AD8159ASVZ [ADI]

3.2 Gbps Quad Buffer Mux/Demux; 3.2 Gbps的四路缓冲复用器/解复用器
AD8159ASVZ
型号: AD8159ASVZ
厂家: ADI    ADI
描述:

3.2 Gbps Quad Buffer Mux/Demux
3.2 Gbps的四路缓冲复用器/解复用器

解复用器 开关 复用器或开关 信号电路
文件: 总24页 (文件大小:591K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.2 Gbps  
Quad Buffer Mux/Demux  
AD8159  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Port level 2:1 mux/1:2 demux  
Each port consists of 4 lanes  
Each lane runs from dc to 3.2 Gbps, independent  
of the other lanes  
Compensates over 40 inches of FR4 at 3.2 Gbps through  
two levels of input equalization, or four levels of output  
pre-emphasis  
RECEIVE  
EQUALIZATION  
TRANSMIT  
PRE-  
EMPHASIS  
I/O  
CROSS-  
OVER  
SWITCH  
EQ  
EQ  
IN_A[3:0]  
IN_B[3:0]  
OUT_C[3:0]/  
IN_C[3:0]  
2:1  
Accepts ac- or dc-coupled differential CML inputs  
Low deterministic jitter, typically 20 ps p-p  
Low random jitter, typically 1 ps rms  
BER < 10-16  
OUT_A[3:0]  
OUT_B[3:0]  
IN_C[3:0]/  
OUT_C[3:0]  
1:2  
EQ  
QUAD  
2:1  
MULTIPLEXER/  
1:2  
RECEIVE  
EQUALIZATION  
TRANSMIT  
PRE-  
EMPHASIS  
LB_A  
LB_B  
LB_C  
PE_A[1:0]  
PE_B[1:0]  
PE_C[1:0]  
EQ_A  
EQ_B  
EQ_C  
On-chip termination  
DEMULTIPLEXER  
Reversible inputs and outputs on one port  
Unicast or bicast on 1:2 demux function  
Port level loopback capability  
Single lane switching capability  
3.3 V core supply  
CONTROL  
LOGIC  
SEL[3:0]  
BICAST  
REVERSE_C  
AD8159  
Flexible I/O supply down to 2.5 V  
Low power, typically 1 W in basic configuration  
100-pin TQFP_EP  
Figure 1.  
−40°C to +85°C operating temperature range  
APPLICATIONS  
Low cost redundancy switch  
SONET OC48/SDH16 and lower data rates  
XAUI (10 Gigabit Ethernet) over backplane  
Gigabit Ethernet over backplane  
Fibre channel 1.06 Gbps and 2.125 Gbps over backplane  
Infiniband over backplane  
PCI-Express over backplane  
GENERAL DESCRIPTION  
The main application of the AD8159 is to support redundancy  
on both the backplane side and the line interface side of a serial  
link. The device has unicast and bicast capability, so it is  
configurable to support either 1 + 1 or 1:1 redundancy.  
The AD8159 is an asynchronous, protocol agnostic, quad-lane  
2:1 switch with a total of 12 differential PECL/CML-compatible  
inputs and 12 differential CML outputs. The operation of this  
product is optimized for NRZ signaling with data rates up to  
3.2 Gbps per lane. Each lane offers two levels of input  
The AD8159 supports reversing the output and input pins on  
one of its ports, which helps to connect two ASICs with  
opposite pinouts.  
equalization and four levels of output pre-emphasis.  
The AD8159 consists of four multiplexers and four demulti-  
plexers, one per lane. Each port is a 4-lane link, and each lane  
runs up to a 3.2 Gbps data rate independent of the other lanes.  
The lanes are switched independently using the four select pins,  
SEL[3:0]; each select pin controls one lane of the port. The  
AD8159 has low latency and very low lane-to-lane skew.  
The AD8159 is also used for testing high speed serial links by  
duplicating incoming data and sending it to the destination port  
and to test equipment simultaneously.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD8159  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 15  
Input Equalization (EQ) and Output Pre-Emphasis (PE) .... 15  
Loopback ..................................................................................... 16  
Port C Reverse (Crossover) Capability.................................... 17  
Applications..................................................................................... 18  
Interfacing to the AD8159............................................................. 19  
Termination Structures.............................................................. 19  
Input Compliance....................................................................... 19  
Output Compliance ................................................................... 20  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 7  
Evaluation Board Simplified Block Diagrams ............................ 12  
Test Circuits..................................................................................... 13  
REVISION HISTORY  
4/06—Rev. 0 to Rev. A  
Changes to Applications Section .................................................... 1  
Changes to Table 5.......................................................................... 15  
Updates to Outline Dimensions ................................................... 22  
Changes to Ordering Guide .......................................................... 22  
9/05—Revision 0: Initial Version  
Rev. A | Page 2 of 24  
 
