AD8331ARQZ-RL [ADI]

Ultralow Noise VGAs with Preamplifier and Programmable RIN; 超低噪声可变增益放大器与前置放大器和可编程RIN
AD8331ARQZ-RL
型号: AD8331ARQZ-RL
厂家: ADI    ADI
描述:

Ultralow Noise VGAs with Preamplifier and Programmable RIN
超低噪声可变增益放大器与前置放大器和可编程RIN

消费电路 商用集成电路 放大器 光电二极管
文件: 总40页 (文件大小:876K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Noise VGAs with  
Preamplifier and Programmable RIN  
AD8331/AD8332/AD8334  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
LON LOP VIP VIN  
VCM  
HILO  
Ultralow noise preamplifier  
Voltage noise = 0.74 nV/√Hz  
Current noise = 2.5 pA/√Hz  
3 dB bandwidth  
AD8331: 120 MHz  
3.5dB/15.5dB  
V
MID  
LNA  
INH  
ATTENUATOR  
VOH  
VOL  
+
48dB  
19dB  
21dB  
PA  
LMD  
+
AD8332, AD8334: 100 MHz  
Low power  
AD8331: 125 mW/channel  
CLAMP  
GAIN  
LNA VCM  
BIAS  
VGA BIAS AND  
INTERPOLATOR  
RCLMP  
CONTROL  
INTERFACE  
AD8331/AD8332/AD8334  
AD8332, AD8334: 145 mW/channel  
Wide gain range with programmable postamp  
−4.5 dB to +43.5 dB  
ENB  
GAIN  
Figure 1. Signal Path Block Diagram  
+7.5 dB to +55.5 dB  
60  
50  
40  
30  
20  
10  
0
Low output-referred noise: 48 nV/√Hz typical  
Active input impedance matching  
Optimized for 10-bit/12-bit ADCs  
Selectable output clamping level  
Single 5 V supply operation  
AD8332 and AD8334 available in lead frame chip scale package  
V
= 1V  
GAIN  
HIGH GAIN  
MODE  
V
= 0.8V  
= 0.6V  
= 0.4V  
GAIN  
GAIN  
GAIN  
GAIN  
V
V
V
= 0.2V  
= 0V  
APPLICATIONS  
V
GAIN  
Ultrasound and sonar time-gain controls  
High performance AGC systems  
I/Q signal processing  
–10  
100k  
High speed, dual ADC drivers  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
GENERAL DESCRIPTION  
Figure 2. Frequency Response vs. Gain  
The AD8331/AD8332/AD8334 are single-, dual-, and quad-  
channel ultralow noise, linear-in-dB, variable gain amplifiers  
(VGAs). Optimized for ultrasound systems, they are usable as a  
low noise variable gain element at frequencies up to 120 MHz.  
Differential signal paths result in superb second- and third-  
order distortion performance and low crosstalk.  
The VGA’s low output-referred noise is advantageous in driving  
high speed differential ADCs. The gain of the postamplifier can  
be pin selected to 3.5 dB or 15.5 dB to optimize gain range and  
output noise for 12-bit or 10-bit converter applications. The  
output can be limited to a user-selected clamping level,  
preventing input overload to a subsequent ADC. An external  
resistor adjusts the clamping level.  
Included in each channel are an ultralow noise preamplifier  
(LNA), an X-AMP® VGA with 48 dB of gain range, and a  
selectable gain postamplifier with adjustable output limiting.  
The LNA gain is 19 dB with a single-ended input and  
differential outputs. Using a single resistor, the LNA input  
impedance can be adjusted to match a signal source without  
compromising noise performance.  
The operating temperature range is −40°C to +85°C. The  
AD8331 is available in a 20-lead QSOP package, the AD8332 is  
available in 28-lead TSSOP and 32-lead LFCSP packages, and  
the AD8334 is available in a 64-lead LFCSP package.  
The 48 dB gain range of the VGA makes these devices suitable  
for a variety of applications. Excellent bandwidth uniformity is  
maintained across the entire range. The gain control interface  
provides precise linear-in-dB scaling of 50 dB/V for control  
voltages between 40 mV and 1 V. Factory trim ensures excellent  
part-to-part and channel-to-channel gain matching.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD8331/AD8332/AD8334  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Variable Gain Amplifier ............................................................ 27  
Postamplifier............................................................................... 28  
Applications..................................................................................... 30  
LNA—External Components.................................................... 30  
Driving ADCs............................................................................. 32  
Overload...................................................................................... 32  
Optional Input Overload Protection. ...................................... 33  
Layout, Grounding, and Bypassing.......................................... 33  
Multiple Input Matching ........................................................... 33  
Disabling the LNA...................................................................... 33  
Ultrasound TGC Application ................................................... 34  
High Density Quad Layout ....................................................... 34  
Outline Dimensions....................................................................... 39  
Ordering Guide .......................................................................... 40  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
Specifications..................................................................................... 4  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ........................................... 12  
Test Circuits ..................................................................................... 20  
Measurement Considerations................................................... 20  
Theory of Operation ...................................................................... 24  
Overview...................................................................................... 24  
Low Noise Amplifier (LNA) ..................................................... 25  
Rev. E | Page 2 of 40  
AD8331/AD8332/AD8334  
REVISION HISTORY  
4/06—Rev. D to Rev. E  
3/06—Rev. C to Rev. D  
Added AD8334................................................................... Universal  
Changes to Figure 1 and Figure 2....................................................1  
Changes to Table 1 ............................................................................4  
Changes to Table 2 ............................................................................7  
Changes to Figure 7 through Figure 9 and Figure 12.................12  
Changes to Figure 13, Figure 14, Figure 16, and Figure 18 .......13  
Changes to Figure 23 and Figure 24 .............................................14  
Changes to Figure 25 through Figure 27......................................15  
Changes to Figure 31 and Figure 33 through Figure 36.............16  
Changes to Figure 37 through Figure 42......................................17  
Changes to Figure 43, Figure 44, and Figure 48..........................18  
Changes to Figure 49, Figure 50, and Figure 54..........................19  
Inserted Figure 56 and Figure 57 ..................................................20  
Inserted Figure 58, Figure 59, and Figure 61...............................21  
Changes to Figure 60 ......................................................................21  
Inserted Figure 63 and Figure 65 ..................................................22  
Changes to Figure 64 ......................................................................22  
Moved Measurement Considerations Section ............................20  
Inserted Figure 67 and Figure 68 ..................................................23  
Inserted Figure 70 and Figure 71 ..................................................24  
Change to Figure 72........................................................................24  
Changes to Figure 73 and Low Noise Amplifier Section...........25  
Changes to Postamplifier Section .................................................28  
Changes to Figure 80 ......................................................................29  
Changes to LNA—External Components Section......................30  
Changes to Logic Inputs—ENB, MODE, and HILO Section....31  
Changes to Output Decoupling and Overload Sections............32  
Changes to Layout, Grounding, and Bypassing Section............33  
Changes to Ultrasound TGC Application Section......................34  
Added High Density Quad Layout Section .................................34  
Inserted Figure 94............................................................................38  
Updated Outline Dimensions........................................................39  
Changes to Ordering Guide...........................................................40  
Updated Format ................................................................. Universal  
Changes to Features and General Description..............................1  
Changes to Table 1 ............................................................................3  
Changes to Table 2 ............................................................................6  
Changes to Ordering Guide...........................................................34  
11/03—Rev. B to Rev. C  
Addition of New Part......................................................... Universal  
Changes to Figures............................................................. Universal  
Updated Outline Dimensions........................................................32  
5/03—Rev. A to Rev. B  
Edits to Ordering Guide.................................................................32  
Edits to Ultrasound TGC Application Section ...........................25  
Added Figure 71, Figure 72, and Figure 73..................................26  
Updated Outline Dimensions........................................................31  
2/03—Rev. 0 to Rev. A  
Edits to Ordering Guide.................................................................32  
Rev. E | Page 3 of 40  
 
AD8331/AD8332/AD8334  
SPECIFICATIONS  
TA = 25°C, VS = 5 V, RL = 500 Ω, RS = RIN = 50 Ω, RFB = 280 Ω, CSH = 22 pF, f = 10 MHz, RCLMP = ∞, CL = 1 pF, VCM pin floating,  
−4.5 dB to +43.5 dB gain (HILO = LO), and differential output voltage, unless otherwise specified.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
LNA CHARACTERISTICS  
Gain  
Single-ended input to differential output  
Input to output (single ended)  
AC-coupled  
19  
13  
2ꢀ7  
dB  
dB  
mV  
Ω
Input Voltage Range  
Input Resistance  
RFB = 280 Ω  
70  
RFB = 412 Ω  
ꢀ7  
Ω
RFB = 762 Ω  
RFB = 1.13 kΩ  
RFB = ∞  
100  
200  
6
13  
7
130  
670  
0.ꢀ4  
2.7  
Ω
Ω
kΩ  
pF  
Ω
MHz  
V/μs  
Input Capacitance  
Output Impedance  
−3 dB Small Signal Bandwidth  
Slew Rate  
Input Voltage Noise  
Input Current Noise  
Noise Figure  
Single-ended, either output  
VOUT = 0.2 V p-p  
RS = 0 Ω, HI or LO gain, RFB = ∞, f = 7 MHz  
RFB = ∞, HI or LO gain, f = 7 MHz  
f = 10 MHz, LOP output  
nV/√Hz  
pA/√Hz  
Active Termination Match  
Unterminated  
RS = RIN = 70 Ω  
RS = 70 Ω, RFB = ∞  
3.ꢀ  
2.7  
dB  
dB  
Harmonic Distortion @ LOP1 or LOP2  
HD2  
HD3  
Output Short-Circuit Current  
LNA + VGA CHARACTERISTICS  
−3 dB Small Signal Bandwidth  
AD8331  
AD8332, AD8334  
−3 dB Large Signal Bandwidth  
AD8331  
VOUT = 0.7 V p-p, single-ended, f = 10 MHz  
−76  
−ꢀ0  
167  
dBc  
dBc  
mA  
Pin LON, Pin LOP  
VOUT = 0.2 V p-p  
120  
100  
MHz  
MHz  
VOUT = 2 V p-p  
110  
90  
MHz  
MHz  
AD8332, AD8334  
Slew Rate  
AD8331  
LO gain  
300  
V/μs  
HI gain  
LO gain  
1200  
2ꢀ7  
V/μs  
V/μs  
AD8332, AD8334  
HI gain  
1100  
0.82  
V/μs  
nV/√Hz  
Input Voltage Noise  
Noise Figure  
RS = 0 Ω, HI or LO gain, RFB = ∞, f = 7 MHz  
VGAIN = 1.0 V  
Active Termination Match  
RS = RIN = 70 Ω, f = 10 MHz, measured  
RS = RIN = 200 Ω, f = 7 MHz, simulated  
RS = 70 Ω, RFB = ∞, f = 10 MHz, measured  
RS = 200 Ω, RFB = ∞, f = 7 MHz, simulated  
4.17  
2.0  
2.7  
dB  
dB  
dB  
dB  
Unterminated  
1.0  
Output-Referred Noise  
AD8331  
VGAIN = 0.7 V, LO gain  
VGAIN = 0.7 V, HI gain  
VGAIN = 0.7 V, LO gain  
VGAIN = 0.7 V, HI gain  
DC to 1 MHz  
48  
1ꢀ8  
40  
170  
1
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
Ω
AD8332, AD8334  
Output Impedance, Postamplifier  
Rev. E | Page 4 of 40  
 
