AD8158-EVALZ [ADI]

6.5 Gbps Quad Buffer Mux/Demux; 6.5 Gbps的四路缓冲复用器/解复用器
AD8158-EVALZ
型号: AD8158-EVALZ
厂家: ADI    ADI
描述:

6.5 Gbps Quad Buffer Mux/Demux
6.5 Gbps的四路缓冲复用器/解复用器

解复用器
文件: 总36页 (文件大小:709K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
6.5 Gbps  
Quad Buffer Mux/Demux  
AD8158  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Quad 2:1 mux/1:2 demux  
TRANSMIT  
RECEIVE  
PRE-  
Optimized for dc to 6.5 Gbps NRZ data  
Per-lane P/N pair inversion for routing ease  
Programmable input equalization  
Compensates up to 40 inches of FR4  
Loss-of-signal detection  
EQUALIZATION  
EMPHASIS  
EQ  
EQ  
Ix_A[3:0]  
Ix_B[3:0]  
2:1  
Ox_C[3:0]  
Programmable output pre-emphasis up to 12 dB  
Programmable output levels with squelch and disable  
Accepts ac-coupled or dc-coupled differential CML inputs  
50 Ω on-chip termination  
Ox_A[3:0]  
Ox_B[3:0]  
1:2  
EQ  
Ix_C[3:0]  
1:2 demux supports unicast or bicast operation  
Port-level loopback  
Port or single lane switching  
TRANSMIT  
PRE-  
EMPHASIS  
QUAD  
2:1  
RECEIVE  
EQUALIZATION  
MULTIPLEXER/  
1:2  
DEMULTIPLEXER  
1.8 V to 3.3 V flexible core supply  
LB_A  
User-settable I/O supply from VCC to 1.2 V  
Low power, typically 2.0 W in basic configuration  
100-lead LFCSP  
LB_B  
LB_C  
PE_A  
PE_B  
SCL  
SDA  
PE_C  
2
I C  
−40°C to +85°C operating temperature range  
EQ_A[1:0]  
EQ_B[1:0]  
EQ_C[1:0]  
SEL[3:0]  
BICAST  
SEL4G  
RESETb  
LOS_INT  
TOGGLE  
CONTROL  
LOGIC  
I2C_A0  
I2C_A1  
I2C_A2  
CONTROL  
LOGIC  
APPLICATIONS  
Low cost redundancy switch  
SONET OC48/SDH16 and lower data rates  
XAUI/GbE/FC/Infiniband over backplane  
OIF CEI 6.25 Gbps over backplane  
Serial data-level shift  
AD8158  
Figure 1.  
4-/8-/12-lane equalizers or redrivers  
GENERAL DESCRIPTION  
The AD8158 is an asynchronous, protocol-agnostic, quad-lane  
2:1 switch with a total of 12 differential CML inputs and  
12 differential CML outputs. The signal path supports NRZ  
signaling with data rates up to 6.5 Gbps per lane. Each lane  
offers programmable receive equalization, programmable  
output pre-emphasis, programmable output levels, and loss-of-  
signal detection.  
capability, allowing the part to support either 1 + 1 or 1:1  
redundancy.  
The AD8158 is also suited for testing high speed serial links  
because of its ability to duplicate incoming data. In a port-  
monitoring application, the AD8158 can maintain link-  
connectivity with a pass-through connection from Port C to  
Port A while sending a duplicate copy of the data to test  
equipment on Port B.  
The nonblocking switch-core of the AD8158 implements a  
2:1 multiplexer and 1:2 demultiplexer per lane and supports  
independent lane switching through the four select pins,  
SEL[3:0]. Each port is a four-lane link. Every lane implements  
an asynchronous path supporting dc to 6.5 Gbps NRZ data,  
fully independent of other lanes. The AD8158 has low latency  
and very low lane-to-lane skew.  
The rich feature set of the AD8158 can be controlled either  
through external toggle pins or by setting on-chip control  
registers through the I2C® interface.  
The main application of the AD8158 is to support redundancy  
on both the backplane and the line interface sides of a serial  
link. The demultiplexing path implements unicast and bicast  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
AD8158  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Pre-Emphasis .............................................................................. 21  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
I2C Timing Specifications............................................................ 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 15  
The Switch (Mux/Demux/Unicast/Bicast/Loopback)........... 16  
Receivers...................................................................................... 18  
Lane Disables .............................................................................. 19  
Equalizer Settings ....................................................................... 19  
Loss of Signal (LOS)................................................................... 19  
Lane Inversion: P/N Swap ......................................................... 21  
Transmitters ................................................................................ 21  
Output Level Programming and Output Structure ............... 21  
Output Compliance, AC vs. DC Coupling, Minimum Supply  
Voltage, and the TX_HEADROOM Bit.................................. 23  
Signal Levels and Common-Mode Shift for AC-Coupled and  
DC-Coupled Outputs ................................................................ 24  
Squelch and Disable................................................................... 26  
Speed Select................................................................................. 26  
AD8158 Power Consumption .................................................. 26  
Outputs ........................................................................................ 28  
Power Saving Considerations ................................................... 28  
I2C Control Interface...................................................................... 29  
Serial Interface General Functionality..................................... 29  
I2C Interface Data Transfers: Data Write ................................ 29  
I2C Interface Data Transfers: Data Read ................................. 30  
Applications Information.............................................................. 31  
Supply Sequencing ..................................................................... 31  
Single Supply vs. Multiple Supply Operation ......................... 31  
Register Map ................................................................................... 32  
Outline Dimensions....................................................................... 34  
Ordering Guide .......................................................................... 34  
REVISION HISTORY  
6/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 36  
 
AD8158  
SPECIFICATIONS  
VCC = VTTI = VTTO= 1.8 V, DVCC = 3.3 V, VEE = 0 V, RL = 50 Ω, basic configuration1, data rate = 6.5 Gbps, ac-coupled differential input  
swing = 800 mV p-p, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Data Rate/Channel (NRZ)  
DC  
6.5  
Gbps  
ps p-p  
ps  
Deterministic Jitter (No Channel) Data rate = 6.5 Gbps, EQ enabled  
Random Jitter (No Channel)  
20  
1
RMS, data rate = 6.5 Gbps  
30  
40  
35  
42  
700  
90  
ps p-p  
ps p-p  
ps p-p  
ps p-p  
ps  
Residual Deterministic Jitter  
with Receive Equalization  
Data rate 6.5 Gbps, 20 inch FR4  
Data rate 6.5 Gbps, 40 inch FR4  
Data rate 6.5 Gbps, 10 inch FR4  
Data rate 6.5 Gbps, 30 inch FR4  
50% input to 50% output (maximum EQ)  
Residual Deterministic Jitter  
with Transmit Pre-Emphasis  
Propagation Delay  
Lane-to-Lane Skew  
Signal path and switch architecture is balanced and  
symmetric (maximum EQ)  
ps  
Switching Time  
Output Rise/Fall Time  
50% logic switching to 50% output data  
20% to 80% (PE = lowest setting)  
150  
62  
ns  
ps  
INPUT CHARACTERISTICS  
Differential Input Voltage Swing  
VICM2 = VCC − 0.6 V, VCC = VMIN to VMAX, TA = TMIN to TMAX, LOS  
threshold register = 0x10, LOS control register = 0x05  
200  
590  
2000  
mV p-p  
mV p-p  
Differential Sensitivity with  
Default LOS Setting  
Input Voltage Range  
300  
Single-ended absolute voltage level, VL minimum  
Single-ended absolute voltage level, VH maximum  
VEE + 0.6  
VCC + 0.3  
V
V
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Output Voltage Range  
Differential, PE = 0, default output level, @ dc  
Single-ended absolute voltage level, TX_HEADROOM = 0;  
VL minimum  
Single-ended absolute voltage level, TX_HEADROOM = 0;  
VH maximum  
Single-ended absolute voltage level, TX_HEADROOM = 1;  
VL minimum  
725  
820  
mV p-p  
V
VCC − 1.1  
VCC + 0.6  
VCC − 1.3  
VCC + 0.6  
V
V
V
Single-ended absolute voltage level, TX_HEADROOM = 1;  
VH maximum  
Output Current  
Output Current  
Port A/B/C, PE_A/B/C = minimum  
Port A/B/C, PE_A/B/C = 6 dB, VOD = 800 mV p-p  
16  
32  
mA  
mA  
TERMINATION CHARACTERISTICS  
Resistance  
Differential, VCC = VMIN to VMAX, TA = TMIN to TMAX  
LOS threshold = 0x10  
LOS_GSEL = 0, @ dc  
LOS_GSEL = 0, @ dc  
LOS control = 0, VID = 0 to 50% OP/ON settling, VCC = 1.8 V  
90  
100  
110  
Ω
LOS CHARACTERISTICS  
Assert Level  
Deassert Level  
LOS to Output Squelch  
LOS to Output Enable  
25  
150  
21  
mV diff  
mV diff  
ns  
LOS control = 0, data present to first valid transition,  
VCC = 1.8 V  
67  
ns  
POWER SUPPLY  
Operating Range  
VCC  
VCC  
DVCC  
VTTI  
VTTO  
VEE = 0 V, TX_HEADROOM = 0  
VEE = 0 V, TX_HEADROOM = 1  
DVCC ≥ VCC, VEE = 0 V  
1.6  
2.2  
1.6  
1.2  
1.2  
1.8 to 3.3  
3.3  
1.8 to 3.3  
3.6  
3.6  
3.6  
VCC + 0.3  
VCC + 0.3  
V
V
V
V
V
Rev. 0 | Page 3 of 36  
 
 
AD8158  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supply Current  
DC-coupled inputs/outputs, 400 mV I/O swings (800 mV  
p-p differential), 50 Ω far-end terminations  
ICC  
ITTO  
ITTI  
IDVCC  
354  
128  
94  
450  
150  
107  
4
mA  
mA  
mA  
mA  
2
Supply Current  
ICC  
ITTO  
LB_x = 1, PE = 6 dB on all ports, dc-coupled  
inputs/outputs, 400 mV I/O swings (800 mV p-p  
differential), 50 Ω far-end terminations  
730  
367  
95  
850  
420  
107  
4
mA  
mA  
mA  
mA  
ITTI  
IDVCC  
2
THERMAL CHARACTERISTICS  
Operating Temperature Range  
θJA  
−40  
+85  
125  
°C  
Still air; JEDEC four-layer test board, ePAD soldered  
Still air; thermal resistance through exposed pad  
22.2  
1.4  
°C/W  
°C/W  
°C  
θJC  
Maximum Junction Temperature  
LOGIC INPUT CHARACTERISTICS3  
Input High (VIH)  
Input Low (VIL)  
Input High (VIH)  
I2C, SDA, SCL, control pins  
DVCC = 3.3 V  
DVCC = 3.3 V  
DVCC = 1.8 V  
0.7 × DVCC  
VEE  
DVCC  
0.3 × DVCC  
0.8 × DVCC DVCC  
0.2 × DVCC  
V
V
V
V
Input Low (VIL)  
DVCC = 1.8 V  
VEE  
1 Bicast is off, loopback is off on all ports, pre-emphasis is set to minimum on all ports, and equalization is set to minimum on all ports.  
2 VICM is the input common-mode voltage.  
3 EQ control pins (EQ_A0, EQ_A1, EQ_B0, EQ_B1, EQ_C0, EQ_C1) require 5 kΩ in series when DVCC > VCC  
.
I2C TIMING SPECIFICATIONS  
SDA  
tF  
tR  
tBUF  
tR  
tSU;DAT  
tHD;STA  
tF  
tLOW  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHD;DAT  
tHIGH  
S
Sr  
P
S
Figure 2. I2C Timing Diagram  
Table 2. I2C Timing Parameters  
Parameter  
SCL Clock Frequency  
Hold Time for a Start Condition  
Setup Time for a Repeated Start Condition  
Low Period of the SCL Clock  
High Period of the SCL Clock  
Data Hold Time  
Symbol  
Min  
0
Max  
Unit  
fSCL  
400+  
kHz  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
ns  
pF  
tHD;STA  
tSU;STA  
tLOW  
tHIGH  
tHD;DAT  
tSU;DAT  
tR  
tF  
tSU;STO  
tBUF  
0.6  
0.6  
1.3  
0.6  
0
10  
1
1
Data Setup Time  
Rise Time for Both SDA and SCL  
Fall Time for Both SDA and SCL  
Setup Time for Stop Condition  
Bus Free Time Between a Stop and a Start Condition  
Capacitance for Each I/O Pin  
300  
300  
0.6  
1
5
Ci  
7
Rev. 0 | Page 4 of 36  
 