AD8159  
SPECIFICATIONS  
VCC = +3.3 V, VEE = 0 V, RL = 50 Ω, basic configuration,1 data rate= 3.2 Gbps, input common-mode voltage = 2.7 V, differential input  
swing = 800 mV p-p, @ TA = +25°C, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
DC  
Typ  
Max  
3.2  
Unit  
DYNAMIC PERFORMANCE  
Data Rate/Channel (NRZ)  
Deterministic Jitter  
Random Jitter  
Gbps  
ps p-p  
ps  
Data rate = 3.2 Gbps; see Figure 21  
RMS; see Figure 24  
20  
1
Propagation Delay  
Lane-to-Lane Skew  
Switching Time  
Input to output  
600  
100  
5
ps  
ps  
ns  
Output Rise/Fall Time  
INPUT CHARACTERISTICS  
Input Voltage Swing  
Input Voltage Range  
Input Bias Current  
Input Capacitance  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Output Voltage Range  
Output Current  
20% to 80%  
100  
ps  
Differential, VICM = VCC − 0.6 V;2 see Figure 22  
Common mode, VID = 800 mV p-p;3 see Figure 25  
200  
VEE + 1.8  
2000  
VCC + 0.3  
mV p-p  
V
μA  
pF  
4
2
Differential, PE = 0  
Single-ended absolute voltage level; see Figure 26  
Port A/B, PE_A/B = 0  
Port C, PE_C = 0  
Port A/B, PE_A/B = 3  
800  
mV p-p  
V
VCC − 1.6  
VCC + 0.6  
16  
20  
28  
32  
2
mA  
mA  
mA  
mA  
pF  
Port C, PE_C = 3  
Output Capacitance  
TERMINATION CHARACTERISTICS  
Resistance  
Temperature Coefficient  
POWER SUPPLY  
Operating Range  
VCC  
Differential  
VEE = 0 V  
90  
100 110  
0.15  
Ω
Ω/°C  
3.0  
3.3  
3.6  
V
Supply Current  
ICC  
II/O = ITTO + ITTOI + ITTI + ITTIO  
Supply Current  
ICC  
II/O = ITTO + ITTOI + ITTI + ITTIO  
THERMAL CHARACTERISTICS  
Operating Temperature Range  
θJA  
Basic configuration1, dc-coupled inputs/outputs, 400 mV I/O  
swings (800 mV p-p differential), 50 Ω far end terminations  
175  
144  
mA  
mA  
BICAST = 1, PE = 3 on all ports, dc-coupled inputs/outputs,  
400 mV I/O swings (800 mV p-p differential), 50 Ω far end  
terminations  
255  
352  
mA  
mA  
−40  
+85  
°C  
Still air  
Still air  
Still air  
29  
16  
13  
°C/W  
°C/W  
°C/W  
θJB  
θJC  
LOGIC INPUT CHARACTERISTICS  
Input High (VIH)  
Input Low (VIL)  
2.4  
VEE  
VCC  
0.8  
V
V
1 Bicast off, loopback off on all ports, pre-emphasis off on all ports, equalization set to minimum on all ports.  
2 VICM = input common-mode voltage.  
3 VID = input differential peak-to-peak voltage swing.  
Rev. A | Page 3 of 24  
 
 
AD8159  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VCC to VEE  
3.7 V  
VTTI  
VTTIO  
VTTO  
VTTOI  
VCC + 0.6 V  
VCC + 0.6 V  
VCC + 0.6 V  
VCC + 0.6 V  
4.26 W  
Internal Power Dissipation  
Differential Input Voltage  
Logic Input Voltage  
Storage Temperature Range  
Lead Temperature  
2.0 V  
VEE − 0.3 V < VIN < VCC + 0.6 V  
−65°C to +125°C  
300°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 4 of 24  
 
AD8159  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
CC  
V
CC  
PIN 1  
2
V
EQ_A  
EQ_B  
EQ_C  
SEL3  
SEL2  
SEL1  
SEL0  
LB_C  
LB_B  
LB_A  
BICAST  
3
V
V
V
EE  
EE  
EE  
4
5
6
PE_A0  
PE_A1  
7
8
PE_B0  
9
PE_B1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PE_C0  
AD8159  
PE_C1  
REVERSE_C  
TOP VIEW  
(Not to Scale)  
V
V
CC  
CC  
ON_A3  
OP_A3  
IP_B0  
IN_B0  
V
V
EE  
EE  
ON_A2  
OP_A2  
IP_B1  
IN_B1  
V
V
TTI  
TTO  
ON_A1  
OP_A1  
IP_B2  
IN_B2  
V
V
EE  
EE  
ON_A0  
OP_A0  
IP_B3  
IN_B3  
V
V
CC  
CC  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
NC = NO CONNECT  
NOTES  
1. THE AD8159 TQFP HAS AN EXPOSED PADDLE (ePAD) ON THE UNDERSIDE OF THE PACKAGE WHICH AIDS  
IN HEAT DISSIPATION. THE ePAD MUST BE ELECTRICALLY CONNECTED TO THE V SUPPLY PLANE IN ORDER  
EE  
TO MEET THERMAL SPECIFICATIONS.  
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
NC  
Type  
N/A  
Description  
1
No connect  
2, 13, 25, 26, 38, 50, 51, 63, 75, 76, 88, 100  
3 to 5, 16, 22, 29, 35, 41, 47, 54, 60, 79, 85, 91, 97  
6
7
8
9
10  
11  
12  
14  
15  
17  
18  
19, 44  
20  
21  
23  
24  
27  
VCC  
VEE  
Power  
Power  
Control  
Control  
Control  
Control  
Control  
Control  
Control  
I/O  
I/O  
I/O  
I/O  
Power  
I/O  
Positive supply  
Negative supply  
Pre-emphasis control for Port A (LSB)  
PE_A0  
PE_A1  
PE_B0  
PE_B1  
PE_C0  
PE_C1  
REVERSE_C  
ON_A3  
OP_A3  
ON_A2  
OP_A2  
VTTO  
ON_A1  
OP_A1  
ON_A0  
OP_A0  
IN_A3  
Pre-emphasis control for Port A (MSB)  
Pre-emphasis control for Port B (LSB)  
Pre-emphasis control for Port B (MSB)  
Pre-emphasis control for Port C (LSB)  
Pre-emphasis control for Port C (MSB)  
Reverse inputs and outputs on Port C  
High speed output complement  
High speed output  
High speed output complement  
High speed output  
Port A and Port B output termination supply  
High speed output complement  
High speed output  
I/O  
I/O  
I/O  
I/O  
High speed output complement  
High speed output  
High speed input complement  
Rev. A | Page 5 of 24  
 