AD8331/AD8332/AD8334  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Output Signal Range, Postamplifier  
Differential  
RL ≥ 700 Ω, unclamped, either pin  
VCM 1.127  
4.7  
V
V p-p  
Output Offset Voltage  
AD8331  
VGAIN = 0.7 V  
Differential  
Common mode  
Differential  
−70  
−127 −27  
−20  
7
+70  
+100 mV  
+20 mV  
mV  
AD8332, AD8334  
7
Common mode  
−127 –27  
47  
+100 mV  
mA  
Output Short-Circuit Current  
Harmonic Distortion  
AD8331  
VGAIN = 0.7 V, VOUT = 1 V p-p, HI gain  
f = 1 MHz  
HD2  
−88  
−87  
−68  
−67  
dBc  
dBc  
dBc  
dBc  
HD3  
HD2  
HD3  
f = 10 MHz  
AD8332, AD8334  
HD2  
HD3  
HD2  
HD3  
f = 1 MHz  
−82  
−87  
−62  
−66  
1
dBc  
dBc  
dBc  
dBc  
f = 10 MHz  
Input 1 dB Compression Point  
Two-Tone Intermodulation Distortion (IMD3)  
AD8331  
VGAIN = 0.27 V, VOUT = 1 V p-p, f = 1 MHz to 10 MHz  
dBm1  
VGAIN = 0.ꢀ2 V, VOUT = 1 V p-p, f = 1 MHz  
VGAIN = 0.7 V, VOUT = 1 V p-p, f = 10 MHz  
VGAIN = 0.ꢀ2 V, VOUT = 1 V p-p, f = 1 MHz  
VGAIN = 0.7 V, VOUT = 1 V p-p, f = 10 MHz  
−80  
−ꢀ2  
−ꢀ8  
−ꢀ4  
dBc  
dBc  
dBc  
dBc  
AD8332, AD8334  
Output Third-Order Intercept  
AD8331  
VGAIN = 0.7 V, VOUT = 1 V p-p, f = 1 MHz  
VGAIN = 0.7 V, VOUT = 1 V p-p, f = 10 MHz  
VGAIN = 0.7 V, VOUT = 1 V p-p, f = 1 MHz  
VGAIN = 0.7 V, VOUT = 1 V p-p, f = 10 MHz  
38  
33  
37  
32  
−98  
7
dBm  
dBm  
dBm  
dBm  
dB  
AD8332, AD8334  
Channel-to-Channel Crosstalk (AD8332, AD8334) VGAIN = 0.7 V, VOUT = 1 V p-p, f = 1 MHz  
Overload Recovery  
Group Delay Variation  
ACCURACY  
VGAIN = 1.0 V, VIN = 70 mV p-p/1 V p-p, f = 10 MHz  
7 MHz < f < 70 MHz, full gain range  
ns  
ns  
2
Absolute Gain Error2  
0.07 V < VGAIN < 0.10 V  
0.10 V < VGAIN < 0.97 V  
0.97 V < VGAIN < 1.0 V  
0.1 V < VGAIN < 0.97 V  
0.1 V < VGAIN < 0.97 V  
−1  
−1  
−2  
+0.7  
0.3  
−1  
0.2  
0.1  
+2  
+1  
+1  
dB  
dB  
dB  
dB  
dB  
Gain Law Conformance3  
Channel-to-Channel Gain Matching  
GAIN CONTROL INTERFACE (Pin GAIN)  
Gain Scaling Factor  
0.10 V < VGAIN < 0.97 V  
LO gain  
HI gain  
48.7  
70  
71.7  
dB/V  
dB  
dB  
V
MΩ  
ns  
Gain Range  
−4.7 to +43.7  
ꢀ.7 to 77.7  
0 to 1.0  
10  
Input Voltage (VGAIN) Range  
Input Impedance  
Response Time  
48 dB gain change to 90% full scale  
700  
COMMON-MODE INTERFACE (PIN VCMn)  
Input Resistance4  
Output CM Offset Voltage  
Voltage Range  
Current limited to 1 mA  
VCM = 2.7 V  
VOUT = 2.0 V p-p  
30  
Ω
−127 −27  
1.7 to 3.7  
+100 mV  
V
Rev. E | Page 7 of 40  
AD8331/AD8332/AD8334  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
ENABLE INTERFACE  
(PIN ENB, PIN ENBL, PIN ENBV)  
Logic Level to Enable Power  
Logic Level to Disable Power  
Input Resistance  
2.27  
0
7
1.0  
V
V
Pin ENB  
Pin ENBL  
Pin ENBV  
VINH = 30 mV p-p  
VINH = 170 mV p-p  
27  
40  
ꢀ0  
300  
4
kΩ  
kΩ  
kΩ  
μs  
ms  
Power-Up Response Time  
HILO GAIN RANGE INTERFACE (PIN HILO)  
Logic Level to Select HI Gain Range  
Logic Level to Select LO Gain Range  
Input Resistance  
2.27  
0
7
1.0  
V
V
kΩ  
70  
OUTPUT CLAMP INTERFACE  
(PIN RCLMP; HI OR LO GAIN)  
Accuracy  
HILO = LO  
HILO = HI  
RCLMP = 2.ꢀ4 kΩ, VOUT = 1 V p-p (clamped)  
RCLMP = 2.21 kΩ, VOUT = 1 V p-p (clamped)  
70  
ꢀ7  
mV  
mV  
MODE INTERFACE (PIN MODE)  
Logic Level for Positive Gain Slope  
Logic Level for Negative Gain Slope  
Input Resistance  
0
2.27  
1.0  
7
V
V
kΩ  
200  
7.0  
POWER SUPPLY (PIN VPS1, PIN VPS2,  
PIN VPSV, PIN VPSL, PIN VPOS)  
Supply Voltage  
4.7  
7.7  
V
Quiescent Current per Channel  
AD8331  
AD8332, AD8334  
20  
20  
27  
29  
mA  
mA  
Power Dissipation per channel  
AD8331  
AD8332, AD8334  
No signal  
127  
147  
mW  
mW  
Power-Down Current  
AD8332 (VGA and LNA Disabled)  
AD8331 (VGA and LNA Disabled)  
LNA Current  
70  
70  
300  
240  
600  
400  
μA  
μA  
AD8331 (ENBL)  
AD8332, AD8334 (ENBL)  
VGA Current  
Each channel  
Each channel  
ꢀ.7  
ꢀ.7  
11  
12  
17  
17  
mA  
mA  
AD8331 (ENBV)  
AD8332, AD8334 (ENBV)  
PSRR  
ꢀ.7  
ꢀ.7  
14  
1ꢀ  
−68  
20  
20  
mA  
mA  
dB  
VGAIN = 0 V, f = 100 kHz  
1 All dBm values are referred to 70 Ω.  
2 The absolute gain refers to the theoretical gain expression in Equation 1.  
3 Best-fit to linear-in-dB curve.  
4 The current is limited to 1 mA typical.  
Rev. E | Page 6 of 40  
 
AD8331/AD8332/AD8334  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
Voltage  
Supply Voltage (VPSn, VPSV, VPSL, VPOS)  
Input Voltage (INHn)  
ENB, ENBL, ENBV, HILO Voltage  
GAIN Voltage  
7.7 V  
VS + 200 mV  
VS + 200 mV  
2.7 V  
Power Dissipation  
AR Package1  
CP-20 Package (AD8331)  
CP-32 Package (AD8332)  
RQ Package1  
0.96 W  
1.63 W  
1.9ꢀ W  
0.ꢀ8 W  
0.91 W  
CP-64 Package (AD8334)  
Temperature  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering 60 sec)  
θJA  
−40°C to +87°C  
−67°C to +170°C  
300°C  
AR Package1  
68°C/W  
40°C/W  
33°C/W  
83°C/W  
24.2°C/W  
CP-20 Package2  
CP-32 Package2  
RQ Package1  
CP-64 Package3  
1 Four-layer JEDEC board (2S2P).  
2 Exposed pad soldered to board, nine thermal vias in pad—JEDEC, 4-layer  
board J-STD-71-9.  
3 Exposed pad soldered to board, 27 thermal vias in pad—JEDEC, 4-layer  
board J-STD-71-9.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. E | Page ꢀ of 40  
 
 
 
 
 
 
AD8331/AD8332/AD8334  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
20 COMM  
LMD  
INH  
PIN 1  
INDICATOR  
19  
18  
ENBL  
ENBV  
3
VPSL  
LON  
LOP  
4
17 COMM  
AD8331  
TOP VIEW  
(Not to Scale)  
5
16  
15  
14  
VOL  
6
VOH  
VPOS  
COML  
VIP  
7
8
13 HILO  
VIN  
9
12  
11  
RCLMP  
VCM  
MODE  
GAIN  
10  
Figure 3. 20-Lead QSOP Pin Configuration (AD8331)  
Table 3. 20-Lead QSOP Pin Function Description (AD8331)  
Pin No.  
Mnemonic  
Description  
1
2
LMD  
INH  
LNA Signal Ground  
LNA Input  
3
4
7
6
8
9
10  
11  
12  
13  
14  
17  
16  
1ꢀ  
18  
19  
20  
VPSL  
LON  
LOP  
COML  
VIP  
VIN  
MODE  
GAIN  
VCM  
RCLMP  
HILO  
VPOS  
VOH  
VOL  
LNA 7 V Supply  
LNA Inverting Output  
LNA Noninverting Output  
LNA Ground  
VGA Noninverting Input  
VGA Inverting Input  
Gain Slope Logic Input  
Gain Control Voltage  
Common Mode Voltage  
Output Clamping Level  
Gain Range Select (HI or LO)  
VGA 7 V Supply  
Noninverting VGA Output  
Inverting VGA Output  
VGA Ground  
VGA Enable  
LNA Enable  
COMM  
ENBV  
ENBL  
COMM  
VGA Ground  
Rev. E | Page 8 of 40  
 
 
AD8331/AD8332/AD8334  
1
2
28  
27  
26  
25  
24  
23  
LMD2  
INH2  
LMD1  
INH1  
PIN 1  
INDICATOR  
32  
31  
30  
29  
28  
27  
26  
25  
3
VPS2  
LON2  
LOP2  
COM2  
VIP2  
VPS1  
LON1  
LOP1  
COM1  
VIP1  
LON1  
VPS1  
INH1  
1
2
3
4
5
6
7
8
COMM  
VOH1  
VOL1  
VPSV  
NC  
24  
23  
22  
21  
20  
19  
18  
17  
4
PIN 1  
INDICATOR  
5
AD8332  
TOP VIEW  
6
7
(Not to Scale) 22  
LMD1  
LMD2  
INH2  
AD8332  
TOP VIEW  
(Not to Scale)  
8
21  
20  
19  
VIN2  
VIN1  
9
VCM2  
GAIN  
RCLMP  
VOH2  
VOL2  
COMM  
VCM1  
HILO  
VOL2  
VOH2  
COMM  
10  
11  
12  
13  
14  
18 ENB  
VPS2  
LON2  
17 VOH1  
16 VOL1  
15 VPSV  
9
10  
11  
12  
13  
14  
15  
16  
NC = NO CONNECT  
Figure 4. 28-Lead TSSOP Pin Configuration (AD8332)  
Figure 5. 32-Lead LFCSP Pin Configuration (AD8332)  
Table 4. 28-Lead TSSOP Pin Function Description (AD8332)  
Table 5. 32-Lead LFCSP Pin Function Description (AD8332)  
Pin No.  
Mnemonic  
LMD2  
INH2  
Description  
Pin No.  
Mnemonic  
LON1  
VPS1  
Description  
1
2
CH2 LNA Signal Ground  
CH2 LNA Input  
1
2
CH1 LNA Inverting Output  
CH1 LNA Supply 7 V  
3
VPS2  
CH2 Supply LNA 7 V  
3
INH1  
CH1 LNA Input  
4
7
6
8
9
LON2  
LOP2  
COM2  
VIP2  
CH2 LNA Inverting Output  
CH2 LNA Noninverting Output  
CH2 LNA Ground  
CH2 VGA Noninverting Input  
CH2 VGA Inverting Input  
CH2 Common-Mode Voltage  
Gain Control Voltage  
Output Clamping Resistor  
CH2 Noninverting VGA Output  
CH2 Inverting VGA Output  
VGA Ground (Both Channels)  
VGA Supply 7 V (Both Channels)  
CH1 Inverting VGA Output  
CH1 Noninverting VGA Output  
Enable—VGA/LNA  
VGA Gain Range Select (HI or LO)  
CH1 Common-Mode Voltage  
CH1 VGA Inverting Input  
CH1 VGA Noninverting Input  
CH1 LNA Ground  
4
7
6
8
9
LMD1  
LMD2  
INH2  
CH1 LNA Signal Ground  
CH2 LNA Signal Ground  
CH2 LNA Input  
VPS2  
CH2 LNA Supply 7 V  
VIN2  
LON2  
LOP2  
COM2  
VIP2  
CH2 LNA Inverting Output  
CH2 LNA Noninverting Output  
CH2 LNA Ground  
CH2 VGA Noninverting Input  
CH2 VGA Inverting Input  
CH2 Common-Mode Voltage  
Gain Slope Logic Input  
Gain Control Voltage  
Output Clamping Level Input  
VGA Ground  
VCM2  
GAIN  
RCLMP  
VOH2  
VOL2  
COMM  
VPSV  
VOL1  
VOH1  
ENB  
10  
11  
12  
13  
14  
17  
16  
1ꢀ  
18  
19  
20  
21  
22  
23  
24  
27  
26  
2ꢀ  
28  
10  
11  
12  
13  
14  
17  
16  
1ꢀ  
18  
19  
20  
21  
22  
23  
24  
27  
26  
2ꢀ  
28  
29  
30  
31  
32  
VIN2  
VCM2  
MODE  
GAIN  
RCLMP  
COMM  
VOH2  
VOL2  
NC  
VPSV  
VOL1  
VOH1  
COMM  
ENBV  
ENBL  
HILO  
CH2 Noninverting VGA Output  
CH2 Inverting VGA Output  
No Connect  
HILO  
VCM1  
VIN1  
VGA Supply 7 V  
VIP1  
CH1 Inverting VGA Output  
CH1 Noninverting VGA Output  
VGA Ground  
VGA Enable  
LNA Enable  
VGA Gain Range Select (HI or LO)  
CH1 Common-Mode Voltage  
CH1 VGA Inverting Input  
CH1 VGA Noninverting Input  
CH1 LNA Ground  
COM1  
LOP1  
LON1  
VPS1  
INH1  
LMD1  
CH1 LNA Noninverting Output  
CH1 LNA Inverting Output  
CH1 LNA Supply 7 V  
CH1 LNA Input  
CH1 LNA Signal Ground  
VCM1  
VIN1  
VIP1  
COM1  
LOP1  
CH1 LNA Noninverting Output  
Rev. E | Page 9 of 40  
 
AD8331/AD8332/AD8334  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
INH2  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
COM12  
VOH1  
VOL1  
VPS12  
VOL2  
VOH2  
COM12  
MODE  
NC  
PIN 1  
INDICATOR  
LMD2  
2
COM2X  
LON2  
LOP2  
VIP2  
3
4
5
6
VIN2  
7
AD8334  
8
VPS2  
VPS3  
VIN3  
TOP VIEW  
9
(Not to Scale)  
10  
11  
12  
13  
14  
15  
16  
COM34  
VOH3  
VOL3  
VPS34  
VOL4  
VOH4  
COM34  
VIP3  
LOP3  
LON3  
COM3X  
LMD3  
INH3  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NC = NO CONNECT  
Figure 6. 64-Lead LFCSP Pin Configuration (AD8334)  
Table 6. 64-Lead LFCSP Pin Function Description (AD8334)  
Pin No.  
Mnemonic  
Description  
1
INH2  
CH2 LNA Input  
2
3
4
7
LMD2  
COM2X  
LON2  
LOP2  
CH2 LNA VMID Bypass (AC-Coupled to GND)  
CH2 LNA Ground Shield  
CH2 LNA Feedback Output (for RFBK  
)
CH2 LNA Output  
6
8
VIP2  
VIN2  
VPS2  
CH2 VGA Positive Input  
CH2VGA Negative Input  
CH2 LNA Supply 7 V  
9
VPS3  
CH3 LNA Supply 7 V  
10  
11  
12  
13  
14  
17  
16  
1ꢀ  
18  
19  
20  
21  
22  
23  
24  
27  
26  
2ꢀ  
28  
VIN3  
VIP3  
LOP3  
CH3VGA Negative Input  
CH3 VGA Positive Input  
CH3 LNA Positive Output  
CH3 LNA Feedback Output (for RFBK  
CH3 LNA Ground Shield  
CH3 LNA VMID Bypass (AC-Coupled to GND)  
CH3 LNA Input  
CH3 LNA Ground  
CH4 LNA Ground  
CH4 LNA Input  
CH4 LNA VMID Bypass (AC-Coupled to GND)  
CH4 LNA Ground Shield  
LON3  
COM3X  
LMD3  
INH3  
COM3  
COM4  
INH4  
LMD4  
COM4X  
LON4  
LOP4  
VIP4  
VIN4  
VPS4  
GAIN34  
CLMP34  
)
CH4 LNA Feedback Output (for RFBK  
CH4 LNA Positive Output  
CH4 VGA Positive Input  
CH4VGA Negative Input  
CH4 LNA Supply 7 V  
)
Gain Control Voltage for CH3 and CH4  
Output Clamping Level Input for CH3 and CH4  
Rev. E | Page 10 of 40  
 