AD8158  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 3.  
Parameter  
Rating  
VCC to VEE  
3.7 V  
DVCC to VEE  
3.7 V  
VTTI  
Lower of (VCC + 0.6 V) or 3.6V  
VTTO  
Lower of (VCC + 0.6 V) or 3.6V  
VCC to DVCC  
0.6 V  
Internal Power Dissipation  
Differential Input Voltage  
Logic Input Voltage  
Storage Temperature Range  
Lead Temperature  
4.26 W  
2.0 V  
ESD CAUTION  
VEE − 0.3 V < VIN < VCC + 0.6 V  
−65°C to +125°C  
300°C  
Rev. 0 | Page 5 of 36  
 
 
AD8158  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
CONTROL  
PORT C INPUTS  
CONTROL  
V
1
2
3
75 V  
EE  
74 OP_C0  
73 ON_C0  
EE  
ON_A3  
OP_A3  
PIN 1  
INDICATOR  
V
4
5
6
72 V  
71 OP_C1  
70 ON_C1  
CC  
CC  
ON_A2  
OP_A2  
V
7
8
9
69 V  
68 OP_C2  
67 ON_C2  
TTO  
TTO  
ON_A1  
OP_A1  
V
10  
66 V  
CC  
CC  
ON_A0 11  
OP_A0 12  
65 OP_C3  
64 ON_C3  
AD8158  
TOP VIEW  
V
13  
63  
V
EE  
CC  
(Not to Scale)  
IN_A3 14  
62 IP_B0  
61 IN_B0  
IP_A3 15  
DIE IS PACKAGED DIE UP  
V
16  
60  
V
CC  
CC  
IN_A2 17  
IP_A2 18  
59 IP_B1  
58 IN_B1  
V
19  
57  
V
TTI  
TTI  
IN_A1 20  
IP_A1 21  
56 IP_B2  
55 IN_B2  
V
22  
54 V  
CC  
CC  
IN_A0 23  
IP_A0 24  
53 IP_B3  
52 IN_B3  
V
25  
51 V  
I2C  
PORT B OUTPUTS  
CONTROL  
EE  
EE  
NOTES  
1. THE ePAD ON THE BOTTOM OF THE PACKAGE MUST BE ELECTRICALLY CONNECTED TO V  
.
EE  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
VEE  
Type  
Description  
1, 13, 25, 44, 51, 75, 94, ePAD  
Power  
Output  
Output  
Power  
Output  
Output  
Power  
Output  
Output  
Output  
Output  
Input  
Negative Supply  
2
ON_A3  
OP_A3  
VCC  
High Speed Output Complement  
High Speed Output  
3
4, 10, 16, 22, 35, 41, 54, 60, 63, 66, 72, 85, 91  
Positive Supply  
5
ON_A2  
OP_A2  
VTTO  
High Speed Output Complement  
High Speed Output  
6
7, 38, 69  
Port A, Port B, and Port C Output Termination Supply  
High Speed Output Complement  
High Speed Output  
8
ON_A1  
OP_A1  
ON_A0  
OP_A0  
IN_A3  
IP_A3  
IN_A2  
IP_A2  
VTTI  
9
11  
High Speed Output Complement  
High Speed Output  
12  
14  
High Speed Input Complement  
High Speed Input  
15  
Input  
17  
Input  
High Speed Input Complement  
High Speed Input  
18  
Input  
19, 57, 88  
20  
Power  
Input  
Port A, Port B, and Port C Input Termination Supply  
High Speed Input Complement  
High Speed Input  
IN_A1  
IP_A1  
IN_A0  
IP_A0  
DVCC  
21  
Input  
23  
Input  
High Speed Input Complement  
High Speed Input  
24  
Input  
26  
Power  
Digital Power Supply  
Rev. 0 | Page 6 of 36  
 
AD8158  
Pin No.  
27  
28  
29  
30  
31  
32  
33  
34  
36  
37  
39  
40  
42  
43  
45  
46  
47  
48  
49  
50  
52  
53  
55  
56  
58  
59  
61  
62  
64  
65  
67  
68  
70  
71  
73  
74  
76  
77  
78  
79  
80  
81  
82  
83  
84  
86  
87  
89  
90  
92  
93  
Mnemonic  
SCL  
Type  
I2C  
I2C  
I2C  
I2C  
I2C  
Description  
I2C Clock Pin  
I2C Data Pin  
I2C Address Pin (LSB)  
I2C Address Pin  
I2C Address Pin (MSB)  
SDA  
I2C_A0  
I2C_A1  
I2C_A2  
RESETb  
ON_B3  
OP_B3  
ON_B2  
OP_B2  
ON_B1  
OP_B1  
ON_B0  
OP_B0  
EQ_A02  
EQ_A12  
EQ_B02  
EQ_B12  
EQ_C02  
EQ_C12  
IN_B3  
IP_B3  
Control1  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Control1  
Control1  
Control1  
Control1  
Control1  
Control1  
Input  
Chip Reset. Active Low  
High Speed Output Complement  
High Speed Output  
High Speed Output Complement  
High Speed Output  
High Speed Output Complement  
High Speed Output  
High Speed Output Complement  
High Speed Output  
Port A Equalizer Control Bit 0 (LSB)  
Port A Equalizer Control Bit 1 (MSB)  
Port B Equalizer Control Bit 0 (LSB)  
Port B Equalizer Control Bit 1 (MSB)  
Port C Equalizer Control Bit 0 (LSB)  
Port C Equalizer Control Bit 1 (MSB)  
High Speed Input Complement  
High Speed Input  
Input  
IN_B2  
IP_B2  
Input  
High Speed Input Complement  
High Speed Input  
Input  
IN_B1  
IP_B1  
Input  
High Speed Input Complement  
High Speed Input  
Input  
IN_B0  
IP_B0  
Input  
High Speed Input Complement  
High Speed Input  
Input  
ON_C3  
OP_C3  
ON_C2  
OP_C2  
ON_C1  
OP_C1  
ON_C0  
OP_C0  
LB_C  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Control1  
Control1  
Control1  
Interrupt  
Control1  
Control1  
Control1  
Input  
High Speed Output Complement  
High Speed Output  
High Speed Output Complement  
High Speed Output  
High Speed Output Complement  
High Speed Output  
High Speed Output Complement  
High Speed Output  
Loopback Enable for Port C  
Loopback Enable for Port B  
Loopback Enable for Port A  
Loss of Signal Interrupt, Active High  
Pre-Emphasis Control for Port C  
Pre-Emphasis Control for Port B  
Pre-Emphasis Control for Port A  
High Speed Input Complement  
High Speed Input  
LB_B  
LB_A  
LOS_INT  
PE_C  
PE_B  
PE_A  
IN_C3  
IP_C3  
Input  
IN_C2  
IP_C2  
Input  
High Speed Input Complement  
High Speed Input  
Input  
IN_C1  
IP_C1  
Input  
High Speed Input Complement  
High Speed Input  
Input  
IN_C0  
IP_C0  
Input  
High Speed Input Complement  
High Speed Input  
Input  
Rev. 0 | Page 7 of 36  
AD8158  
Pin No.  
95  
Mnemonic  
SEL3  
Type  
Description  
Control1  
Control1  
Control1  
Control1  
Control1  
Control1  
Lane 3 A/B Switch Control  
Lane 2 A/B Switch Control  
Lane 1 A/B Switch Control  
Lane 0 A/B Switch Control  
Enable Bicast Mode for Port A and Port B Outputs  
Set Transmitter for Low Speed PE  
96  
SEL2  
97  
SEL1  
98  
SEL0  
99  
BICAST  
SEL4G  
100  
1 Logic level of control pins referred to DVCC  
.
2 EQ control pins (EQ_A0, EQ_A1, EQ_B0, EQ_B1, EQ_C0, EQ_C1) require 5 kΩ in series when DVCC > VCC  
.
Rev. 0 | Page 8 of 36  
AD8158  
TYPICAL PERFORMANCE CHARACTERISTICS  
50CABLES  
50CABLES  
2
2
2
2
INPUT  
PIN  
OUTPUT  
PIN  
DATA OUT  
50Ω  
HIGH SPEED  
SAMPLING  
AD8158  
AC-COUPLED  
EVALUATION  
BOARD  
PATTERN  
GENERATOR  
TP1  
TP2  
OSCILLOSCOPE  
Figure 4. Standard Test Circuit (No Channel)  
25ps/DIV  
25ps/DIV  
Figure 5. 6.5 Gbps Input Eye (TP1 from Figure 4)  
Figure 6. 6.5 Gbps Output Eye, No Channel (TP2 from Figure 4)  
Rev. 0 | Page 9 of 36  
 
 
AD8158  
50CABLES  
50CABLES  
50CABLES  
2
2
2
2
2
2
INPUT OUTPUT  
PIN PIN  
DATA OUT  
FR4 TEST BACKPLANE  
50Ω  
HIGH  
SPEED  
SAMPLING  
OSCILLOSCOPE  
DIFFERENTIAL  
STRIPLINE TRACES  
8mils WIDE, 8mils SPACE,  
8mils DIELECTRIC HEIGHT  
TRACE LENGTHS = 20 INCHES,  
40 INCHES  
AD8158  
AC-COUPLED  
EVALUATION  
BOARD  
PATTERN  
GENERATOR  
TP1  
TP2  
TP3  
25ps/DIV  
REFERENCE EYE DIAGRAM AT TP1  
Figure 7. Input Equalization Test Circuit  
25ps/DIV  
25ps/DIV  
Figure 8. 6.5 Gbps Input Eye, 20 Inch FR4 Input Channel (TP2 from Figure 7)  
Figure 10. 6.5 Gbps Output Eye, 20 Inch FR4 Input Channel (TP3 from Figure 7)  
25ps/DIV  
25ps/DIV  
Figure 9. 6.5 Gbps Input Eye, 40 Inch FR4 Input Channel (TP2 from Figure 7)  
Figure 11. 6.5 Gbps Output Eye, 40 Inch FR4 Input Channel (TP3 from Figure 7)  
Rev. 0 | Page 10 of 36  
 
AD8158  
50CABLES  
50CABLES  
50CABLES  
2
2
2
2
2
2
INPUT OUTPUT  
PIN PIN  
DATA OUT  
FR4 TEST BACKPLANE  
50Ω  
HIGH  
SPEED  
SAMPLING  
OSCILLOSCOPE  
DIFFERENTIAL  
STRIPLINE TRACES  
8mils WIDE, 8mils SPACE,  
8mils DIELECTRIC HEIGHT  
TRACE LENGTHS = 20 INCHES,  
30 INCHES  
AD8158  
AC-COUPLED  
EVALUATION  
BOARD  
PATTERN  
GENERATOR  
TP1  
TP2  
TP3  
25ps/DIV  
REFERENCE EYE DIAGRAM AT TP1  
Figure 12. Output Pre-emphasis Test Circuit  
25ps/DIV  
25ps/DIV  
Figure 13. 6.5 Gbps Output Eye, 20 Inch FR4 Input Channel, PE = 0  
(TP3 from Figure 12)  
Figure 15. 6.5 Gbps Output Eye, 20 Inch FR4 Input Channel, PE = Best Setting,  
Default Output Level (TP3 from Figure 12)  
25ps/DIV  
25ps/DIV  
Figure 14. 6.5 Gbps Output Eye, 30 Inch FR4 Input Channel, PE = 0  
(TP3 from Figure 12)  
Figure 16. 6.5 Gbps Output Eye, 30 Inch FR4 Input Channel, PE = Best Setting,  
200 mV Output Level (TP3 from Figure 12)  
Rev. 0 | Page 11 of 36  
 
