AD8231-EVALZ [ADI]

Zero Drift, Digitally Programmable Instrumentation Amplifier; 零漂移,数字可编程仪表放大器
AD8231-EVALZ
型号: AD8231-EVALZ
厂家: ADI    ADI
描述:

Zero Drift, Digitally Programmable Instrumentation Amplifier
零漂移,数字可编程仪表放大器

仪表放大器
文件: 总24页 (文件大小:675K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Zero Drift, Digitally Programmable  
Instrumentation Amplifier  
AD8231  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Digitally/pin-programmable gain  
G = 1, 2, 4, 8, 16, 32, 64, or 128  
Specified from −40°C to +125°C  
50 nV/°C maximum input offset drift  
10 ppm/°C maximum gain drift  
Excellent dc performance  
80 dB minimum CMR, G = 1  
15 μV maximum input offset voltage  
500 pA maximum bias current  
0.7 μV p-p noise (0.1 Hz to 10 Hz)  
Good ac performance  
1
2
3
4
12  
11  
10  
9
NC  
–INA  
+INA  
NC  
+V  
–V  
S
LOGIC  
S
IN-AMP  
OUTA  
REF  
OP  
AMP  
AD8231  
2.7 MHz bandwidth, G = 1  
1.1 V/ꢀs slew rate  
Rail-to-rail output  
Shutdown/multiplex  
Figure 1.  
Extra op amp  
Single-supply range: 3 V to 6 V  
Dual-supply range: 1.5 V to 3 V  
Table 1. Instrumentation and Difference Amplifiers by  
Category  
High  
Low  
Cost  
High  
Voltage  
Mil  
Grade  
Low  
Power  
Digital  
Gain  
Performance  
AD8221  
AD82201  
AD8222  
AD82241  
AD6231  
AD85531  
AD628  
AD629  
AD620  
AD621  
AD524  
AD526  
AD624  
AD6271  
AD82311  
AD8250  
AD8251  
AD85551  
AD85561  
AD85571  
APPLICATIONS  
Pressure and strain transducers  
Thermocouples and RTDs  
Programmable instrumentation  
Industrial controls  
Weigh scales  
1 Rail-to-rail output.  
GENERAL DESCRIPTION  
The AD8231 also includes an uncommitted op amp that can be  
used for additional gain, differential signal driving, or filtering.  
Like the in-amp, the op amp has an auto-zero architecture, rail-  
to-rail input, and rail-to-rail output.  
The AD8231 is a low drift, rail-to-rail, instrumentation amplifier  
with software-programmable gains of 1, 2, 4, 8, 16, 32, 64, or 128.  
The gains are programmed via digital logic or pin strapping.  
The AD8231 is ideal for applications that require precision  
performance over a wide temperature range, such as industrial  
temperature sensing and data logging. Because the gain setting  
resistors are internal, maximum gain drift is only 10 ppm/°C for  
gains of 1 to 32. Because of the auto-zero input stage, maximum  
input offset is 15 μV and maximum input offset drift is just  
50 nV/°C. CMRR is 80 dB for G = 1, increasing to 110 dB at  
higher gains.  
The AD8231 includes a shutdown feature that reduces current  
to a maximum of 1 μA. In shutdown, both amplifiers also have  
a high output impedance, which allows easy multiplexing of  
multiple amplifiers without additional switches.  
The AD8231 is specified over the extended industrial tempera-  
ture range of −40°C to +125°C. It is available in a 4 mm × 4 mm  
16-lead LFCSP.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
 
AD8231  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Amplifier Architecture .............................................................. 18  
Gain Selection............................................................................. 18  
Reference Terminal .................................................................... 18  
Layout .......................................................................................... 19  
Input Bias Current Return Path ............................................... 19  
Input Protection ......................................................................... 19  
RF Interference ........................................................................... 20  
Common-Mode Input Voltage Range..................................... 20  
Reducing Noise........................................................................... 20  
Applications Information.............................................................. 21  
Differential Output .................................................................... 21  
Multiplexing................................................................................ 21  
Using the AD8231 with Bipolar Supplies................................ 21  
Sallen Key Filter.......................................................................... 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
Maximum Power Dissipation ..................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Instrumentation Amplifier Performance Curves..................... 9  
Operational Amplifier Performance Curves .......................... 15  
Performance Curves Valid for Both Amplifiers ..................... 17  
Theory of Operation ...................................................................... 18  
REVISION HISTORY  
9/07—Rev. 0to Rev. A  
5/07—Revision 0: Initial Version  
Changes to Features and General Description ............................. 1  
Changes to Table 2............................................................................ 3  
Changes to Table 3............................................................................ 5  
Changes to Typical Performance Characteristics Layout............ 9  
Inserted Figure 3 to Figure 8; Renumbered Sequentially............ 9  
Inserted Figure 9; Renumbered Sequentially.............................. 10  
Inserted Figure 16, and Figure 18 to Figure 20; Renumbered  
Sequentially ..................................................................................... 11  
Inserted Figure 24; Renumbered Sequentially............................ 12  
Deleted Figure 28 and Figure 29; Renumbered Sequentially ... 13  
Inserted Figure 33 and Figure 34; Renumbered Sequentially... 14  
Inserted Figure 41 to Figure 46; Renumbered Sequentially...... 16  
Inserted Figure 48; Renumbered Sequentially............................ 17  
Changes to Gain Selection Section and Figure 50 ..................... 18  
Added Input Protection Section................................................... 19  
Added Reducing Noise Section .................................................... 20  
Changes to Multiplexing Section.................................................. 21  
Added Using the AD8231 with Bipolar Supplies Section ......... 21  
Added Sallen Key Filter Section ................................................... 22  
Changes to Ordering Guide .......................................................... 23  
Rev. A | Page 2 of 24  
 