AD8331/AD8332/AD8334  
Pin No.  
29  
30  
31  
32  
33  
34  
37  
36  
3ꢀ  
38  
39  
40  
41  
42  
43  
44  
47  
46  
4ꢀ  
48  
49  
70  
71  
72  
73  
74  
77  
76  
7ꢀ  
78  
79  
60  
61  
62  
63  
64  
Mnemonic  
HILO  
VCM4  
VCM3  
NC  
COM34  
VOH4  
VOL4  
VPS34  
VOL3  
VOH3  
COM34  
NC  
MODE  
COM12  
VOH2  
VOL2  
Description  
Gain Select for Postamp 0 dB or 12 dB  
CH4 Common-Mode Voltage—AC Bypass  
CH3 Common-Mode Voltage—AC Bypass  
No Connect  
VGA Ground, CH3 and CH4  
CH4 Positive VGA Output  
CH4 Negative VGA Output  
VGA Supply 7V CH3 and CH4  
CH3 Negative VGA Output  
CH3 Positive VGA Output  
VGA ground CH3 and CH4  
No Connect  
Gain Control SLOPE, Logic Input, 0 = Positive  
VGA Ground CH1 and CH2  
CH2 Positive VGA Output  
CH2 Negative VGA Output  
CH2 VGA Supply 7 V CH1 and CH2  
CH1 Negative VGA Output  
CH1 Positive VGA Output  
VPS12  
VOL1  
VOH1  
COM12  
VCM2  
VCM1  
EN34  
VGA Ground CH1 and CH2  
CH2 Common-Mode Voltage—AC Bypass  
CH1 Common-Mode Voltage—AC Bypass  
Shared LNA/VGA Enable, CH3 and CH4  
Shared LNA/VGA Enable, CH1 and CH2  
Output Clamping Level Input, CH1 and CH2  
Gain Control Voltage CH1 and CH2  
CH1 LNA Supply 7 V  
CH1 VGA Negative Input  
CH1 VGA Positive Input  
CH1 LNA Positive Output  
CH1 LNA Feedback Output (for RFBK  
CH1 LNA Ground Shield  
CH1 LNA VMID Bypass (AC-Coupled to GND)  
CH1 LNA Input  
CH1 LNA Ground  
CH2 LNA Ground  
EN12  
CLMP12  
GAIN12  
VPS1  
VIN1  
VIP1  
LOP1  
LON1  
COM1X  
LMD1  
INH1  
COM1  
COM2  
)
Rev. E | Page 11 of 40  
AD8331/AD8332/AD8334  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = 5 V, RL = 500 Ω, RS = RIN = 50 Ω, RFB = 280 Ω, CSH = 22 pF, f = 10 MHz, RCLMP = ∞, CL = 1 pF, VCM pin floating,  
−4.5 dB to +43.5 dB gain (HILO = LO), and differential output voltage, unless otherwise specified.  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
SAMPLE SIZE = 80 UNITS  
= 0.5V  
V
GAIN  
HILO = HI  
HILO = LO  
ASCENDING GAIN MODE  
DESCENDING GAIN MODE  
(WHERE AVAILABLE)  
–10  
0
0.2  
0.4  
0.6  
(V)  
0.8  
1.0 1.1  
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
V
GAIN ERROR (dB)  
GAIN  
Figure 10. Gain Error Histogram  
Figure 7. Gain vs. VGAIN and MODE (MODE Available on AC Package)  
25  
20  
15  
10  
5
2.0  
1.5  
1.0  
SAMPLE SIZE = 50 UNITS  
V = 0.2V  
GAIN  
–40°C  
+25°C  
0.5  
0
0
25  
V
= 0.7V  
GAIN  
20  
15  
10  
5
–0.5  
+85°C  
–1.0  
–1.5  
–2.0  
0
0
0.2  
0.4  
0.6  
(V)  
0.8  
1.0 1.1  
V
GAIN  
CHANNEL TO CHANNEL GAIN MATCH (dB)  
Figure 8. Absolute Gain Error vs. VGAIN at Three Temperatures  
Figure 11. Gain Match Histogram for VGAIN = 0.2 V and 0.7 V  
2.0  
50  
V
V
= 1V  
GAIN  
GAIN  
1.5  
1.0  
40  
30  
= 0.8V  
V
V
V
= 0.6V  
= 0.4V  
= 0.2V  
GAIN  
GAIN  
GAIN  
0.5  
20  
1MHz  
0
10  
10MHz  
30MHz  
–0.5  
0
–1.0  
50MHz  
V
= 0V  
GAIN  
–10  
–1.5  
70MHz  
–20  
100k  
–2.0  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
0
0.2  
0.4  
0.6  
(V)  
0.8  
1.0 1.1  
V
GAIN  
Figure 12. Frequency Response for Various Values of VGAIN  
Figure 9. Absolute Gain Error vs. VGAIN at Various Frequencies  
Rev. E | Page 12 of 40  
 
 
 
AD8331/AD8332/AD8334  
60  
50  
40  
30  
20  
10  
0
0
–20  
V
V
= 1V  
GAIN  
GAIN  
V
= 1V p-p  
OUT  
= 0.8V  
V
= 1.0V  
= 0.7V  
= 0.4V  
GAIN  
GAIN  
GAIN  
V
V
V
= 0.6V  
= 0.4V  
= 0.2V  
AD8332  
AD8334  
GAIN  
GAIN  
GAIN  
V
–40  
V
–60  
–80  
V
= 0V  
GAIN  
–100  
–10  
100k  
–120  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
1M  
10M  
FREQUENCY (Hz)  
100M  
Figure 13. Frequency Response for Various Values of VGAIN, HILO = HI  
Figure 16. Channel-to-Channel Crosstalk vs.  
Frequency for Various Values of VGAIN  
30  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 0.5V  
GAIN  
R
= R = 75  
S
IN  
R
= R = 50Ω  
S
IN  
20  
10  
0.1µF  
COUPLING  
R
= R = 100Ω  
S
IN  
R
= R = 200Ω  
S
IN  
1µF  
COUPLING  
0
R
= R = 500Ω  
S
IN  
–10  
–20  
–30  
R
= R = 1kΩ  
S
IN  
0
100k  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
1M  
10M  
FREQUENCY (Hz)  
100M  
Figure 14. Frequency Response for Various Matched Source Impedances  
Figure 17. Group Delay vs. Frequency for Two Values of AC Coupling  
20  
30  
T = +85°C  
T = +25°C  
T = –40°C  
HI GAIN  
V
R
= 0.5V  
GAIN  
=
FB  
10  
0
20  
10  
–10  
–20  
20  
0
LO GAIN  
10  
0
–10  
–20  
–30  
T = +85°C  
T = +25°C  
T = –40°C  
–10  
–20  
100k  
1M  
10M  
100M  
500M  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1  
(V)  
FREQUENCY (Hz)  
V
GAIN  
Figure 15. Frequency Response, Unterminated LNA, RS = 50 Ω  
Figure 18. Representative Differential Output Offset Voltage vs.  
VGAIN at Three Temperatures  
Rev. E | Page 13 of 40  
 
AD8331/AD8332/AD8334  
50j  
100j  
25j  
35  
SAMPLE SIZE = 100  
R
R
= 50,  
= 270Ω  
IN  
0.2V < V  
< 0.7V  
GAIN  
FB  
30  
25  
20  
15  
10  
5
R
R
= 6k,  
f
= 100kHz  
IN  
=
FB  
0Ω  
17Ω  
R
R
= 75,  
IN  
= 412Ω  
FB  
R
R
= 100,  
= 549Ω  
IN  
FB  
R
R
= 200,  
= 1.1kΩ  
IN  
0
FB  
49.6 49.7 49.8 49.9 50.0 50.1 50.2 50.3 50.4 50.5  
GAIN SCALING FACTOR  
–25j  
–100j  
–50j  
Figure 19. Gain Scaling Factor Histogram  
Figure 22. Smith Chart, S11 vs. Frequency,  
0.1 MHz to 200 MHz for Various Values of RFB  
100  
10  
1
20  
15  
10  
5
SINGLE ENDED, PIN VOH OR VOL  
V
= 10mV p-p  
R
= 50Ω  
IN  
IN  
R
= ∞  
L
R
= 100Ω  
IN  
R
= 200Ω  
IN  
R
= 500Ω  
IN  
0
R
= 1kΩ  
IN  
–5  
–10  
–15  
R
= 75Ω  
IN  
0.1  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
Figure 20. Output Impedance vs. Frequency  
Figure 23. LNA Frequency Response, Single Ended, for Various Values of RIN  
10k  
20  
15  
R
= , C = 0pF  
SH  
FB  
R
= ∞  
R
= 6.65k, C = 0pF  
SH  
FB  
FB  
R
= 3.01k, C = 0pF  
SH  
FB  
10  
5
1k  
100  
10  
R
= 1.1k, C = 1.2pF  
SH  
FB  
0
R
= 549, C = 8.2pF  
SH  
FB  
–5  
–10  
–15  
R
= 412, C = 12pF  
FB  
SH  
R
= 270, C = 22pF  
FB  
SH  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
500M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. LNA Input Impedance vs.  
Figure 24. Frequency Response for Unterminated LNA, Single Ended  
Frequency for Various Values of RFB and CSH  
Rev. E | Page 14 of 40  
 
 
AD8331/AD8332/AD8334  
500  
400  
300  
200  
100  
0
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
R
V
= 0, R = ,  
FB  
S
= 1V, f = 10MHz  
f
= 10MHz  
GAIN  
AD8332  
AD8334  
LO GAIN  
HI GAIN  
AD8331  
0
0.2  
0.4  
0.6  
0.8  
1.0  
–50  
–30  
–10  
10  
30  
50  
70  
90  
V
(V)  
TEMPERATURE (°C)  
GAIN  
Figure 25. Output-Referred Noise vs. VGAIN  
Figure 28. Short-Circuit, Input-Referred Noise vs. Temperature  
2.5  
2.0  
1.5  
1.0  
0.5  
R
= 0, R  
FB  
=
, V = 1V,  
S
GAIN  
10  
HILO = LO OR HI  
f = 5MHz, R  
FB  
= ,  
V
= 1V  
GAIN  
1
R
THERMAL NOISE  
ALONE  
S
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
0.1  
1
10  
100  
1k  
SOURCE RESISTANCE ()  
Figure 26. Short-Circuit, Input-Referred Noise vs. Frequency  
Figure 29. Input-Referred Noise vs. RS  
100  
7
6
5
4
3
2
1
0
R
= 0, R = ,  
FB  
S
INCLUDES NOISE OF VGA  
HILO = LO OR HI, f = 10MHz  
R
= 50Ω  
10  
IN  
R
= 75Ω  
IN  
R
= 100Ω  
IN  
1
R
= 200Ω  
IN  
R
= ∞  
FB  
SIMULATION  
50 100  
0.1  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1k  
V
(V)  
SOURCE RESISTANCE ()  
GAIN  
Figure 30. Noise Figure vs. RS for Various Values of RIN  
Figure 27. Short-Circuit, Input-Referred Noise vs. VGAIN  
Rev. E | Page 17 of 40  
 
 
AD8331/AD8332/AD8334  
35  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
PREAMP LIMITED  
f = 10MHz, R = 50Ω  
S
f = 10MHz,  
= 1V p-p  
V
OUT  
30  
HILO = LO, R = 50Ω  
IN  
25  
20  
15  
10  
5
HILO = HI, R = 50Ω  
IN  
HILO = LO, HD2  
HILO = HI, HD2  
HILO = HI, HD3  
HILO = LO, R  
FB  
= ∞  
HILO = LO, HD3  
HILO = HI, R = ∞  
IN  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1  
(V)  
0
0
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
()  
V
R
LOAD  
GAIN  
Figure 31. Noise Figure vs. VGAIN  
Figure 34. Harmonic Distortion vs. RLOAD  
30  
25  
20  
15  
10  
5
–40  
–50  
–60  
–70  
–80  
–90  
f = 10MHz,  
= 1V p-p  
f = 10MHz, R = 50Ω  
S
V
OUT  
HILO = HI, R = 50Ω  
IN  
HILO = HI, R  
=
HILO = LO, HD2  
HILO = LO, HD3  
FB  
HILO = HI, HD2  
HILO = HI, HD3  
HILO = LO, R = 50Ω  
IN  
HILO = LO, R  
FB  
= ∞  
0
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
10  
20  
30  
(pF)  
40  
50  
GAIN (dB)  
C
LOAD  
Figure 35. Harmonic Distortion vs. CLOAD  
Figure 32. Noise Figure vs. Gain  
–20  
–40  
f = 10MHz,  
GAIN = 30dB  
0
G = 30dB,  
= 1V p-p  
V
OUT  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
HILO = LO, HD3  
HILO = LO, HD2  
HILO = LO, HD2  
HILO = LO, HD3  
–60  
HILO = HI, HD2  
HILO = HI, HD3  
–80  
HILO = HI, HD2  
HILO = HI, HD3  
–100  
1
2
3
4
1M  
10M  
100  
V
(V p-p)  
OUT  
FREQUENCY (Hz)  
Figure 36. Harmonic Distortion vs. Differential Output Voltage  
Figure 33. Harmonic Distortion vs. Frequency  
Rev. E | Page 16 of 40  
 