AD8158  
100  
80  
60  
40  
20  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 3.3V  
CC  
= 1.8V  
2.0  
CC  
0
0
2
4
6
8
0
0.5  
1.0  
1.5  
2.5  
3.0  
3.5  
4.0  
4.5  
DATA RATE (GHz)  
INPUT COMMON-MODE (V)  
Figure 17. Deterministic Jitter vs. Data Rate  
Figure 20. Deterministic Jitter vs. Input Common Mode  
100  
80  
60  
40  
20  
100  
80  
60  
40  
20  
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
1.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
DIFFERENTIAL INPUT SWING (V p-p)  
V
CC  
Figure 18. Deterministic Jitter vs. Input Swing  
Figure 21. Deterministic Jitter vs. VCC  
100  
80  
60  
40  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
(V = 3.3V)  
CC  
MIN OUTPUT SWING  
(V = 3.3V)  
CC  
DEFAULT OUTPUT SWING  
(V = 1.8V)  
CC  
MIN OUTPUT SWING  
(V = 1.8V)  
CC  
DEFAULT OUTPUT SWING  
0
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
TEMPERATURE (°C)  
V
VOLTAGE (V)  
TTO  
Figure 19. Deterministic Jitter vs. Temperature  
Figure 22. Deterministic Jitter vs. Output Termination Voltage (VTTO  
)
Rev. 0 | Page 12 of 36  
AD8158  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
(V = 3.3V)  
CC  
DEFAULT OUTPUT SWING  
(V = 1.8V)  
CC  
DEFAULT OUTPUT SWING  
(V = 1.8V)  
CC  
200mV OUTPUT VOLTAGE  
(V  
= 3.3V)  
CC  
200mV OUTPUT VOLTAGE  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
1.4  
1.9  
2.4  
2.9  
3.4  
V
VOLTAGE (V)  
CORE VOLTAGE (V)  
OCM  
Figure 23. Deterministic Jitter vs. Output VOCM  
Figure 26. Output Amplitude (Default Setting) vs. Core Voltage  
1
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
–1  
–2  
–3  
–4  
–5  
–9  
–7  
–5  
–3  
0
2
4
6
0
1
2
3
4
5
6
7
JITTER (ps)  
RATE (Gbps)  
Figure 27. Output Amplitude vs. Rate  
Figure 24. Random Jitter/Periodic Jitter Histogram  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
500  
100  
90  
80  
70  
60  
50  
1.6  
2.1  
2.6  
3.1  
3.6  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
CORE SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 28. Propagation Delay vs. Core Supply  
Figure 25. tR/tF vs. Temperature  
Rev. 0 | Page 13 of 36  
AD8158  
1000  
950  
900  
850  
800  
750  
700  
650  
600  
550  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0" DEFAULT OUTPUT SWING  
10" DEFAULT OUTPUT SWING  
20" DEFAULT OUTPUT SWING  
30" DEFAULT OUTPUT SWING  
30" 200mV OUTPUT LEVEL  
500  
–60  
0
1
2
3
4
5
6
7
–40  
–20  
0
20  
40  
60  
80  
100  
PE SETTING  
TEMPERATURE (°C)  
Figure 29. Propagation Delay vs. Temperature  
Figure 32. Deterministic Jitter vs. PE Setting  
0"  
140  
120  
100  
80  
10"  
20"  
30"  
40"  
10  
9
8
7
6
5
4
3
2
1
0
0" DEFAULT OUTPUT SWING  
10" DEFAULT OUTPUT SWING  
20" DEFAULT OUTPUT SWING  
30" DEFAULT OUTPUT SWING  
30" MINIMUM OUTPUT SWING  
60  
40  
20  
0
NO  
DUT  
0
1
2
3
4
5
6
7
8
9
EQ SETTING  
0
1
2
3
4
5
6
7
8
PE SETTING  
Figure 30. Deterministic Jitter vs. EQ Setting  
Figure 33. Random Jitter vs. PE Setting  
10  
9
8
7
6
5
4
3
2
1
0
0"  
0
–2  
10"  
20"  
30"  
40"  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
6"  
10"  
20"  
30"  
40"  
0
1
2
3
4
5
6
7
8
9
10  
EQ SETTING  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 31. Random Jitter vs. EQ Setting vs. Trace  
Figure 34. S21 Test Traces  
Rev. 0 | Page 14 of 36  
AD8158  
THEORY OF OPERATION  
The AD8158 is a buffered, asynchronous, three-port transceiver  
that allows 2:1 multiplexing and 1:2 demultiplexing among its  
ports. The 1:2 demux path supports bicast operation, allowing  
the AD8158 to operate as a port replicator as well as a redundancy  
switch. The AD8158 offers loopback on each lane, allowing the  
part to be configured as a 12-lane equalizer or redriver with FFE.  
MUX  
Table 5. Control Modes  
Mode  
Description  
Toggle Pin  
Control  
Asynchronous control through toggle pins only  
Mixed Control Switch configuration via toggle pins, register-  
based control through the I2C serial interface  
Serial Control  
Register-based control through the I2C serial  
interface  
RXA  
RXB  
TXC  
The pin control mode offers access to a subset of the total  
feature list but allows for a much simplified control scheme.  
Table 6 compares the available features in all control modes.  
DEMUX  
The primary advantage of using the serial control interface is  
that it allows finer resolution in setting receive equalization,  
transmitter pre-emphasis, loss-of-signal (LOS) behavior, and  
output levels.  
TXA  
TXB  
RXC  
Figure 35. Mux/Demux Paths, Port A to Port C  
By default, the AD8158 starts in the pin control mode. Strobing  
the RESETb pin sets all on-chip registers to their default values  
and uses pins to configure switch connectivity, PE, and EQ  
levels. In mixed mode, switch connectivity is still controlled  
through the SEL[3:0], LB_[A:C], and BICAST pins. The user  
can override PE and EQ settings in mixed mode. In serial  
mode, all functions are accessed through registers and the  
control pin inputs are ignored, except RESETb. Register 0x0F  
selects the control mode (see Table 7).  
The AD8158 register set is controlled through a 2-wire I2C  
interface. The AD8158 acts only as an I2C slave device. The  
7-bit slave address for the AD8158 I2C interface contains the  
static value b1010 for the upper four bits. The lower three bits  
are controlled by the input pins I2C_A[2:0].  
The part offers extensively programmable transmit output levels  
and pre-emphasis settings as well as squelch or full-disable. The  
receivers integrate a programmable, multizero transfer function  
for aggressive equalization and a programmable loss-of-signal  
feature. The AD8158 provides a balanced, high speed switch  
core that maintains low lane-to-lane skew while preserving  
edge rates.  
The I/O on-chip termination resistors are tied to user-settable  
supplies for increased flexibility. The AD8158 supports a wide  
primary supply range; VCC can be set from 1.8 V to 3.3 V. These  
features, together with programmable transmitter output levels,  
allow for a wide range of dc- and ac-coupled I/O configurations.  
The AD8158 supports several control and configuration modes,  
shown in Table 5.  
Table 6. Features Available Through Toggle Pin or Serial Control  
Feature  
Pin Control  
Serial Control  
Switch Features  
BICAST  
One pin  
One bit  
A/B Lane Select  
Loopback  
Four pins  
Three pins  
Four bits  
Three bits  
Rx Features  
EQ Levels  
N/P Swap  
Four settings  
Not available  
Enabled  
10 settings  
Available  
Three bits  
Squelch  
Tx Features  
Programmable Output Levels  
PE Levels  
400 mV diff fixed1  
Two settings  
200 mV diff/ 300 mV diff/ 400 mV diff/ 600 mV diff  
>7 settings  
1
400 mV diff indicates a 400 mV amplitude signal measured between two differential nodes. The voltage swing at differential I/O pins is described in this data sheet  
both in terms of the differentially measured voltage range ( 400 mV diff, for example) and in terms of peak-to-peak differential swing, denoted mV p-p diff. An output  
level setting of 400 mV diff delivers a differential peak-to-peak output voltage of 800 mV p-p diff.  
Rev. 0 | Page 15 of 36  
 
 
 
AD8158  
Table 7. Register Address 0x0F  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Function  
Set to 0  
Set to 0  
Set to 0  
Set to 0  
Set to 0  
Set to 0  
MODE[1]  
MODE[0]  
Mode  
When the device is in unicast mode, the output lanes on either  
Port A or Port B are in an idle state. In the idle state, the output  
tail current is set to 0, and the P and N sides of the lane are  
pulled up to the output termination voltage through the on-chip  
termination resistors. To save power, the unused receiver  
automatically disables.  
Table 8. Setting the Control Interface Mode  
Mode 1  
Mode 0  
Control Mode  
0
0
1
0
1
1
Pin control  
Mixed control  
Serial control  
THE SWITCH  
(MUX/DEMUX/UNICAST/BICAST/LOOPBACK)  
The AD8158 supports port-level loopback, illustrated in Figure 36.  
The loopback control pins override the lane select (SEL[3:0])  
and bicast control (BICAST) pin settings at the port level. In serial  
control mode, Bits [6:4] of Register 0x01 control loopback and  
are equivalent to asserting Pin LB_A, Pin LB_B, and Pin LB_C.  
Table 10 summarizes the different loopback configurations.  
The mux and demux functions of the AD8158 can be controlled  
either with the toggle pins or through the register map. The  
multiplexer path switches received data from Input Port A or  
Input Port B to Output Port C. The SEL[3:0] pins allow switching  
lanes independently. The demultiplexer path switches received  
data from Input Port C to Output Port A, Output Port B, or (if  
bicast mode is enabled) to both Output Port A and Output Port B.  
The loopback feature is useful for system debug, self test, and  
initialization, allowing system ASICs to compare Tx and Rx  
data sent over a single bidirectional link. Loopback can also be  
used to configure the device as a 4- to 12-lane receive equalizer  
or backplane redriver.  
Table 9. Port Selection and Configuration with All  
Loopbacks Disabled  
Output  
Port A  
Output  
Port B  
Output  
Port C  
BICAST  
SELx  
0
0
1
1
0
1
0
1
Ix_C[3:0]  
Idle  
Ix_C[3:0]  
Ix_C[3:0]  
Idle  
Ix_A[3:0]  
Ix_B[3:0]  
Ix_A[3:0]  
Ix_B[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
X4  
Ox_A[3:0]  
X4  
Ix_C[3:0]  
1:2 DEMUX  
X4  
Ox_B[3:0]  
PORT A LOOPBACK  
PORT B LOOPBACK  
PORT C LOOPBACK  
X4  
Ix_A[3:0]  
X4  
2:1 MUX  
Ox_C[3:0]  
X4  
Ix_B[3:0]  
Figure 36. Port Level Loopback  
Rev. 0 | Page 16 of 36  
 
 
 
