE[1]  
C0PE[0]  
TXC Per-Lane  
Level Setting  
0xCC1 Reserved  
Reserved  
Reserved  
Reserved  
C1OLEV[1]  
C1OLEV[0]  
C0OLEV[1]  
C0OLEV[0]  
0xAA  
1 Per-lane registers.  
Rev. 0 | Page 34 of 36  
 
 
 
AD8155  
OUTLINE DIMENSIONS  
0.30  
0.25  
0.18  
9.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
64  
49  
48  
1
PIN 1  
INDICATOR  
*
6.15  
6.00 SQ  
5.85  
8.75  
BSC SQ  
TOP  
VIEW  
EXPOSED PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
33  
32  
16  
17  
7.50  
REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.50 BSC  
SECTION OF THIS DATA SHEET.  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
EXCEPT FOR EXPOSED PAD DIMENSION  
Figure 52. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 mm × 9 mm Body, Very Thin Quad  
(CP-64-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
AD8155ACPZ1  
AD8155ACPZ-R71  
AD8155-EVALZ1  
−40°C to +85°C  
−40°C to +85°C  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
CP-64-2  
CP-64-2  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 35 of 36  
 
 
 
 
AD8155  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08262-0-7/09(0)  
Rev. 0 | Page 36 of 36  
 
 
 
 
 
 
 
 

相关型号:

AD8155ACPZ-R7

6.5 Gbps Dual Buffer Mux/Demux
ADI

AD8156

6.25 Gbps 4】4 Digital Crosspoint Switch with EQ
ADI

AD8156-EVALZ

6.25 Gbps 4】4 Digital Crosspoint Switch with EQ
ADI

AD8156ABCZ

6.25 Gbps 4】4 Digital Crosspoint Switch with EQ
ADI

AD8158

6.5 Gbps Quad Buffer Mux/Demux
ADI

AD8158-EVALZ

6.5 Gbps Quad Buffer Mux/Demux
ADI

AD8158ACPZ

6.5 Gbps Quad Buffer Mux/Demux
ADI

AD8159

3.2 Gbps Quad Buffer Mux/Demux
ADI

AD8159-EVAL-AC

3.2 Gbps Quad Buffer Mux/Demux
ADI

AD8159-EVAL-DC

3.2 Gbps Quad Buffer Mux/Demux
ADI

AD8159ASVZ

3.2 Gbps Quad Buffer Mux/Demux
ADI

AD815ARB-24

High Output Current Differential Driver
ADI