 
AD8331/AD8332/AD8334  
0
–20  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
V
= 1V p-p COMPOSITE (f1  
+
f2)  
OUT  
G = 30dB  
V
= 1V p-p  
OUT  
INPUT RANGE  
LIMITED WHEN  
HILO = LO  
–40  
HILO = LO, HD3  
HILO = LO  
HILO = LO, HD2  
–60  
–80  
HILO = HI, HD3  
–100  
–120  
HILO = HI, HD2  
HILO = HI  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1M  
10M  
100M  
V
(V)  
FREQUENCY (Hz)  
GAIN  
Figure 40. IMD3 vs. Frequency  
Figure 37. Harmonic Distortion vs. VGAIN, f = 1 MHz  
0
–20  
40  
35  
30  
25  
20  
15  
10  
5
10MHz HILO = HI  
V
= 1V p-p  
OUT  
1MHz HILO = LO  
10MHz HILO = LO  
1MHz HILO = HI  
HILO = LO, HD2  
INPUT RANGE  
LIMITED WHEN  
HILO = LO  
–40  
HILO = LO, HD3  
–60  
–80  
HILO = HI, HD3  
HILO = HI, HD2  
–100  
–120  
V
= 1V p-p COMPOSITE (f1 + f2)  
OUT  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
V
(V)  
V
(V)  
GAIN  
GAIN  
Figure 41. Output Third-Order Intercept vs. VGAIN  
Figure 38. Harmonic Distortion vs. VGAIN, f = 10 MHz  
10  
0
2mV  
f = 10MHz  
100  
90  
HILO = LO  
–10  
–20  
–30  
–40  
HILO = HI  
10  
0
50mV  
10ns  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
V
(V)  
GAIN  
Figure 42. Small Signal Pulse Response, G = 30 dB,  
Top: Input, Bottom: Output Voltage, HILO = HI or LO  
Figure 39. Input 1 dB Compression vs. VGAIN  
Rev. E | Page 1ꢀ of 40  
 
AD8331/AD8332/AD8334  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
20mV  
100  
90  
HILO = HI  
HILO = LO  
10  
0
500mV  
10ns  
0
5
10  
15  
20  
25  
30  
(k)  
35  
40  
45  
50  
R
CLMP  
Figure 43. Large Signal Pulse Response, G = 30 dB,  
HILO = HI or LO, Top: Input, Bottom: Output Voltage  
Figure 46. Clamp Level vs. RCLMP  
4
3
2
1
G = 40dB  
C
C
C
C
= 0pF  
L
L
L
L
R
= 48.1kΩ  
G = 30dB  
CLMP  
R
= 10pF  
= 22pF  
= 47pF  
= 16.5kΩ  
CLMP  
2
INPUT  
1
INPUT  
0
R
= 7.15kΩ  
0
CLMP  
R
= 2.67kΩ  
–1  
–2  
–3  
–4  
CLMP  
–1  
INPUT IS NOT TO SCALE  
–30 –20 –10  
0
10  
20  
30  
40  
50  
60  
70  
80  
–2  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
TIME (ns)  
TIME (ns)  
Figure 47. Clamp Level Pulse Response for 4 Values of RCLMP  
Figure 44. Large Signal Pulse Response for Various Capacitive Loads,  
CL = 0 pF, 10 pF, 20 pF, 50 pF  
200mV  
100  
90  
500mV  
10  
0
100ns  
200mV  
400ns  
Figure 48. LNA Overdrive Recovery, VINH 0.05 V p-p to 1 V p-p Burst,  
VGAIN = 0.27 V VGA Output Shown  
Figure 45. Pin GAIN Transient Response,  
Top: VGAIN, Bottom: Output Voltage  
Rev. E | Page 18 of 40  
 
AD8331/AD8332/AD8334  
1V  
2V  
100  
90  
10  
0
100ns  
1V  
1ms  
Figure 52. Enable Response, Large Signal,  
Top: VENB, Bottom: VOUT, VINH = 150 mV p-p  
Figure 49. VGA Overdrive Recovery, VINH 4 mV p-p to 70 mV p-p Burst,  
VGAIN = 1 V VGA Output Shown Attenuated by 24 dB  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
VPS1, V  
GAIN  
= 0.5V  
1V  
100  
90  
VPSV, V  
GAIN  
= 0.5V  
VPS1, V  
GAIN  
= 0V  
10  
0
100ns  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
Figure 50. VGA Overdrive Recovery, VINH 4 mV p-p to 275 mV p-p Burst,  
VGAIN = 1 V VGA Output Shown Attenuated by 24 dB  
Figure 53. PSRR vs. Frequency (No Bypass Capacitor)  
140  
130  
120  
110  
100  
90  
V
= 0.5V  
GAIN  
2V  
AD8334  
80  
70  
AD8332  
60  
50  
40  
AD8331  
40  
200mV  
1ms  
30  
20  
–40  
–20  
0
20  
60  
80  
100  
TEMPERATURE (°C)  
Figure 51. Enable Response, Top: VENB, Bottom: VOUT, VINH = 30 mV p-p  
Figure 54. Quiescent Supply Current vs. Temperature  
Rev. E | Page 19 of 40  
 
AD8331/AD8332/AD8334  
TEST CIRCUITS  
Short-circuit input noise measurements are made using Figure 62.  
The input-referred noise level is determined by dividing the  
output noise by the numerical gain between Point A and Point B  
and accounting for the noise floor of the spectrum analyzer.  
The gain should be measured at each frequency of interest and  
with low signal levels because a 50 Ω load is driven directly. The  
generator is removed when noise measurements are made.  
MEASUREMENT CONSIDERATIONS  
Figure 55 through Figure 68 show typical measurement  
configurations and proper interface values for measurements  
with 50 Ω conditions.  
NETWORK ANALYZER  
50  
50Ω  
OUT  
IN  
18nF  
270Ω  
FERRITE  
BEAD  
120nH  
237Ω  
28Ω  
0.1µF  
0.1µF  
INH  
LMD  
DUT  
1:1  
22pF  
237Ω  
28Ω  
0.1µF  
0.1µF  
Figure 55. Gain and Bandwidth Measurements  
NETWORK ANALYZER  
50  
50Ω  
OUT  
IN  
10kΩ  
18nF  
FERRITE  
BEAD  
120nH  
237Ω  
28Ω  
0.1µF  
0.1µF  
10kΩ  
INH  
LMD  
DUT  
1:1  
22pF  
237Ω  
28Ω  
0.1µF  
0.1µF  
Figure 56. Frequency Response for Various Matched Source Impedances  
NETWORK ANALYZER  
50  
50Ω  
OUT  
IN  
FERRITE  
BEAD  
120nH  
237Ω  
28Ω  
0.1µF  
0.1µF  
INH  
LMD  
DUT  
1:1  
22pF  
237Ω  
28Ω  
0.1µF  
0.1µF  
Figure 57. Frequency Response for Unterminated LNA, RS = 50 Ω  
Rev. E | Page 20 of 40  
 
 
AD8331/AD8332/AD8334  
NETWORK ANALYZER  
50Ω  
50Ω  
OUT  
IN  
10kΩ  
18nF  
0.1µF  
AND  
10µF  
FERRITE  
BEAD  
0.1µF  
AND  
10µF  
237Ω  
28Ω  
120nH  
INH  
LMD  
LNA  
VGA  
1:1  
22pF  
237Ω  
28Ω  
0.1µF  
0.1µF  
AND  
10µF  
Figure 58. Group Delay vs. Frequency for Two Values of AC Coupling  
NETWORK  
ANALYZER  
18nF  
270  
FERRITE  
BEAD  
237Ω  
28Ω  
0.1µF  
0.1µF  
120nH  
50Ω  
OUT  
INH  
LMD  
DUT  
22pF  
1:1  
50Ω  
237Ω  
28Ω  
0.1µF  
0.1µF  
Figure 59. LNA Input Impedance vs. Frequency in Standard and Smith Chart (S11) Formats  
NETWORK ANALYZER  
50  
50Ω  
OUT  
IN  
0.1µF  
0.1µF  
FERRITE  
BEAD  
120nH  
237Ω  
28Ω  
0.1µF  
0.1µF  
INH  
LNA  
VGA  
1:1  
22pF  
LMD  
237Ω  
28Ω  
0.1µF  
0.1µF  
0.1µF  
Figure 60. Frequency Response for Unterminated LNA, Single Ended  
NETWORK  
ANALYZER  
18nF  
270  
FERRITE  
BEAD  
237Ω  
28Ω  
50Ω  
IN  
1:1  
0.1µF  
0.1µF  
120nH  
INH  
LMD  
DUT  
22pF  
237Ω  
28Ω  
0.1µF  
0.1µF  
Figure 61. Short-Circuit, Input-Referred Noise  
Rev. E | Page 21 of 40  
AD8331/AD8332/AD8334  
SPECTRUM  
ANALYZER  
A
B
GAIN  
FERRITE  
BEAD  
50  
IN  
0.1µF  
0.1µF  
0.1µF  
120nH  
49.9Ω  
50Ω  
INH  
LMD  
22pF  
1:1  
1Ω  
0.1µF  
SIGNAL GENERATOR  
TO MEASURE GAIN  
DISCONNECT FOR  
NOISE MEASUREMENT  
Figure 62. Noise Figure  
SPECTRUM  
ANALYZER  
18nF  
270Ω  
AD8332  
50Ω  
IN  
1kΩ  
1kΩ  
0.1µF  
0.1µF  
0.1µF  
22pF  
–6dB  
INH  
–6dB  
28Ω  
28Ω  
LPF  
1:1  
LMD  
50Ω  
0.1µF  
SIGNAL  
GENERATOR  
Figure 63. Harmonic Distortion vs. Load Resistance  
SPECTRUM  
ANALYZER  
18nF  
270  
AD8332  
50Ω  
IN  
0.1µF  
0.1µF  
0.1µF  
22pF  
–6dB  
237Ω  
INH  
–6dB  
28Ω  
237Ω  
LPF  
1:1  
LMD  
50Ω  
0.1µF  
28Ω  
SIGNAL  
GENERATOR  
Figure 64. Harmonic Distortion vs. Load Capacitance  
–6dB  
SPECTRUM  
ANALYZER  
+22dB  
18nF  
270  
INPUT  
FERRITE  
BEAD  
50Ω  
50Ω  
0.1µF  
0.1µF  
0.1µF  
–6dB  
237Ω  
120nH  
INH  
28Ω  
237Ω  
–6dB  
+22dB  
1:1  
DUT  
22pF  
LMD  
COMBINER  
–6dB  
0.1µF  
28Ω  
50Ω  
SIGNAL  
GENERATORS  
Figure 65. IMD3 vs. Frequency  
Rev. E | Page 22 of 40  
 
AD8331/AD8332/AD8334  
OSCILLOSCOPE  
18nF  
270  
FERRITE  
BEAD  
50Ω  
0.1µF  
0.1µF  
0.1µF  
237Ω  
120nH  
INH  
IN  
28Ω  
237Ω  
1:1  
DUT  
22pF  
LMD  
50Ω  
0.1µF  
28Ω  
Figure 66. Pulse Response Measurements  
OSCILLOSCOPE  
CH1 CH2  
18nF  
270Ω  
FERRITE  
BEAD  
120nH  
0.1µF  
0.1µF  
DIFF  
PROBE  
INH  
255Ω  
DUT  
22pF  
LMD  
50Ω  
RF  
0.1µF  
SIGNAL  
0.1µF 255Ω  
GENERATOR  
9.5dB  
TO PIN GAIN  
OR ENxx  
50Ω  
PULSE  
GENERATOR  
Figure 67. GAIN and Enable Transient Response  
NETWORK  
ANALYZER  
50Ω  
50Ω  
OUT  
IN  
18nF  
TO POWER  
PIN(S)  
270Ω  
FERRITE  
BEAD  
120nH  
0.1µF  
0.1µF  
DIFF PROBE  
PROBE POWER  
INH  
255Ω  
DUT  
22pF  
LMD  
50Ω  
RF  
0.1µF  
SIGNAL  
0.1µF 255Ω  
GENERATOR  
Figure 68. PSRR vs. Frequency  
Rev. E | Page 23 of 40  
 
AD8331/AD8332/AD8334  
THEORY OF OPERATION  
OVERVIEW  
LON1 LOP1 VIP1 VIN1 EN12  
VCM1  
INH1  
CLMP12  
V
CLAMP  
PA1  
The following discussion applies to all part numbers. Figure 69,  
Figure 70, and Figure 71 are functional block diagrams of the  
AD8331, AD8332, and AD8334, respectively.  
MID1  
LNA 1  
LMD1  
VOH1  
VOL1  
+
ATTENUATOR  
–48dB  
21dB  
LNA  
BIAS  
LON LOP VIP VIN  
VCM  
HILO  
VGA BIAS AND  
GAIN  
INT  
GAIN12  
HILO  
LMD2  
INTERPOLATOR  
3.5dB/  
LNA 2  
V
15.5dB  
PA  
MID  
INH2  
LON2  
LOP2  
VIP2  
VOL2  
+
ATTENUATOR  
–48dB  
21dB  
PA2  
INH  
VOH  
VOL  
+
VOH2  
ATTENUATOR  
–48dB  
LNA  
21dB  
LMD  
+
V
V
VCM2  
VCM3  
MID2  
VIN2  
GAIN UP/  
DOWN  
LNA  
BIAS  
VGA BIAS AND  
INTERPOLATOR  
GAIN  
INT  
MODE  
CLAMP  
RCLMP  
MODE  
MID3  
VIN3  
VIP3  
AD8331  
VOH3  
VOL3  
+
LOP3  
LON3  
ATTENUATOR  
–48dB  
21dB  
PA3  
ENBL  
ENBV  
GAIN  
Figure 69. AD8331 Functional Block Diagram  
INH3  
VGA BIAS AND  
INTERPOLATOR  
GAIN  
INT  
GAIN34  
LNA 3  
LMD3  
VOL4  
VOH4  
+
ATTENUATOR  
–48dB  
21dB  
PA4  
LNA  
BIAS  
LON1 LOP1 VIP1 VIN1  
VCM1  
HILO  
3.5dB/  
V
LMD4  
INH4  
MID  
+19dB  
15.5dB  
CLAMP34  
LNA 4  
CLMP34  
AD8334  
INH1  
V
MID4  
VOH1  
VOL1  
LNA 1  
ATTENUATOR  
–48dB  
21dB  
PA1  
+
LMD1  
LON4 LOP4 VIP4 VIN4  
EN34  
VCM4  
BIAS  
(V  
VGA BIAS AND  
INTERPOLATOR  
GAIN  
INT  
GAIN  
)
MID  
Figure 71. AD8334 Functional Block Diagram  
LMD2  
INH2  
VOL2  
VOH2  
+
ATTENUATOR  
–48dB  
Each channel contains an LNA that provides user-adjustable  
input impedance termination, a differential X-AMP VGA, and a  
programmable gain postamplifier with adjustable output voltage  
limiting. Figure 72 shows a simplified block diagram with  
external components.  
21dB  
PA2  
LNA 2  
AD8332  
V
CLAMP  
MID  
RCLMP  
LON2 LOP2 VIP2 VIN2  
ENB  
VCM2  
Figure 70. AD8332 Functional Block Diagram  
HILO  
LON  
VIN  
SIGNAL PATH  
3.5dB/15.5dB  
PRE-AMPLIFIER  
19dB  
VOH  
VOL  
INH  
+
48dB  
ATTENUATOR  
POST-  
AMP  
21dB  
LNA  
LMD  
V
MID  
LOP  
VIP  
VCM  
CLAMP  
BIAS  
(V  
BIAS AND  
INTERPOLATOR  
GAIN  
INTERFACE  
)
MID  
RCLMP  
GAIN  
Figure 72. Simplified Block Diagram  
Rev. E | Page 24 of 40  
 