AD8158  
Table 10. Switch Connectivity vs. Loopback, BICAST, and Port Select Settings  
LBA  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
LBB  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
LBC  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
BICAST  
SELAb/B  
Output Port A Output Port B Output Port C  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Ix_C[3:0]  
Idle  
Idle  
Ix_A[3:0]  
Ix_B[3:0]  
Ix_A[3:0]  
Ix_B[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_A[3:0]  
Ix_B[3:0]  
Ix_A[3:0]  
Ix_B[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_A[3:0]  
Ix_B[3:0]  
Ix_A[3:0]  
Ix_B[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_A[3:0]  
Ix_B[3:0]  
Ix_A[3:0]  
Ix_B[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Idle  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Idle  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Idle  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Idle  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_A[3:0]  
Ix_A[3:0]  
Ix_A[3:0]  
Ix_A[3:0]  
Ix_A[3:0]  
Ix_A[3:0]  
Ix_A[3:0]  
Ix_A[3:0]  
Ix_A[3:0]  
Ix_A[3:0]  
Ix_A[3:0]  
Ix_A[3:0]  
Ix_A[3:0]  
Ix_A[3:0]  
Ix_A[3:0]  
Ix_A[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_B[3:0]  
Ix_B[3:0]  
Ix_B[3:0]  
Ix_B[3:0]  
Ix_B[3:0]  
Ix_B[3:0]  
Ix_B[3:0]  
Ix_B[3:0]  
Idle  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Idle  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_C[3:0]  
Ix_B[3:0]  
Ix_B[3:0]  
Ix_B[3:0]  
Ix_B[3:0]  
Ix_B[3:0]  
Ix_B[3:0]  
Ix_B[3:0]  
Ix_B[3:0]  
Rev. 0 | Page 17 of 36  
 
AD8158  
Input Structure and Allowed Input Levels  
RECEIVERS  
The AD8158 tolerates an input common-mode range (meas-  
ured with zero differential input) of  
The AD8158 receivers incorporate 50 ꢀ on-chip termination,  
ESD protection, and a multizero equalization function capable  
of delivering up to 18 dB of boost at 4.25 GHz. The AD8158 can  
compensate signal degradation at 6.5 Gbps from over 40 inches  
of FR-4 backplane trace. The receive path also incorporates a  
loss-of-signal (LOS) function with user programmable thresh-  
old and hysteresis, which squelches the associated transmitter  
when the midband differential voltage falls below a specified  
threshold value. Finally, the receivers implement a sign-swapping  
option (P/N swap), which allows the user to invert the sign of  
the input signal path and eliminates the need for board-level  
crossovers in the receive channels.  
V
EE + 0.6 V < VIN_CM < VCC + 0.3 V  
Typical supply configurations include, but are not limited to,  
those listed in Table 11.  
Table 11. Typical Input Supply Configurations  
Configuration  
DVCC  
VCC  
VTTI  
Low VTTI, AC-Coupled Input  
Single 1.8 V Supply  
3.3 V Core  
3.3 V − 1.8 V  
3.3 V − 1.8 V  
3.3 V  
1.8 V  
1.8 V  
3.3 V  
3.3 V  
1.6 V  
1.8 V  
1.8 V  
3.3 V  
Single 3.3 V Supply  
3.3 V  
When dc-coupling with LVDS, CML, or ECL signals, it can be  
advantageous to operate with split or negative supplies (see the  
Applications Information section). In these applications, it is  
necessary to observe the maximum voltage ratings between VCC  
and VEE and generally to select supply voltages for VTTO and VTTI  
in the range of VCC to VEE to avoid activating the ESD protection  
devices.  
V
CC  
ESD  
ON-CHIP TERMINATION  
V
TTI  
V
THRESH  
SIG  
RP  
TERM  
RN  
TERM  
LOSS  
R
R
OF  
SIGNAL  
DETECT  
IP_xx  
IN_xx  
EQ OUT  
EQUALIZER  
V
EE  
Figure 37. Functional Diagram of the AD8158 Receiver  
V
CC  
V
TTI  
RLN  
RL  
RLP  
RL  
RP  
52  
RN  
52Ω  
R1  
750Ω  
Q1  
IP_xx  
IN_xx  
R3  
1kΩ  
R2  
750Ω  
Q2  
I1  
V
EE  
Figure 38. Simplified Receiver Input Structure  
Rev. 0 | Page 18 of 36  
 
 
 
AD8158  
the equalized waveform over a selectable interval of either 2 ns  
or 10 ns. The detectors are enabled on a per-port basis with Bit 0 of  
the RXA/B/C LOS control registers (0x51, 0x91, 0xD1).  
LANE DISABLES  
By default, the receivers and transmitters enable in an on-demand  
fashion according to the state of the SEL[3:0], LB_[A:C], and  
BICAST pins or to the state of the equivalent registers in serial  
control mode. Register 0x40, Register 0x80, and Register 0xC0  
implement per-lane disables for the receivers and Register 0x48,  
Register 0x88, and Register 0xC8 implement per-lane transmit-  
ter disables. These disables override the default settings. Each  
bit in the register is named for the lane and function it disables.  
For example, RXDIS B2 disables the receiver on Lane 2 of Port B  
while TXDIS C3 disables the Lane 3 transmitter of Port C (see  
Table 12).  
By default, when the receiver detects an LOS event, it squelches  
its associated transmitter, lowering the output current to  
submicroamps. This prevents the high gain, wide bandwidth  
signal path from turning low-level system noise on an undriven  
input pair into a source of hostile crosstalk at the transmitter.  
The squelch feature can be disabled with Bit 3 of the global  
squelch control register (0x04).  
Register 0x50, Register 0x90, and Register 0xD0 set values for  
the LOS signal detection threshold for Port A, Port B, and Port C,  
respectively. The recommended setting is Rx LOS threshold  
register = 0x10 with Rx LOS control register = 0x05. This is an  
optimum setting that all parts are factory tested to comply with  
(see Table 1).  
EQUALIZER SETTINGS  
Every input lane offers a low power, asynchronous, programma-  
ble receive equalizer for NRZ data up to 6.5 Gbps. The pin  
control interface makes four levels of receive equalization  
available: 6 dB, 12 dB, 15 dB, and 18 dB. Register-based control  
allows the user 10 equalizer settings within this range. High  
frequency boost increases monotonically (and approximately  
linearly) with EQ control setting in ~2 dB steps.  
LOS Recommended Settings  
Rx LOS threshold register: 0x10  
Rx LOS control register: 0x05  
Register 0x51, Register 0x91, and Register 0xD1 set the integration  
interval, LOS gain, and the enable state for the LOS feature for  
Port A, Port B, and Port C, respectively (see Table 14 through  
Table 16)  
The four LSBs of Register 0x41, Register 0x81, and Register 0xC1  
allow programming of all the equalizers in a port simultane-  
ously (see Table 12). The 0x42, 0x43, 0x82, 0x83, 0xC2, and  
0xC3 registers allow per-lane programming of the equalizers  
(see Table 23). Be aware that writing to the port-level equalizer  
registers updates and overwrites per-lane settings.  
Bit 0, LOS_ENB, enables and disables the LOS detectors. (The  
default setting is enabled, LOS_ENB = 1).  
Bit 1, LOS_GSEL, adjusts the detector gain (1 = high gain, 0 =  
low gain). A value of 0 is recommended.  
LOSS OF SIGNAL (LOS)  
The serial control interface allows access to the AD8158 loss of  
signal features. (LOS is not available in pin control mode.) Each  
receiver includes a low power, loss-of-signal detector. The loss-  
of-signal circuit monitors the received data stream and  
Bit 2, LOS_FILT, adjusts the interval over which incoming data  
is averaged. LOS_FILT = 0 gives a 2 ns interval and LOS_FILT = 1  
sets a 10 ns interval.  
generates a system interrupt when the received signal power  
falls below a programmed threshold. The default threshold is  
25 mV diff, referred to the input pins. The LOS circuit monitors  
the equalized receive waveform and integrates the rms power of  
Bit 7 through Bit 3 should be set to 0.  
Rev. 0 | Page 19 of 36  
 
AD8158  
Table 12. Per Lane Disables  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Function  
RXA disable  
RXB disable  
RXC disable  
TXA disable  
TXB disable  
TXC disable  
RXDIS A3  
RXDIS B3  
RXDIS C3  
TXDIS A3  
TXDIS B3  
TXDIS C3  
RXDIS A2  
RXDIS B2  
RXDIS C2  
TXDIS A2  
TXDIS B2  
TXDIS C2  
RXDIS A1  
RXDIS B1  
RXDIS C1  
TXDIS A1  
TXDIS B1  
TXDIS C1  
RXDIS A0  
RXDIS B0  
RXDIS C0  
TXDIS A0  
TXDIS B0  
TXDIS C0  
0x40  
0x80  
0xC0  
0x48  
0x88  
0xC8  
Table 13. Port-Level EQ Setting  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Function  
0x41  
0x81  
0xC1  
AEQ[3]  
BEQ[3]  
CEQ[3]  
AEQ[2]  
BEQ[2]  
CEQ[2]  
AEQ[1]  
BEQ[1]  
CEQ[1]  
AEQ[0]  
BEQ[0]  
CEQ[0]  
Port A equalizer  
Port B equalizer  
Port C equalizer  
Table 14. Global Loss-of-Signal Squelch Control Register  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Function  
GSQLCH_ENB  
Global squelch control  
0x04  
Table 15. Port-Level Loss-of-Signal Control Registers  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Function  
0x50  
0x51  
0x90  
0x91  
0xD0  
0xD1  
Set to 0  
Set to 0  
Set to 0  
Set to 0  
Set to 0  
Set to 0  
Set to 0  
Set to 0  
Set to 0  
Set to 0  
Set to 0  
Set to 0  
THRBIT[5]  
Set to 0  
THRBIT[5]  
Set to 0  
THRBIT[5]  
Set to 0  
THRBIT[4]  
Set to 0  
THRBIT[4]  
Set to 0  
THRBIT[4]  
Set to 0  
THRBIT[3]  
Set to 0  
THRBIT[3]  
Set to 0  
THRBIT[3]  
Set to 0  
THRBIT[2]  
LOS_FILT  
THRBIT[2]  
LOS_FILT  
THRBIT[2]  
LOS_FILT  
THRBIT[1]  
LOS_GSEL  
THRBIT[1]  
LOS_GSEL  
THRBIT[1]  
LOS_GSEL  
THRBIT[0]  
LOS_ENB  
THRBIT[0]  
LOS_ENB  
THRBIT[0]  
LOS_ENB  
RXA LOS threshold  
RXA LOS control  
RXB LOS threshold  
RXB LOS control  
RXC LOS threshold  
RXC LOS control  
Table 16. Loss-of-Signal Configuration Bits  
Bit(s)  
Function  
Description  
Default  
THRBIT[5:0]  
LOS threshold  
Binary coded value between 0 and 31. Covers ranges of 10 mV to 60 mV and 60 mV  
to 250 mV for LOS_GSEL = 0 and LOS_GSEL = 1, respectively.  
Recommended setting = 0x10.  
0x1C  
VIN_DC < 50 mV  
LOS_FILT  
LOS filter  
Loss-of-signal filter.  
1
1
0: LOS integrates 2 ns of data.  
1: LOS integrates 10 ns of data.  
LOS gain select.  
LOS_GSEL  
LOS sensitivity  
Recommended setting = 0.  
0: LOS covers an input range of 60 mV to 250 mV.  
1: LOS covers an input range of 10 mV to 60 mV.  
LOS enable.  
LOS_ENB  
LOS enable  
1
0: LOS function disabled  
1: LOS function enabled  
Rev. 0 | Page 20 of 36  
 
 
 