AD8231  
SPECIFICATIONS  
VS = 5 V, VREF = 2.5 V, G = 1, RL = 10 kΩ, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
INSTRUMENTATION AMPLIFIER  
Offset Voltage  
VOS RTI = VOSI + VOSO/G  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
Input Offset, VOSI  
4
15  
μV  
Average Temperature Drift  
Output Offset, VOSO  
Average Temperature Drift  
Input Currents  
0.01  
15  
0.05  
30  
μV/°C  
μV  
0.05  
0.5  
μV/°C  
Input Bias Current  
250  
20  
500  
5
100  
0.5  
pA  
nA  
pA  
nA  
TA = −40°C to +125°C  
Input Offset Current  
TA = −40°C to +125°C  
Gains  
1, 2, 4, 8, 16, 32, 64, or 128  
Gain Error  
G = 1  
G = 2 to 128  
Gain Drift  
G = 1 to 32  
G = 64  
0.05  
0.8  
%
%
TA = −40°C to +125°C  
3
4
10  
3
5
10  
20  
30  
ppm/°C  
ppm/°C  
ppm/°C  
ppm  
G = 128  
Linearity  
0.2 V to 4.8 V, 10 kΩ load  
0.2 V to 4.8 V, 2 kΩ load  
ppm  
CMRR  
G = 1  
G = 2  
G = 4  
G = 8  
G = 16  
G = 32  
G = 64  
G = 128  
Noise  
Input Voltage Noise, eni  
80  
86  
92  
98  
104  
110  
110  
110  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
en = √(eni2 + (eno/G)2), VIN+, VIN− = 2.5 V  
f = 1 kHz  
f = 1 kHz, TA = −40°C  
f = 1 kHz, TA = 125°C  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz, TA = −40°C  
f = 1 kHz, TA = 125°C  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
32  
27  
39  
0.7  
58  
50  
70  
1.1  
20  
nV/√Hz  
nV/√Hz  
nV/√Hz  
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
μV p-p  
fA/√Hz  
Output Voltage Noise, eno  
Current Noise  
Other Input Characteristics  
Common-Mode Input Impedance  
Power Supply Rejection Ratio  
Input Operating Voltage Range  
Reference Input  
10||5  
115  
GΩ||pF  
dB  
V
100  
0.05  
4.95  
+5.2  
Input Impedance  
Voltage Range  
28  
kΩ  
V
−0.2  
Rev. A | Page 3 of 24  
 
AD8231  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Dynamic Performance  
Bandwidth  
G = 1  
G = 2  
2.7  
2.5  
MHz  
MHz  
Gain Bandwidth Product  
G = 4 to 128  
Slew Rate  
7
1.1  
MHz  
V/μs  
Output Characteristics  
Output Voltage High  
RL = 100 kΩ to ground  
RL = 10 kΩ to ground  
RL = 100 kΩ to 5 V  
RL = 10 kΩ to 5 V  
4.9  
4.8  
4.94  
4.88  
60  
80  
70  
V
V
mV  
mV  
mA  
Output Voltage Low  
100  
200  
Short-Circuit Current  
Digital Interface  
Input Voltage Low  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
1.0  
V
V
ns  
ns  
Input Voltage High  
Setup Time to CS High  
Hold Time after CS High  
4.0  
50  
20  
OPERATIONAL AMPLIFIER  
Input Characteristics  
Offset Voltage, VOS  
5
15  
μV  
Temperature Drift  
Input Bias Current  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
0.01  
250  
0.06  
500  
5
100  
0.5  
4.95  
μV/°C  
pA  
nA  
pA  
nA  
Input Offset Current  
20  
Input Voltage Range  
Open-Loop Gain  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Voltage Noise Density  
Voltage Noise  
0.05  
100  
100  
100  
V
120  
120  
110  
20  
V/mV  
dB  
dB  
nV/√Hz  
μV p-p  
f = 0.1 Hz to 10 Hz  
0.4  
Dynamic Performance  
Gain Bandwidth Product  
Slew Rate  
1
0.5  
MHz  
V/μs  
Output Characteristics  
Output Voltage High  
RL = 100 kΩ to ground  
RL = 10 kΩ to ground  
RL = 100 kΩ to 5 V  
RL = 10 kΩ to 5 V  
4.9  
4.8  
4.96  
4.92  
60  
80  
70  
V
V
mV  
mV  
mA  
Output Voltage Low  
100  
200  
Short-Circuit Current  
BOTH AMPLIFIERS  
Power Supply  
Quiescent Current  
Quiescent Current (Shutdown)  
4
0.01  
5
1
mA  
μA  
Rev. A | Page 4 of 24  
AD8231  
VS = 3.0 V, VREF = 1.5 V, TA = 25°C, G = 1, RL = 10 kΩ, unless otherwise noted.  
Table 3.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
INSTRUMENTATION AMPLIFIER  
Offset Voltage  
VOS RTI = VOSI + VOSO/G  
Input Offset, VOSI  
4
15  
μV  
Average Temperature Drift  
Output Offset, VOSO  
Average Temperature Drift  
Input Currents  
0.01  
15  
0.05  
0.05  
30  
0.5  
μV/°C  
μV  
μV/°C  
Input Bias Current  
250  
20  
500  
5
100  
0.5  
pA  
nA  
pA  
nA  
TA = −40°C to +125°C  
Input Offset Current  
TA = −40°C to +125°C  
Gains  
1, 2, 4, 8, 16, 32, 64, or 128  
Gain Error  
G = 1  
0.05  
0.8  
%
%
G = 2 to 128  
Gain Drift  
G = 1 to 32  
G = 64  
G = 128  
CMRR  
TA = −40°C to +125°C  
3
4
10  
10  
20  
30  
ppm/°C  
ppm/°C  
ppm/°C  
G = 1  
G = 2  
G = 4  
G = 8  
G = 16  
G = 32  
G = 64  
G = 128  
Noise  
80  
86  
92  
98  
104  
110  
110  
110  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
en = √(eni2 + (eno/G)2)  
VIN+, VIN− = 2.5 V, TA = 25°C  
Input Voltage Noise, eni  
f = 1 kHz  
40  
35  
48  
0.8  
72  
62  
83  
1.4  
20  
nV/√Hz  
nV/√Hz  
nV/√Hz  
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
μV p-p  
fA/√Hz  
f = 1 kHz, TA = −40°C  
f = 1 kHz, TA = 125°C  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz, TA = −40°C  
f = 1 kHz, TA = 125°C  
f = 0.1 Hz to 10 Hz  
f = 10 Hz  
Output Voltage Noise, eno  
Current Noise  
Other Input Characteristics  
Common-Mode Input Impedance  
Power Supply Rejection Ratio  
Input Operating Voltage Range  
Reference Input  
10||5  
115  
GΩ||pF  
dB  
V
100  
0.05  
2.95  
+3.2  
Input Impedance  
Voltage Range  
28  
kΩ||pF  
V
−0.2  
Rev. A | Page 5 of 24  
AD8231  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Dynamic Performance  
Bandwidth  
G = 1  
G = 2  
2.7  
2.5  
MHz  
MHz  
Gain Bandwidth Product  
G = 4 to 128  
Slew Rate  
7
1.1  
MHz  
V/μs  
Output Characteristics  
Output Voltage High  
RL = 100 kΩ to ground  
RL = 10 kΩ to ground  
RL = 100 kΩ to 3 V  
RL = 10 kΩ to 3 V  
2.9  
2.8  
2.94  
2.88  
60  
80  
40  
V
V
mV  
mV  
mA  
Output Voltage Low  
100  
200  
Short-Circuit Current  
Digital Interface  
Input Voltage Low  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
0.7  
V
V
ns  
ns  
Input Voltage High  
Setup Time to CS High  
Hold Time after CS High  
2.3  
60  
20  
OPERATIONAL AMPLIFIERS  
Input Characteristics  
Offset Voltage, VOS  
5
15  
μV  
Temperature Drift  
Input Bias Current  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
TA = −40°C to +125°C  
0.01  
250  
0.06  
500  
5
100  
0.5  
2.95  
μV/°C  
pA  
nA  
pA  
nA  
Input Offset Current  
20  
Input Voltage Range  
Open-Loop Gain  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Voltage Noise Density  
Voltage Noise  
0.05  
100  
100  
100  
V
120  
120  
110  
27  
V/mV  
dB  
dB  
nV/√Hz  
μV p-p  
f = 0.1 Hz to 10 Hz  
0.6  
Dynamic Performance  
Gain Bandwidth Product  
Slew Rate  
1
0.5  
MHz  
V/μs  
Output Characteristics  
Output Voltage High  
RL = 100 kΩ to ground  
RL = 10 kΩ to ground  
RL = 100 kΩ to 3 V  
RL = 10 kΩ to 3 V  
2.9  
2.8  
2.96  
2.82  
60  
80  
40  
V
V
mV  
mV  
mA  
Output Voltage Low  
100  
200  
Short-Circuit Current  
BOTH AMPLIFIERS  
Power Supply  
Quiescent Current  
Quiescent Current (Shutdown)  
3.5  
0.01  
4.5  
1
mA  
μA  
Rev. A | Page 6 of 24  
AD8231  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 4.  
Parameter  
Rating  
Table 5.  
Thermal Pad  
Soldered to Board  
Not Soldered to Board  
Supply Voltage  
6 V  
Indefinite1  
−VS − 0.3 V to +VS + 0.3 V  
−VS − 0.3 V to +VS + 0.3 V  
–65°C to +150°C  
–40°C to +125°C  
θJA  
54  
96  
Unit  
°C/W  
°C/W  
Output Short-Circuit Current  
Input Voltage (Common-Mode)  
Differential Input Voltage  
Storage Temperature Range  
Operational Temperature Range  
The θJA values in Table 5 assume a 4-layer JEDEC standard  
board. If the thermal pad is soldered to the board, it is  
also assumed it is connected to a plane. θJC at the exposed pad  
is 6.3°C/W.  
Package Glass Transition Temperature 130°C  
ESD (Human Body Model)  
ESD (Charged Device Model)  
ESD (Machine Model)  
1 For junction temperatures between 105°C and 130°C, short-circuit operation  
beyond 1000 hours can impact part reliability.  
1.5 kV  
1.5 kV  
0.2 kV  
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation for the AD8231 is limited  
by the associated rise in junction temperature (TJ) on the die. At  
approximately 130°C, which is the glass transition temperature,  
the plastic changes its properties. Even temporarily exceeding  
this temperature limit may change the stresses that the package  
exerts on the die, permanently shifting the parametric perform-  
ance of the amplifiers. Exceeding a temperature of 130°C for an  
extended period can result in a loss of functionality.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. A | Page 7 of 24  
 
 
 
AD8231  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
12 +V  
11 –V  
NC  
(IN-AMP –IN) –INA  
(IN-AMP +IN) +INA  
NC  
1
2
3
4
S
S
AD8231  
TOP VIEW  
(Not to Scale)  
10 OUTA (IN-AMP OUT)  
REF  
9
NC = NO CONNECT  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin Number  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
9
NC  
No Connect.  
−INA (IN-AMP −IN)  
+INA (IN-AMP +IN)  
NC  
SDN  
Instrumentation Amplifier Negative Input.  
Instrumentation Amplifier Positive Input.  
No Connect.  
Shutdown.  
+INB  
−INB  
Operational Amplifier Positive Input.  
Operational Amplifier Negative Input.  
Operational Amplifier Output.  
Instrumentation Amplifier Reference Pin. It should be driven with a low impedance. Output is  
referred to this pin.  
OUTB (OP AMP OUT)  
REF  
10  
11  
12  
13  
14  
15  
16  
OUTA (IN-AMP OUT)  
Instrumentation Amplifier Output.  
Negative Power Supply. Connect to ground in single-supply applications.  
Positive Power Supply.  
Chip Select. Enables digital logic interface.  
Gain Setting Bit (LSB).  
−VS  
+VS  
CS  
A0  
A1  
A2  
Gain Setting Bit.  
Gain Setting Bit (MSB).  
Rev. A | Page 8 of 24  
 
AD8231  
TYPICAL PERFORMANCE CHARACTERISTICS  
INSTRUMENTATION AMPLIFIER PERFORMANCE CURVES  
1000  
1400  
1200  
1000  
800  
600  
400  
200  
0
N: 5956  
MEAN: 0.977167  
SD: 11.8177  
N: 5956  
MEAN: –48.0779  
SD: 21.0433  
800  
600  
400  
200  
0
–100 –80 –60 –40 –20  
0
20  
40  
60  
80  
100  
–500 –400 –300 –200 –100  
0
100 200 300 400 500  
CMRR (µV/V)  
GAIN ERROR (µV/V)  
Figure 3. Instrumentation Amplifier CMR Distribution, G = 1  
Figure 6. Instrumentation Amplifier Gain Distribution, G = 1  
800  
9
N: 5956  
N: 40  
MEAN: 2.06788  
SD: 1.07546  
MEAN: –8.31  
SD: 6  
8
700  
600  
500  
400  
300  
200  
100  
0
7
6
5
4
3
2
1
0
–15  
–10  
–5  
0
5
10  
15  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
V
(µV)  
INPUT OFFSET DRIFT (nV/°C)  
OSI  
Figure 7. Instrumentation Amplifier Input Offset Voltage Drift,  
−40°C to +125°C  
Figure 4. Instrumentation Amplifier Input Offset Voltage Distribution  
16  
800  
N: 40  
MEAN: –0.003  
SD: 0.061  
N: 5956  
MEAN: 10.3901  
SD: 3.9553  
14  
700  
12  
10  
8
600  
500  
400  
300  
200  
100  
0
6
4
2
0
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
–30  
–20  
–10  
0
10  
20  
30  
OUTPUT OFFSET DRIFT (µV/°C)  
V
(µV)  
OSO  
Figure 8. Instrumentation Amplifier Output Offset Drift, −40°C to +125°C  
Figure 5. Instrumentation Amplifier Output Offset Voltage Distribution  
Rev. A | Page 9 of 24  
 
AD8231  
2000  
V
6
5
4
3
2
1
0
= MIDSUPPLY  
= MIDSUPPLY  
REF  
CM  
0V, 4.96V  
V
1500  
1000  
500  
0
5V SINGLE SUPPLY  
4.92V, 2.5V  
0V, 2.96V  
3V SINGLE SUPPLY  
3V  
5V  
2.92V, 1.5V  
4
0V, 0.04V  
–500  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
1
2
3
5
6
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
Figure 9. Instrumentation Amplifier Bias Current vs. Temperature  
Figure 12. Instrumentation Amplifier Input Common-Mode Range vs.  
Output Voltage, VREF = 0 V  
2.0  
1.5  
1.0  
0.5  
0
6
1.5V, 4.96V  
5
0.02V, 4.22V  
4
5V SINGLE SUPPLY  
1.5V, 2.96V  
4.98V, 3.22V  
4.98V, 1.78V  
3
2
1
0
–0.5  
–1.0  
0.02V, 2.22V  
0.02V, 0.78V  
2.98V, 2.22V  
3V SINGLE SUPPLY  
2.98V, 0.78V  
1.5V, 0.04V  
+V = +2.5V  
S
–1.5  
–2.0  
–V = –2.5V  
S
V
= 0V  
REF  
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
V
(V)  
OUTPUT VOLTAGE (V)  
CM  
Figure 13. Instrumentation Amplifier Input Common-Mode Range vs.  
Output Voltage, VREF = 1.5 V  
Figure 10. Instrumentation Amplifier Bias Current vs.  
Common-Mode Voltage, 5 V  
6
1.0  
0.8  
2.5V, 4.96V  
5
0.6  
5V SINGLE SUPPLY  
4
0.4  
4.98V, 3.72V  
0.2  
0.02V, 3.72V  
3
2
1
0
0
2.98V, 2.72V  
2.5V, 2.96V  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0.02V, 1.72V  
0.02V, 1.28V  
3V SINGLE  
SUPPLY  
4.98V,1.28V  
+V = +1.5V  
S
–V = –1.5V  
2.5V, 0.04V  
S
V
= 0V  
REF  
2.98V, 0.28V  
3.0 3.5 4.0  
OUTPUT VOLTAGE (V)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
4.5  
5.0  
–1.5 –1.2 –0.9 –0.6 –0.3  
0
0.3  
0.6  
0.9  
1.2  
1.5  
V
(V)  
CM  
Figure 14. Instrumentation Amplifier Input Common-Mode Range vs.  
Output Voltage, VREF = 2.5 V  
Figure 11. Instrumentation Amplifier Bias Current vs.  
Common-Mode Voltage, 3 V  
Rev. A | Page 10 of 24  
 
 
AD8231  
50  
40  
20  
15  
G = 128  
G = 1  
G = 1  
G = 8  
G = 8  
G = 128  
G = 128  
G = 64  
G = 32  
G = 16  
G = 8  
G = 4  
G = 2  
G = 1  
30  
10  
20  
5
10  
0
0
–5  
–10  
–20  
–30  
–40  
–10  
–15  
–20  
REPRESENTATIVE SAMPLES  
100  
1k  
10k  
100k  
1M  
10M  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 15. Instrumentation Amplifier Gain vs. Frequency  
Figure 18. Instrumentation Amplifier CMRR vs. Temperature  
1000  
800  
140  
G = 1  
G = 1  
G = 8  
G = 2  
G = 4  
G = 8  
G = 16  
G = 32  
G = 64  
G = 128  
120  
100  
80  
60  
40  
20  
0
600  
400  
G = 128  
200  
0
–200  
–400  
–600  
–800  
–1000  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
1
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 16. Instrumentation Amplifier Gain Drift vs. Temperature  
Figure 19. Instrumentation Amplifier Positive PSRR vs. Frequency  
140  
140  
G = 128  
G = 1  
G = 8  
120  
120  
100  
G = 8  
100  
80  
G = 128  
G = 1  
60  
40  
20  
0
80  
60  
40  
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
100k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 17. Instrumentation Amplifier CMRR vs. Frequency  
Figure 20. Instrumentation Amplifier Negative PSRR vs. Frequency  
Rev. A | Page 11 of 24  
AD8231  
100  
10  
G = +128, 0.4µV/DIV  
G = +1, 1µV/DIV  
1
0.1  
0.01  
1
10  
100  
1k  
10k  
100k  
1s/DIV  
FREQUENCY (Hz)  
Figure 21. Instrumentation Amplifier 0.1 Hz to 10 Hz Noise  
Figure 24. Instrumentation Amplifier Current Noise Spectral Density  
100  
G = +1  
G = +8  
G = +128  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
10  
100  
FREQUENCY (Hz)  
1k  
20mV/DIV  
5µs/DIV  
Figure 25. Instrumentation Amplifier Small Signal Pulse Response, G = 1,  
RL = 2 kΩ, CL = 500 pF  
Figure 22. Instrumentation Amplifier Voltage Noise Spectral Density vs.  
Frequency, 5 V, 1 Hz to 1000 Hz  
1000  
G = +1  
G = +8  
G = +128  
900  
500pF  
800pF  
800  
700  
600  
500  
400  
300  
200  
100  
0
300pF  
NO  
LOAD  
1
10  
100  
1k  
10k  
100k  
20mV/DIV  
4µs/DIV  
FREQUENCY (Hz)  
Figure 26. Instrumentation Amplifier Small Signal Pulse Response for Various  
Capacitive Loads, G = 1  
Figure 23. Instrumentation Amplifier Voltage Noise Spectral Density vs.  
Frequency, 5 V, 1 Hz to 1 MHz  
Rev. A | Page 12 of 24  
AD8231  
G = +8  
G = +32  
G = +128  
2V/DIV  
17.6µs TO 0.01%  
21.4µs TO 0.001%  
0.001%/DIV  
100µs/DIV  
20mV/DIV  
10µs/DIV  
Figure 27. Instrumentation Amplifier Small Signal Pulse Response, G = 4, 16,  
and 128, RL = 2 kΩ, CL = 500 pF  
Figure 30. Instrumentation Amplifier Large Signal Pulse Response,  
G = 128, VS = 5 V  
25  
20  
0.001%  
15  
0.01%  
2V/DIV  
10  
5
3.95µs TO 0.01%  
4µs TO 0.001%  
0
1
10  
100  
1k  
0.001%/DIV  
10µs/DIV  
GAIN (V/V)  
Figure 28. Instrumentation Amplifier Large Signal Pulse Response,  
G = 1, VS = 5 V  
Figure 31. Instrumentation Amplifier Settling Time vs.  
Gain for a 4 V p-p Step, VS = 5 V  
25  
20  
15  
10  
5
0.001%  
0.01%  
2V/DIV  
3.75µs TO 0.01%  
3.8µs TO 0.001%  
0
1
10  
100  
1k  
0.001%/DIV  
10µs/DIV  
GAIN (V/V)  
Figure 29. Instrumentation Amplifier Large Signal Pulse Response,  
G = 8, VS = 5 V  
Figure 32. Instrumentation Amplifier Settling Time vs.  
Gain for a 2 V p-p Step, VS = 3 V  
Rev. A | Page 13 of 24  
 
 
AD8231  
+V  
+V  
S
S
–40°C  
+25°C  
+85°C  
+125°C  
–40°C  
+25°C  
+85°C  
+125°C  
–0.2  
–0.4  
–0.6  
–0.8  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
1.0  
–1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.8  
0.6  
0.4  
0.2  
–V  
–V  
S
0.1  
S
0.1  
1
10  
100  
1
10  
100  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 33. Instrumentation Amplifier Output Voltage Swing vs.  
Output Current, VS = 3 V  
Figure 34. Instrumentation Amplifier Output Voltage Swing vs.  
Output Current, VS = 5 V  
Rev. A | Page 14 of 24  
AD8231  
OPERATIONAL AMPLIFIER PERFORMANCE CURVES  
100  
80  
60  
40  
20  
0
–90  
–100  
–110  
–120  
–130  
–140  
–150  
NO  
LOAD  
76° PHASE  
MARGIN  
300pF  
800pF  
1nF  
R
C
= 10k  
= 200pF  
L
L
–20  
1.5nF  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
20mV/DIV  
5µs/DIV  
Figure 35. Operational Amplifier Open-Loop Gain and Phase vs.  
Frequency, VS = 5 V  
Figure 38. Operational Amplifier Small Signal Response for  
Various Capacitive Loads, VS = 3 V  
100  
–90  
80  
60  
40  
20  
0
–100  
–110  
–120  
–130  
–140  
–150  
NO  
LOAD  
1nF2kΩ  
1.5nF2kΩ  
72° PHASE  
MARGIN  
R
C
= 10kΩ  
= 200pF  
L
L
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
TIME (5µs/DIV)  
Figure 36. Operational Amplifier Open-Loop Gain and Phase vs.  
Frequency, VS = 3 V  
Figure 39. Operational Amplifier Large Signal Transient Response, VS = 5 V  
NO  
LOAD  
1nF  
2nF  
800pF  
NO  
LOAD  
1nF2kΩ  
1.5nF2kΩ  
1.5nF  
20mV/DIV  
5µs/DIV  
TIME (5µs/DIV)  
Figure 40. Operational Amplifier Large Signal Transient Response, VS = 3 V  
Figure 37. Operational Amplifier Small Signal Response for  
Various Capacitive Loads, VS = 5 V  
Rev. A | Page 15 of 24  
 
AD8231  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
+V  
S
–40°C  
+25°C  
+85°C  
+125°C  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1
–V  
S
0.1  
1
10  
100  
10  
100  
1k  
10k  
100k  
OUTPUT CURRENT (mA)  
FREQUENCY (Hz)  
Figure 41. Operational Amplifier Voltage Spectral Noise Density vs. Frequency  
Figure 44. Operational Amplifier Output Voltage Swing vs.  
Output Current, VS = 3 V  
+V  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
S
–0.2  
–0.4  
–0.6  
–0.8  
–40°C  
+25°C  
+85°C  
+125°C  
–1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.2  
3V  
0
5V  
–0.2  
–V  
S
0.1  
1
10  
100  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
Figure 45. Operational Amplifier Output Voltage Swing vs.  
Output Current, VS = 5 V  
Figure 42. Operational Amplifier Bias Current vs. Temperature  
140  
400  
300  
200  
100  
+PSRR  
120  
100  
80  
60  
40  
20  
0
V
= ±2.5V  
S
–PSRR  
0
–100  
–200  
–300  
–400  
V
= ±1.5V  
S
–3  
–2  
–1  
0
1
2
3
1
10  
100  
1k  
10k  
100k  
V
(V)  
FREQUENCY (Hz)  
CM  
Figure 46. Operational Amplifier Power Supply Rejection Ratio  
Figure 43. Operational Amplifier Bias Current vs. Common Mode  
Rev. A | Page 16 of 24  
AD8231  
PERFORMANCE CURVES VALID FOR BOTH AMPLIFIERS  
7
160  
140  
120  
100  
80  
G = 8  
G = 128  
+125°C  
+85°C  
6
5
G = 1  
+25°C  
–40°C  
4
3
60  
2
1
0
40  
20  
SOURCE CHANNEL: OP AMP AT G = 1  
0
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
(V)  
5.1  
5.5  
5.9  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
V
SUPPLY  
Figure 47. Supply Current vs. Supply Voltage  
Figure 48. Channel Separation vs. Frequency  
Rev. A | Page 17 of 24  
 
AD8231  
THEORY OF OPERATION  
CS A0 A1 A2  
SDN  
A4  
OUTB  
–INA  
14k  
14kΩ  
14kΩ  
–INB  
+INB  
OUTA  
A1  
A2  
A3  
14kΩ  
+INA  
AD8231  
+V  
–V  
REF  
S
S
Figure 49. Simplified Schematic  
Table 7. Truth Table for AD8231 Gain Settings  
AMPLIFIER ARCHITECTURE  
CS  
A2  
A1  
A0  
Gain  
The AD8231 is based on the classic 3-op amp topology. This  
topology has two stages: a preamplifier to provide amplification,  
followed by a difference amplifier to remove the common-mode  
voltage. Figure 49 shows a simplified schematic of the AD8231.  
The preamp stage is composed of Amplifier A1, Amplifier A2,  
and a digitally controlled resistor network. The second stage is a  
gain of 1 difference amplifier composed of Amplifier A3 and  
four 14 kꢀ resistors. A1, A2, and A3 are all zero drift, rail-to-  
rail input, rail-to rail-output amplifiers.  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
High  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
X
Low  
Low  
High  
High  
Low  
Low  
High  
High  
X
Low  
High  
Low  
High  
Low  
High  
Low  
High  
X
1
2
4
8
16  
32  
64  
128  
No change  
The AD8231 design makes it extremely robust over temperature.  
The AD8231 uses an internal thin film resistor to set the gain.  
Because all of the resistors are on the same die, gain temperature  
drift performance and CMRR drift performance are better than  
can be achieved with topologies using external resistors. The  
AD8231 also uses an auto-zero topology to null the offsets of all its  
internal amplifiers. Because this topology continually corrects for  
any offset errors, offset temperature drift is nearly nonexistent.  
REFERENCE TERMINAL  
The output voltage of the AD8231 is developed with respect to  
the potential on the reference terminal, which is useful when  
the output signal needs to be offset to a midsupply level. For  
example, a voltage source can be tied to the REF pin to level-  
shift the output so that the AD8231 can drive a single-supply  
ADC. The REF pin is protected with ESD diodes and should  
not exceed either +VS or −VS by more than 0.3 V.  
The AD8231 also includes a free operational amplifier. Like  
the other amplifiers in the AD8231, it is a zero drift, rail-to-rail  
input, rail-to-rail output architecture.  
For best performance, source impedance to the REF terminal  
should be kept below 1 Ω. As shown in Figure 49, the reference  
terminal, REF, is at one end of a 14 kꢀ resistor. Additional  
impedance at the REF terminal adds to this 14 kꢀ resistor  
and results in amplification of the signal connected to the  
positive input, causing a CMRR error.  
GAIN SELECTION  
The gain of the AD8231 is set by voltages applied to the A0, A1,  
CS  
and A2 pins. To change the gain, the  
pin must be driven  
pin is driven high, the gain is latched, and  
CS  
CS  
low. When the  
voltages at the A0 to A2 pins have no effect. Because the  
pin  
INCORRECT  
CORRECT  
is level sensitive rather than edge sensitive, it can also be tied  
permanently low. Table 7 shows the different gain settings.  
+
+
AD8231  
AD8231  
The time required for a gain change is dominated by the settling  
time of the amplifier. The AD8231 takes about 200 ns to switch  
gains, after which the amplifier begins to settle. Refer to Figure 28  
through Figure 32 to determine the settling time for different gains.  
IN-AMP  
IN-AMP  
V
REF  
REF  
REF  
V
REF  
+
AD8231  
OP AMP  
Figure 50. Driving the Reference (REF)  
Rev. A | Page 18 of 24  
 
 
 
AD8231  
INCORRECT  
+V  
CORRECT  
+V  
LAYOUT  
S
S
The AD8231 is a high precision device. To ensure optimum  
performance at the PCB level, care must be taken in the design  
of the board layout. The AD8231 pinout is arranged in a logical  
manner to aid in this task.  
AD8231  
AD8231  
REF  
REF  
REF  
REF  
Power Supplies  
The AD8231 should be decoupled with a 0.1 μF bypass capacitor  
between the two supplies. This capacitor should be placed as close  
as possible to Pin 11 and Pin 12, either directly next to the pins or  
beneath the pins on the backside of the board. The auto-zero  
architecture of the AD8231 requires a low ac impedance between  
the supplies. Long trace lengths to the bypass capacitor increase  
this impedance, which results in a larger input offset voltage.  
–V  
S
–V  
S
TRANSFORMER  
TRANSFORMER  
+V  
+V  
S
S
AD8231  
AD8231  
A stable dc voltage should be used to power the instrumentation  
amplifier. Noise on the supply pins can adversely affect  
performance.  
REF  
10M  
–V  
S
–V  
S
Package Considerations  
THERMOCOUPLE  
THERMOCOUPLE  
The AD8231 comes in a 4 mm × 4 mm LFCSP. Beware of  
blindly copying the footprint from another 4 mm × 4 mm  
LFCSP part; it cannot have the same thermal pad size and leads.  
Refer to the Outline Dimensions section to verify that  
the PCB symbol has the correct dimensions. Space between  
the leads and thermal pad should be kept as wide as possible  
for the best bias current performance.  
+V  
+V  
S
S
C
C
C
R
R
1
fHIGH-PASS  
=
AD8231  
2πRC  
AD8231  
C
REF  
Thermal Pad  
–V  
–V  
S
S
The AD8231 4 mm × 4 mm LFCSP comes with a thermal pad.  
This pad is connected internally to −VS. The pad can either be  
left unconnected or connected to the negative supply rail. For  
high vibration applications, a landing is recommended.  
CAPACITIVELY COUPLED  
CAPACITIVELY COUPLED  
Figure 51. Creating an IBIAS Path  
INPUT PROTECTION  
Because the AD8231 dissipates little power, heat dissipation  
is rarely an issue. If improved heat dissipation is desired (for  
example, when ambient temperatures are near 125°C or when  
driving heavy loads), connect the thermal pad to the negative  
supply rail. For the best heat dissipation performance, the  
negative supply rail should be a plane in the board. See the  
Thermal Resistance section for thermal coefficients with and  
without the pad soldered.  
All terminals of the AD8231 are protected against ESD. In  
addition, the input structure allows for dc overload conditions  
a diode drop above the positive supply and a diode drop below  
the negative supply. Voltages beyond these limits cause the ESD  
diodes to conduct and current to flow. If overvoltage events are  
anticipated, an external resistor should be used in series with  
each of the inputs to limit the current to below 10 mA. Currents  
up to 100 mA can be sustained for a few seconds.  
INPUT BIAS CURRENT RETURN PATH  
Note that if either input is brought below the negative supply  
to the point where the ESD diode turns on, the AD8231 output  
can phase-reverse.  
The input bias current of the AD8231 must have a return path  
to common. When the source, such as a thermocouple, cannot  
provide a return current path, one should be created, as shown  
in Figure 51.  
Rev. A | Page 19 of 24  
 
 
AD8231  
If more common-mode range is required, the simplest solution is  
to apply less gain in the instrumentation amplifier. The extra op  
amp can be used to provide another gain stage after the in-amp.  
Because the AD8231 has good offset and noise performance at low  
gains, applying less gain in the instrumentation amplifier generally  
has a limited impact on the overall system performance.  
RF INTERFERENCE  
RF rectification is often a problem when amplifiers are used in  
applications where there are strong RF signals. The disturbance  
can appear as a small dc offset voltage. High frequency signals  
can be filtered with a low-pass, RC network placed at the  
input of the instrumentation amplifier, as shown in Figure 52.  
The filter limits the input signal bandwidth according to the  
following relationship  
REDUCING NOISE  
Because the AD8231 has no 1/f noise, reducing the bandwidth  
corresponds directly to less noise. Table 8 shows the AD8231  
performance at a gain of 1 at different bandwidths, assuming a  
2-pole Butterworth filter roll off.  
1
FilterFreqDiff =  
2π R(2CD + CC)  
1
FilterFreqCM =  
Table 8. AD8231 noise at various bandwidths  
2π RCC  
SNR  
SNR Differential  
where CD ≥ 10CC.  
Single-Ended1  
Output2  
Bandwidth  
(Hz)  
Noise  
(μV rms)  
+V  
S
dB  
Bits  
24.3  
23.5  
22.7  
21.8  
21.0  
20.2  
19.3  
18.5  
17.7  
16.9  
dB  
Bits  
25.3  
24.5  
23.7  
22.8  
22.0  
21.2  
20.3  
19.5  
18.7  
17.9  
1
3.2  
10  
0.07  
0.12  
0.21  
0.37  
0.66  
1.17  
2.07  
3.71  
6.55  
11.73  
148.3  
143.2  
138.3  
133.2  
128.3  
123.2  
118.3  
113.2  
108.3  
103.2  
154.3  
149.2  
144.3  
139.2  
137.63  
129.2  
124.3  
119.2  
117.3  
109.2  
0.1µF  
+INA  
10µF  
C
1nF  
C
R
32  
4.02k  
100  
320  
1 k  
3.2 k  
10 k  
32 k  
V
C
D
10nF  
OUT  
AD8231  
R
REF  
–INA  
4.02kΩ  
C
C
1nF  
0.1µF  
10µF  
1 SNR for single-ended output configuration calculated with output signal of  
4.8 V p-p, which corresponds to 1.697 V rms.  
–V  
S
2 SNR for differential output configuration calculated with output signal of  
9.6 V p-p, which corresponds to 3.397 V rms.  
Figure 52. RFI Suppression  
Figure 52 shows an example where the differential filter frequency  
is approximately 2 kHz, and the common-mode filter frequency  
is approximately 40 kHz.  
The AD8231 has two clocks: an auto-zero clock at 3.4 kHz and  
a commutating clock at 54 kHz. While the auto-zero clock has  
negligible energy and can generally be ignored, the commutating  
clock has enough energy to significantly affect the noise of the  
part. Therefore, in applications where low noise is critical, limiting  
the bandwidth of the system below 54 kHz is recommended.  
Values of R and CC should be chosen to minimize RFI. Mismatch  
between the R × CC at the positive input and the R × CC at the  
negative input degrades the CMRR of the AD8231. By using a  
value of CD that is ten times larger than the value of CC, the  
effect of the mismatch is reduced and performance is improved.  
COMMON-MODE INPUT VOLTAGE RANGE  
The 3-op amp architecture of the AD8231 applies gain and then  
removes the common-mode voltage. Therefore, internal nodes  
in the AD8231 experience a combination of both the gained  
signal and the common-mode signal. This combined signal can  
be limited by the voltage supplies even when the individual input  
and output signals are not. To determine whether the signal could  
be limited, refer to Figure 12 through Figure 14 or use the  
following formula  
VDIFF ×Gain  
VS + 0.04 V <VCM  
±
<+VS 0.04 V  
2
Rev. A | Page 20 of 24  
 
 
 
AD8231  
APPLICATIONS INFORMATION  
The outputs of both the AD8231 in-amp and op amp are high  
impedance in the shutdown state. This feature allows several  
AD8231s to be multiplexed together without any external  
switches. Figure 54 shows an example of such a configuration.  
All the outputs are connected together and only one amplifier is  
turned on at a time. This feature is analogous to the high-Z  
mode of the digital tristate logic.  
DIFFERENTIAL OUTPUT  
Figure 53 shows how to create a differential output in-amp  
using the AD8231 uncommitted op amp. Because this  
configuration makes use of the reference terminal of the  
in-amp, errors from the op amp and resistor mismatch result in  
common-mode errors, rather than differential errors. Because  
common-mode errors are typically rejected by the next device  
in the signal chain, this circuit configuration adds almost no  
extra error.  
The resistors in the AD8231 instrumentation amplifier create a  
resistive path from the output to the reference pin of about  
100 kꢀ. If a higher output impedance in shutdown mode is  
desired, the reference pin can be driven with the op amp of  
the AD8231. In this configuration, the output impedance in  
shutdown is several GΩ, and many thousand AD8231s can  
theoretically be multiplexed in such a way.  
3
+IN  
10  
IN-AMP  
+OUT  
REF  
9
2
–IN  
4.99k  
4.99kΩ  
V
REF  
The AD8231 can enter and leave shutdown mode very quickly.  
However, when the amplifier wakes up and reconnects its input  
circuitry, the voltage at its internal input nodes changes dramati-  
cally. It takes time for the output of the amplifier to settle. Refer  
to Figure 28 through Figure 32 to determine the settling time  
for different gains. This settling time limits how quickly the  
7
6
+
OP AMP  
8
–OUT  
Figure 53. Differential Output Using Operational Amplifier  
AD8231 can be multiplexed with the  
pin.  
SDN  
MULTIPLEXING  
USING THE AD8231 WITH BIPOLAR SUPPLIES  
SDN0  
SDN1  
SDN2  
The AD8231 can be used with bipolar supplies as long as the  
maximum voltage drop between the supply rails is kept below  
6 V and all input voltages are kept within the supply rails.  
With bipolar supplies, the acceptable levels for the digital inputs  
A0, A1, A2, , and  
shift. Table 9 shows acceptable values  
CS  
SDN  
for low and high signals for both single and dual supplies.  
Table 9. Digital Pin Thresholds  
Low  
High  
Supply Voltage (V)  
0 to 5  
0 to 3  
−2.5 to +2.5  
−1.5 to +1.5  
Min (V) Max (V) Min (V) Max (V)  
0
+1  
4
5
SDN3  
0
−2.5  
−1.5  
+0.8  
−1.5  
−0.7  
2.2  
1.5  
0.7  
3
2.5  
1.5  
Figure 54. Four AD8231s in Multiplexing Configuration  
Rev. A | Page 21 of 24  
 
 
 
 
AD8231  
When operating the AD8231 on dual supplies, a level-shift is  
typically needed from standard single-supply control logic. One  
easy way to accomplish the level-shift is through a single-pole,  
double-throw switch, such as the ADG633. Figure 55 shows an  
application schematic for 2.5 V operation.  
Note that in addition to setting the peaking of the filter, the  
ratio R3/R4 also sets the dc gain: G = 1 + R3/R4. If lower dc  
gain is required, replace R1 with a voltage divider, where the  
output resistance of the divider is equal to the required value of R1.  
Figure 56 shows a bias point connected to R4 and the in-amp  
reference. The filter stage amplifies the signal around this bias  
point. The bias point is typically midsupply and should be low  
impedance.  
V
DIGITAL  
V
DD  
+2.5V  
Table 10. Recommended Component Values for Butterworth  
Low-Pass Filter in Figure 56  
–2.5V  
+2.5V  
Optional Poles  
Sallen Key  
R1, R2 C1, C2 R6, R7  
Before In-Amp  
After Op Amp  
–2.5V  
+2.5V  
3 dB  
Freq  
C4  
(nF)  
R5  
(kΩ)  
C3  
(nF)  
(kΩ)  
(nF)  
10  
10  
10  
1
(kΩ)  
499  
158  
49.9  
158  
49.9  
15.8  
4.99  
V
DIGITAL  
32 Hz  
499  
4.7  
4.7  
4.7  
0.47  
0.47  
0.47  
0.47  
49.9  
16  
4.99  
1.6  
0.499  
0.16  
0.049  
100  
100  
100  
100  
100  
100  
100  
–2.5V  
100 Hz 158  
320 Hz 49.9  
V
DD  
A0 A1 A2  
A0  
+V  
+2.5V  
–2.5V  
S
DIGITAL  
CONTROL  
A1  
A2  
EN  
SDN  
–V  
1 kHz  
158  
S
(FPGA,  
3.2 kHz 49.9  
10 kHz 15.8  
32 kHz 4.99  
1
1
1
MICROCONTROLLER,  
ETC.)  
CS  
ADG633  
GND  
AD8231  
V
GND  
SS  
OPTIONAL POLE  
R6  
SALLEN KEY  
(TWO POLE)  
OPTIONAL POLE  
–2.5V  
IS THE DIGITAL SUPPLY VOLTAGE. IT CAN BE  
V
DIGITAL  
ANY VOLTAGE BETWEEN 2.5V AND 9.5V.  
R1  
R2  
C2  
C1  
OP AMP  
IN-AMP  
REF  
C4  
R7  
R5  
Figure 55. Converting Single-Supply Control Signals to Dual Supply.  
C3  
R3  
SALLEN KEY FILTER  
BIAS  
POINT  
The extra op amp in the AD8231 can be used to create a 2-pole  
Sallen Key filter. Such a filter can remove excess noise or  
perform antialiasing before an analog-to-digital converter.  
R4  
BIAS  
POINT  
Figure 56. Butterworth Low-Pass Filter (Dotted Sections Indicate Optional Poles)  
Figure 56 shows how to create a 2-pole low-pass Butterworth  
filter. Components R1, R2, C1, and C2 set the frequency of the  
filter. The ratio of R3 and R4 sets the peaking of the filter. If R4  
equals 10 kΩ, R3 should equal 5.9 kΩ for an optimum 2-pole  
response.  
Depending on the circuitry before and after the AD8231,  
a 3-pole filter can be possible. If the previous stage has a small  
output impedance, an additional pole can be added before the  
in amp (R6, R7, and C4). If the following stage has a high input  
impedance, an additional pole can be added after the op amp  
(R5 and C3). Peaking from the Sallen Key stage should be  
higher to compensate for the extra attenuation of the third pole;  
both R3 and R4 should be 10 kΩ for optimum response.  
Rev. A | Page 22 of 24  
 
 
 
AD8231  
OUTLINE DIMENSIONS  
4.00  
0.60 MAX  
(BOTTOM VIEW)  
BSC SQ  
0.60 MAX  
0.65 BSC  
PIN 1  
INDICATOR  
13  
16  
1
12  
PIN 1  
INDICATOR  
2.25  
2.10 SQ  
1.95  
TOP  
VIEW  
3.75  
BSC SQ  
0.75  
0.60  
0.50  
9
4
8
5
0.25 MIN  
1.95 BSC  
0.80 MAX  
0.65 TYP  
12° MAX  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.35  
0.30  
0.25  
0.20 REF  
COPLANARITY  
0.08  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGC  
Figure 57. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-16-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8231ACPZ-R71  
AD8231ACPZ-RL1  
AD8231ACPZ-WP1  
AD8231-EVALZ1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
16-Lead LFCSP_VQ, 7”Tape and Reel  
16-Lead LFCSP_VQ, 13”Tape and Reel  
16-Lead LFCSP_VQ, Waffle Pack  
Evaluation Board  
CP-16-4  
CP-16-4  
CP-16-4  
1 Z = RoHS Compliant Part.  
Rev. A | Page 23 of 24  
 
 
 
AD8231  
NOTES  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06586-0-9/07(A)  
Rev. A | Page 24 of 24  

相关型号:

AD82311

10 MHz, 20 V/レs, G = 1, 10, 100, 1000 i CMOS㈢ Programmable Gain Instrumentation Amplifier
ADI

AD8231ACPZ-R7

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8231ACPZ-R7

INSTRUMENTATION AMPLIFIER, 15 uV OFFSET-MAX, 1 MHz BAND WIDTH, QCC16, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGC, LFCSP-16
ROCHESTER

AD8231ACPZ-RL

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8231ACPZ-WP

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8231ACPZ-WP

INSTRUMENTATION AMPLIFIER, 15 uV OFFSET-MAX, 1 MHz BAND WIDTH, QCC16, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGC, LFCSP-16
ROCHESTER

AD8231TCPZ-EP-R7

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8231WACPZ-RL

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8231_07

Zero Drift, Digital Programmable Instrumentation Amplifier
ADI

AD8231_1

Zero Drift, Digitally Programmable Instrumentation Amplifier
ADI

AD8232

Single-Lead, Heart Rate Monitor Front End
ADI

AD8232-EVALZ

Single-Lead, Heart Rate Monitor Front End
ADI