 
 
 
 
AD8331/AD8332/AD8334  
LOW NOISE AMPLIFIER (LNA)  
The linear-in-dB gain-control interface is trimmed for slope  
and absolute accuracy. The gain range is 48 dB, extending from  
−4.5 dB to +43.5 dB in HI gain and +7.5 dB to +55.5 dB in LO  
gain mode. The slope of the gain control interface is 50 dB/V,  
and the gain control range is 40 mV to 1 V. Equation 1 and  
Equation 2 are the expressions for gain.  
Good noise performance relies on a proprietary ultralow noise  
preamplifier at the beginning of the signal chain, which minimizes  
the noise contribution in the following VGA. Active impedance  
control optimizes noise performance for applications that benefit  
from input matching.  
GAIN (dB) = 50 (dB/V) × VGAIN − 6.5 dB, (HILO = LO)  
(1)  
A simplified schematic of the LNA is shown in Figure 74. INH  
is capacitively coupled to the source. An on-chip bias generator  
establishes dc input bias voltages of 3.25 V and centers the  
output common-mode levels at 2.5 V. A Capacitor CLMD of the  
same value as the Input Coupling Capacitor CINH is connected  
from the LMD pin to ground.  
or  
GAIN (dB) = 50 (dB/V) × VGAIN + 5.5 dB, (HILO = LO)  
(2)  
The ideal gain characteristics are shown in Figure 73.  
60  
C
R
FB  
FB  
50  
LOP  
VPOS  
LON  
HILO = HI  
40  
30  
20  
10  
0
I
I
0
0
C
INH  
INH  
LMD  
Q1  
Q2  
C
LMD  
HILO = LO  
C
SH  
R
S
I
I
0
0
ASCENDING GAIN MODE  
DESCENDING GAIN MODE  
(WHERE AVAILABLE)  
–10  
0
0.2  
0.4  
0.6  
(V)  
0.8  
1.0 1.1  
Figure 74. Simplified LNA Schematic  
V
GAIN  
The LNA supports differential output voltages as high as 5 V p-p  
with positive and negative excursions of 1.25 V, about a  
common-mode voltage of 2.5 V. Because the differential gain  
magnitude is 9, the maximum input signal before saturation is  
275 mV or +550 mV p-p. Overload protection ensures quick  
recovery time from large input voltages. Because the inputs are  
capacitively coupled to a bias voltage near midsupply, very large  
inputs can be handled without interacting with the ESD protection.  
Figure 73. Ideal Gain Control Characteristics  
The gain slope is negative with the MODE pulled high (where  
available):  
GAIN (dB) = −50 (dB/V) × VGAIN + 45.5 dB, (HILO = LO)  
(3)  
or  
GAIN (dB) = −50 (dB/V) × VGAIN + 57.5 dB, (HILO = HI)  
(4)  
Low value feedback resistors and the current-driving capability  
of the output stage allow the LNA to achieve a low input-referred  
voltage noise of 0.74 nV/√Hz. This is achieved with a current  
consumption of only 11 mA per channel (55 mW). On-chip  
resistor matching results in precise single-ended gains of 4.5×  
(9× differential), critical for accurate impedance control. The  
use of a fully differential topology and negative feedback  
minimizes distortion. Low HD2 is particularly important in  
second harmonic ultrasound imaging applications. Differential  
signaling enables smaller swings at each output, further  
reducing third-order distortion.  
The LNA converts a single-ended input to a differential output  
with a voltage gain of 19 dB. If only one output is used, the gain  
is 13 dB. The inverting output is used for active input impedance  
termination. Each of the LNA outputs is capacitively coupled to  
a VGA input. The VGA consists of an attenuator with a range of  
48 dB followed by an amplifier with 21 dB of gain for a net gain  
range of −27 dB to +21 dB. The X-AMP gain-interpolation  
technique results in low gain error and uniform bandwidth, and  
differential signal paths minimize distortion.  
The final stage is a logic programmable amplifier with gains of  
3.5 dB or 15.5 dB. The LO and HI gain modes are optimized for  
12-bit and 10-bit ADC applications, in terms of output-referred  
noise and absolute gain range. Output voltage limiting can be  
programmed by the user.  
Rev. E | Page 27 of 40  
 
 
 
AD8331/AD8332/AD8334  
UNTERMINATED  
Active Impedance Matching  
R
IN  
R
S
The LNA supports active impedance matching through an external  
shunt feedback resistor from Pin LON to Pin INH. The input  
resistance, RIN, is given by Equation 5, where A is the single-  
ended gain of 4.5, and 6 kΩ is the unterminated input impedance.  
+
V
OUT  
V
IN  
RESISTIVE TERMINATION  
6 kꢀ × RFB  
33 kꢀ + RFB  
R
RFB  
1 + A  
IN  
RIN  
=
6 kꢀ =  
(5)  
R
S
+
R
V
S
OUT  
V
IN  
C
FB is needed in series with RFB because the dc levels at Pin LON  
and Pin INH are unequal. Expressions for choosing RFB in terms  
of RIN and for choosing CFB are found in the Applications section.  
ACTIVE IMPEDANCE MATCH  
R
FB  
R
IN  
CSH and the ferrite bead enhance stability at higher frequencies  
R
S
where the loop gain is diminished and prevent peaking. Frequency  
response plots of the LNA are shown in Figure 23 and Figure 24.  
The bandwidth is approximately 130 MHz for matched input  
impedances of 50 Ω to 200 Ω and declines at higher source  
impedances. The unterminated bandwidth (when RFB = ∞) is  
approximately 80 MHz.  
+
V
OUT  
V
IN  
R
FB  
R
=
IN  
1 + 4.5  
Figure 75. Input Configurations  
7
6
5
4
3
2
1
0
Each output can drive external loads as low as 100 Ω in addition  
to the 100 Ω input impedance of the VGA (200 Ω differential).  
Capacitive loading up to 10 pF is permissible. All loads should  
be ac-coupled. Typically, Pin LOP output is used as a single-  
ended driver for auxiliary circuits, such as those used for  
Doppler ultrasound imaging, and Pin LON drives RFB.  
Alternatively, a differential external circuit can be driven from  
the two outputs in addition to the active feedback termination.  
In both cases, important stability considerations discussed in  
the Applications section should be carefully observed.  
INCLUDES NOISE OF VGA  
RESISTIVE TERMINATION  
(R = R  
)
S
IN  
ACTIVE IMPEDANCE MATCH  
UNTERMINATED  
The impedance at each LNA output is 5 Ω. A 0.4 dB reduction  
in open-circuit gain results when driving the VGA, and 0.8 dB  
with an additional 100 Ω load at the output. The differential  
gain of the LNA is 6 dB higher. If the load is less than 200 Ω on  
either side, a compensating load is recommended on the  
opposite output.  
SIMULATION  
50 100  
1k  
R
()  
S
Figure 76. Noise Figure vs. RS for Resistive,  
Active Matched and Unterminated Inputs  
7
6
5
4
3
2
1
0
INCLUDES NOISE OF VGA  
LNA Noise  
The input-referred voltage noise sets an important limit on  
system performance. The short-circuit input voltage noise of  
the LNA is 0.74 nV/√Hz or 0.82 nV/√Hz (at maximum gain),  
including the VGA noise. The open-circuit current noise is  
2.5 pA/√Hz. These measurements, taken without a feedback  
resistor, provide the basis for calculating the input noise and  
noise figure performance of the configurations in Figure 75.  
Figure 76 and Figure 77 are simulations extracted from these  
results, and the 4.1 dB NF measurement with the input actively  
matched to a 50 Ω source. Unterminated (RFB = ∞) operation  
exhibits the lowest equivalent input noise and noise figure.  
Figure 76 shows the noise figure vs. source resistance, rising at  
low RS, where the LNA voltage noise is large compared to the  
source noise, and again at high RS due to current noise. The  
VGA’s input-referred voltage noise of 2.7 nV/√Hz is included in  
all of the curves.  
R
= 50Ω  
= 75Ω  
IN  
R
IN  
R
= 100Ω  
IN  
R
= 200Ω  
IN  
R
= ∞  
FB  
SIMULATION  
50 100  
1k  
R
()  
S
Figure 77. Noise Figure vs. RS for Various Fixed Values of RIN, Actively Matched  
Rev. E | Page 26 of 40  
 
 
 
AD8331/AD8332/AD8334  
The primary purpose of input impedance matching is to  
improve the system transient response. With resistive termination,  
the input noise increases due to the thermal noise of the  
matching resistor and the increased contribution of the LNA’s  
input voltage noise generator. With active impedance matching,  
however, the contributions of both are smaller than they would  
be for resistive termination by a factor of 1/(1 + LNA Gain).  
Figure 76 shows their relative noise figure (NF) performance. In  
this graph, the input impedance was swept with RS to preserve  
the match at each point. The noise figures for a source impedance  
of 50 ꢀ are 7.1 dB, 4.1 dB, and 2.5 dB, respectively, for the  
resistive, active, and unterminated configurations. The noise  
figures for 200 ꢀ are 4.6 dB, 2.0 dB, and 1.0 dB, respectively.  
X-AMP VGA  
The input of the VGA is a differential R-2R ladder attenuator  
network with 6 dB steps per stage and a net input impedance of  
200 Ω differential. The ladder is driven by a fully differential  
input signal from the LNA and is not intended for single-ended  
operation. LNA outputs are ac-coupled to reduce offset and  
isolate their common-mode voltage. The VGA inputs are biased  
through the ladders center tap connection to VCM, which is  
typically set to 2.5 V and is bypassed externally to provide a  
clean ac ground.  
The signal level at successive stages in the input attenuator  
falls from 0 dB to −48 dB in 6 dB steps. The input stages of the  
X-AMP are distributed along the ladder, and a biasing interpolator,  
controlled by the gain interface, determines the input tap point.  
With overlapping bias currents, signals from successive taps  
merge to provide a smooth attenuation range from 0 dB to  
−48 dB. This circuit technique results in excellent, linear-in-dB  
gain law conformance and low distortion levels and deviates  
0.2 dB or less from the ideal. The gain slope is monotonic with  
respect to the control voltage and is stable with variations in  
process, temperature, and supply.  
Figure 77 is a plot of the NF vs. RS for various values of RIN,  
which is helpful for design purposes. The plateau in the NF for  
actively matched inputs mitigates source impedance variations.  
For comparison purposes, a preamp with a gain of 19 dB and  
noise spectral density of 1.0 nV/√Hz, combined with a VGA  
with 3.75 nV/√Hz, yields a noise figure degradation of  
approximately 1.5 dB (for most input impedances), significantly  
worse than the AD8332 performance.  
The equivalent input noise of the LNA is the same for single-  
ended and differential output applications. The LNA noise figure  
improves to 3.5 dB at 50 Ω without VGA noise, but this is  
exclusive of noise contributions from other external circuits  
connected to LOP. A series output resistor is usually  
recommended for stability purposes when driving external  
circuits on a separate board (see the Applications section). In  
low noise applications, a ferrite bead is even more desirable.  
The X-AMP inputs are part of a gain-of-12 feedback amplifier  
that completes the VGA. Its bandwidth is 150 MHz. The input  
stage is designed to reduce feedthrough to the output and to  
ensure excellent frequency response uniformity across gain  
setting (see Figure 12 and Figure 13).  
Gain Control  
Position along the VGA attenuator is controlled by a single-  
ended analog control voltage, VGAIN, with an input range of  
40 mV to 1.0 V. The gain control scaling is trimmed to a slope  
of 50 dB/V (20 mV/dB). Values of VGAIN beyond the control  
range saturate to minimum or maximum gain values. Both  
channels of the AD8332 are controlled from a single gain  
interface to preserve matching. Gain can be calculated using  
Equation 1 and Equation 2.  
VARIABLE GAIN AMPLIFIER  
The differential X-AMP VGA provides precise input  
attenuation and interpolation. It has a low input-referred noise  
of 2.7 nV/√Hz and excellent gain linearity. A simplified block  
diagram is shown in Figure 78.  
GAIN  
GAIN INTERPOLATOR  
(BOTH CHANNELS)  
POSTAMP  
+
Gain accuracy is very good because both the scaling factor and  
absolute gain are factory trimmed. The overall accuracy relative  
to the theoretical gain expression is 1 dB for variations in  
temperature, process, supply voltage, interpolator gain ripple,  
trim errors, and tester limits. The gain error relative to a best-fit  
line for a given set of conditions is typically 0.2 dB. Gain  
matching between channels is better than 0.1 dB (Figure 11  
shows gain errors in the center of the control range). When  
g
m
6dB  
R
VIP  
VIN  
48dB  
2R  
VGAIN < 0.1 or > 0.95, gain errors are slightly greater.  
POSTAMP  
Figure 78. Simplified VGA Schematic  
Rev. E | Page 2ꢀ of 40  
 