AD8158  
The LOS_INT pin evaluates a logical OR of all LOS status  
register bits for all enabled receivers. (LOS status registers are  
located at 0x45, 0x85, and 0xC5.) The upper four bits in the  
RXA, RXB, and RXC LOS status registers are sticky while the  
four LSBs are continuously updated to indicate the instantaneous  
status of LOS for an enabled receiver. The sticky bits are cleared  
by writing 0 to the RXA, RXB, and RXC LOS status registers.  
The LOS_INT pin remains high after an LOS event until all  
sticky registers are cleared and all active status registers (for  
example, Bits [3:0]) read 0.  
allowing the AD8158 to offer exceptional transmit channel  
compensation for legacy applications (4.5 Gbps and slower).  
OUTPUT LEVEL PROGRAMMING AND OUTPUT  
STRUCTURE  
The output level of the transmitter of each lane is independently  
programmable. In pin control mode, a default output amplitude  
of 800 mV p-p diff ( 400 mV diff) is delivered (see Table 17).  
Register-based control allows the user to set the transmitter  
output levels on a per-port or per-lane basis to four predefined  
levels. Port-level programming overwrites lane-level configuration.  
The ALEV, BLEV, and CLEV bits in Register 0x49, Register 0x89,  
and Register 0xC9, respectively, are used to set the output levels  
for all transmitters. The A[3:0]OLEV[1:0], B[3:0]OLEV[1:0],  
and C[3:0]OLEV[1:0] bits in Register 0x4C, Register 0x8C, and  
Register 0xCC allow per-lane settings (see Table 23).  
The LOS_INT pin can be used to generate an interrupt for the  
system control software. In a standard implementation, when  
LOS_INT goes high, the system software registers the interrupt  
and polls the RXA, RXB, and RXC LOS status registers to  
determine which input lost signal and if the signal has been  
restored.  
Table 17. Predefined Output Levels  
LANE INVERSION: P/N SWAP  
[A/B/C]OLEV1  
[A/B/C]OLEV0  
Output Level  
200 mV diff  
300 mV diff  
400 mV diff (default)  
600 mV diff  
The receiver P/N swap function is a convenience intended to  
allow the user to implement the equivalent of a board-level  
routing crossover in a much smaller area while eliminating vias  
(impedance discontinuities) that compromise the high frequency  
integrity of the signal path.  
0
0
1
1
0
1
0
1
Note that the choice of output level influences the output  
common-mode level. A 600 mV diff output level with a full PE  
range requires a supply and output termination voltage of 2.5 V  
or higher (VTTO, VCC ≥ 2.5 V).  
A Note of Caution  
Using this feature to correct an inversion downstream of the  
receiver may require the user to be aware of the sign of the data  
when switching connectivity (the mux/demux path). The  
feature is available on a per-lane setting through Register 0x44,  
Register 0x84, and Register 0xC4. Setting the bit true flips the  
sign sense of the P and N inputs for the associated lane. The  
default setting is 0 (no inversion).  
PRE-EMPHASIS  
Transmitter pre-emphasis levels can be set by pin control or  
through the control registers. Pin control allows two settings of  
PE, 0 dB, and 6 dB. The control registers provide seven levels of  
PE. Note that a larger range of boost settings is available for  
lower output levels.  
TRANSMITTERS  
The AD8158 transmitter offers programmable pre-emphasis,  
programmable output levels, output disable, and transmit  
squelch. The SEL4G pin lets the user lower the transmitter  
frequency of maximum boost from 3.25 GHz to 2.0 GHz,  
Pre-emphasis can be programmed per-port or per-lane.  
Register 0x49, Register 0x89, and Register 0xC9 set all outputs  
in a port at once. Registers 0x4A, 0x4B, 0x8A, 0x8B, 0xCA, and  
0xCB allow setting PE on a per-lane basis.  
Table 18. Lane Inversion Bits  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Function  
0x44  
0x84  
0xC4  
PNA3  
PNB3  
PNC3  
PNA2  
PNB2  
PNC2  
PNA1  
PNB1  
PNC1  
PNA0  
PNB0  
PNC0  
P/N Swap A  
P/N Swap B  
P/N Swap C  
Rev. 0 | Page 21 of 36  
 
 
AD8158  
V
V
CC  
ON-CHIP TERMINATION  
ESD  
V3  
VC  
TTO  
RP  
TERM  
RN  
TERM  
R
R
V2  
VP  
OP_xx  
ON_xx  
V1  
VN  
Q1  
Q2  
IT  
PE  
I
+ I  
DC  
V
EE  
Figure 39. Simplified Transmitter Structure  
Table 19. Setting Transmitter Pre-Emphasis (Note that Toggle Pin Control of PE Is Limited to the 400 mV diff Output Level Settings.)  
Output Level  
(mV diff)  
Pin PE_[A/B/C] Bit [A/B/C][3:0]PE[2] Bit [A/B/C][3:0]PE[1] Bit [A/B/C][3:0]PE[0] PE Boost (%) PE Boost (dB)  
200  
200  
200  
200  
200  
200  
200  
300  
300  
300  
300  
300  
300  
300  
400  
400  
400  
400  
400  
400  
400  
600  
600  
600  
600  
600  
600  
600  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
0
0
0
0
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
0
1
0
1
0
1
0
0
1
0
1
0
1
0
0
0
50  
100  
150  
200  
250  
300  
0
3.52  
6.02  
7.96  
9.54  
10.88  
12.04  
0
33  
2.5  
67  
4.44  
6.02  
7.36  
8.52  
9.54  
0
100  
133  
167  
200  
0
25  
1.94  
3.52  
4.86  
6.02  
7.04  
7.96  
0
N/A  
N/A  
N/A  
1
50  
75  
100  
125  
150  
0
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
17  
1.34  
2.5  
33  
50  
3.52  
4.44  
5.26  
6.02  
67  
83  
100  
Rev. 0 | Page 22 of 36  
 
 
AD8158  
Examples  
OUTPUT COMPLIANCE, AC vs. DC COUPLING,  
MINIMUM SUPPLY VOLTAGE, AND THE  
TX_HEADROOM BIT  
Consider a typical application using pin control mode. In this  
case, the default output level of 400 mV diff (800 mV p-p diff)  
is selected and the user can choose pre-emphasis settings of  
0 dB or 6 dB. Table 19 shows that with pre-emphasis disabled, a  
dc-coupled transmitter causes a 200 mV common-mode shift  
across the termination resistors whereas an ac-coupled transmitter  
causes twice the common-mode shift. Notice that with VCC and  
VTTO powered from a 1.8 V supply, the single-ended output  
voltage swings between 1.8 V and 1.4 V when dc-coupled and  
between 1.6 V and 1.2 V when ac-coupled. (Note also that VH =  
VH peak and VL = VL peak because transmitter pre-emphasis is  
disabled.) In both cases, these levels are greater than the minimum  
VL limit of 725 mV, and VCC satisfies the minimum VCC limit of  
1.8 V with the TX_HEADROOM bit set to 0. Note that setting  
TX_HEADROOM = 1 violates the minimum VCC limit of 2.5 V.  
In low voltage applications, users must pay careful attention  
to both the differential and common-mode signal level. The  
choice of output voltage swing, pre-emphasis setting, supply  
voltages (VCC and VTTO), and output coupling (ac or dc) affect  
peak and settled single-ended voltage swings and the common-  
mode shift measured across the output termination resistors.  
These choices also affect output current and, consequently,  
power consumption.  
Table 20 shows the change in output common-mode (dVOCM  
=
VCC − VOCM) with output level (VOD) and pre-emphasis setting.  
Table 20 also shows the minimum and maximum dc and peak  
single-ended output levels (VL, VH, VL peak, and VH peak,  
respectively). The single-ended output levels are calculated for  
With a PE setting of 6.02 dB, the ac-coupled transmitter has  
single-ended swings from 1.4 V to 0.6 V while the dc-coupled  
transmitter outputs swing between 1.8 V and 1 V. The peak  
minimum single-ended swing (VL peak) of the ac-coupled  
transmitter, in this case, exceeds the minimum VL limit of  
725 mV by 125 mV. While objectionable in theory, in practice,  
this setting works quite well. The transmitter theoretical peak  
voltage is rarely achieved in practice because the high frequency  
characteristic of the pre-emphasis is attenuated at the output  
pins by the low-pass nature of the PC board environment and  
the channel. For 6.5 Gbps PE (SEL4G = 0), a 30% reduction of  
overshoot is not unexpected. For an output level of 400 mV diff  
and a PE setting of 6 dB, the user can calculate a maximum  
overshoot of 400 mV diff but can measure only a 270 mV  
overshoot.  
V
TTO supplies of 3.3 V and 1.8 V to illustrate practical challenges  
of reducing the supply voltage. Table 20 shows the voltage  
margins required for proper transmitter operation. Minimum  
VL (min VL) is the lowest single-ended voltage allowed given the  
users choice of VCC voltage.  
For output levels greater than 400 mV diff (800 mV p-p diff), or  
when enabling the TX_HEADROOM bit, operating the part  
from core supply voltage, VCC ≥ 2.5 V, is suggested. In this high  
current case, setting the TX_HEADROOM bit to 1 allows the  
transmitter an extra 200 mV of output compliance range.  
Additional transmitter headroom is enabled on a per-port basis  
through Bits [6:4] in Register 0x05. A value of 0 disables the  
headroom generating circuitry; a value of 1 enables it.  
Theory (maximum)  
V_overshoot_max = VOD × (PE [V/V] − 1)  
Measured  
V_overshoot_measured = VOD × (PE [V/V] − 1) × (1 − 0.3)  
With the pre-emphasis configured for 4.25 Gbps operation  
(SEL4G = 1), the overshoot can only be reduced 5% from the  
theoretic maximum. In this case, the peak minimum voltage  
limit should be more closely observed.  
Rev. 0 | Page 23 of 36  
 
