AD831AP [ADI]

Low Distortion Mixer; 低失真混频器
AD831AP
型号: AD831AP
厂家: ADI    ADI
描述:

Low Distortion Mixer
低失真混频器

文件: 总16页 (文件大小:227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
Low Distortion Mixer  
AD831  
FUNCTIO NAL BLO CK D IAGRAM  
FEATURES  
Doubly-Balanced Mixer  
Low Distortion  
3
2
1
20  
50Ω  
19  
+24 dBm Third Order Intercept (IP3)  
+10 dBm 1 dB Com pression Point  
Low LO Drive Required: –10 dBm  
Bandw idth  
500 MHz RF and LO Input Bandw idths  
250 MHz Differential Current IF Output  
DC to >200 MHz Single-Ended Voltage IF Output  
Single or Dual Supply Operation  
DC Coupled Using Dual Supplies  
All Ports May Be DC Coupled  
No Low er Frequency Lim itOperation to DC  
User-Program m able Pow er Consum ption  
50Ω  
GND  
VN  
4
5
6
7
8
18  
17  
16  
15  
14  
COM  
VFB  
OUT  
VN  
RFP  
RFN  
VN  
AD831  
BIAS  
9
10  
11  
12  
13  
APPLICATIONS  
High Perform ance RF/ IF Mixer  
Direct to Baseband Conversion  
Im age-Reject Mixers  
filtering. When building a quadrature-amplitude modulator or  
image reject mixer, the differential current outputs of two  
AD831s may be summed by connecting them together.  
I/ Q Modulators and Dem odulators  
An integral low noise amplifier provides a single-ended voltage  
output and can drive such low impedance loads as filters, 50 Ω  
amplifier inputs, and A/D converters. Its small signal bandwidth  
exceeds 200 MHz. A single resistor connected between pins  
OUT and FB sets its gain. T he amplifier’s low dc offset allows  
its use in such direct-coupled applications as direct-to-baseband  
conversion and quadrature-amplitude demodulation.  
P RO D UCT D ESCRIP TIO N  
T he AD831 is a low distortion, wide dynamic range, monolithic  
mixer for use in such applications as RF to IF down conversion  
in HF and VHF receivers, the second mixer in DMR base sta-  
tions, direct-to-baseband conversion, quadrature modula-  
tion and demodulation, and doppler-shift detection in ultra-  
sound imaging applications. T he mixer includes an LO driver  
and a low-noise output amplifier and provides both user-pro-  
grammable power consumption and 3rd-order intercept point.  
T he mixer’s SSB noise figure is 10.3 dB at 70 MHz using its  
output amplifier and optimum source impedance. Unlike pas-  
sive mixers, the AD831 has no insertion loss and does not re-  
quire an external diplexer or passive termination.  
T he AD831 provides a +24 dBm third-order intercept point for  
–10 dBm LO power, thus improving system performance and  
reducing system cost compared to passive mixers, by eliminating  
the need for a high power LO driver and its attendant shielding  
and isolation problems.  
A programmable-bias feature allows the user to reduce power  
consumption, with a reduction in the 1 dB compression point  
and third-order intercept. T his permits a tradeoff between dy-  
namic range and power consumption. For example, the AD831  
may be used as a second mixer in cellular and two-way radio  
base stations at reduced power while still providing a substantial  
performance improvement over passive solutions.  
T he RF, IF, and LO ports may be dc or ac coupled when the  
mixer is operating from ±5 V supplies or ac coupled when oper-  
ating from a single supply of 9 V minimum. T he mixer operates  
with RF and LO inputs as high as 500 MHz.  
P RO D UCT H IGH LIGH TS  
1. –10 dBm LO Drive for a +24 dBm Output Referred T hird  
Order Intercept Point  
T he mixer’s IF output is available as either a differential current  
output or a single-ended voltage output. T he differential output  
is from a pair of open collectors and may be ac coupled via a  
transformer or capacitor to provide a 250 MHz output band-  
width. In down-conversion applications, a single capacitor con-  
nected across these outputs implements a low-pass filter to  
reduce harmonics directly at the mixer core, simplifying output  
2. Single-Ended Voltage Output  
3. High Port-to-Port Isolation  