 
AD8331/AD8332/AD8334  
signal. A transformer can be used with single-ended applications  
when low noise is desired.  
The gain slope can be inverted, as shown in Figure 73 (available  
in most versions). The gain drops with a slope of −50 dB/V  
across the gain control range from maximum to minimum gain.  
This slope is useful in applications, such as automatic gain  
control, where the control voltage is proportional to the  
measured output signal amplitude. The inverse gain mode is  
selected by setting the MODE pin HI.  
Gain control noise is a concern in very low noise applications.  
Thermal noise in the gain control interface can modulate the  
channel gain. The resultant noise is proportional to the output  
signal level and usually only evident when a large signal is  
present. Its effect is observable only in LO gain mode, where the  
noise floor is substantially lower. The gain interface includes an  
on-chip noise filter, which reduces this effect significantly at  
frequencies above 5 MHz. Care should be taken to minimize  
noise impinging at the GAIN input. An external RC filter can be  
used to remove VGAIN source noise. The filter bandwidth should be  
sufficient to accommodate the desired control bandwidth.  
Gain control response time is less than 750 ns to settle within 10%  
of the final value for a change from minimum to maximum gain.  
VGA Noise  
In a typical application, a VGA compresses a wide dynamic  
range input signal to within the input span of an ADC. While  
the input-referred noise of the LNA limits the minimum  
resolvable input signal, the output-referred noise, which  
depends primarily on the VGA, limits the maximum  
instantaneous dynamic range that can be processed at any one  
particular gain control voltage. This limit is set in accordance  
with the quantization noise floor of the ADC.  
Common-Mode Biasing  
An internal bias network connected to a midsupply voltage  
establishes common-mode voltages in the VGA and postamp.  
An externally bypassed buffer maintains the voltage. The bypass  
capacitors form an important ac ground connection, because  
the VCM network makes a number of important connections  
internally, including the center tap of the VGA’s differential  
input attenuator, the feedback network of the VGA’s fixed gain  
amplifier, and the feedback network of the postamplifier in both  
gain settings. For best results, use a 1 nF and a 0.1 μF capacitor  
in parallel, with the 1 nF nearest to the VCM pin. Separate  
VCM pins are provided for each channel. For dc-coupling to a  
3 V ADC, the output common-mode voltage is adjusted to  
1.5 V by biasing the VCM pin.  
Output and input-referred noise as a function of VGAIN are  
plotted in Figure 25 and Figure 27 for the short-circuited input  
conditions. The input noise voltage is simply equal to the output  
noise divided by the measured gain at each point in the control  
range.  
The output-referred noise is flat over most of the gain range,  
because it is dominated by the fixed output-referred noise of the  
VGA. Values are 48 nV/√Hz in LO gain mode and 178 nV/√Hz  
in HI gain mode. At the high end of the gain control range, the  
noise of the LNA and source prevail. The input-referred noise  
reaches its minimum value near the maximum gain control  
voltage, where the input-referred contribution of the VGA  
becomes very small.  
POSTAMPLIFIER  
The final stage has a selectable gain of 3.5 dB (×1.5) or 15.5 dB  
(×6), set by the logic pin, HILO. Figure 79 is a simplified block  
diagram.  
Gm2  
+
At lower gains, the input-referred noise, and thus noise figure,  
increases as the gain decreases. The instantaneous dynamic  
range of the system is not lost, however, because the input  
capacity increases with it. The contribution of the ADC noise  
floor has the same dependence as well. The important  
relationship is the magnitude of the VGA output noise floor  
relative to that of the ADC.  
VOH  
Gm1  
F2  
VCM  
F1  
Gm2  
With its low output-referred noise levels, these devices ideally  
drive low voltage ADCs. The converter noise floor drops 12 dB  
for every 2 bits of resolution and drops at lower input full-scale  
voltages and higher sampling rates. ADC quantization noise is  
discussed in the Applications section.  
VOL  
Gm1  
Figure 79. Postamplifier Block Diagram  
Separate feedback attenuators implement the two gain settings.  
These are selected in conjunction with an appropriately scaled  
input stage to maintain a constant 3 dB bandwidth between the  
two gain modes (~150 MHz). The slew rate is 1200 V/μs in HI  
gain mode and 300 V/μs in LO gain mode. The feedback  
networks for HI and LO gain modes are factory trimmed to  
adjust the absolute gains of each channel.  
The preceding noise performance discussion applies to a  
differential VGA output signal. Although the LNA noise  
performance is the same in single-ended and differential  
applications, the VGA performance is not. The noise of the  
VGA is significantly higher in single-ended usage, because the  
contribution of its bias noise is designed to cancel in the differential  
Rev. E | Page 28 of 40  
 
 
AD8331/AD8332/AD8334  
Noise  
Output clamping can be used for ADC input overload  
The topology of the postamplifier provides constant input-  
referred noise with the two gain settings and variable  
output-referred noise. The output-referred noise in HI gain  
mode increases (with gain) by four. This setting is recommended  
when driving converters with higher noise floors. The extra gain  
boosts the output signal levels and noise floor appropriately. When  
driving circuits with lower input noise floors, the LO gain mode  
optimizes the output dynamic range.  
protection, if needed, or postamp overload protection when  
operating from a lower common-mode level, such as 1.5 V. The  
user should be aware that distortion products increase as output  
levels approach the clamping levels, and the user should adjust  
the clamp resistor accordingly. For additional information, see  
the Applications section.  
The accuracy of the clamping levels is approximately 5% in LO  
or HI mode. Figure 80 illustrates the output characteristics for a  
Although the quantization noise floor of an ADC depends on a  
number of factors, the 48 nV/√Hz and 178 nV/√Hz levels are  
well suited to the average requirements of most 12-bit and 10-bit  
converters, respectively. An additional technique, described in  
the Applications section, can extend the noise floor even lower  
for possible use with 14-bit ADCs.  
few values of RCLMP  
.
5.0  
4.5  
R
= ∞  
CLMP  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
8.8kΩ  
3.5kΩ  
Output Clamping  
R
= 1.86kΩ  
CLMP  
Outputs are internally limited to a level of 4.5 V p-p differential  
when operating at a 2.5 V common-mode voltage. The postamp  
implements an optional output clamp engaged through a  
resistor from RCLMP to ground. Table 8 shows a list of  
recommended resistor values.  
3.5kΩ  
8.8kΩ  
R
= ∞  
CLMP  
–3  
–2  
–1  
0
1
2
3
V
(V)  
INH  
Figure 80. Output Clamping Characteristics  
Rev. E | Page 29 of 40  
 
AD8331/AD8332/AD8334  
APPLICATIONS  
LNA—EXTERNAL COMPONENTS  
C
LMD  
0.1µF  
LNA  
SOURCE  
FB  
The LMD pin (connected to the bias circuitry) must be bypassed to  
ground and signal sourced to the INH pin capacitively coupled  
using 2.2 nF to 0.1 ꢁF capacitors (see Figure 81).  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
2
0.1µF  
LMD2  
INH2  
LMD1  
INH1  
C
*
SH  
5V  
C
*
FB  
5V  
3
VPS2  
LON2  
LOP2  
VPS1  
LON1  
LOP1  
COM1  
VIP1  
The unterminated input impedance of the LNA is 6 kꢀ. The  
user can synthesize any LNA input resistance between 50 ꢀ and  
6 kꢀ. RFB is calculated according to Equation 6 or selected from  
Table 7.  
R
*
FB  
1nF  
LNA OUT  
0.1µF  
4
5
6
COM2  
VIP2  
33 kꢀ ×  
(
RIN  
)
7
RFB  
=
(6)  
0.1µF  
6 kꢀ –  
(
RIN  
)
0.1µF  
1nF  
8
VIN2  
VIN1  
Table 7. LNA External Component Values for Common  
Source Impedances  
9
V
VCM2  
GAIN  
RCLMP  
VOH2  
VOL2  
COMM  
GAIN  
VCM1  
HILO  
ENB  
1nF  
5V  
0.1µF  
1nF  
10  
11  
12  
13  
14  
RIN (Ω)  
RFB (Nearest STD 1% Value, Ω)  
CSH (pF)  
70  
280  
22  
5V  
ꢀ7  
412  
12  
0.1µF  
1nF  
*
*
VGA OUT  
VGA OUT  
VOH1  
100  
200  
700  
6 k  
762  
8
1.2  
None  
None  
1.13 k  
3.01 k  
VOL1  
VPSV  
5V  
1nF  
0.1µF  
*SEE TEXT  
Figure 81. Basic Connections for a Typical Channel (AD8332 Shown)  
When active input termination is used, a decoupling capacitor  
(CFB) is required to isolate the input and output bias voltages of  
the LNA.  
LNA  
DECOUPLING  
RESISTOR  
TO EXT  
CIRCUIT  
R
FB  
The shunt input capacitor, CSH, reduces gain peaking at higher  
frequencies where the active termination match is lost due to  
the gain roll-off of the LNA at high frequencies. The value of  
VIP  
5  
50Ω  
50Ω  
LON  
100Ω  
100Ω  
VCM  
CSH diminishes as RIN increases to 500 Ω, at which point no  
LNA  
capacitor is required. Suggested values for CSH for 50 Ω ≤ RIN  
C
SH  
LOP  
5Ω  
200 Ω are shown in Table 7.  
VIN  
When a long trace to Pin INH is unavoidable, or if both LNA  
LNA  
TO EXT  
CIRCUIT  
outputs drive external circuits, a small ferrite bead (FB) in series  
with Pin INH preserves circuit stability with negligible effect on  
noise. The bead shown is 75 Ω at 100 MHz (Murata BLM21 or  
equivalent). Other values can prove useful.  
DECOUPLING  
RESISTOR  
Figure 82. Interconnections of the LNA and VGA  
Both LNA outputs are available for driving external circuits.  
Pin LOP should be used in those instances when a single-ended  
LNA output is required. The user should be aware of stray  
capacitance loading of the LNA outputs, in particular LON. The  
LNA can drive 100 Ω in parallel with 10 pF. If an LNA output is  
routed to a remote PC board, it tolerates a load capacitance up  
to 100 pF with the addition of a 49.9 Ω series resistor or ferrite  
75 Ω/100 MHz bead.  
Figure 82 shows the interconnection details of the LNA output.  
Capacitive coupling between the LNA outputs and the VGA  
inputs is required because of the differences in their dc levels  
and the need to eliminate the offset of the LNA. Capacitor  
values of 0.1 μF are recommended. There is 0.4 dB loss in gain  
between the LNA output and the VGA input due to the 5 Ω  
output resistance. Additional loading at the LOP and LON  
outputs affect LNA gain.  
Gain Input  
The GAIN pin is common to both channels of the AD8332. The  
input impedance is nominally 10 MΩ and a bypass capacitor  
from 100 pF to1 nF is recommended.  
Rev. E | Page 30 of 40  
 
 
 
 
 
AD8331/AD8332/AD8334  
Optional Output Voltage Limiting  
Parallel connected devices can be driven by a common voltage  
source or DAC. Decoupling should take into account any  
bandwidth considerations of the drive waveform, using the total  
distributed capacitance.  
The RCLMP pin provides the user with a means to limit the  
output voltage swing when used with loads that have no  
provisions for prevention of input overdrive. The peak-to-peak  
limited voltage is adjusted by a resistor to ground, and Table 8  
lists several voltage levels and the corresponding resistor value.  
Unconnected, the default limiting level is 4.5 V p-p.  
If gain control noise in LO gain mode becomes a factor,  
maintaining ≤15 nV/√Hz noise at the GAIN pin ensures  
satisfactory noise performance. Internal noise prevails below  
15 nV/√Hz at the GAIN pin. Gain control noise is negligible in  
HI gain mode.  
Note that third harmonic distortion increases as waveform  
amplitudes approach clipping. For lowest distortion, the clamp  
level should be set higher than the converter input span. A  
clamp level of 1.5 V p-p is recommended for a 1 V p-p linear  
output range, 2.7 V p-p for a 2 V p-p range, or 1 V p-p for  
a 0.5 V p-p operation. The best solution is determined  
experimentally. Figure 84 shows third harmonic distortion  
as a function of the limiting level for a 2 V p-p output signal.  
A wider limiting level is desirable in HI gain mode.  
VCM Input  
The common-mode voltage of Pin VCM, Pin VOL, and Pin VOH  
defaults to 2.5 V dc. With output ac-coupled applications, the  
VCM pin is unterminated; however, it must still be bypassed in  
close proximity for ac grounding of internal circuitry. The VGA  
outputs can be dc connected to a differential load, such as an  
ADC. Common-mode output voltage levels between 1.5 V and  
3.5 V can be realized at Pin VOH and Pin VOL by applying the  
desired voltage at Pin VCM. DC-coupled operation is not  
recommended when driving loads on a separate PC board.  
–20  
V
= 0.75V  
GAIN  
–30  
–40  
–50  
–60  
–70  
–80  
The voltage on the VCM pin is sourced by an internal buffer  
with an output impedance of 30 Ω and a 2 mA default output  
current (see Figure 83). If the VCM pin is driven from an  
external source, its output impedance should be <<30 Ω and its  
current drive capability should be >>2 mA. If the VCM pins of  
several devices are connected in parallel, the external buffer  
should be capable of overcoming their collective output currents.  
When a common-mode voltage other than 2.5 V is used, a  
voltage-limiting resistor, RCLMP, is needed to protect against  
overload.  
HILO = LO  
HILO = HI  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
CLAMP LIMIT LEVEL (V p-p)  
Figure 84. HD3 vs. Clamping Level for 2 V p-p Differential Input  
INTERNAL  
CIRCUITRY  
2mA MAX  
Table 8. Clamp Resistor Values  
R
<< 30  
NEW V  
CM  
O
VCM  
30Ω  
Clamp Resistor Value (kΩ)  
Clamp Level (V p-p)  
HILO = LO  
1.21  
2.ꢀ4  
4.ꢀ7  
ꢀ.7  
HILO = HI  
100pF  
0.1µF  
0.7  
1.0  
1.7  
2.0  
2.7  
3.0  
3.7  
4.0  
4.4  
AC GROUNDING FOR  
INTERNAL CIRCUITRY  
2.21  
4.02  
6.49  
9.73  
14.ꢀ  
23.2  
39.2  
ꢀ3.2  
Figure 83. VCM Interface  
Logic Inputs—ENB, MODE, and HILO  
11  
The input impedance of all enable pins is nominally 25 kΩ and  
can be pulled up to 5 V (a pull-up resistor is recommended) or  
driven by any 3 V or 5 V logic families. The enable pin, ENB,  
powers down the VGA—when pulled low, the VGA output  
voltages are near ground. Multiple devices can be driven from a  
common source. Consult Table 3, Table 4, Table 5, and Table 6  
for circuit functions controlled by the enable pins.  
16.9  
26.ꢀ  
49.9  
100  
Pin HILO is compatible with 3 V or 5 V CMOS logic families. It  
is either connected to ground or pulled up to 5 V, depending on  
the desired gain range and output noise.  
Rev. E | Page 31 of 40  
 
 
 