AD8158  
SIGNAL LEVELS AND COMMON-MODE SHIFT FOR AC-COUPLED AND DC-COUPLED OUTPUTS  
Table 20. Output Voltage Range and Output Common-Mode Shift vs. Output Level and PE Setting  
Output Levels and Output Compliance  
AC-Coupled Transmitter  
DC-Coupled Transmitter  
TX_HEADROOM = 0 TX_HEADROOM = 1  
VH  
VL  
VH  
VL  
VOD ITOT IPRED VD_PEAK PE  
PE  
dVOCM VH  
VL  
Peak Peak dVOCM VH  
VL  
Peak Peak  
(mV) (mA) (mA) (mV)  
Boost (dB) (mV) (V)  
(V)  
(V)  
(V)  
(mV) (V) (V) (V)  
(V)  
Min VL (V)  
Min VL (V)  
VTTO and VCC = 3.3 V  
200  
8
29  
48  
48  
48  
48  
51  
51  
29  
48  
48  
48  
48  
51  
51  
29  
48  
48  
48  
48  
51  
51  
32  
51  
51  
51  
51  
54  
54  
200  
300  
400  
500  
600  
700  
800  
300  
400  
500  
600  
700  
800  
900  
400  
500  
600  
700  
800  
900  
1000  
600  
700  
800  
900  
1000  
1100  
1200  
1.00 0.00 200  
1.50 3.52 300  
2.00 6.02 400  
2.50 7.96 500  
3.00 9.54 600  
3.50 10.88 700  
4.00 12.04 800  
1.00 0.00 300  
1.33 2.50 400  
1.67 4.44 500  
2.00 6.02 600  
2.33 7.36 700  
3.2  
3.1  
3
3
3.2  
3
100  
3.3 3.1 3.3  
3.25 3.05 3.3  
3.1  
3
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
200 12  
200 16  
200 20  
200 24  
200 28  
200 32  
300 12  
300 16  
300 20  
300 24  
300 28  
300 32  
300 36  
400 16  
400 20  
400 24  
400 28  
400 32  
400 36  
400 40  
600 24  
600 28  
600 32  
600 36  
600 40  
600 44  
600 48  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
3.15 2.85 150  
3.1 2.7 200  
3.05 2.55 250  
2.4 300  
2.95 2.25 350  
2.9 2.1 400  
3.2  
3
3.3  
2.9  
2.8  
2.7  
2.6  
2.5  
3
2.9  
2.8  
2.7  
2.6  
3.15 2.95 3.3  
3.1 2.9 3.3  
3.05 2.85 3.3  
3
3
2.8 3.3  
3 3.3  
3.15 2.85 3.15 2.85 150  
3.05 2.75 3.1 2.7 200  
2.95 2.65 3.05 2.55 250  
2.85 2.55 2.4 300  
2.75 2.45 2.95 2.25 350  
3.3  
3.25 2.95 3.3  
3.2 2.9 3.3  
3.15 2.85 3.3  
3.1 2.8 3.3  
3.05 2.75 3.3  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
3
2.67 8.52 8001 2.651 2.351 2.91 2.11 400  
3.00 9.54 9001 2.551 2.251 2.851 1.951 450  
3
2.7 3.3  
1.00 0.00 400  
1.25 1.94 500  
1.50 3.52 600  
1.75 4.86 700  
2.00 6.02 8001 2.71 2.31 2.91 2.11 400  
2.25 7.04 9001 2.61 2.21 2.851 1.951 450  
3.1  
3
2.7  
2.6  
2.5  
2.4  
3.1  
3.05 2.55 250  
2.4 300  
2.95 2.25 350  
2.7  
200  
3.3 2.9 3.3  
3.25 2.85 3.3  
3.2 2.8 3.3  
3.15 2.75 3.3  
3.1 2.7 3.3  
3.05 2.65 3.3  
2.9  
3
2.8  
2.50 7.96  
500  
300  
3
2.6 3.3  
1.00 0.00 600  
1.17 1.34 700  
1.33 2.50 8001 2.81 2.21 2.91 2.11 400  
1.50 3.52 9001 2.71 2.11 2.851 1.951 450  
3
2.4  
2.3  
3
2.4  
3.3 2.7 3.3  
3.25 2.65 3.3  
3.2 2.6 3.3  
3.15 2.55 3.3  
3.1 2.5 3.3  
3.05 2.45 3.3  
2.9  
2.95 2.25 350  
1.67 4.44  
1.83 5.26  
2.00 6.02  
500  
550  
6001 31  
2.41 3.31 2.11 2.2  
VCC and VTTO = 1.8 V, TX_HEADROOM = 1 requires VCC > 2.5 V  
200  
8
29  
48  
48  
48  
48  
51  
51  
29  
48  
48  
48  
48  
51  
51  
29  
48  
48  
48  
48  
51  
51  
200  
300  
400  
500  
600  
700  
800  
300  
400  
500  
600  
700  
800  
900  
400  
500  
600  
700  
800  
900  
1000  
1.00 0.00 200  
1.50 3.52 300  
2.00 6.02 400  
2.50 7.96 500  
3.00 9.54 600  
3.50 10.88 700  
4.00 12.04  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.7  
1.65 1.35 150  
1.6 1.2 200  
1.55 1.05 250  
1.5 0.9 300  
1.5  
100  
1.8 1.6 1.8  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
200 12  
200 16  
200 20  
200 24  
200 28  
200 32  
300 12  
300 16  
300 20  
300 24  
300 28  
300 32  
300 36  
400 16  
400 20  
400 24  
400 28  
400 32  
400 36  
400 40  
1.75 1.55 1.8  
1.7 1.5 1.8  
1.65 1.45 1.8  
1.6 1.4 1.8  
1.55 1.35 1.8  
1.5 1.3 1.8  
1.8 1.5 1.8  
1.75 1.45 1.8  
1.7 1.4 1.8  
1.65 1.35 1.8  
1.6 1.3 1.8  
1.55 1.25 1.8  
1.5 1.2 1.8  
1.8 1.4 1.8  
1.75 1.35 1.8  
1.7 1.3 1.8  
1.65 1.25 1.8  
1.6 1.2 1.8  
1.55 1.15 1.8  
1.5 1.1 1.8  
1.45 0.75 350  
400  
1.00 0.00 300  
1.33 2.50 400  
1.67 4.44 500  
2.00 6.02 600  
2.33 7.36 700  
2.67 8.52  
1.65 1.35 1.65 1.35 150  
1.55 1.25 1.6 1.2 200  
1.45 1.15 1.55 1.05 250  
1.35 1.05 1.5 0.9 300  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.25 0.95 1.45 0.75 350  
400  
450  
3.00 9.54  
0.9  
1.4  
1.3  
1.2  
1.1  
1
1.00 0.00 400  
1.25 1.94 500  
1.50 3.52 600  
1.75 4.86 700  
2.00 6.02  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.6  
1.55 1.05 250  
1.5 0.9 300  
1.2  
200  
0.9  
1.45 0.75 350  
400  
450  
500  
2.25 7.04  
0.9  
0.8  
2.50 7.96  
Rev. 0 | Page 24 of 36  
 
 
AD8158  
Output Levels and Output Compliance  
AC-Coupled Transmitter  
DC-Coupled Transmitter  
TX_HEADROOM = 0 TX_HEADROOM = 1  
VH  
VL  
VH  
VL  
VOD ITOT IPRED VD_PEAK PE  
(mV) (mA) (mA) (mV) Boost (dB) (mV) (V)  
PE  
dVOCM VH  
VL  
(V)  
Peak Peak dVOCM VH  
VL  
Peak Peak  
(V)  
(V)  
(mV) (V) (V) (V)  
(V)  
1.2  
1.1  
1
Min VL (V)  
0.7  
Min VL (V)  
0.5  
600 24  
600 28  
600 32  
600 36  
600 40  
600 44  
600 48  
32  
51  
51  
51  
51  
54  
54  
600  
1.00 0.00 600  
1.17 1.34 700  
1.33 2.50  
1.5  
1.4  
0.9  
0.8  
1.5  
0.9  
300  
1.8 1.2 1.8  
1.75 1.15 1.8  
1.7 1.1 1.8  
1.65 1.05 1.8  
700  
1.45 0.75 350  
0.7  
0.5  
800  
400  
450  
500  
550  
0.7  
0.5  
900  
1.50 3.52  
0.9  
0.8  
0.7  
0.7  
0.5  
1000  
1100  
1200  
1.67 4.44  
1.6  
1
1.8  
0.7  
0.5  
1.83 5.26  
1.55 0.95 1.8  
0.7  
0.5  
2.00 6.02  
0.7  
0.5  
1 Requires TX_HEADROOM = 1.  
Table 21. Symbol Definitions  
Symbol  
Formula  
25 Ω × IDC  
25 Ω × IDC × 2 = 2 × VOD  
25 Ω × ITX/2 = VODPP/4 + (IPE/2 × 25)  
50 Ω × ITX/2 = VODPP/2 + (IPE/2 × 50)  
VOD/RTERM  
N/A  
IDC + IPE  
VTTO − ∆VOCM + VOD/2  
VTTO − ∆VOCM − VOD/2  
Definition  
VOD  
VOD p-p  
∆VOCM_DC-COUPLED  
∆VOCM_AC-COUPLED  
IDC  
IPE  
ITX  
VH  
VL  
Peak differential output voltage  
Peak-to-peak differential output voltage  
Output common-mode shift  
Output common-mode shift  
Output current that sets output level  
Output current used for PE  
Total transmitter output current  
Maximum single-ended output voltage  
Minimum single-ended output voltage  
V
TTO  
DV  
OCM  
V
V
V
H
V
OD  
OCM  
L
V
p-p = 2 × V  
OD  
OD  
V
EE  
Figure 40. VH, VL, VOCM  
Rev. 0 | Page 25 of 36  
AD8158  
AD8158 POWER CONSUMPTION  
SQUELCH AND DISABLE  
There are several sections of the AD8158 that draw varying  
power depending on the supply voltages, the type of I/O  
coupling used, and the status of the AD8158 operation. Figure 41  
shows a block diagram of these sections. Figure 42 summarizes  
the power consumption of each section and is a useful guide as  
the following sections are reviewed.  
Each transmitter is equipped with disable and squelch controls.  
Disable is a full power-down state: the transmitter current is  
reduced to zero and the output pins pull up to VTTO, but there  
is a delay of approximately 1 μs associated with re-enabling  
the transmitter. Squelch simply reduces the output current to  
submicroamp levels, again allowing both output pins to pull up  
to VTTO through the output termination resistors. The transmit-  
ter recovers from squelch in less than 100 ns.  
A power budget calculator is available on the AD8158 product  
page at www.analog.com.  
SPEED SELECT  
The SEL4G pin lets the user lower the transmitter frequency of  
maximum boost from 3.25 GHz to 2.0 GHz, allowing the  
AD8158 to offer exceptional transmit channel compensation for  
legacy applications (4.5 Gbps and slower). SEL4G = 1 lowers the  
frequency of maximum boost without sacrificing the amount of  
boost delivered.  
V
DV  
CC  
V
V
TTO  
CC  
VTT  
TTI  
OUTPUT  
TERMINATIONS  
I
OUT  
2
P =  
× 50Ω  
50Ω  
50Ω  
50Ω  
50Ω  
EQUALIZER  
IP_xx  
IN_xx  
OPTIONAL COUPLING  
CAPACITORS  
LOSS OF  
INPUT  
SIGNAL  
TERMINATION  
P = (V ) (I  
)
OL OUT  
2
)
AC-COUPLING CAPS  
(OPTIONAL)  
(V  
IN_DIFF_RMS  
I
OUT  
V
= V  
– (I  
× 25)  
P =  
RECEIVER  
SWITCH  
OL  
TTO OUT  
100Ω  
V
EE  
Figure 41. AD8158 Power Distribution Block Diagram  
Rev. 0 | Page 26 of 36  
 
 
AD8158  
0 3 3 4 6 - 6 6 0  
Figure 42. Power Budget Calculator  
Rev. 0 | Page 27 of 36  
 
AD8158  
The first section is the input termination resistors. The power  
dissipated in the termination resistors is due to the input  
differential swing and any common-mode current resulting  
from dc-coupling the input.  
This pre-emphasis current gives rise to an output common-  
mode shift, which varies with ac-coupling or dc-coupling and  
which is calculated for both cases in Table 20.  
Perhaps the most direct method for calculating power dissi-  
pated in the output is to calculate the power that would be  
dissipated if all of ITOT were to flow on-die from VTTO to VEE  
and to subtract from this the power dissipated off-die in the  
destination device termination resistors and the channel.  
For this purpose, the destination device and channel can be  
modeled as 50 ꢀ load resistors, RL, in parallel with the AD8158  
termination resistors.  
In the next section, the receiver, each input is powered only  
when it is selected and the disable bits are set to 0. If a receiver  
is not selected, it is powered down. Thus, the total number of  
active inputs affects the total power consumption. Furthermore,  
the loss-of-signal detection circuits can be disabled independent  
of the receiver for even greater power savings.  
The core of the device performs the multiplexer and demulti-  
plexer switching functions. It draws a fixed quiescent current of  
2 mA whenever the AD8158 is powered from VCC to VEE. The  
switch draws an additional 8 × 4.6 mA in normal mux/demux  
operation and an additional 12 × 4.6 mA with all ports in  
loopback or with bicast selected. The switch core can be  
disabled to save power.  
POWER SAVING CONSIDERATIONS  
While the AD8158 power consumption is very low compared to  
similar devices, careful control of its operating conditions can  
yield further power savings. Significant power reduction can be  
realized by operating the part at a lower voltage. Compared to  
3.3 V operation, a supply voltage of 1.8 V can result in power  
savings of ~45%. There is no performance penalty when  
operating at lower voltage.  
An output predriver section draws a current, IPRED, that is  
related to the programmed output current, ITOT. Table 20 lists  
values for ITOT and IPRED for all settings of output level and pre-  
emphasis. The predriver current always flows from VCC to VEE.  
It is treated separately from the output current, which flows  
A second measure is to disable transmitters when they are not  
being used. This can be done on a static basis if the output is  
not used or on a dynamic basis if the output does not have a  
constant stream of traffic. On transmit disable (Register 0x48,  
Register 0x88, Register 0xC8), both the predriver and output  
switch currents are disabled. The LOS-activated squelch  
disables only the output switch current, ITOT. Superior power  
saving is achieved by using the TX and RX disable registers to  
turn off an unused lane as opposed to relying on the AD8158  
transmit squelch feature.  
from VTTO, and may not be the same voltage as VCC  
.
The final section is the outputs. For an individual output, the  
programmed output current flows through two separate paths.  
One is the on-chip termination resistor, and the other is the  
transmission line and the destination termination resistor. The  
nominal parallel impedance of these two paths is 25 ꢀ. The  
sum of these two currents flows through the switches and the  
current source of the AD8158 output circuit and out through VEE.  
The power dissipated in the transmission line and the destination  
resistor is not dissipated in the AD8158 but has to be supplied  
from the power supply and is a factor in the overall system  
power. The current in the on-chip termination resistors and  
the output current source dissipate power in the AD8158 itself.  
Because the majority of the power dissipated is in the output  
stage, some of its flexibility can be used to lower the power  
consumption. First, the output current and output pre-emphasis  
settings can be programmed to the smallest amount required to  
maintain BER performance. If an output circuit always has a  
short length and the receiver has good sensitivity, then a lower  
output current can be used.  
OUTPUTS  
The output current is set by a combination of output level and  
pre-emphasis setting (see Table 20). For the two logic switch  
states, this current flows through an on-chip termination  
resistor and a parallel path to the destination device and its  
termination resistor. The power in this parallel path is not  
dissipated by the AD8158. With pre-emphasis enabled, some  
current always flows in both the P and N termination resistors.  
It is also possible to lower the voltage on VTTO to lower the  
power dissipation. The amount that VTTO can be lowered is  
dependent on the lowest of all the outputs VOL and VCC. This  
is determined by the output that is operating at the highest  
programmed output current. Table 1 and Table 20 list minimum  
output levels.  
Rev. 0 | Page 28 of 36  
 
AD8158  
I2C CONTROL INTERFACE  
5. Send the register address (eight bits) to which data is to be  
written. This transfer should be MSB first.  
SERIAL INTERFACE GENERAL FUNCTIONALITY  
The AD8158 register set is controlled through a 2-wire I2C  
interface. The AD8158 acts only as an I2C slave device. The  
7-bit slave address for the AD8158 I2C interface contains the  
static value b1010 for the upper four bits. The lower three bits  
are controlled by the input pins I2C_A[2:0].  
Therefore, the I2C bus in the system needs to include an I2C  
master to configure the AD8158 and other I2C devices that may  
be on the bus. Data transfers are controlled through the use of  
the two I2C wires: the SCL input clock pin and the SDA bidirec-  
tional data pin.  
The AD8158 I2C interface can be run in the standard (100 kHz)  
and fast (400 kHz) modes. The SDA line only changes value  
when the SCL pin is low with two exceptions. To indicate the  
beginning or continuation of a transfer, the SDA pin is driven  
low while the SCL pin is high, and to indicate the end of a  
transfer, the SDA line is driven high while the SCL line is high.  
Therefore, it is important to control the SCL clock to toggle  
only when the SDA line is stable unless indicating a start,  
repeated start, or stop condition.  
6. Wait for the AD8158 to acknowledge the request.  
7. Send the data (eight bits) to be written to the register whose  
address was set in Step 5. This transfer should be MSB first.  
8. Wait for the AD8158 to acknowledge the request.  
9a. Send a stop condition (while holding the SCL line high,  
pull the SDA line high) and release control of the bus.  
9b. Send a repeated start condition (while holding the SCL  
line high, pull the SDA line low) and continue with Step 2  
in this procedure to perform another write.  
9c. Send a repeated start condition (while holding the SCL  
line high, pull the SDA line low) and continue with Step 2  
of the read procedure (in the I2C Interface Data Transfers:  
Data Read section) to perform a read from another  
address.  
9d. Send a repeated start condition (while holding the SCL  
line high, pull the SDA line low) and continue with Step 8  
of the read procedure (in the I2C Interface Data Transfers:  
Data Read section) to perform a read from the same  
address set in Step 5.  
I2C INTERFACE DATA TRANSFERS: DATA WRITE  
In Figure 43, the AD8158 write process is shown. The SCL  
signal is shown along with a general write operation and a  
specific example. In this example, the value 0x92 is written to  
Address 0x6D of an AD8158 device with a part address of 0x53.  
The part address is seven bits wide and is composed of the  
AD8158 static upper four bits (b1010) and the pin-programmable  
lower three bits (I2C_A[2:0]). The address pins are set to b011.  
In Figure 43, the corresponding step number is visible in the  
circle under the waveform. The SCL line is driven by the I2C  
master and never by the AD8158 slave. As for the SDA line, the  
data in the shaded polygons is driven by the AD8158, whereas  
the data in the nonshaded polygons is driven by the I2C master.  
The end phase case shown is that of Step 9A.  
To write data to the AD8158 register set, a microcontroller or  
any other I2C master needs to send the appropriate control  
signals to the AD8158 slave device. The following steps need to  
be taken, where the signals are controlled by the I2C master,  
unless otherwise specified. For a diagram of the procedure, see  
Figure 43.  
1. Send a start condition (while holding the SCL line high,  
pull the SDA line low).  
2. Send the AD8158 part address (seven bits) whose upper  
four bits are the static value b1010 and whose lower three  
bits are controlled by the I2C_A[2:0] input pins. This  
transfer should be MSB first.  
It is important to note that the SDA line only changes when the  
SCL line is low, except for the case of sending a start, stop, or  
repeated start condition (Step 1 and Step 9 in this case).  
3. Send the write indicator bit (0).  
4. Wait for the AD8158 to acknowledge the request.  
SCL  
ADDR  
[1:0]  
START  
FIXED PART ADDR  
R/W ACK  
REGISTER ADDR  
ACK  
DATA  
ACK  
STOP  
SDA  
SDA  
1
2
2
3
4
5
6
7
8
9a  
Figure 43. I2C Write Diagram  
Rev. 0 | Page 29 of 36  
 
 
 
AD8158  
13a. Send a stop condition (while holding the SCL line high,  
pull the SDA line high) and release control of the bus.  
13b. Send a repeated start condition (while holding the SCL  
line high, pull the SDA line low) and continue with Step 2  
of the write procedure (see the I2C Interface Data  
I2C INTERFACE DATA TRANSFERS: DATA READ  
To read data from the AD8158 register set, a microcontroller  
or any other I2C master needs to send the appropriate control  
signals to the AD8158 slave device. The following steps need  
to be taken, where the signals are controlled by the I2C master,  
unless otherwise specified. For a diagram of the procedure, see  
Figure 44.  
Transfers: Data Write section) to perform a write.  
13c. Send a repeated start condition (while holding the SCL  
line high, pull the SDA line low) and continue with Step 2  
of this procedure to perform a read from another address.  
13d. Send a repeated start condition (while holding the SCL  
line high, pull the SDA line low) and continue with Step 8  
of this procedure to perform a read from the same address.  
1. Send a start condition (while holding the SCL line high,  
pull the SDA line low).  
2. Send the AD8158 part address (seven bits) whose upper  
four bits are the static value b1010 and whose lower three  
bits are controlled by the I2C_A[2:0] input pins. This  
transfer should be MSB first.  
In Figure 44, the AD8158 read process is shown. The SCL signal is  
shown along with a general read operation and a specific example.  
In this example, the value 0x49 is read from Address 0x6D of  
an AD8158 device with a 0x53 part address. The part address  
is seven bits wide and is composed of the AD8158 static upper  
four bits (b1010) and the pin-programmable lower three bits  
(I2C_A[2:0]). The address pins are set to b011. In Figure 44, the  
corresponding step number is visible in the circle under the  
waveform. The SCL line is driven by the I2C master and never  
by the AD8158 slave. As for the SDA line, the data in the shaded  
polygons is driven by the AD8158, whereas the data in the  
nonshaded polygons is driven by the I2C master. The end phase  
case shown is that of Step 13A.  
3. Send the write indicator bit (0).  
4. Wait for the AD8158 to acknowledge the request.  
5. Send the register address (eight bits) from which data is to  
be read. This transfer should be MSB first. The register  
address is kept in memory in the AD8158 until the part is  
reset or the register address is written over with the same  
procedure (Step 1 to Step 6).  
6. Wait for the AD8158 to acknowledge the request.  
7. Send a repeated start condition (while holding the SCL line  
high, pull the SDA line low).  
8. Send the AD8158 part address (seven bits) whose upper  
four bits are the static value b1010 and whose lower three  
bits are controlled by the I2C_A[2:0] input pins. This  
transfer should be MSB first.  
It is important to note that the SDA line only changes when  
the SCL line is low, except for the case of sending a start, stop,  
or repeated start condition, as in Step 1, Step 7, and Step 13.  
In Figure 44, A is the same as ACK. Equally, Sr represents a  
repeated start where the SDA line is brought high before SCL  
is raised. SDA is then dropped while SCL is still high.  
9. Send the read indicator bit (1).  
10. Wait for the AD8158 to acknowledge the request.  
11. The AD8158 then serially transfers the data (eight bits)  
held in the register indicated by the address set in Step 5.  
12. Acknowledge the data.  
SCL  
ADDR R/  
FIXED PART  
ADDR  
ADDR R/  
A
START  
b11110  
A
REGISTER ADDR  
A
6
Sr  
DATA  
A
STOP  
SDA  
SDA  
[1:0]  
W
[1:0]  
W
1
2
2
3
4
5
7
8
8
9
10  
11  
12  
13a  
Figure 44. I2C Read Diagram  
Rev. 0 | Page 30 of 36  
 
 
 
AD8158  
APPLICATIONS INFORMATION  
SUPPLY SEQUENCING  
Table 22. Alternate Supply Configuration Examples  
Signal Level  
VCC, VTTI, VTTO  
VEE  
Ideally, all power supplies should be brought up to the appropri-  
ate levels simultaneously (power supply requirements are set by  
the supply limits in Table 1 and the absolute maximum ratings  
listed in Table 3). In the event that the power supplies to the  
AD8158 are brought up separately, the supply power-up sequence  
is as follows: DVCC powered first, followed by VCC, and lastly  
1.2 V CML  
GND − 400 mV diff  
1.2 V  
GND  
−2.1 V ≤VEE ≤ −0.6 V  
−3.3 V ≤VEE ≤ +1.8 V  
The AD8158 control signals are always referenced between  
DVCC and VEE and, when using a split supply configuration,  
logic level-shift circuits should be used. The evaluation board  
design shows the use of the Analog Devices, Inc., ADUM1250  
I2C isolator and a level shifter to level-shift the SCL and SDA  
signals.  
VTTI and VTTO. The power-down sequence is reversed with VTTI  
and VTTO being powered off first.  
VTTI and VTTO contain ESD protection diodes to the VCC power  
domain (see Figure 38 and Figure 39). To avoid a sustained high  
current condition in these devices (ISUSTAINED < 100 mA), the  
Evaluation of DC-Coupled Links  
When evaluating the AD8158 dc-coupled, remember that most  
lab equipment is ground referenced while the AD8158 high  
speed I/O are connected by 50 ꢀ on-die termination resistors to  
VTTI and VTTO supplies should be powered on after VCC and  
should be powered off before VCC  
.
If the system power supplies have a high impedance in the  
powered off state, then supply sequencing is not required  
provided the following limits are observed:  
V
TTI and VTTO. To interface the AD8158 to ground-referenced,  
high speed instrumentation (for example, the 50 ꢀ inputs of a  
high speed oscilloscope), it is necessary to level-shift the outputs by  
either using a dc-blocking network or by powering the AD8158  
between ground and a negative supply.  
Peak current from VTTI or VTTO to VCC < 200 mA  
Sustained current from VTTI or VTTO to VCC < 100 mA  
For example, to evaluate 1.8 V dc-coupled transmitter perfor-  
mance with a 50 ꢀ ground-referenced oscilloscope, use the  
following supply configuration:  
SINGLE SUPPLY vs. MULTIPLE SUPPLY  
OPERATION  
The AD8158 supports a flexible supply voltage of 1.8 V to 3.3 V.  
For some dc-coupled links, 1.2 V or ground-referenced signaling  
may be desired. In these cases, the AD8158 can be run with a  
split supply configuration.  
V
V
CC = VTTO = VTTI = Ground  
EE = −1.8 V  
Ground < DVCC < 1.5 V  
Rev. 0 | Page 31 of 36  
 
 
AD8158  
REGISTER MAP  
All registers are port-level and global registers, unless otherwise noted.  
Table 23. Register Definitions  
Mnemonic  
Addr. Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
Reset  
0x00  
RESET  
Switch  
Control 1  
0x01  
LBC  
LBB  
LBA  
SELAb/B[3]  
SELAb/B[2]  
SELAb/B[1]  
SELAb/B[0]  
0x00  
0x00  
0x0F  
Switch  
Control 2  
0x02  
0x04  
0x05  
SEL4G  
BICAST  
Global  
Squelch Ctrl  
GSQLCH_ENB  
Switch Core/  
Headroom  
TX_HEAD  
ROOM_C  
TX_HEAD  
ROOM_B  
TX_HEAD  
ROOM_A  
XCORE_ENB 0x01  
Mode  
0x0F  
0x40  
0x41  
MODE[1]  
RXDIS A1  
AEQ[1]  
MODE[0]  
RXDIS A0  
AEQ[0]  
0x00  
0x00  
0x00  
0x1C  
RXA Disable  
RXA Setting  
RXDIS A3  
AEQ[3]  
RXDIS A2  
AEQ[2]  
RXA LOS  
Threshold  
0x50  
0x51  
0x421  
Set to 0  
Set to 0  
Set to 0  
A1EQ[2]  
THRBIT[5]  
Set to 0  
THRBIT[4]  
Set to 0  
THRBIT[3]  
THRBIT[2]  
THRBIT[1]  
THRBIT[0]  
RXA LOS  
Control  
Set to 0  
A1EQ[3]  
Set to 0  
A0EQ[3]  
LOS_FILT  
A0EQ[2]  
LOS_GSEL  
A0EQ[1]  
LOS_ENB  
A0EQ[0]  
0x07  
0x00  
RXA Lane 1/  
RXA Lane 0  
Setting  
A1EQ[1]  
A1EQ[0]  
RXA Lane 3/  
RXA Lane 2  
Setting  
0x431  
A3EQ[3]  
A3EQ[2]  
A3EQ[1]  
A3EQ[0]  
A2EQ[3]  
PNA3  
A2EQ[2]  
PNA2  
A2EQ[1]  
PNA1  
A2EQ[0]  
PNA0  
0x00  
0x00  
RXA P/N  
Swap  
0x441  
0x451  
RXA LOS  
Status  
LOSA3  
Sticky  
LOSA2  
Sticky  
LOSA1  
Sticky  
LOSA0  
Sticky  
LOSA3 Active LOSA2  
Active  
LOSA1  
Active  
LOSA0  
Active  
TXA Disable  
0x48  
0x49  
TXDIS A3  
TXDIS A2  
TXDIS A1  
APE[1]  
TXDIS A0  
APE[0]  
0x00  
0x20  
TXA Level/PE  
Control  
ALEV[1]  
A1PE[1]  
ALEV[0]  
A1PE[0]  
APE[2]  
TXA Lane1/  
TXA Lane 0  
PE Setting  
0x4A1  
A1PE[2]  
A0PE[2]  
A0PE[1]  
A0PE[0]  
0x00  
TXA Lane2/3  
PE Setting  
0x4B1  
A3PE[2]  
A3PE[1]  
A3PE[0]  
A2PE[2]  
A2PE[1]  
A2PE[0]  
0x00  
0xAA  
TXA Per-Lane  
Level Setting  
0x4C1 A3OLEV[1]  
A3OLEV[0]  
A2OLEV[1]  
A2OLEV[0]  
A1OLEV[1]  
A1OLEV[0]  
A0OLEV[1]  
A0OLEV[0]  
RXB Disable  
RXB Setting  
0x80  
0x81  
RXDIS B3  
BEQ[3]  
RXDIS B2  
BEQ[2]  
RXDIS B1  
BEQ[1]  
RXDIS B0  
BEQ[0]  
0x00  
0x00  
0x1C  
RXB LOS  
0x90  
Set to 0  
Set to 0  
THRBIT[5]  
THRBIT[4]  
THRBIT[3]  
THRBIT[2]  
THRBIT[1]  
THRBIT[0]  
Threshold  
RXB LOS Ctrl  
0x91  
Set to 0  
B1EQ[3]  
Set to 0  
B1EQ[2]  
Set to 0  
B1EQ[1]  
Set to 0  
B1EQ[0]  
Set to 0  
B0EQ[3]  
LOS_FILT  
B0EQ[2]  
LOS_GSEL  
B0EQ[1]  
LOS_ENB  
B0EQ[0]  
0x07  
0x00  
RXB Lane 1/  
RXB Lane 0  
Setting  
0x821  
RXB Lane 3/  
RXB Lane 2  
Setting  
0x831  
B3EQ[3]  
B3EQ[2]  
B3EQ[1]  
B3EQ[0]  
B2EQ[3]  
B2EQ[2]  
PNB2  
B2EQ[1]  
PNB1  
B2EQ[0]  
PNB0  
0x00  
0x00  
RXB P/N  
Swap  
0x841  
0x851  
PNB3  
RXB LOS  
Status  
LOSB3  
Sticky  
LOSB2  
Sticky  
LOSB1  
Sticky  
LOSB0  
Sticky  
LOSB3 Active  
TXDIS B3  
LOSB2  
Active  
LOSB1  
Active  
LOSB0  
Active  
TXB Disable  
0x88  
0x89  
TXDIS B2  
BPE[2]  
TXDIS B1  
BPE[1]  
TXDIS B0  
BPE[0]  
0x00  
0x20  
TXB Level/PE  
Control  
BLEV[1]  
B1PE[1]  
BLEV[0]  
B1PE[0]  
TXB Lane1/  
TXB Lane 0  
PE Setting  
0x8A1  
B1PE[2]  
B0PE[2]  
B0PE[1]  
B0PE[0]  
0x00  
Rev. 0 | Page 32 of 36  
 
 
AD8158  
Mnemonic  
Addr. Bit 7  
0x8B1  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
TXB Lane2/  
TXB Lane 3  
PE Setting  
B3PE[2]  
B3PE[1]  
B3PE[0]  
B2PE[2]  
B2PE[1]  
B2PE[0]  
0x00  
TXB Per-Lane  
Level Setting  
0x8C1 B3OLEV[1]  
B3OLEV[0]  
B2OLEV[1]  
B2OLEV[0]  
B1OLEV[1]  
B1OLEV[0]  
B0OLEV[1]  
B0OLEV[0]  
0xAA  
RXC Disable  
RXC Setting  
0xC0  
0xC1  
RXDIS C3  
CEQ[3]  
RXDIS C2  
CEQ[2]  
RXDIS C1  
CEQ[1]  
RXDIS C0  
CEQ[0]  
0x00  
0x00  
0x1C  
RXC LOS  
Threshold  
0xD0  
Set to 0  
Set to 0  
Set to 0  
THRBIT[5]  
THRBIT[4]  
THRBIT[3]  
THRBIT[2]  
THRBIT[1]  
THRBIT[0]  
RXC LOS Ctrl  
0xD1  
Set to 0  
C1EQ[2]  
Set to 0  
C1EQ[1]  
Set to 0  
C1EQ[0]  
Set to 0  
C0EQ[3]  
LOS_FILT  
C0EQ[2]  
LOS_GSEL  
C0EQ[1]  
LOS_ENB  
C0EQ[0]  
0x07  
0x00  
RXC Lane 1/  
RXC Lane 0  
Setting  
0xC21 C1EQ[3]  
0xC31 C3EQ[3]  
0xC41  
RXC Lane 3/  
RXC Lane 2  
Setting  
C3EQ[2]  
C3EQ[1]  
C3EQ[0]  
C2EQ[3]  
C2EQ[2]  
PNC2  
C2EQ[1]  
PNC1  
C2EQ[0]  
PNC0  
0x00  
0x00  
RXC P/N  
Swap  
PNC3  
RXC LOS  
Status  
0xC51 LOSC3  
Sticky  
LOSC2  
Sticky  
LOSC1  
Sticky  
LOSC0  
Sticky  
LOSC3 Active  
TXDIS C3  
LOSC2  
Active  
LOSC1  
Active  
LOSC0  
Active  
TXC Disable  
0xC8  
0xC9  
TXDIS C2  
CPE[2]  
TXDIS C1  
CPE[1]  
TXDIS C0  
CPE[0]  
0x00  
0x20  
TXC Level/PE  
Control  
CLEV[1]  
C1PE[1]  
CLEV[0]  
C1PE[0]  
TXC Lane1/  
TXC Lane 0  
PE Setting  
0xCA1  
C1PE[2]  
C0PE[2]  
C0PE[1]  
C0PE[0]  
0x00  
0x00  
0xAA  
TXC Lane2/  
TXC Lane 3  
PE Setting  
0xCB1  
C3PE[2]  
C3PE[1]  
C3PE[0]  
C2PE[2]  
C2PE[1]  
C2PE[0]  
TXC Per-Lane  
Level Setting  
0xCC1 C3OLEV[1]  
C3OLEV[0]  
C2OLEV[1]  
C2OLEV[0]  
C1OLEV[1]  
C1OLEV[0]  
C0OLEV[1]  
C0OLEV[0]  
1 Per-lane registers.  
Rev. 0 | Page 33 of 36  
AD8158  
OUTLINE DIMENSIONS  
0.25  
0.20  
0.15  
0.60 MAX  
12.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
75  
76  
1
100  
PIN 1  
INDICATOR  
0.40  
BSC  
11.75  
BSC SQ  
7.00  
6.90 SQ  
6.80  
EXPOSEDPAD  
(BOTTOM VIEW)  
26  
50  
51  
25  
0.20 MIN  
0.50  
0.40  
0.30  
TOP VIEW  
0.70  
0.65  
0.60  
9.60 REF  
12° MAX  
0.90  
0.85  
0.80  
THE EXPOSED METAL PADDLE ON THE  
BOTTOM OF THE LFCSP PACKAGE  
MUST BE SOLDERED TO PCB GROUND  
FOR PROPER HEAT DISSIPATION AND  
ALSO FOR NOISE AND MECHANICAL  
STRENGTH BENEFITS.  
0.05 MAX  
0.01 NOM  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VRRE.  
Figure 45. 100-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
12 mm × 12 mm Body, Very Thin Quad  
(CP-100-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
AD8158ACPZ1  
AD8158-EVALZ1  
−40°C to +85°C  
100-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
CP-100-1  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 34 of 36  
 
AD8158  
NOTES  
Rev. 0 | Page 35 of 36  
AD8158  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06646-0-6/08(0)  
Rev. 0 | Page 36 of 36  

相关型号:

AD8158ACPZ

6.5 Gbps Quad Buffer Mux/Demux
ADI

AD8159

3.2 Gbps Quad Buffer Mux/Demux
ADI

AD8159-EVAL-AC

3.2 Gbps Quad Buffer Mux/Demux
ADI

AD8159-EVAL-DC

3.2 Gbps Quad Buffer Mux/Demux
ADI

AD8159ASVZ

3.2 Gbps Quad Buffer Mux/Demux
ADI

AD815ARB-24

High Output Current Differential Driver
ADI

AD815ARB-24-REEL

High Output Current Differential Driver
ADI

AD815ARBZ-24

High Output Current Differential Driver
ADI

AD815AVR

High Output Current Differential Driver
ADI

AD815AY

High Output Current Differential Driver
ADI

AD815AYS

High Output Current Differential Driver
ADI

AD815_05

High Output Current Differential Driver
ADI