4. No Insertion Loss  
5. Single or Dual Supply Operation  
6. 10.3 dB Noise Figure  
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
© Analog Devices, Inc., 1995  
One Technology Way, P.O. Box 9106, Norw ood. MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
(T = +25؇C and ؎V = ؎5 V unless otherwise noted;  
A
S
AD831–SPECIFICATIONS all values in dBm assume 50 load.)  
P aram eter  
Conditions  
Min  
Typ  
Max  
Units  
RF INPUT  
Bandwidth  
–10 dBm Signal Level, IP3 +20 dBm  
10.7 MHz IF and High Side Injection  
See Figure 1  
400  
MHz  
1 dB Compression Point  
Common-Mode Range  
Bias Current  
DC Input Resistance  
Capacitance  
10  
dBm  
V
µA  
kΩ  
pF  
±1  
500  
DC Coupled  
Differential or Common Mode  
160  
1.3  
2
IF OUT PUT  
Bandwidth  
Single-Ended Voltage Output, –3 dB  
Level = 0 dBm, RL = 100 Ω  
200  
0
15  
300  
±1.4  
75  
MHz  
dB  
mV  
V/µs  
V
Conversion Gain  
Output Offset Voltage  
Slew Rate  
Output Voltage Swing  
Short Circuit Current  
T erminals OUT and VFB Connected  
DC Measurement; LO Input Switched ±1  
–40  
+40  
RL = 100 , Unity Gain  
mA  
LO INPUT  
Bandwidth  
–10 dBm Input Signal Level  
400  
MHz  
10.7 MHz IF and High Side Injection  
Maximum Input Level  
Common-Mode Range  
Minimum Switching Level  
Bias Current  
–1  
–1  
+1  
+1  
V
V
Differential Input Signal  
DC Coupled  
200  
17  
mV p-p  
µA  
50  
Resistance  
Capacitance  
Differential or Common Mode  
500  
2
pF  
ISOLAT ION BET WEEN PORT S  
LO to RF  
LO to IF  
RF to IF  
LO = 100 MHz, RS = 50 , 10.7 MHz IF  
LO = 100 MHz, RS = 50 , 10.7 MHz IF  
RF = 100 MHz, RS = 50 , 10.7 MHz IF  
70  
30  
45  
dB  
dB  
dB  
DIST ORT ION AND NOISE  
3rd Order Intercept  
2rd Order Intercept  
1 dB Compression Point  
Noise Figure, SSB  
LO = –10 dBm, f = 100 MHz, IF = 10.7 MHz  
Output Referred, ±100 mV LO Input  
Output Referred, ±100 mV LO Input  
RL = 100 , RBIAS = ∞  
Matched Input, RF = 70 MHz, IF = 10.7 MHz  
Matched Input, RF = 150 MHz, IF = 10.7 MHz  
24  
62  
10  
10.3  
14  
dBm  
dBm  
dBm  
dB  
dB  
POWER SUPPLIES  
Recommended Supply Range  
Dual Supply  
Single Supply  
For Best 3rd Order Intercept Point Performance  
BIAS Pin Open Circuited  
±4.5  
9
±5.5  
11  
125  
V
V
mA  
Quiescent Current1  
100  
NOT ES  
1Quiescent current is programmable.  
Specifications subject to change without notice.  
–2–  
REV. B  
AD831  
ABSO LUTE MAXIMUM RATINGS1  
Supply Voltage ±VS . . . . . . . . . . . . . . . . . . . . . . . . . . ±5.5 V  
Input Voltages  
P IN CO NFIGURATIO N  
20-Lead P LCC  
RFHI, RFLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±3 V  
LOHI, LOLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 V  
Internal Power Dissipation2 . . . . . . . . . . . . . . . . . . 1200 mW  
Operating T emperature Range  
AD831A . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage T emperature Range . . . . . . . . . . . . –65°C to +150°C  
3
2
1
20 19  
18  
17  
16  
GND  
VN  
4
5
6
7
8
COM  
VFB  
OUT  
AD831  
TOP VIEW  
(Not to Scale)  
RFP  
RFN  
VN  
Lead T emperature Range (Soldering 60 sec) . . . . . . . . +300°C  
NOT ES  
15 VN  
1Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in the  
operational section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2T hermal Characteristics:  
14 BIAS  
9
10  
12 13  
11  
20-Pin PLCC Package: θJA = 110°C/Watt; θJC = 20°C/Watt.  
Note that the θJA = 110°C/W value is for the package measured while suspended  
in still air; mounted on a PC board, the typical value is θJA = 90°C/W due to the  
conduction provided by the AD831’s package being in contact with the board,  
which serves as a heat sink.  
P IN D ESCRIP TIO N  
P in  
Mnem onic  
D escription  
O RD ERING GUID E  
1
2
VP  
Positive Supply Input  
Mixer Current Output  
Amplifier Negative Input  
Ground  
IFN  
AN  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
3
Model  
4
GND  
VN  
AD831AP –40°C to +85°C 20-Lead PLCC  
P-20A  
5
Negative Supply Input  
RF Input  
6