AD8331/AD8332/AD8334  
4V p-p DIFF,  
48nV/ Hz  
2V p-p DIFF,  
24nV/ Hz  
Output Decoupling  
When driving capacitive loads greater than about 10 pF, or long  
circuit connections on other boards, an output network of  
resistors and/or ferrite beads can be useful to ensure stability.  
These components can be incorporated into a Nyquist filter  
such as the one shown in Figure 81. In Figure 81, the resistor  
value is 84.5 Ω. The AD8332-EVAL incorporates 100 ꢀ in  
parallel with a 120 nH bead. Lower value resistors are permissible  
for applications with nearby loads or with gains less than 40 dB.  
The exact values of these components can be selected empirically.  
187  
VOH  
VOL  
ADC  
AD6644  
374Ω  
2:1  
LPF  
187Ω  
Figure 86. Adjusting the Noise Floor for 14-Bit ADCs  
OVERLOAD  
These devices respond gracefully to large signals that overload  
its input stage and to normal signals that overload the VGA  
when the gain is set unexpectedly high. Each stage is designed  
for clean-limited overload waveforms and fast recovery when  
gain setting or input amplitude is reduced.  
An antialiasing noise filter is typically used with an ADC. Filter  
requirements are application dependent.  
When the ADC resides on a separate board, the majority of  
filter components should be placed nearby to suppress noise  
picked up between boards and to mitigate charge kickback from  
the ADC inputs. Any series resistance beyond that required for  
output stability should be placed on the ADC board. Figure 85  
shows a second-order, low-pass filter with a bandwidth of  
20 MHz. The capacitor is chosen in conjunction with the 10 pF  
input capacitance of the ADC.  
Signals larger than 275 mV at the LNA input are clipped to  
5 V p-p differential prior to the input of the VGA. Figure 48  
shows the response to a 1 V p-p input burst. The symmetric  
overload waveform is important for applications, such as CW  
Doppler ultrasound, where the spectrum of the LNA outputs  
during overload is critical. The input stage is also designed to  
accommodate signals as high as 2.5 V without triggering the  
slow-settling ESD input protection diodes.  
OPTIONAL  
BACKPLANE  
Both stages of the VGA are susceptible to overload. Postamp  
limiting is more common and results in the clean-limited  
output characteristics found in Figure 49. Recovery is fast in all  
cases. The graph in Figure 87 summarizes the combinations of  
input signal and gain that lead to the different types of overload.  
0.1µF  
0.1µF  
1.5µH  
1.5µH  
84.5Ω  
84.5Ω  
158Ω  
158Ω  
18pF  
ADC  
Figure 85. 20 MHz Second-Order, Low-Pass Filter  
POSTAMP  
OVERLOAD  
X-AMP  
OVERLOAD  
POSTAMP  
OVERLOAD  
X-AMP  
OVERLOAD  
DRIVING ADCs  
15mV 25mV  
4mV  
25mV  
43.5  
56.5  
The output drive accommodates a wide range of ADCs. The  
noise floor requirements of the VGA depend on a number of  
application factors, including bit resolution, sampling rate, full-  
scale voltage, and the bandwidth of the noise/antialias filter. The  
output noise floor and gain range can be adjusted by selecting  
HI or LO gain mode.  
41dB  
29dB  
24.5dB  
24.5dB  
LO GAIN  
MODE  
HI GAIN  
MODE  
The relative noise and distortion performance of the two gain  
modes can be compared in Figure 25 and Figure 31 through  
Figure 41. The 48 nV/√Hz noise floor of the LO gain mode is  
suited to converters with higher sampling rates or resolutions  
(such as 12 bits). Both gain modes can accommodate ADC full-  
scale voltages as high as 4 V p-p. Because distortion performance  
remains favorable for output voltages as high as 4 V p-p (see  
Figure 36), it is possible to lower the output-referred noise even  
further by using a resistive attenuator (or transformer) at the  
output. The circuit in Figure 86 has an output full-scale range of  
2 V p-p, a gain range of −10.5 dB to +37.5 dB, and an output  
noise floor of 24 nV/√Hz, making it suitable for some 14-bit  
ADC applications.  
–4.5  
1m  
7.5  
1m  
10m  
0.1 0.275  
1
10m  
0.1 0.275  
1
INPUT AMPLITUDE (V)  
INPUT AMPLITUDE (V)  
Figure 87. Overload Gain and Signal Conditions  
The previously mentioned clamp interface controls the  
maximum output swing of the postamp and its overload  
response. When the clamp feature is not used, the output level  
defaults to approximately 4.5 V p-p differential centered at  
2.5 V common mode. When other common-mode levels are set  
through the VCM pin, the value of RCLMP should be selected for  
graceful overload. A value of 8.3 kΩ or less is recommended for  
1.5 V or 3.5 V common-mode levels (7.2 kΩ for HI gain mode).  
This limits the output swing to just above 2 V p-p differential.  
Rev. E | Page 32 of 40  
 
 
 
 
 
AD8331/AD8332/AD8334  
OPTIONAL INPUT OVERLOAD PROTECTION  
MULTIPLE INPUT MATCHING  
Applications in which high transients are applied to the LNA  
input can benefit from the use of clamp diodes. A pair of back-  
to-back Schottky diodes can reduce these transients to manageable  
levels. Figure 88 illustrates how such a diode-protection scheme  
can be connected.  
Matching of multiple sources with dissimilar impedances can be  
accomplished as shown in Figure 90. A relay and low supply  
voltage analog switch can be used to select between multiple  
sources and their associated feedback resistors. An ADG736  
dual SPDT switch is shown in this example; however, multiple  
switches are also available and users are referred to the Analog  
Devices Selection Guide for switches and multiplexers.  
OPTIONAL  
SCHOTTKY  
COMM 20  
OVERLOAD  
CLAMP  
0.1µF  
FB  
2
INH  
ENBL 19  
DISABLING THE LNA  
C
R
3
FB  
SH  
3
4
Where accessible, connection of the LNA enable pin to ground  
powers down the LNA, resulting in a current reduction of about  
half. In this mode, the LNA input and output pins can be left  
unconnected; however, the power must be connected to all the  
supply pins for the disabling circuit to function. Figure 89  
illustrates the connections using an AD8331 as an example.  
VPSL  
LON  
R
C
FB  
SH  
2
1
BAS40-04  
Figure 88. Input Overload Clamping  
When selecting overload protection, the important parameters  
are forward and reverse voltages and trr (or τrr). The Infineon  
BAS40-04 series shown in Figure 88 has a τrr of 100 ps and VF of  
310 mV at 1 mA. Many variations of these specifications can be  
found in vendor catalogs.  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
NC  
COMM  
LMD  
AD8331  
2
NC  
INH  
ENBL  
ENBV  
COMM  
VOL  
C
FB  
0.018µF  
LAYOUT, GROUNDING, AND BYPASSING  
5V  
3
VPSL  
LON  
LOP  
COML  
VIP  
5V  
Due to their excellent high frequency characteristics, these  
devices are sensitive to their PCB environment. Realizing  
expected performance requires attention to detail critical to  
good high speed board design.  
4
NC  
NC  
A multilayer board with power and ground planes is  
5
recommended with blank areas in the signal layers filled with  
ground plane. Be certain that the power and ground pins  
provided for robust power distribution to the device are  
connected. Decouple the power supply pins with surface-mount  
capacitors as close as possible to each pin to minimize impedance  
paths to ground. Decouple the LNA power pins from the VGA  
supply using ferrite beads. Together with the capacitors, ferrite  
beads eliminate undesired high frequencies without reducing  
the headroom. Use a larger value capacitor for every 10 chips to  
20 chips to decouple residual low frequency noise. To minimize  
voltage drops, use a 5 V regulator for the VGA array.  
VOUT  
6
VOH  
0.1µF  
7
VPOS  
5V  
VIN  
0.1µF  
8
HILO  
RCLMP  
VCM  
VIN  
HILO  
Several critical LNA areas require special care. The LON and  
LOP output traces must be as short as possible before connecting to  
the coupling capacitors connected to Pin VIN and Pin VIP. RFB  
must be placed near the LON pin as well. Resistors must be  
placed as close as possible to the VGA output pins, VOL and  
VOH, to mitigate loading effects of connecting traces. Values  
are discussed in the Output Decoupling section.  
9
MODE  
MODE  
R
CLMP  
10  
GAIN  
GAIN  
VCM  
Figure 89. Disabling the LNA  
Signal traces must be short and direct to avoid parasitic effects.  
Wherever there are complementary signals, symmetrical layout  
should be employed to maintain waveform balance. PCB traces  
should be kept adjacent when running differential signals over a  
long distance.  
Rev. E | Page 33 of 40  
 
 
 
AD8331/AD8332/AD8334  
ADG736  
Using the EVAL-AD8332/AD9238 evaluation board and a high  
speed ADC FIFO evaluation kit connected to a laptop, an FFT  
can be performed on the AD8332. With the on-board clock of  
20 MHz, minimal low-pass filtering, and both channels driven  
with a 1 MHz filtered sine wave, the THD is −75 dB, noise floor  
is −93 dB, and HD2 is −83 dB.  
1.13k  
SELECT R  
FB  
280Ω  
LON  
LOP  
18nF  
5Ω  
200Ω  
50Ω  
INH  
HIGH DENSITY QUAD LAYOUT  
LNA  
LMD  
The AD8334 is the ideal solution for applications with limited  
board space. Figure 94 represents four channels routed to and  
away from this very compact quad VGA. Note that none of the  
signal paths crosses and that all four channels are spaced apart  
to eliminate crosstalk.  
5Ω  
0.1µF  
AD8332  
Figure 90. Accommodating Multiple Sources  
ULTRASOUND TGC APPLICATION  
In this example, all of the components shown are 0402 size;  
however, the same layout is executable at the expense of slightly  
more board area. The sketch also assumes that both sides of the  
printed circuit board are available for components, and that the  
bypass and power supply decoupling circuitry is located on the  
wiring side of the board.  
The AD8332 ideally meets the requirements of medical and  
industrial ultrasound applications. The TGC amplifier is a key  
subsystem in such applications, because it provides the means  
for echolocation of reflected ultrasound energy.  
Figure 91 through Figure 93 are schematics of a dual, fully  
differential system using the AD8332 and the AD9238, 12-bit  
high speed ADC with conversion speeds as high as 65 MSPS.  
Rev. E | Page 34 of 40  
 
 
AD8331/AD8332/AD8334  
S3  
E
IN2  
TP5  
AD8332ARU  
C50  
0.1µF  
1
28  
27  
26  
LMD1  
LMD2  
C49  
TP6  
C70  
0.1µF  
0.1µF  
L12  
120nH FB  
L13  
120nH FB  
C60  
0.1µF  
TP3  
2
3
S1  
IN1  
(RED)  
+5V  
INH1  
INH2  
E
C79  
TB1  
+5V  
C80  
22pF  
JP5  
IN2  
JP6  
IN1  
22pF  
CFB2  
18nF  
CFB1  
18nF  
+5VLNA  
+
C46  
1µF  
TP4  
(BLACK)  
VPS1  
LON1  
LOP1  
COM1  
VIP1  
VPS2  
LON2  
LOP2  
COM2  
VIP2  
RFB1  
274  
C41  
C74  
1nF  
+5VLNA  
RFB2  
274Ω  
0.1µF  
TB2  
GND  
L7  
4
25  
24  
23  
22  
21  
20  
19  
120nH FB  
+5VGA  
5
L6  
120nH FB  
+5VLNA  
C42  
0.1µF  
C59  
0.1µF  
6
C51  
0.1µF  
C53  
0.1µF  
7
VCM1  
8
VIN2  
VIN1  
VCM1  
JP13  
C78  
1nF  
C48  
0.1µF  
9
VCM2  
GAIN  
RCLMP  
VOH2  
VOL2  
COM  
VCM1  
HILO  
ENB  
C43  
0.1µF  
C77  
1nF  
+5VGA  
10  
HI GAIN  
JP10  
TP2 GAIN  
TP7 GND  
C83  
1nF  
+5VGA  
LO GAIN  
ENABLE  
18  
11  
12  
JP16  
R3  
C68  
1nF  
C69  
0.1µF  
DISABLE  
(R  
)
CLMP  
17  
16  
15  
VOH1  
VOL1  
VPSV  
JP8  
DC2H  
R27  
100Ω  
R24  
100Ω  
JP9  
OPTIONAL 4-POLE LOW-PASS  
FILTER  
OPTIONAL 4-POLE LOW-PASS  
FILTER  
13  
14  
C58  
0.1µF  
L19  
L17  
SAT  
SAT  
L11  
120nH FB  
L9  
120nH FB  
L1  
C54  
0.1µF  
L15  
SAT  
V
V
+B  
SAT  
V +A  
IN  
IN  
C64  
SAT  
C65  
SAT  
JP17  
C67  
SAT  
C66  
SAT  
C55  
0.1µF  
JP12  
L20  
SAT  
L10  
120nH FB  
C56  
0.1µF  
L18  
SAT  
L14  
SAT  
L16  
SAT  
L8  
120nF FB  
V
–A  
–B  
IN  
IN  
JP7  
DC2L  
R26  
100Ω  
R25  
100Ω  
+5VGA  
C45  
0.1µF  
C85  
1nF  
JP10  
Figure 91. Schematic, TGC, VGA Section Using an AD8332 and AD9238  
Rev. E | Page 37 of 40  
 