AD8159  
Pin No.  
28  
30  
31  
32, 57  
33  
34  
36  
37  
39  
40  
42  
43  
45  
46  
48  
49  
52  
53  
55  
56  
58  
59  
61  
62  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
77  
78  
80  
81  
82  
83  
84  
86  
87  
89  
90  
92  
93  
94  
95  
96  
98  
99  
Mnemonic  
IP_A3  
IN_A2  
IP_A2  
VTTI  
Type  
I/O  
I/O  
I/O  
Power  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Control  
Control  
Control  
Control  
Control  
Control  
Control  
Control  
Control  
Control  
Control  
I/O  
I/O  
I/O  
I/O  
Power  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Power  
I/O  
I/O  
I/O  
I/O  
Description  
High speed input  
High speed input complement  
High speed input  
Port A and Port B input termination supply  
High speed input complement  
High speed input  
High speed input complement  
High speed input  
High speed output complement  
High speed output  
High speed output complement  
High speed output  
High speed output complement  
High speed output  
High speed output complement  
High speed output  
High speed input complement  
High speed input  
High speed input complement  
High speed input  
High speed input complement  
High speed input  
High speed input complement  
High speed input  
IN_A1  
IP_A1  
IN_A0  
IP_A0  
ON_B3  
OP_B3  
ON_B2  
OP_B2  
ON_B1  
OP_B1  
ON_B0  
OP_B0  
IN_B3  
IP_B3  
IN_B2  
IP_B2  
IN_B1  
IP_B1  
IN_B0  
IP_B0  
BICAST  
LB_A  
Bicast enable  
Loopback enable for Port A  
Loopback enable for Port B  
Loopback enable for Port C  
A/B select for Lane 0  
LB_B  
LB_C  
SEL0  
SEL1  
A/B select for Lane 1  
SEL2  
A/B select for Lane 2  
SEL3  
A/B select for Lane 3  
EQ_C  
EQ_B  
EQ_A  
Equalization control for Port C  
Equalization control for Port B  
Equalization control for Port A  
High speed input/output complement  
High speed input/output  
High speed input/output complement  
High speed input/output  
Port C input/output termination supply  
High speed input/output complement  
High speed input/output  
High speed input/output complement  
High speed input/output  
High speed output/input complement  
High speed output/input  
High speed output/input complement  
High speed output/input  
Port C output/input termination supply  
High speed output/input complement  
High speed output/input  
High speed output/input complement  
High speed output/input  
ION_C3  
IOP_C3  
ION_C2  
IOP_C2  
VTTIO  
ION_C1  
IOP_C1  
ION_C0  
IOP_C0  
OIN_C3  
OIP_C3  
OIN_C2  
OIP_C2  
VTTOI  
OIN_C1  
OIP_C1  
OIN_C0  
OIP_C0  
Rev. A | Page 6 of 24  
AD8159  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC = +3.3 V, VEE = 0 V, RL = 50 Ω, basic configuration, data rate = 3.2 Gbps, input common-mode voltage = 2.7 V, differential input  
swing = 800 mV p-p, TA = 25°C, unless otherwise noted.  
Note: All graphs were generated using the setup shown in Figure 32, unless otherwise specified.  
0
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
0
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
0.9  
0.9  
1.0  
1.0  
1.0  
39.0625ps/DIV  
TIME (Unit Interval)  
Figure 3. Output Port A Eye Diagram 3.2 Gbps  
Input Port A or Input Port C  
Figure 6. Output Port A Bathtub Curve 3.2 Gbps  
0
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
39.0625ps/DIV  
TIME (Unit Interval)  
Figure 7. Output Port B Bathtub Curve 3.2 Gbps  
Figure 4. Output Port B Eye Diagram  
Input Port B or Input Port C  
0
–2  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
39.0625ps/DIV  
TIME (Unit Interval)  
Figure 5. Output Port C Eye Diagram 3.2 Gbps  
Input Port A or Input Port B  
Figure 8. Output Port C Bathtub Curve 3.2 Gbps  
Rev. A | Page 7 of 24  
 
AD8159  
39.0625ps/DIV  
39.0625ps/DIV  
Figure 9. Eye Diagram over Backplane  
(18” FR4 + 2 GbX Connectors), PE = 0  
Figure 12. Eye Diagram over Backplane  
(18” FR4 + 2 GbX Connectors), PE = 1  
39.0625ps/DIV  
39.0625ps/DIV  
Figure 10. Eye Diagram over Backplane  
(30” FR4 + 2 GbX Connectors), PE = 0  
Figure 13. Eye Diagram over Backplane  
(30” FR4 + 2 GbX Connectors), PE = 2  
39.0625ps/DIV  
39.0625ps/DIV  
Figure 11. Eye Diagram over Backplane  
(36” FR4 + 2 GbX Connectors), PE = 0  
Figure 14. Eye Diagram over Backplane  
(36” FR4 + 2 GbX Connectors), PE = 3  
Rev. A | Page 8 of 24  
AD8159  
39.0625ps/DIV  
39.0625ps/DIV  
Figure 15. Eye Diagram over Backplane  
(42” FR4 + 2 GbX Connectors), PE = 0  
Figure 18. Eye Diagram over Backplane  
(42” FR4 + 2 GbX Connectors), PE = 3  
39.0625ps/DIV  
39.0625ps/DIV  
Figure 16. Reference Eye Diagram for Figure 19  
Figure 19. Eye Diagram with Equalization  
(10” FR4), EQ = 0  
Note: See Figure 34 for Test Circuit Used  
39.0625ps/DIV  
39.0625ps/DIV  
Figure 17. Reference Eye Diagram for Figure 20  
Figure 20. Eye Diagram with Equalization  
(34” FR4 + 2 GbX Connectors), EQ = 1  
Note: See Figure 34 for Test Circuit Used  
Rev. A | Page 9 of 24  
 
 
 
 
AD8159  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–3ps  
–2ps  
–1ps  
0s  
1ps  
2ps  
3ps  
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6  
DATA RATE (Gbps)  
Figure 21. Deterministic Jitter vs. Data Rate  
Figure 24. Random Jitter Histogram  
Note: See Figure 35 for Test Circuit Used  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VICM = 2.7V  
DIFFERENTIAL INPUT SWING = 800mV p-p  
INPUT A/B  
INPUT C  
INPUT C  
INPUT A/B  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
DIFFERENTIAL INPUT SWING (mV p-p)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 22. Deterministic Jitter vs. Differential Input Swing  
Figure 25. Deterministic Jitter vs. Input Common-Mode Voltage  
100  
100  
90  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
OUTPUT C  
70  
60  
50  
40  
30  
INPUT C  
INPUT A/B  
20  
OUTPUT A/B  
10  
0
1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
V
(V)  
CC  
OUTPUT TERMINATION VOLTAGE (V)  
Figure 23. Deterministic Jitter vs. Core Supply Voltage  
Figure 26. Deterministic Jitter vs. Output Termination Voltage  
Rev. A | Page 10 of 24  
 
 
 
 
 
AD8159  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 27. Deterministic Jitter vs. Temperature  
Figure 28. Transition Time vs. Temperature  
Note: See Figure 33 for Test Circuit Used  
Rev. A | Page 11 of 24  
 
AD8159  
EVALUATION BOARD SIMPLIFIED BLOCK DIAGRAMS  
AD8159-EVAL-AC  
AC-COUPLED  
EVALUATION BOARD  
3.3V  
V
TTIO  
/
V
V
V
/
TTI  
CC  
TTO  
TTOI  
V
AD8159  
100DIFF.  
TRACE  
INPUT A  
100DIFF.  
0.1µF  
TRACE  
A
B
OUTPUT C  
100DIFF.  
TRACE  
C
0.1µF  
INPUT B  
INPUT C  
AD8159  
0.1µF  
100DIFF.  
TRACE  
AC-COUPLED  
EVALUATION BOARD  
A
B
OUTPUT A  
OUTPUT B  
C
100DIFF.  
TRACE  
0.1µF  
100DIFF.  
TRACE  
0.1µF  
0.1µF  
V
EE  
5"  
5"  
Figure 29. AC-Coupled Evaluation Board Simplified Block Diagram  
AD8159-EVAL-DC  
DC-COUPLED  
EVALUATION BOARD  
V
TTIO  
/
V
V
V
/
TTI  
CC  
TTO  
TTOI  
V
AD8159  
100DIFF.  
TRACE  
INPUT A  
100DIFF.  
TRACE  
A
B
OUTPUT C  
100DIFF.  
TRACE  
C
INPUT B  
INPUT C  
AD8159  
100DIFF.  
TRACE  
DC-COUPLED  
EVALUATION BOARD  
A
B
OUTPUT A  
OUTPUT B  
C
100DIFF.  
TRACE  
100DIFF.  
TRACE  
V
EE  
5"  
5"  
–3.3V  
Figure 30. DC-Coupled Evaluation Board Simplified Block Diagram  
Rev. A | Page 12 of 24  
 
AD8159  
TEST CIRCUITS  
All graphs were generated using the setup shown in Figure 32, unless otherwise specified.  
TERADYNE FR4 TEST BACKPLANE  
GBX4 TO SMA DAUGHTER CARDS  
0.25"  
DIFFERENTIAL STRIPLINE TRACES  
8mm WIDE, 8mm SPACE, 8mm HEIGHT  
TRACE LENGTHS = 6", 18", 24", 30" + 3" × 2 DAUGHTER CARDS  
Figure 31. Test Backplane  
HIGH SPEED  
REAL-TIME  
50CABLE  
OSCILLOSCOPE  
A
B
DATA OUT  
50CABLE  
50CABLE  
TEST BACKPLANE  
C
50Ω  
PATTERN  
GENERATOR  
AD8159  
AC-COUPLED  
EVALUATION BOARD  
A
B
C
50Ω  
50Ω  
NOTES  
1. SINGLE-ENDED REPRESENTATION  
Figure 32. AC-Coupled Test Circuit  
HIGH SPEED  
REAL-TIME  
50CABLE  
OSCILLOSCOPE  
A
B
DATA OUT  
50CABLE  
50CABLE  
TEST BACKPLANE  
C
PATTERN  
GENERATOR  
50Ω  
AD8159  
DC-COUPLED  
EVALUATION BOARD  
A
B
C
50Ω  
50Ω  
NOTES  
1. SINGLE-ENDED REPRESENTATION  
Figure 33. DC-Coupled Test Circuit  
Note: Test Circuit Used for Figure 28  
Rev. A | Page 13 of 24  
 
 
 
 
AD8159  
DEVICE UNDER TEST  
A
B
C
HIGH SPEED  
REAL-TIME  
OSCILLOSCOPE  
50  
50CABLE  
AD8159  
A
B
DATA OUT  
50CABLE  
50CABLE  
DC-COUPLED  
EVALUATION BOARD  
A
B
TEST BACKPLANE  
C
C
50CABLE  
50Ω  
50Ω  
PATTERN  
GENERATOR  
AD8159  
DC-COUPLED  
EVALUATION BOARD  
A
B
C
50Ω  
50Ω  
NOTES  
1. SINGLE-ENDED REPRESENTATION  
Figure 34. Equalization Test Circuit  
Note: Test Circuit Used for Figure 19 and Figure 20  
HIGH SPEED  
SAMPLING  
50CABLE  
OSCILLOSCOPE  
A
B
DATA OUT  
50CABLE  
C
PATTERN  
GENERATOR  
50Ω  
AD8159  
AC-COUPLED  
EVALUATION BOARD  
A
B
50Ω  
50Ω  
C
NOTES  
1. SINGLE-ENDED REPRESENTATION  
Figure 35. Random Jitter Test Circuit  
Note: Test Circuit Used for Figure 24  
Rev. A | Page 14 of 24  
 
 
AD8159  
THEORY OF OPERATION  
The AD8159 relays received data on the demultiplexer Input  
Port C to Output Port A and/or Output Port B, depending on  
the mode selected by the BICAST control pin. On the  
multiplexer side, the AD8159 relays received data on either  
Input Port A or Input Port B to Output Port C, based on the  
SEL[3:0] pin states.  
INPUT EQUALIZATION (EQ) AND OUTPUT  
PRE-EMPHASIS (PE)  
In backplane applications, the AD8159 needs to compensate  
for signal degradation over potentially long traces. The device  
supports two levels of input equalization, configured on a per-  
port basis. Table 6 to Table 8 summarize the high-frequency  
gain (EQ) for each control setting as well as the typical length  
of backplane trace that can be compensated for each setting.  
The AD8159 is configured by toggling control pins. On the demul-  
tiplexer side, when the device is configured in the unicast mode,  
it sends the received data on Input Port C to Output Port A or  
Output Port B. When the device is configured in the bicast mode,  
received data on Input Port C is sent to both Output Port A and  
Output Port B.  
The AD8159 also has four levels of output pre-emphasis,  
configured for each port. The pre-emphasis circuitry adds  
a controlled amount of overshoot to the output waveform  
to compensate for the loss in a backplane trace.  
Table 9 to Table 11 summarize the high-frequency gain, amount  
of overshoot, and the typical backplane channel length (including  
two connectors) that can be compensated using each setting. A  
typical backplane is made of FR4 material with 8 mil wide trace  
and 8 mil spacing loosely coupled differential traces. Each  
backplane channel consists of two connectors. The total length  
of the channel includes three inches of traces on each card.  
On the multiplexer side, only received data on Input Port A or  
Input Port B is sent to Output Port C, depending on the state of  
the SEL[3:0] pins. Table 4 summarizes port selection and  
configuration when loopback is disabled (LB_A = LB_B = LB_C  
= 0).  
When the device is in unicast mode, the output lanes on either  
Port A or Port B are in an idle state. In the idle state, the output  
tail current is set to 0, and the P and N sides of the lane are  
pulled up to the output termination voltage through the on-chip  
termination resistors.  
Table 4. Port Selection and Configuration Table  
SEL  
BICAST  
OUT_A  
IN_C  
IN_C  
Idle  
OUT_B  
OUT_C  
IN_A  
IN_A  
IN_B  
0
0
1
1
0
1
0
1
Idle  
IN_C  
IN_C  
IN_C  
IN_C  
IN_B  
Table 5. Port C I/O Selection  
Port C Pin List on  
100-Lead TQFP  
Port C when REVERSE_C = 0  
Input/Output  
Port C when REVERSE_C = 1  
Pin Name  
Pin Name  
Input/Output  
Output pin  
Output pin  
Output pin  
Output pin  
Output pin  
Output pin  
Output pin  
Output pin  
Input pin  
77  
78  
80  
81  
83  
84  
86  
87  
89  
90  
92  
93  
95  
96  
98  
99  
ION_C3 = INN_C3  
IOP_C3 = INP_C3  
ION_C2 = INN_C2  
IOP_C2 = INP_C2  
ION_C1 = INN_C1  
IOP_C1 = INP_C1  
ION_C0 = INN_C0  
IOP_C0 = INP_C0  
OIN_C3 = OUTN_C3  
OIP_C3 = OUTP_C3  
OIN_C2 = OUTN_C2  
OIP_C2 = OUTP_C2  
OIN_C1 = OUTN_C1  
OIP_C1 = OUTP_C1  
OIN_C0 = OUTN_C0  
OIP_C0 = OUTP_C0  
Input pin  
Input pin  
Input pin  
Input pin  
Input pin  
Input pin  
Input pin  
Input pin  
Output pin  
Output pin  
Output pin  
Output pin  
Output pin  
Output pin  
Output pin  
Output pin  
ION_C3 = OUTN_C3  
IOP_C3 = OUTP_C3  
ION_C2 = OUTN_C2  
IOP_C2 = OUTP_C2  
ION_C1 = OUTN_C1  
IOP_C1 = OUTP_C1  
ION_C0 = OUTN_C0  
IOP_C0 = OUTP_C0  
OIN_C3 = INN_C3  
OIP_C3 = INP_C3  
OIN_C2 = INN_C2  
OIP_C2 = INP_C2  
OIN_C1 = INN_C1  
OIP_C1 = INP_C1  
OIN_C0 = INN_C0  
OIP_C0 = INP_C0  
Input pin  
Input pin  
Input pin  
Input pin  
Input pin  
Input pin  
Input pin  
Rev. A | Page 15 of 24  
 
 
 
AD8159  
Table 6. IN_C Port Input Equalization Settings  
Table 10. OUT_A Port Output Pre-Emphasis Settings  
EQ_C  
EQ  
Typical Backplane Length  
Typical  
Backplane  
Overshoot Length  
0
1
6 dB  
12 dB  
0 to 20 inches  
20 to 40+ inches  
PE_A[1] PE_A[0] PE  
0
0
1
1
0
1
0
1
0 dB  
0% 0 to 10 inches  
1.9 dB 15%  
3.5 dB 35%  
4.9 dB 60%  
10 to 20 inches  
20 to 30 inches  
30 to 40+ inches  
Table 7. IN_A Port Input Equalization Settings  
EQ_A  
0
1
EQ  
Typical Backplane Length  
6 dB  
12 dB  
0 to 20 inches  
20 to 40+ inches  
Table 11. OUT_B Port Output Pre-Emphasis Settings  
Typical  
Backplane  
Overshoot Length  
Table 8. IN_B Port Input Equalization Settings  
EQ_B  
EQ  
Typical Backplane Length  
PE_B[1] PE_B[0] PE  
0
1
6 dB  
12 dB  
0 to 20 inches  
20 to 40+ inches  
0
0
1
1
0
1
0
1
0 dB  
0% 0 to 10 inches  
1.9 dB 15%  
3.5 dB 35%  
4.9 dB 60%  
10 to 20 inches  
20 to 30 inches  
30 to 40+ inches  
Table 9. OUT_C Port Output Pre-Emphasis Settings  
Typical  
Backplane  
Length  
LOOPBACK  
PE_C[1] PE_C[0] PE  
Overshoot  
0
0
1
1
0
1
0
1
0 dB  
0%  
0 to 10 inches  
10 to 20 inches  
20 to 30 inches  
30 to 40+ inches  
The AD8159 also supports port level loopback, illustrated in  
Figure 36. The loopback control pins override the lane select  
(SEL[3:0]) and bicast control (BICAST) pins. Table 12 summa-  
rizes the different loopback configurations.  
1.9 dB 15%  
3.5 dB 35%  
4.9 dB 60%  
X4  
OUT_A[3:0]  
X4  
IN_C[3:0]  
1:2 DEMUX  
X4  
OUT_B[3:0]  
PORT A LOOPBACK  
PORT B LOOPBACK  
PORT C LOOPBACK  
X4  
IN_A[3:0]  
X4  
2:1 MUX  
OUT_C[3:0]  
X4  
IN_B[3:0]  
Figure 36. Port-Based Loopback Capability  
Rev. A | Page 16 of 24  
 
 
 
 
 
 
AD8159  
Table 12. Loopback, Bicast, and Port Select Settings1  
LB_A  
LB_B  
LB_C  
SEL  
BICAST  
OUT_A  
IN_C  
IN_C  
Idle  
IN_C  
IN_C  
IN_C  
Idle  
IN_C  
Idle  
IN_C  
IN_C  
Idle  
IN_C  
IN_A  
IN_A  
IN_A  
IN_A  
IN_A  
IN_A  
IN_A  
IN_A  
IN_A  
OUT_B  
Idle  
IN_C  
IN_C  
IN_C  
Idle  
IN_C  
IN_C  
IN_B  
IN_B  
IN_B  
IN_B  
IN_B  
IN_B  
Idle  
IN_C  
IN_C  
Idle  
IN_C  
IN_C  
IN_B  
IN_B  
IN_B  
OUT_C  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
0
0
1
1
0
X
1
0
1
1
0
1
X
0
0
1
0
X
1
0
1
0
1
0
1
0
X
0
1
X
0
1
0
1
X
0
1
X
X
X
X
IN_A  
IN_A  
IN_B  
IN_B  
IN_C  
IN_C  
IN_C  
IN_A  
IN_B  
IN_B  
IN_C  
IN_C  
IN_C  
IN_A  
IN_A  
IN_B  
IN_C  
IN_C  
IN_C  
IN_A  
IN_B  
IN_C  
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
0
0
1
0
1
X
1 Switching is done on a lane-by-lane basis, but input equalization, output pre-emphasis, and loopback are set for each port.  
PORT C REVERSE (CROSSOVER) CAPABILITY  
X4  
Port C has a reversible I/O capability. The sense (input vs.  
output) of the Port C pins can be swapped by toggling the  
REVERSE_C control pin. This feature has been added to  
facilitate the connection to different ASICs that may have  
the opposite pinouts.  
OUT_A[3:0]  
OUT_B[3:0]  
X4  
I/O  
SWITCH  
1:2 DEMUX  
IN_C [3:0]/OUT_C[3:0]  
X4  
REVERSE_C  
X4  
X4  
X4  
Figure 37 illustrates the reversible I/O function of Port C, and  
Table 5 describes this function in a selection table that  
corresponds to a TQFP-100 package. Please note that the  
reverse capability is supported only on Port C.  
X4  
X4  
IN_A[3:0]  
IN_B[3:0]  
I/O  
SWITCH  
2:1 MUX  
OUT_C [3:0]/IN_C[3:0]  
Figure 37. Port C Reverse I/O Capability  
Rev. A | Page 17 of 24  
 
 
 
 
AD8159  
APPLICATIONS  
The main application of the AD8159 is to support redundancy  
on both the backplane side and the line interface side of a serial  
link. Each port consists of four lanes to support standards such  
as XAUI. Figure 38 illustrates redundancy in an XAUI backplane  
system. Each line card is connected to two switch fabrics  
(primary and redundant). The device can be configured to  
support either 1 + 1 or 1:1 redundancy.  
Another application for the AD8159 is test equipment for  
evaluating high speed serial I/Os running at data rates at or  
lower than 3.2 Gbps. Figure 40 illustrates a possible application  
of the AD8159 in a simple XAUI link tester.  
FABRIC INTERFACE  
TRAFFIC MANAGERS  
NETWORK PROCESSOR  
PRIMARY  
SWITCH  
FABRIC  
PHYSICAL  
INTERFACE  
MACs  
FRAMERS  
AD8159  
LINE CARDS  
REDUNDANT  
SWITCH  
FABRIC  
FABRIC INTERFACE  
TRAFFIC MANAGERS  
NETWORK PROCESSOR  
PHYSICAL  
INTERFACE  
MACs  
FRAMERS  
AD8159  
BACKPLANE  
FABRIC CARDS  
Figure 38. Using the AD8159 for Switch Redundancy  
PRIMARY  
MODULE  
FABRIC INTERFACE  
TRAFFIC MANAGERS  
NETWORK PROCESSOR  
MACs  
FRAMERS  
REDUNDANT  
MODULE  
LINE CARD  
Figure 39. Using the AD8159 for Line Interface Redundancy  
CONNECT TO DEVICE UNDER TEST  
CONNECTOR  
PORT B  
CONNECT TO PROTOCOL  
ANALYZER  
PORT A  
PORT C  
FPGA  
TEST CARD  
GENERATES SIMPLE  
PATTERNS  
Figure 40. Using the AD8159 in Test Equipment  
Rev. A | Page 18 of 24  
 
 
 
AD8159  
INTERFACING TO THE AD8159  
For output ports, there are two 50 Ω resistors connected to the  
termination supply. Note that the differential input resistance  
for both structures is the same, 100 Ω.  
TERMINATION STRUCTURES  
To determine the best strategy for connecting to the high speed  
pins of the AD8159, the user must first be familiar with the on-  
chip termination structures. The AD8159 contains two types of  
these structures (see Figure 41 and Figure 42): one type for input  
and bidirectional ports and one type for output ports.  
INPUT COMPLIANCE  
The range of allowable input voltages is determined by the  
fundamental limitations of the active input circuitry. This range  
of signals is normally a function of the common-mode level of  
the input signal, the signal swing, and the supply voltage. For a  
given input signal swing, there is a range of common-mode  
voltages that keeps the high and low voltage excursions within  
acceptable limits. Similarly, for a given common-mode input  
voltage there is a maximum acceptable input signal swing.  
There is also a minimum signal swing that the active input  
circuitry can resolve reliably.  
V
/V  
/V  
TTI TTIO TTOI  
54.5  
54.5Ω  
P
N
1173Ω  
Figure 41. Termination Structure: Input and Bidirectional Ports  
V
TTO  
Figure 22 and Figure 25 summarize the input voltage ranges for  
all ports. Note that the input range is different when comparing  
bidirectional ports to strictly input ports. This is a consequence  
of the additional circuitry required to support the bidirectional  
feature on Port C.  
50  
50Ω  
P
N
Figure 42. Output Ports  
For input and bidirectional ports, the termination structure  
consists of two 54.5 Ω resistors connected to a termination  
supply and an 1173 Ω resistor connected across the differential  
inputs, the latter being a result of the finite differential input  
impedance of the equalizer.  
AC Coupling  
One way to simplify the input circuit and make it compatible  
with a wide variety of driving devices is to use ac coupling. This  
has the effect of isolating the dc common-mode levels of the  
driver and the AD8159 input circuitry. AC coupling requires a  
capacitor in series with each single-ended input signal, as shown  
in Figure 43. This should be done in a manner that does not  
interfere with the high speed signal integrity of the PCB.  
V
V
/V  
V
CC  
CC  
TTI TTIO  
50Ω  
50Ω  
54.5Ω  
54.5Ω  
C
P
IP  
IN  
C
N
1173Ω  
VEE  
AD8159  
DRIVER  
Figure 43. AC-Coupling Input Signal of AD8159  
Rev. A | Page 19 of 24  
 
 
 
 
AD8159  
DC Coupling  
When ac coupling is used, the common-mode level at the input  
of the device is equal to VTTI. The single-ended input signal  
swings above and below VTTI equally. The user can then use  
Figure 22 and Figure 25 to determine the acceptable range of  
common-mode levels and signal swing levels that satisfy the  
input range of the AD8159.  
First, consider the dc-coupled case (see Figure 44). A lane on  
Output Port A or Output Port B on the AD8159 is dc-coupled  
to a receiving device. In this example, the output termination  
voltage (VTTO) on the AD8159 is set to the same level as the  
input termination voltage (VTTIR) on the receiving device, and  
this level sets the high value (VHI) of the single-ended output  
voltage. With pre-emphasis low (PE = 0), the maximum single-  
ended current is 16 mA1, which flows through the parallel  
combination of the 50 ꢀ on-chip resistor and the 50 Ω far end  
termination. Therefore, the low value (VLO) of the output  
voltage is equal to  
If dc coupling is required, determining the input common-  
mode level is less straightforward because the configuration of  
the driver must be also be considered. In most cases, the user  
would set VTTI on the AD8159 to the same level as the driver  
output termination voltage, VTTOD. This prevents a continuous  
dc current from flowing between the two supply nets. As a  
practical matter, both devices can be terminated to the same  
physical supply net.  
V
TTO − 16 mA × (50 Ω || 50 Ω) = VTTO − 400 mV  
Because the minimum allowed voltage at the output is  
Consider the following example: A driver is dc-coupled to the  
input of the AD8159. The AD8159 input termination voltage  
(VTTI) and the driver output termination voltage (VTTOD) are both  
set to the same level; that is, VTTI = VTTOD = 3.3 V. If an 800 mV  
differential p-p swing is desired, the total output current of the  
driver is 16 mA. At balance, the output current is divided evenly  
between the two sides of the differential signal path, 8 mA to each  
side. This 8 mA of current flows through the parallel combina-  
tion of the 54.5 Ω input termination resistor on the AD8159  
and the 50 Ω output termination resistor on the driver, resulting  
in a common-mode level of  
V
CC − 1.6 V, the lowest acceptable value for VTTO is  
V
CC − 1.6 V + 0.4 V = VCC − 1.2 V  
Increasing pre-emphasis to its highest level (PE = 3) results in  
a maximum, single-ended current of 28 mA.2 In this case  
V
LO = VTTO − 28 mA × (50 Ω || 50 Ω) = VTTO − 700 mV  
As a result, the lowest acceptable value for VTTO is  
CC − 1.6 V + 0.7 V = VCC − 0.9 V  
V
It is expected that the minimum VTTO is 300 mV higher than the  
case when PE = 0, because increasing the pre-emphasis level  
results in a 300 mV lower voltage excursion at the output.  
V
TTI − 8 mA × (50 Ω || 54.5 Ω) = VTTI − 209 mV  
The user can then use Figure 25 to determine the allowable  
range of values for VTTI that meets the input compliance range  
based on an 800 mV p-p differential swing.  
1 The output current for Port C when PE_C = 0 is slightly higher, 20 mA. The  
extra 4 mA of current (compared to Port A/Port B) is needed to support the  
bidirectional feature.  
OUTPUT COMPLIANCE  
2 The output current for Port C when PE_C = 3 is 32 mA, for the same reason  
as stated in Endnote 1.  
Not surprisingly, there is also a range of voltages that satisfies  
the requirements of the output devices. This range is specified  
as the minimum and maximum voltage (with respect to VCC  
)
allowed at an output pin.  
V
V
TTO  
TTIR  
AD8159  
50  
50Ω  
OP  
ON  
RECEIVING DEVICE  
PORT A/B: (16 + 4 × PE) mA  
PORT C: (20 + 4 × PE) mA  
V
EE  
Figure 44. DC-Coupling Output Signal from AD8159  
Rev. A | Page 20 of 24  
 
 
 
AD8159  
AC Coupling  
The lowest acceptable value for VTTO is  
CC − 1.6 V + 0.6 V = VCC − 1.0 V  
In general, more VTTO supply headroom is required with ac-  
coupled outputs. When the outputs are ac-coupled, the average  
single-ended current does not see the far end 50 Ω termination  
because the capacitor acts as a dc block. For example, with  
PE = 0, the single-ended output current alternates from 0 mA  
to 16 mA, or 8 mA on average. This 8 mA current flows entirely  
through the on-chip 50 Ω termination resistor due to the dc  
block.  
V
The same exercise can be repeated for other pre-emphasis  
settings.  
Output Compliance Table  
To simplify the task of interfacing to the AD8159 output,  
Table 13 is useful as a quick-reference. It provides the minimum  
and maximum values for output termination voltage for both  
ac and dc coupling. The values in the table are valid for any pre-  
emphasis setting.  
The single-ended output voltage has an average value of  
V
TTO − 8 mA × 50 Ω = VTTO − 400 mV  
Table 13. Output Compliance  
For appropriate data patterns,1 the capacitor acts as a short and  
the voltage swing is 400 mV p-p, identical to the dc-coupled case.  
The low output voltage is, therefore,  
AC-Coupled  
DC-Coupled  
Minimum Maximum  
Minimum Maximum  
(V)  
(V)  
(V)  
(V)  
VTTO VCC – 0.5  
VTTOI VCC – 0.4  
VCC + 0.6  
VCC + 0.6  
VCC – 0.9  
VCC – 0.8  
VCC + 0.6  
VCC + 0.6  
V
TTO − 400 mV − 200 mV = VTTO − 600 mV  
1AC coupling requires that the signal pattern have no long term dc  
component. Codes such as 8b/10b, for example, ensure that the data  
pattern is benign in an ac-coupled link.  
Rev. A | Page 21 of 24  
 
 
AD8159  
OUTLINE DIMENSIONS  
16.00 BSC SQ  
1.20  
MAX  
0.75  
0.60  
0.45  
14.00 BSC SQ  
100  
1
76  
75  
76  
75  
100  
1
PIN 1  
EXPOSED  
PAD  
5.00 SQ  
TOP VIEW  
(PINS DOWN)  
0° MIN  
1.05  
1.00  
0.95  
0.20  
0.09  
7°  
BOTTOM VIEW  
(PINS UP)  
51  
51  
25  
25  
26  
50  
50  
26  
3.5°  
0°  
0.08 MAX  
COPLANARITY  
0.50 BSC  
LEAD PITCH  
0.27  
0.22  
0.17  
VIEW A  
0.15  
0.05  
SEATING  
PLANE  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-AED-HD  
NOTES  
1. CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED.  
2. THE AD8159 HAS A CONDUCTIVE HEAT SLUG TO HELP DISSIPATE HEAT AND ENSURE RELIABLE OPERATION OF  
THE DEVICE OVER THE FULL INDUSTRIAL TEMPERATURE RANGE. THE SLUG IS EXPOSED ON THE BOTTOM OF  
THE PACKAGE AND ELECTRICALLY CONNECTED TO V . IT IS RECOMMENDED THAT NO PCB SIGNAL  
EE  
TRACES OR VIAS BE LOCATED UNDER THE PACKAGE THAT COULD COME IN CONTACT WITH THE CONDUCTIVE  
SLUG. ATTACHING THE SLUG TO A V PLANE WILL REDUCE THE JUNCTION TEMPERATURE OF THE  
EE  
DEVICE WHICH MAY BE BENEFICIAL IN HIGH TEMPERATURE ENVIRONMENTS.  
Figure 45. 100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]  
(SV-100-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
AD8159ASVZ1  
100-Lead TQFP_EP  
DC-Coupled Evaluation Board  
AC-Coupled Evaluation Board  
SV-100-4  
AD8159-EVAL-DC  
AD8159-EVAL-AC  
1 Z = Pb-free part.  
Rev. A | Page 22 of 24  
 
 
AD8159  
NOTES  
Rev. A | Page 23 of 24  
AD8159  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05611-0-4/06(A)  
Rev. A | Page 24 of 24  

相关型号:

AD815ARB-24

High Output Current Differential Driver
ADI

AD815ARB-24-REEL

High Output Current Differential Driver
ADI

AD815ARBZ-24

High Output Current Differential Driver
ADI

AD815AVR

High Output Current Differential Driver
ADI

AD815AY

High Output Current Differential Driver
ADI

AD815AYS

High Output Current Differential Driver
ADI

AD815_05

High Output Current Differential Driver
ADI

AD816

500 mA Differential Driver and Dual Low Noise VF Amplifiers
ADI

AD816*

500 mA Differential Driver and Dual Low Noise (VF) Amplifiers
ETC

AD816AVR

500 mA Differential Driver and Dual Low Noise VF Amplifiers
ADI

AD816AY

500 mA Differential Driver and Dual Low Noise VF Amplifiers
ADI

AD816AYR

Analog IC
ETC