RFP  
RFN  
VN  
7
RF Input  
8
Negative Supply Input  
Positive Supply Input  
Local Oscillator Input  
Local Oscillator Input  
Positive Supply Input  
Ground  
9
VP  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
LON  
LOP  
VP  
GND  
BIAS  
VN  
Bias Input  
Negative Supply Input  
Amplifier Output  
OUT  
VFB  
COM  
AP  
Amplifier Feedback Input  
Amplifier Output Common  
Amplifier Positive Input  
Mixer Current Output  
IFP  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD831 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–3–  
AD831–Typical Characteristics  
30  
25  
20  
15  
10  
5
65  
64  
63  
62  
61  
60  
0
10  
10  
100  
1000  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 4. Second-Order Intercept vs. Frequency  
Figure 1. Third-Order Intercept vs. Frequency,  
IF Held Constant at 10.7 MHz  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
100  
1000  
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 5. LO-to-RF Isolation vs. Frequency  
Figure 2. IF-to-RF Isolation vs. Frequency  
80  
60  
3 x RF-to-IF  
2 x RF-to-IF  
3 x RF-to-IF  
2 x LO-to-IF  
3 x LO-to-IF  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
2 x RF-to-IF  
RF-to-IF  
RF-to-IF  
LO  
10  
0
10  
100  
1000  
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 6. RF-to-IF Isolation vs. Frequency  
Figure 3. LO-to-IF Isolation vs. Frequency  
–4–  
REV. B  
AD831  
1.00  
0.75  
12  
10  
8
0.50  
0.25  
0.00  
6
–0.25  
–0.50  
–0.75  
–1.00  
4
2
0
10  
100  
1000  
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 7. 1 dB Com pression Point vs. Frequency, Gain = 1  
Figure 10. Gain Error vs. Frequency, Gain = 1  
12  
10  
8
9
8
7
6
5
4
3
2
1
0
6
4
2
0
10  
100  
1000  
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 8. 1 dB Com pression Point vs. RF Input, Gain = 2  
Figure 11. 1 dB Com pression Point vs. Frequency, Gain = 4  
11  
25  
MIXER OUTPUT  
TRANSFORMER  
COUPLED PER FIGURE 18  
V
= 9V  
S
22  
19  
16  
13  
10  
10  
9
V
= 8V  
S
MIXER PLUS AMPLIFIER,  
G = 1  
8
LO LEVEL = –10dBm  
IF = 10.7MHz  
7
0
100  
200  
300  
400  
500  
600  
100  
150  
200  
250  
300  
350  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 12. Input 1 dB Com pression Point vs. Frequency,  
Gain = 1, 9 V Single Supply  
Figure 9. Third-Order Intercept vs. Frequency , LO Held  
Constant at 241 MHz  
REV. B  
–5–  
AD831–Typical Characteristics  
30  
1200  
1000  
800  
600  
400  
200  
0
INPUT RESISTANCE  
INPUT CAPACITANCE  
4.0  
3.5  
3.0  
2.5  
2.0  
25  
V
= 8V  
S
20  
15  
V
= 9V  
S
LO LEVEL = –10dBm  
IF = 10.7MHz  
f = 20kHz  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY – MHz  
50  
100  
150  
200  
250  
FREQUENCY – MHz  
Figure 13. Input Third Order Intercept, 9 V Single Supply  
Figure 15. Input Im pedance vs. Frequency, ZIN = R ʈC  
62.4  
18  
17  
16  
15  
14  
V
= 9V  
S
62.2  
62.0  
61.8  
61.6  
V
= 8V  
S
61.4  
61.2  
61.0  
60.8  
13  
12  
11  
LO LEVEL = –10dBm  
IF = 10.7MHz  
f = 20kHz  
10  
9
60.6  
60.4  
60.2  
8
50  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY – MHz  
100  
150  
200  
250  
FREQUENCY – MHz  
Figure 14. Input Second Order Intercept,  
9 V Single Supply  
Figure 16. Noise Figure vs. Frequency,  
Matched Input  
–6–  
REV. B  
AD831  
TH EO RY O F O P ERATIO N  
T he AD831 consists of a mixer core, a limiting amplifier, a low  
noise output amplifier, and a bias circuit (Figure 17).  
When the integral output amplifier is used, pins IFN and IFP  
are connected directly to pins AFN and AFP; the on-chip load  
resistors convert the output current into a voltage that drives the  
output amplifier. T he ratio of these load resistors to resistors  
R1, R2 provides nominal unity gain (0 dB) from RF to IF. T he  
expression for the gain, in decibels, is  
T he mixer’s RF input is converted into differential currents by a  
highly linear, Class A voltage-to-current converter, formed by  
transistors Q1, Q2 and resistors R1, R2. T he resulting currents  
drive the differential pairs Q3, Q4 and Q5, Q6. T he LO input is  
through a high gain, low noise limiting amplifier that converts  
the –10 dBm LO input into a square wave. T his square wave  
drives the differential pairs Q3, Q4 and Q5, Q6 and produces a  
high level output at IFP and IFN—consisting of the sum and  
difference frequencies of the RF and LO inputs—and a series of  
lower level outputs caused by odd harmonics of the LO fre-  
quency mixing with the RF input.  
4
1
2
π
GdB = 20 log10  
Equation 1  
π
2
where  
4
is the amplitude of the fundamental component of a square wave  
is the conversion loss  
π
1
2
π
2
An on-chip network supplies the bias current to the RF and LO  
inputs when these are ac coupled; this network is disabled when  
the AD831 is dc coupled.  
is the small signal dc gain of the AD831 when the LO input  
is driven fully positive or negative.  
VP  
1
50Ω  
20Ω  
50Ω  
20Ω  
19  
20  
3
2
AP  
AN  
IFN  
IFP  
18mA TYP  
18mA TYP  
BIAS  
A
16  
OUT  
O
11  
10  
Q3 Q4  
Q6  
LOP  
LON  
Q5  
5kΩ  
LOCAL  
OSCILLATOR  
INPUT  
17 VFB  
50Ω  
50Ω  
LIMITING  
AMPLIFIER  
R4  
1kΩ  
R5  
1kΩ  
18 COM  
Q2  
Q1  
6
7
RFP  
RFN  
RF  
INPUT  
CURRENT  
MIRROR  
BIAS  
5kΩ  
R1  
20Ω  
R2  
20Ω  
VP  
36Ω  
BIAS  
CURRENT  
Q7  
BIAS  
R3  
26Ω  
VN  
36mA TYP  
27mA TYP  
12mA TYP  
Figure 17. Sim plified Schem atic Diagram  
REV. B  
–7–  
AD831  
T he mixer has two open-collector outputs (differential cur-  
rents) at pins IFN and IFP. T hese currents may be used to pro-  
vide nominal unity RF-to-IF gain by connecting a center-tapped  
transformer (1:1 turns ratio) to pins IFN and IFP as shown in  
Figure 18.  
Low-P ass Filter ing  
A simple low-pass filter may be added between the mixer and  
the output amplifier by shunting the internal resistive loads (an  
equivalent resistance of about 14 with a tolerance of 20%)  
with external capacitors; these attenuate the sum component in  
a down-conversion application (Figure 20). T he corner fre-  
quency of this one-pole low-pass filter (f = (2 π RCF)–1) should  
be placed about an octave above the difference frequency IF.  
T hus, for a 70 MHz IF, a –3 dB frequency of 140 MHz might  
be chosen, using CF = (2 × π × 14 Ω × 140 MHz)–1 82 pF, the  
nearest standard value.  
IF OUTPUT  
MCLT4-1H  
VP  
VPOS  
1
20  
2
IFN  
IFP  
18mA TYP  
18mA TYP  
1
1
C
=
=
F
2 π f R  
89.7 f  
C
C
F
5kΩ  
5kΩ  
11  
10  
F
Q3 Q4  
Q6  
LOP  
LON  
Q5  
LOCAL  
OSCILLATOR  
INPUT  
2
20  
3
1
19  
AP  
LIMITING  
AMPLIFIER  
R4  
1kΩ  
R5  
1kΩ  
AN  
50Ω  
IFN  
VP  
IFP  
50Ω  
Q2  
Q1  
6
7
COM  
RFP  
RFN  
RF  
INPUT  
4
5
6
7
8
18  
17  
16  
15  
14  
GND  
R1  
20Ω  
R2  
20Ω  
VFB  
OUT  
VN  
VP  
RFP  
BIAS  
CURRENT  
Q7  
R3  
BIAS  
26Ω  
VN  
AD831  
Top View  
VN  
RFN  
VN  
36mA TYP  
BIAS  
Figure 18. Connections for Transform er Coupling to the IF  
Output  
LON  
10  
LOP  
11  
GND  
13  
VP  
9
VP  
12  
P r ogr am m ing the Bias Cur r ent  
Because the AD831’s RF port is a Class-A circuit, the maxi-  
mum RF input is proportional to the bias current. T his bias cur-  
rent may be reduced by connecting a resistor from the BIAS pin  
to the positive supply (Figure 19). For normal operation, the  
BIAS pin is left unconnected. For lowest power consumption,  
the BIAS pin is connected directly to the positive supply. T he  
range of adjustment is 100 mA for normal operation to  
45 mA total current at minimum power consumption.  
Figure 20. Low-Pass Filtering Using External Capacitors  
Using the O utput Am plifier  
T he AD831s output amplifier converts the mixer core’s dif-  
ferential current output into a single-ended voltage and provides  
an output as high as ±1 V peak into a 50 load (+10 dBm).  
For unity gain operation (Figure 21), the inputs AN and AP  
connect to the open-collector outputs of the mixer’s core and  
OUT connects to VFB.  
2
20  
3
1
19  
2
20  
3
1
19  
AP  
AN  
50Ω  
IFN  
VP  
IFP  
50Ω  
AP  
COM  
AN  
50Ω  
IFN  
VP  
IFP  
50Ω  
COM  
4
5
6
7
8
18  
17  
16  
15  
14  
GND  
4
5
6
18  
17  
16  
15  
14  
GND  
VFB  
OUT  
VFB  
OUT  
VN  
VN  
RFP  
RFP  
IF  
OUTPUT  
VPOS  
0.1µF  
VN  
AD831  
Top View  
7
8
RFN  
VN  
VN  
AD831  
Top View  
RFN  
VN  
1.33kΩ  
BIAS  
BIAS  
LON  
10  
LOP  
11  
GND  
LON  
10  
VP  
9
VP  
12  
LOP  
11  
NOTE ADDED  
RESISTOR  
GND  
13  
VP  
9
VP  
12  
13  
Figure 19. Program m ing the Quiescent Current  
Figure 21. Output Am plifier Connected for Unity Gain  
Operation  
–8–  
REV. B  
AD831  
For gains other than unity, the amplifier’s output at OUT is  
connected via an attenuator network to VFB; this determines  
the overall gain. Using resistors R1 and R2 (Figure 22), the gain  
setting expression is  
2
20  
3
1
19  
AP  
AN  
50Ω  
IFN  
VP  
IFP  
50Ω  
COM  
4
5
6
18  
17  
16  
15  
14  
GND  
R2  
51.1Ω  
VFB  
OUT  
R1 + R2  
VN  
GdB = 20 log10  
Equation 2  
R1  
110Ω  
R2  
RFP  
IF  
BPF  
OUTPUT  
R
T
R
T
2
20  
3
1
19  
AP  
7
8
VN  
AD831  
Top View  
RFN  
VN  
AN  
50Ω  
IFN  
VP  
IFP  
50Ω  
COM  
4
5
6
18  
17  
16  
15  
14  
BIAS  
GND  
R2  
R1  
LON  
10  
LOP  
11  
GND  
13  
VP  
9
VP  
12  
VFB  
OUT  
VN  
RFP  
IF  
OUTPUT  
Figure 23. Connections for Driving a Doubly-Term inated  
Bandpass Filter  
7
8
VN  
AD831  
Top View  
RFN  
VN  
Higher gains can be achieved, using different resistor ratios, but  
with concomitant reduction in the bandwidth of this amplifier  
(Figure 24). Note also that the Johnson noise of these gain-set-  
ting resistors, as well as that of the BPF terminating resistors, is  
ultimately reflected back to the mixer’s input; thus they should  
be as small as possible, consistent with the permissible loading  
on the amplifier’s output.  
BIAS  
LON  
10  
LOP  
11  
GND  
13  
VP  
9
VP  
12  
Figure 22. Output Am plifier Feedback Connections for  
Increasing Gain  
D r iving Filter s  
12  
T he output amplifier can be used for driving reverse-terminated  
loads. When driving an IF bandpass filter (BPF), for example,  
proper attention must be paid to providing the optimal source  
and load terminations so as to achieve the specified filter re-  
sponse. T he AD831’s wideband highly linear output amplifier  
affords an opportunity to increase the RF-to-IF gain to compen-  
sate for a filter’s insertion and termination losses.  
G = 1  
10  
G = 2  
8
G = 4  
6
Figure 23 indicates how the output amplifier’s low impedance  
(voltage source) output can drive a doubly-terminated bandpass  
filter. T he typical 10 dB of loss (4 dB of insertion loss and 6 dB  
due to the reverse-termination) be made up by the inclusion of a  
feedback network that increases the gain of the amplifier by  
10 dB (×3.162). When constructing a feedback circuit, the sig-  
nal path between OUT and VFB should be as short as possible.  
4
2
0
10  
100  
1000  
FREQUENCY – MHz  
Figure 24. Output Am plifier 1 dB Com pression Point for  
Gains of 1, 2, and 4 (Gains of 0 dB, 6 dB, and 12 dB,  
Respectively)  
REV. B  
–9–  
AD831  
AP P LICATIO NS  
T he RF input to the AD831 is shown connected by an imped-  
ance matching network for an assumed source impedance of  
50 . Figure 15 shows the input impedance of the AD831 plot-  
ted vs. frequency. T he input circuit can be modeled as a resis-  
tance in parallel with a capacitance. T he 82 pF capacitors (CF)  
connected from IFN and IFP to VP provide a low-pass filter  
with a cutoff frequency of approximately 140 MHz in down-  
conversion applications (see the T heory of Operation section of  
this data sheet for more details). T he LO input is connected  
single-ended because the limiting amplifier provides a symmet-  
ric drive to the mixer. T o minimize intermodulation distortion,  
connect pins OUT and VFB by the shortest possible path. T he  
connections shown are for unity-gain operation.  
Careful component selection, circuit layout, power supply  
decoupling, and shielding are needed to minimize the AD831’s  
susceptibility to interference from radio and T V stations, etc. In  
bench evaluation, we recommend placing all of the components  
in a shielded box and using feedthrough decoupling networks  
for the supply voltage.  
Circuit layout and construction are also critical, since stray ca-  
pacitances and lead inductances can form resonant circuits and  
are a potential source of circuit peaking, oscillation, or both.  
D ual-Supply O per ation  
Figure 25 shows the connections for dual supply operation.  
Supplies may be as low as ±4.5 V but should be no higher than  
±5.5 V due to power dissipation.  
At LO frequencies less than 100 MHz, the AD831s LO power  
may be as low as –20 dBm for satisfactory operation. Above  
100 MHz, the specified LO power of –10 dBm must be used.  
+5V  
0.1µF  
C
C
F
F
82pF  
82pF  
2
20  
3
1
19  
AP  
AN  
50Ω  
IFN  
VP  
IFP  
50Ω  
COM  
4
5
6
18  
17  
16  
15  
14  
GND  
51.1Ω  
110Ω  
0.1µF  
VFB  
OUT  
VN  
C1  
C2  
R
–5V  
RFP  
T
RF  
INPUT  
IF  
BPF  
OUTPUT  
R
T
L1  
7
8
–5V  
0.1µF  
VN  
AD831  
Top View  
RFN  
VN  
0.1µF  
BIAS  
NC  
LON  
10  
LOP  
11  
–5V  
GND  
13  
VP  
9
VP  
12  
0.1µF  
51.1Ω  
+5V  
0.1µF  
+5V  
LO INPUT  
–10 dBm  
Figure 25. Connections for ±5 V Dual-Supply Operation Showing Im pedance  
Matching Network and Gain of 2 for Driving Reverse-Term inated IF Filter  
–10–  
REV. B  
AD831  
Single Supply O per ation  
In single supply operation, the COM terminal is the “ground”  
reference for the output amplifier and must be biased to 1/2 the  
supply voltage, which is done by resistors R1 and R2. T he OUT  
pin must be ac-coupled to the load.  
Figure 26 is similar to the dual supply circuit in Figure 19. Sup-  
plies may be as low as 9 V but should not be higher than  
11 V due to power dissipation. As in Figure 19, both the RF  
and LO ports are driven single-ended and terminated.  
+9V  
0.1µF  
82pF  
IFN  
82pF  
+5V  
2
20  
3
1
19  
R2  
51.1Ω  
5kΩ  
5kΩ  
AN  
50Ω  
VP  
IFP  
50Ω  
AP  
COM  
4
5
6
18  
17  
16  
15  
14  
GND  
0.1µF  
R1  
110Ω  
VFB  
OUT  
VN  
C2  
C
C
C1  
R
T
RFP  
RF  
INPUT  
IF  
OUTPUT  
0.1µF  
L1  
7
8
VN  
AD831  
Top View  
RFN  
VN  
BIAS  
NC  
LON  
10  
LOP  
11  
GND  
13  
VP  
9
VP  
12  
0.1µF  
0.1µF  
0.1µF  
+9V  
0.1µF  
51.1Ω  
+9V  
LO INPUT  
–10 dBm  
Figure 26. Connections for +9 V Single-Supply Operation  
REV. B  
–11–  
AD831  
Connections Q uadr atur e D em odulation  
(Q) outputs. T he mixers’ inputs may be connected in parallel  
and a single termination resistor used if the mixers are located in  
close proximity on the PC board.  
T wo AD831 mixers may have their RF inputs connected in par-  
allel and have their LO inputs driven in phase quadrature (Fig-  
ure 27) to provide demodulated in-phase (I) and quadrature  
+5V  
0.1µF  
C
C
F
F
2
20  
3
1
19  
AP  
AN  
50Ω  
IFN  
VP  
IFP  
50Ω  
COM  
4
5
6
7
8
18  
17  
16  
15  
14  
GND  
0.1µF  
VFB  
OUT  
VN  
–5V  
DEMODULATED  
QUADRATURE  
OUTPUT  
RFP  
–5V  
0.1µF  
VN  
AD831  
Top View  
RFN  
VN  
0.1µF  
BIAS  
NC  
LON  
10  
LOP  
11  
–5V  
GND  
13  
VP  
9
VP  
12  
0.1µF  
51.1Ω  
+5V  
0.1µF  
+5V  
LO INPUT  
AT 90°  
–10 dBm  
IF  
INPUT  
+5V  
51.1Ω  
0.1µF  
C
C
F
F
2
20  
3
1
19  
AP  
AN  
50Ω  
IFN  
VP  
IFP  
50Ω  
COM  
4
5
6
7
8
18  
17  
16  
15  
14  
GND  
0.1µF  
VFB  
OUT  
VN  
–5V  
DEMODULATED  
IN-PHASE  
OUTPUT  
RFP  
–5V  
0.1µF  
VN  
AD831  
Top View  
RFN  
VN  
0.1µF  
BIAS  
NC  
LON  
LOP  
11  
–5V  
GND  
13  
VP  
9
VP  
12  
10  
51.1Ω  
0.1µF  
+5V  
0.1µF  
+5V  
LO INPUT  
AT 0°  
–10 dBm  
Figure 27. Connections for Quadrature Dem odulation  
–12–  
REV. B  
AD831  
Table I. AD 831 Mixer Table, ؎4.5 V Supplies, LO = –9 dBm  
LO Level  
RF Level  
–9.0 dBm, LO Frequency 130.7 MHz, Data File imdT B10771  
0.0 dBm, RF Frequency 120 MHz  
T emperature Ambient  
Dut Supply  
VPOS Current  
±4.50 V  
90 mA  
VNEG Current 91 mA  
Intermodulation T able RF harmonics (rows) × LO harmonics (columns).  
First row absolute value of nRF-mLO, and second row is the sum.  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
–32.7  
–32.7  
–35.7  
–35.7  
–21.1  
–21.1  
–11.6  
–11.6  
–19.2  
–19.2  
–35.1  
–35.1  
–41.9  
–41.9  
–31.6  
–31.6  
0.0  
–28.5  
–37.2  
–26.7  
–41.5  
–28.0  
–30.4  
–27.2  
–34.3  
–33.2  
–25.2  
–34.3  
–40.1  
–44.8  
–45.3  
–45.3  
–48.2  
–42.4  
–39.4  
–49.4  
–57.6  
–42.5  
–44.9  
–51.1  
–42.4  
–46.2  
–40.2  
–58.1  
–40.2  
–61.6  
–54.5  
–54.5  
–57.1  
–65.5  
–57.5  
–46.0  
–50.6  
–63.7  
–62.6  
–60.6  
–55.8  
–69.6  
–59.7  
–72.7  
–55.2  
–73.5  
–67.1  
–67.1  
–63.1  
–53.6  
–69.9  
–72.9  
–69.9  
–71.2  
–69.6  
–70.1  
–74.1  
–72.6  
–69.7  
–73.5  
–58.6  
–72.7  
–53.5  
–53.5  
–62.6  
–68.4  
–73.8  
–70.8  
–72.3  
–72.8  
–70.7  
–73.4  
–71.1  
–73.2  
–74.3  
–73.3  
–73.0  
–72.5  
–73.6  
–73.6  
–57.7  
–73.5  
–68.6  
–72.7  
–73.1  
–73.5  
–73.8  
–73.6  
–73.0  
–73.1  
–72.9  
–72.4  
–74.4  
–73.7  
–73.8  
–73.8  
–73.9  
–73.8  
–63.4  
–73.2  
–72.6  
–73.8  
–74.6  
–72.6  
–74.9  
–73.7  
–73.6  
–73.5  
–74.5  
–72.9  
Table II. AD 831 Mixer Table, ؎5 V Supplies, LO = –9 dBm  
LO Level  
RF Level  
–9.0 dBm, LO Frequency 130.7 MHz, Data File imdT B13882  
0.0 dBm, RF Frequency 120 MHz  
T emperature Ambient  
Dut Supply  
VPOS Current  
±5.00 V  
102 mA  
VNEG Current 102 mA  
Intermodulation table RF harmonics (rows) × LO harmonics (columns).  
First row absolute value of nRF-mLO, and second row is the sum.  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
–36.5  
–36.5  
–46.5  
–46.5  
–33.0  
–33.0  
–17.0  
–17.0  
–23.0  
–23.0  
–34.2  
–34.2  
–45.6  
–45.6  
–37.5  
–37.5  
0.0  
–29.1  
–41.2  
–38.7  
–41.1  
–22.9  
–38.5  
–28.4  
–29.0  
–35.3  
–31.7  
–34.3  
–47.4  
–52.4  
–45.9  
–45.9  
–45.2  
–39.4  
–47.6  
–35.7  
–61.5  
–38.4  
–53.7  
–42.3  
–43.5  
–53.7  
–41.5  
–52.8  
–41.8  
–66.3  
–46.4  
–46.4  
–53.0  
–40.0  
–67.0  
–50.0  
–43.0  
–48.9  
–60.9  
–57.8  
–47.9  
–57.0  
–50.7  
–71.8  
–41.0  
–67.4  
–45.1  
–45.1  
–56.0  
–39.0  
–48.7  
–48.1  
–64.6  
–58.4  
–53.5  
–56.1  
–55.7  
–63.8  
–53.5  
–70.5  
–51.1  
–67.6  
–35.2  
–35.2  
–45.3  
–53.0  
–54.1  
–62.4  
–54.1  
–67.3  
–53.7  
–67.0  
–57.9  
–69.4  
–66.6  
–73.2  
–64.3  
–72.9  
–63.4  
–63.4  
–41.1  
–66.3  
–53.6  
–67.2  
–66.5  
–67.5  
–58.8  
–72.9  
–63.3  
–71.2  
–61.7  
–71.7  
–71.4  
–73.2  
–67.3  
–67.3  
–65.8  
–61.6  
–37.8  
–66.3  
–54.6  
–72.9  
–62.5  
–71.4  
–71.7  
–70.7  
–55.2  
–72.1  
–57.1  
–73.1  
REV. B  
–13–  
AD831  
Table III. AD 831 Mixer Table, ؎3.5 V Supplies, LO = –20 dBm  
LO Level  
RF Level  
–20.0 dBm, LO Frequency 130.7 MHz, Data File G1T 1K 0771  
0.0 dBm, RF Frequency 120 MHz  
T emperature Ambient  
Dut Supply  
VPOS Current  
±3.50 V  
55 mA  
VNEG Current 57 mA  
Intermodulation T able RF harmonics (rows) × LO harmonics (columns).  
First row absolute value of nRF-mLO, and second row is the sum.  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
–45.2  
–45.2  
–35.7  
–35.7  
–16.1  
–16.1  
–21.6  
–21.6  
–22.3  
–22.3  
–32.0  
–32.0  
–36.4  
–36.4  
–30.3  
–30.3  
0.0  
–29.7  
–33.7  
–28.2  
–47.9  
–24.4  
–37.5  
–26.0  
–33.8  
–47.4  
–32.0  
–35.9  
–45.2  
–49.7  
–50.3  
–50.3  
–49.4  
–41.0  
–47.4  
–51.4  
–49.9  
–34.7  
–48.8  
–49.8  
–38.5  
–48.6  
–40.7  
–68.5  
–51.0  
–67.9  
–48.4  
–48.4  
–55.7  
–52.9  
–58.2  
–50.0  
–45.0  
–64.5  
–57.0  
–62.8  
–68.4  
–73.4  
–55.5  
–74.0  
–47.7  
–71.8  
–66.7  
–66.7  
–59.7  
–65.9  
–67.2  
–78.1  
–62.8  
–74.2  
–58.2  
–77.5  
–71.5  
–74.4  
–72.9  
–77.9  
–63.5  
–77.5  
–66.9  
–66.9  
–71.5  
–76.3  
–73.6  
–78.1  
–77.6  
–78.2  
–70.8  
–78.1  
–70.2  
–78.0  
–75.8  
–77.9  
–78.1  
–77.9  
–78.0  
–78.0  
–69.7  
–78.3  
–76.7  
–78.3  
–78.6  
–78.2  
–78.8  
–78.1  
–75.4  
–78.0  
–78.1  
–77.9  
–79.0  
–77.8  
–78.4  
–78.4  
–78.5  
–78.3  
–76.9  
–78.2  
–78.7  
–78.2  
–79.0  
–77.9  
–79.1  
–77.9  
–78.6  
–77.8  
–78.9  
–77.5  
Table IV. AD 831 Mixer Table, ؎5 V Supplies, 1 kBias Resistor, LO = –20 dBm  
LO Level  
RF Level  
–20.0 dBm, LO Frequency 130.7 MHz, Data File G1T 1K 3881  
0.0 dBm, RF Frequency 120 MHz  
T emperature Ambient  
Dut Supply  
VPOS Current  
±3.50 V  
59 mA  
VNEG Current 61 mA  
Intermodulation table RF harmonics (rows) × LO harmonics (columns).  
First row absolute value of nRF-mLO, and second row is the sum.  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
–60.6  
–60.6  
–52.3  
–52.3  
–16.6  
–16.6  
–12.8  
–12.8  
–26.0  
–26.0  
–45.0  
–45.0  
–38.8  
–38.8  
–34.1  
–34.1  
0.0  
–27.3  
–35.2  
–28.7  
–41.8  
–20.7  
–29.8  
–32.9  
–29.1  
–39.2  
–35.3  
–38.2  
–49.0  
–47.8  
–46.6  
–46.6  
–48.8  
–37.8  
–40.1  
–47.6  
–52.2  
–41.7  
–57.9  
–54.2  
–38.6  
–50.4  
–45.8  
–64.1  
–47.7  
–64.9  
–41.3  
–41.3  
–58.8  
–47.9  
–59.5  
–65.2  
–41.8  
–62.5  
–61.2  
–64.2  
–58.1  
–73.8  
–57.5  
–72.3  
–54.0  
–72.6  
–53.9  
–53.9  
–52.5  
–61.4  
–73.7  
–70.6  
–68.1  
–76.9  
–60.3  
–76.8  
–71.0  
–78.6  
–63.4  
–78.3  
–62.3  
–78.1  
–66.9  
–66.9  
–65.8  
–69.7  
–76.6  
–72.9  
–75.2  
–77.4  
–65.4  
–77.7  
–70.0  
–78.5  
–73.6  
–78.4  
–68.7  
–78.2  
–77.4  
–77.4  
–73.3  
–78.6  
–73.8  
–78.7  
–78.8  
–78.6  
–79.2  
–78.6  
–73.6  
–78.4  
–74.9  
–78.2  
–79.3  
–78.2  
–78.9  
–78.9  
–79.0  
–78.8  
–77.9  
–78.7  
–78.0  
–78.6  
–79.3  
–78.3  
–79.5  
–78.3  
–79.3  
–78.1  
–79.3  
–78.0  
–14–  
REV. B  
AD831  
HP 6632A  
HP 6632A  
PROGRAMMABLE  
POWER SUPPLY  
PROGRAMMABLE  
POWER SUPPLY  
HP 8656B  
SYNTHESIZED  
SIGNAL GENERATOR  
–5V  
+5V  
50Ω  
HP 8561E  
SPECTRUM  
ANALYZER  
AD831  
MCL  
ZFSC-2-1  
COMBINER  
PER  
FIGURE 25  
LO  
HP 8656A  
SYNTHESIZED  
SIGNAL GENERATOR  
FLUKE 6082A  
SYNTHESIZED  
SIGNAL GENERATOR  
HP 9920  
IEEE CONTROLLER  
HP 9121  
DISK DRIVE  
IEEE-488 BUS  
Figure 28. Third-Order Intercept Characterization Setup  
HP 6632A  
HP 6632A  
PROGRAMMABLE  
POWER SUPPLY  
PROGRAMMABLE  
POWER SUPPLY  
–5V  
+5V  
MCL  
ZFSC-2-1  
HP 8656B  
SYNTHESIZED  
SIGNAL GENERATOR  
AD831  
PER  
FIGURE 25  
RF  
IF  
HP 8656B  
SYNTHESIZED  
SIGNAL GENERATOR  
50Ω  
LO  
50Ω  
50Ω  
MCL  
ZFSC-2-1  
USED FOR  
IF TO RF, LO  
LO TO RF  
50Ω  
MOVE SPECTRUM  
ANALYZER FOR IF  
MEASUREMENTS  
HP 8561E  
SPECTRUM  
ANALYZER  
HP 8656B  
SYNTHESIZED  
SIGNAL GENERATOR  
Figure 29. IF to RF Isolation Characterization Setup  
REV. B  
–15–  
AD831  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
20-Lead P LCC (P -20A)  
0.180 (4.57)  
0.165 (4.19)  
0.048 (1.21)  
0.042 (1.07)  
0.056 (1.42)  
0.042 (1.07)  
0.025 (0.63)  
0.015 (0.38)  
0.048 (1.21)  
0.042 (1.07)  
C1879a–10–6/95  
3
19  
18  
0.021 (0.53)  
0.013 (0.33)  
0.330 (8.38)  
0.290 (7.37)  
0.032 (0.81)  
PIN 1  
IDENTIFIER  
4
0.050  
(1.27)  
BSC  
TOP VIEW  
0.026 (0.66)  
14  
8
9
13  
0.020  
(0.50)  
R
0.040 (1.01)  
0.025 (0.64)  
0.356 (9.04)  
SQ  
0.350 (8.89)  
0.110 (2.79)  
0.085 (2.16)  
0.395 (10.02)  
0.385 (9.78)  
SQ  
–16–  
REV. B  

相关型号:

AD831AP-REEL7

RF/MICROWAVE DOUBLE BALANCED MIXER
ROCHESTER

AD831APZ

Low Distortion Mixer
ADI

AD831APZ

RF/MICROWAVE DOUBLE BALANCED MIXER, PLASTIC, LCC-20
ROCHESTER

AD831APZ-REEL7

High-Performance, Low Distortion 500 MHz Mixer
ADI

AD8320

Serial Digital Controlled Variable Gain Line Driver
ADI

AD8320-EB

Serial Digital Controlled Variable Gain Line Driver
ADI

AD8320ARP

Serial Digital Controlled Variable Gain Line Driver
ADI

AD8320ARP-REEL

IC SPECIALTY TELECOM CIRCUIT, PDSO20, SOIC-20, Telecom IC:Other
ADI

AD8320ARPZ

IC SPECIALTY TELECOM CIRCUIT, PDSO20, SOIC-20, Telecom IC:Other
ADI

AD8320ARPZ-REEL

IC SPECIALTY TELECOM CIRCUIT, PDSO20, SOIC-20, Telecom IC:Other
ADI

AD8321

Gain Programmable CATV Line Driver
ADI

AD8321-EVAL

Gain Programmable CATV Line Driver
ADI