AD8331/AD8332/AD8334  
VR1  
+3.3VAVDD  
ADP3339AKC-3.3  
L5  
120nH FB  
C44  
1µF  
+5V  
+
C22  
0.1µF  
C21  
1nF  
C31  
0.1µF  
3
2
1
ADCLK  
IN OUT GND  
L4  
R11  
C2  
10µF  
6.3V  
+
120nH FB  
100Ω  
JP2  
R10  
1
2
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
AGND  
VIN+_A  
AVDD  
0Ω  
SHARED  
REF  
Y
R5  
OUT  
TAB  
C30  
33Ω  
0.1µF  
V
V
+_A  
CLK_A  
IN  
C61  
18pF  
L3  
120nH FB  
N
3
VIN–_A SHARED_REF  
–_A  
IN  
R14  
4.7kΩ  
R6  
33Ω  
4
C29  
0.1µF  
R4  
AGND  
AVDD  
REFT_A  
REFB_A  
VREF  
MUX_SELECT  
PDWN_A  
OEB_A  
OTR_A  
D11_A (MSB)  
D10_A  
D9_A  
R12  
1.5kΩ  
+3.3VADDIG  
C17  
C18  
1nF  
1.5kΩ  
R15  
0Ω  
5
0.1µF  
C33  
10µF  
6.3V  
L2  
120nH FB  
C35  
0.1µF  
6
+
C40  
0.1µF  
C52  
C1  
0.1µF  
10nF  
7
OTR_A  
C36  
0.1µF  
TP9  
+
8
D11_A  
D10_A  
D9_A  
VREF  
C12  
10µF  
6.3V  
C32  
9
0.1µF  
C34  
10µF  
6.3V  
SENSE  
REFB_B  
REFT_B  
AVDD  
AGND  
VIN–_B  
VIN+_B  
AGND  
AVDD  
CLK_B  
DCS  
C38  
0.1µF  
10  
C57  
10nF  
C39  
10µF  
11  
12  
13  
14  
15  
16  
54  
53  
D8_A  
D8_A  
C37  
0.1µF  
+3.3VADDIG  
DRGND  
DRVDD  
D7_A  
C23  
0.1µF  
C25  
1nF  
C16  
0.1µF  
C15  
1nF  
1.5kΩ  
1.5kΩ  
52  
51  
50  
49  
R8  
33Ω  
V
V
–B  
IN  
D7_A  
D6_A  
D5_A  
D4_A  
D3_A  
D2_A  
D1_A  
D0_A  
DNC  
C62  
18pF  
D6_A  
+B  
IN  
R7  
33Ω  
+3.3VCLK  
D5_A  
R18  
499Ω  
17  
18  
19  
20  
48  
47  
46  
45  
44  
43  
S2  
D4_A  
C63  
C20  
0.1µF  
C19  
1nF  
EXT CLOCK  
0.1µF  
R16  
5kΩ  
D3_A  
R17  
49.9Ω  
D2_A  
R19  
499Ω  
JP3  
JP11  
DFS  
D1_A  
R20  
4.7kΩ  
R41  
4.7kΩ  
21  
22  
PDWN_B  
OEB_B  
DNC  
D0_A  
DNC  
+3.3VCLK  
ADCLK  
TP 12  
23  
24  
25  
26  
27  
28  
29  
42  
41  
40  
39  
38  
37  
36  
DNC  
DNC  
DNC  
DNC  
C47  
10µF  
6.3V  
+
C86  
0.1µF  
ADCLK  
DNC  
DRVDD  
DRGND  
OTR_B  
D11_B (MSB)  
D10_B  
D9_B  
C11  
10µF  
6.3V  
+
C13  
1nF  
C14  
0.1µF  
U5  
74VHC04  
U5  
74VHC04  
EXT  
3
D0_B  
D1_B  
D2_B  
D0_B  
R9  
0Ω  
4
1
V
OE  
3
5
4
1
9
2
DD  
20MHz  
OUT  
JP4  
D1_B  
OTR_B  
D11_B  
D10_B  
D9_B  
2
3
1
INT  
D2_B  
GND  
TP 13  
DATA  
CLK  
2
U5  
74VHC04  
U5  
74VHC04  
DRGND  
DRVDD  
D3_B  
3
U6  
SG-636PCE  
6
8
1
JP1  
2
D3_B  
D4_B  
D5_B  
30  
31  
32  
35  
34  
33  
D8_B  
D8_B  
U5  
D4_B  
D7_B  
D7_B  
74VHC04  
13  
12  
D5_B  
D6_B  
D6_B  
SPARES  
11  
10  
+3.3VADDIG  
U5  
74VHC04  
C24  
1nF  
C26  
0.1µF  
Figure 92. Converter Schematic, TGC Using an AD8332 and AD9238  
Rev. E | Page 36 of 40  
AD8331/AD8332/AD8334  
R40  
1
20  
10  
18  
17  
16  
15  
14  
13  
12  
22  
U10  
74VHC541  
GND  
DATACLKA  
G1  
G2  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
VCC  
+3.3VDVDD  
+
C3  
0.1µF  
C28  
10µF  
6.3V  
19  
2
4
1
3
22 × 4  
RP 1  
1
8
2
3
4
5
6
7
8
22 × 4  
8
1
2
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
RP 9  
7
2
3
4
1
7
6
5
8
6
5
OTR_A  
D11_A  
D10_A  
D9_A  
3
4
1
6
5
8
7
10  
12  
14  
16  
9
8
22 × 4  
RP2  
11  
13  
15  
22 × 4  
RP 10  
7
2
3
4
2
3
4
1
2
7
6
5
8
7
D8_A  
6
5
D7_A  
9
11  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
D6_A  
22 × 4  
RP 3  
3
4
1
2
6
5
8
7
+3.3VDVDD  
1
20  
10  
18  
17  
U7  
74VHC541  
G1  
G2  
A1  
A2  
A3  
A4  
A5  
A6  
VCC  
+
22 × 4  
RP 4  
C76  
10µF  
6.3V  
C8  
0.1µF  
C10  
0.1µF  
19  
GND  
8
1
2
3
4
1
2
3
22 × 4  
D5_A  
D4_A  
D3_A  
D2_A  
D1_A  
D0_A  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
3
4
6
5
RP 11  
7
6
5
4
5
6
7
8
9
16  
15  
14  
13  
12  
11  
8
22 × 4  
RP 12  
7
2
3
4
6
5
DNC  
DNC  
A7  
A8  
Y7  
Y8  
SAM080UPM  
+3.3VDVDD  
1
20  
10  
18  
17  
16  
15  
14  
13  
12  
11  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
41  
43  
45  
47  
49  
51  
53  
55  
57  
59  
61  
63  
65  
67  
69  
71  
U2  
74VHC541  
G1  
G2  
A1  
A2  
A3  
A4  
A5  
VCC  
GND  
Y1  
+
+
C27  
C7  
C9  
0.1µF  
19  
1
22 × 4  
RP 13  
8
10µF  
6.3V  
0.1µF  
22 × 4  
RP 5  
2
3
4
7
6
5
2
3
4
5
6
7
8
9
1
2
3
4
8
7
6
5
8
OTR_B  
D11_B  
D10_B  
D9_B  
Y2  
Y3  
22 × 4  
RP 14  
1
2
8
7
Y4  
1
2
3
4
22 × 4  
RP 6  
D8_B  
Y5  
7
6
5
3
6
D7_B  
A6  
A7  
A8  
Y6  
Y7  
Y8  
4
1
5
8
D6_B  
D5_B  
22 × 4  
1
2
3
4
1
8
7
6
5
8
22 × 4  
RP 7  
+3.3VDVDD  
1
20  
10  
RP 15  
G1  
G2  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
U3 VCC  
74VHC541  
+
C75  
C4  
0.1µF  
C5  
0.1µF  
C6  
0.1µF  
19  
10µF  
6.3V  
GND  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
22 × 4  
RP 8  
2
3
4
1
7
6
5
8
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
D4_B  
D3_B  
D2_B  
D1_B  
D0_B  
DNC  
2
3
4
7
6
5
74  
76  
78  
80  
73  
75  
77  
79  
22 × 4  
RP 16  
2
3
4
7
6
5
SAM080UPM  
DNC  
R39  
22Ω  
DATACLK  
Figure 93. Interface Schematic, TGC Using an AD8332 and AD9238  
Rev. E | Page 3ꢀ of 40  
 
AD8331/AD8332/AD8334  
CH 1 LNA INPUT  
64  
63  
62 61  
60  
59  
58 57  
56  
55  
54  
53  
52  
51  
50 49  
CH 2 LNA INPUT  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
INH2  
COM12  
VOH1  
VOL1  
VPS12  
VOL2  
VOH2  
COM12  
MODE  
NC  
2
LMD2  
CH 1 DIFFERENTIAL  
OUTPUT  
3
COM2X  
4
LON2  
5
LOP2  
6
CH 2 DIFFERENTIAL  
OUTPUT  
VIP2  
7
VIN2  
AD8334  
POWER SUPPLY DECOUPLING  
LOCATED ON WIRING SIDE  
8
VPS2  
9
VPS3  
10  
COM34  
VOH3  
VOL3  
VPS34  
VOL4  
VOH4  
COM34  
VIN3  
11  
CH 3 DIFFERENTIAL  
OUTPUT  
VIP3  
12  
LOP3  
13  
LON3  
14  
COM3X  
CH 4 DIFFERENTIAL  
OUTPUT  
15  
LMD3  
16  
33  
INH3  
CH 3 LNA INPUT  
21  
29  
17  
18  
19  
20  
22  
23  
24  
25  
26 27  
28  
30  
31  
32  
CH 4 LNA INPUT  
Figure 94. Signal Path and Board Layout for AD8334  
Rev. E | Page 38 of 40  
 
AD8331/AD8332/AD8334  
OUTLINE DIMENSIONS  
0.345  
0.341  
0.337  
9.80  
9.70  
9.60  
20  
1
11  
28  
15  
0.158  
0.154  
0.150  
4.50  
4.40  
4.30  
0.244  
0.236  
0.228  
10  
6.40 BSC  
PIN 1  
1
14  
PIN 1  
0.065  
0.049  
0.069  
0.053  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
8°  
0°  
0.010  
0.004  
8°  
0°  
0.75  
0.60  
0.45  
0.025  
BSC  
0.012  
0.008  
0.30  
0.19  
SEATING  
PLANE  
0.050  
0.016  
0.20  
0.09  
0.010  
0.006  
SEATING  
PLANE  
COPLANARITY  
0.10  
COPLANARITY  
0.004  
COMPLIANT TO JEDEC STANDARDS MO-137-AD  
COMPLIANT TO JEDEC STANDARDS MO-153-AE  
Figure 96. 20-Lead Shrink Small Outline Package [QSOP]  
(RQ-20)  
Figure 95. 28-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-28)  
Dimensions shown in Inches  
Dimensions shown in millimeters  
5.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
TOP  
VIEW  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
(BOTTOM VIEW)  
4.75  
BSC SQ  
0.50  
0.40  
0.30  
17  
16  
8
9
0.25 MIN  
0.80 MAX  
0.65 TYP  
3.50 REF  
12° MAX  
THE EXPOSE PAD IS NOT CONNECTED  
INTERNALLY. FOR INCREASED RELIABILITY  
OF THE SOLDER JOINTS AND MAXIMUM  
THERMAL CAPABILITY IT IS RECOMMENDED  
THAT THE PAD BE SOLDERED TO  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
THE GROUND PLANE.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
Figure 97. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad  
(CP-32-2)  
Dimensions shown in millimeters  
Rev. E | Page 39 of 40  
 
AD8331/AD8332/AD8334  
0.30  
0.25  
0.18  
9.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
64  
49  
48  
1
PIN 1  
INDICATOR  
*
4.85  
4.70 SQ  
4.55  
8.75  
BSC SQ  
TOP  
VIEW  
EXPOSED PAD  
(BOTTOM VIEW)  
0.45  
0.40  
0.35  
33  
32  
16  
17  
7.50  
REF  
THE EXPOSE PAD IS NOT CONNECTED  
INTERNALLY. FOR INCREASED RELIABILITY  
OF THE SOLDER JOINTS AND MAXIMUM  
THERMAL CAPABILITY IT IS RECOMMENDED  
THAT THE PAD BE SOLDERED TO  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
THE GROUND PLANE.  
SEATING  
PLANE  
0.50 BSC  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
EXCEPT FOR EXPOSED PAD DIMENSION  
Figure 98. 64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
9 mm × 9 mm Body, Very Thin Quad  
(CP-64-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8331ARQ  
AD8331ARQ-REEL  
AD8331ARQ-REELꢀ  
AD8331ARQZ1  
AD8331ARQZ-RL1  
AD8331ARQZ-Rꢀ1  
AD8331-EVAL  
Temperature Range  
Package Description  
Package Option  
RQ-20  
RQ-20  
RQ-20  
RQ-20  
–40°C to +87°C  
–40°C to +87°C  
–40°C to +87°C  
–40°C to +87°C  
–40°C to +87°C  
–40°C to +87°C  
20-Lead Shrink Small Outline Package (QSOP)  
20-Lead Shrink Small Outline Package (QSOP)  
20-Lead Shrink Small Outline Package (QSOP)  
20-Lead Shrink Small Outline Package (QSOP)  
20-Lead Shrink Small Outline Package (QSOP)  
20-Lead Shrink Small Outline Package (QSOP)  
Evaluation Board with AD8331ARQ  
RQ-20  
RQ-20  
AD8332ACP-R2  
AD8332ACP-REEL  
AD8332ACP-REELꢀ  
AD8332ACPZ-Rꢀ1  
AD8332ACPZ-RL1  
AD8332ARU  
AD8332ARU-REEL  
AD8332ARU-REELꢀ  
AD8332ARUZ1  
–40°C to +87°C  
–40°C to +87°C  
–40°C to +87°C  
–40°C to +87°C  
–40°C to +87°C  
–40°C to +87°C  
–40°C to +87°C  
–40°C to +87°C  
–40°C to +87°C  
–40°C to +87°C  
–40°C to +87°C  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
Evaluation Board with AD8332ARU  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
AD8332ARUZ-Rꢀ1  
AD8332ARUZ-RL1  
AD8332-EVAL  
RU-28  
EVAL-AD8332/AD9238  
AD8334ACPZ-WP1  
AD8334ACPZ-REEL1  
AD8334ACPZ-REELꢀ1  
AD8334-EVAL  
Evaluation Board with AD8332ARU and AD9238 ADC  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
Evaluation Board with AD8334ACP  
–40°C to +87°C  
–40°C to +87°C  
–40°C to +87°C  
CP-64-1  
CP-64-1  
CP-64-1  
1 Z = Pb-free part.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C03199-0-4/06(E)  
Rev. E | Page 40 of 40  
 
 
 

相关型号:

AD8331TRQZ-EP

Single VGA with Ultralow Noise Preamplifier and Programmable RIN
ADI

AD8331TRQZ-EP-R7

Single VGA with Ultralow Noise Preamplifier and Programmable RIN
ADI

AD8331_06

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8331_10

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8331_15

Ultralow Noise VGAs with Preamplifier and Programmable R
ADI

AD8332

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8332-EVAL

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8332-EVALZ

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8332ACP-R2

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8332ACP-REEL

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8332ACP-REEL7

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8332ACPZ-R2

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI