AD8331 [ADI]

Ultralow Noise VGAs with Preamplifier and Programmable RIN; 超低噪声可变增益放大器与前置放大器和可编程RIN
AD8331
型号: AD8331
厂家: ADI    ADI
描述:

Ultralow Noise VGAs with Preamplifier and Programmable RIN
超低噪声可变增益放大器与前置放大器和可编程RIN

放大器
文件: 总32页 (文件大小:482K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Noise VGAs with  
Preamplifier and Programmable RIN  
AD8331/AD8332  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
LON1 LOP1  
25 24  
VIP1 VIN1  
22 21  
VPSV  
15  
VCM1  
20  
VCM2  
9
HILO  
19  
Ultralow noise preamplifier  
VPS1  
26  
23  
Voltage noise = 0.74 nV/√Hz  
Current noise = 2.5 pA/√Hz  
V
MID  
COM1  
3.5dB/15.5dB  
[(–48 to 0) + 21] dB  
+19dB  
3 dB bandwidth: 120 MHz  
17 VOH1  
16 VOL1  
+
INH1 27  
POST  
AMP1  
VGA 1  
Low power: 125 mW/channel  
Wide gain range with programmable postamp  
–4.5 dB to +43.5 dB  
LNA 1  
28  
LMD1  
+
BIAS  
(V  
BIAS AND  
INTERPOLATOR  
GAIN  
INT  
10 GAIN  
13 VOL2  
)
MID  
+7.5 dB to +55.5 dB  
+
1
LMD2  
Low output-referred noise: 48 nV/√Hz typical  
Active input impedance matching  
Optimized for 10-/12-bit ADCs  
Selectable output clamping level  
Single 5 V supply operation  
POST  
AMP2  
VGA 2  
LNA 2  
+
2
3
INH2  
12  
VOH2  
VPS2  
CLAMP  
COM2  
6
4
5
7
8
14  
18  
11  
LON2 LOP2  
VIP2 VIN2  
COMM  
ENB  
RCLMP  
Available in space-saving chip scale package  
Figure 1. AD8332 Shown 28-Lead TSSOP  
APPLICATIONS  
50  
40  
V
= 1V  
GAIN  
Ultrasound and sonar time-gain control  
High performance AGC systems  
I/Q signal processing  
0.8V  
30  
0.6V  
High speed dual ADC driver  
20  
0.4V  
0.2V  
GENERAL DESCRIPTION  
10  
The AD8331/AD8332 are single- and dual-channel ultralow  
noise, linear-in-dB, variable gain amplifiers. Although optimized  
for ultrasound systems, they are usable as low noise variable  
gain elements at frequencies up to 120 MHz.  
0
0V  
–10  
–20  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
Each channel consists of an ultralow noise preamplifier (LNA),  
an X-AMP® VGA with 48 dB of gain range, and a selectable gain  
postamplifier with adjustable output limiting. The LNA gain is  
19 dB with a single-ended input and differential outputs capable  
of accurate, programmable active input impedance matching by  
selecting an external feedback resistor. Active impedance  
control optimizes noise performance for applications that  
benefit from input matching.  
Figure 2. Frequency Response vs. Gain  
The VGA’s low output-referred noise is advantageous in driving  
high speed differential ADCs. The gain of the postamplifier may  
be pin selected to 3.5 dB or 15.5 dB to optimize gain range and  
output noise for 12-bit or 10-bit converter applications. The  
output may be limited to a user-selected clamping level,  
preventing input overload to a subsequent ADC. An external  
resistor adjusts the clamping level.  
The 48 dB gain range of the VGA makes these devices suitable  
for a variety of applications. Excellent bandwidth uniformity is  
maintained across the entire range. The gain control interface  
provides precise linear-in-dB scaling of 50 dB/V for control  
voltages between 40 mV and 1 V. Factory trim ensures excellent  
part-to-part and channel-to-channel gain matching. Differential  
signal paths lead to superb second and third order distortion  
performance and low crosstalk.  
The operating temperature range is –40°C to +85°. The  
AD8331 is available in a 20-lead QSOP package, and the  
AD8332 in 28-lead TSSOP and 32-lead LFCSP packages. They  
require a single 5 V supply, and the quiescent power  
consumption is 125 mW/ch. A power-down (enable) pin is  
provided.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
 
AD8331/AD8332  
LNA – External Components................................................... 22  
Driving ADCs ............................................................................. 24  
Overload...................................................................................... 24  
Optional Input Overload Protection. ...................................... 25  
Layout, Grounding, And Bypassing ......................................... 25  
Multiple Input Matching ........................................................... 25  
Disabling the LNA...................................................................... 25  
Measurement Considerations................................................... 26  
Ultrasound TGC Application ................................................... 26  
Pin Configuration and Function Descriptions........................... 30  
AD8331........................................................................................ 30  
AD8332........................................................................................ 31  
Outline Dimensions....................................................................... 32  
Ordering Guide .......................................................................... 32  
TABLE OF CONTENTS  
REVISION HISTORY.................................................................. 2  
AD8331, AD8332—Specifications.................................................. 3  
Absolute Maximum Ratings............................................................ 6  
ESD CAUTION ............................................................................ 6  
AD8331, AD8332—Typical Performance Characteristics .......... 7  
Test Circuits..................................................................................... 15  
Theory of Operation ...................................................................... 17  
Overview...................................................................................... 17  
Low Noise Amplifier (LNA)...................................................... 17  
Variable Gain Amplifier............................................................. 19  
Postamplifier ............................................................................... 21  
Applications..................................................................................... 22  
REVISION HISTORY  
Revision C  
11/03—Data Sheet Changed from REV. B to REV. C  
Addition of New Part...........................................................Universal  
Changes to Figures ...............................................................Universal  
Updated Outline Dimensions..........................................................32  
5/03—Data Sheet Changed from REV. A to REV. B  
Edits to Ordering Guide....................................................................32  
Edits to Ultrasound TGC Application section................................25  
Added Figure 71, Figure 72, and Figure 73......................................26  
Updated Outline Dimensions............................................................31  
2/03—Data Sheet Changed from REV. 0 to REV. A  
Edits to Ordering Guide.....................................................................32  
Rev. C | Page 2 of 32  
 
AD8331/AD8332  
AD8331, AD8332—SPECIFICATIONS  
Table 1. TA = 25°C, VS = 5 V, RL = 500 Ω, RS = RIN = 50 Ω, RFB = 280 Ω, CSH = 22 pF, f = 10 MHz, RCLMP = ∞, CL = 1 pF,  
VCM pin floating, –4.5 dB to +43.5 dB gain (HILO = LO), and differential output voltage, unless otherwise specified.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
LNA CHARACTERISTICS  
Gain  
Single-Ended Input  
to Differential Output  
19  
dB  
Input to Output (Single-Ended)  
AC-Coupled  
RFB = 280 Ω  
13  
2ꢀ7  
70  
dB  
mV  
Input Voltage Range  
Input Resistance  
RFB = 412 Ω  
ꢀ7  
RFB = 762 Ω  
RFB = 1.13 kΩ  
RFB = ∞  
100  
200  
6
13  
7
kΩ  
pF  
MHz  
V/µs  
Input Capacitance  
Output Impedance  
–3 dB Small Signal Bandwidth  
Slew Rate  
Single-Ended, Either Output  
VOUT = 0.2 V p-p  
130  
670  
Input Voltage Noise  
RS = 0 Ω, HI or LO Gain,  
RFB = ∞, f = 7 MHz  
RFB = ∞, HI or LO Gain, f = 7 MHz  
f = 10 MHz, LOP Output  
RS = RIN = 70 Ω  
0.ꢀ4  
2.7  
nV/√Hz  
pA/√Hz  
Input Current Noise  
Noise Figure  
Active Termination Match  
Unterminated  
3.ꢀ  
2.7  
dB  
dB  
RS = 70 Ω, RFB = ∞  
Harmonic Distortion @ LOP1 or LOP2  
HD2  
VOUT = 0.7 V p-p,  
Single-Ended, f = 10 MHz  
–76  
–ꢀ0  
167  
dBc  
dBc  
mA  
HD3  
Output Short-Circuit Current  
LNA + VGA CHARACTERISTICS  
–3 dB Small Signal Bandwidth  
–3 dB Large Signal Bandwidth  
Slew Rate  
Pins LON, LOP  
VOUT = 0.2 V p-p  
VOUT = 2 V p-p  
LO Gain  
120  
110  
300  
MHz  
MHz  
V/µs  
V/µs  
HI Gain  
1200  
Input Voltage Noise  
RS = 0 Ω, HI or LO Gain,  
0.82  
nV/√Hz  
R
FB = ∞, f = 7 MHz  
Noise Figure  
VGAIN = 1.0 V  
Active Termination Match  
RS = RIN = 70 Ω,  
f = 10 MHz, Measured  
RS = RIN = 200 Ω,  
f = 7 MHz, Simulated  
RS = 70 Ω, RFB = ∞,  
f = 10 MHz, Measured  
RS = 200 Ω, RFB = ∞,  
f = 7 MHz, Simulated  
4.17  
2.0  
dB  
dB  
dB  
dB  
Unterminated  
2.7  
1.0  
Output-Referred Noise  
VGAIN = 0.7 V, LO Gain  
48  
1ꢀ8  
1
nV/√Hz  
nV/√Hz  
V
GAIN = 0.7 V, HI Gain  
Output Impedance, Postamplifier  
Output Signal Range, Postamplifier  
DC to 1 MHz  
RL ≥ 700 Ω,  
Unclamped, Either Pin  
VCM 1.127  
4.7  
V
Differential  
V p-p  
Output Offset Voltage  
Differential  
Common-Mode  
Output Short-Circuit Current  
VGAIN = 0.7 V  
–70  
–127  
7
–27  
47  
+70  
+100  
mV  
mV  
mA  
Rev. C | Page 3 of 32  
AD8331/AD8332  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
dBc  
Harmonic Distortion  
VGAIN = 0.7 V, VOUT = 1 V p-p  
HD2  
HD3  
HD2  
HD3  
–88  
–87  
–68  
–67  
–80  
–ꢀ2  
38  
f = 1 MHz  
dBc  
dBc  
dBc  
dBm1  
dBc  
dBc  
dBm  
dBm  
f = 10 MHz  
Input 1 dB Compression Point  
Two-Tone Intermodulation  
Distortion (IMD3)  
VGAIN = 0.27 V, VOUT = 1 V p-p, f = 1 MHz–10 MHz  
VGAIN = 0.ꢀ2 V, VOUT = 1 V p-p, f = 1 MHz  
VGAIN = 0.7 V, VOUT = 1 V p-p, f = 10 MHz  
VGAIN = 0.7 V, VOUT = 1 V p-p, f = 1 MHz  
Output Third Order Intercept  
V
GAIN = 0.7 V, VOUT = 1 V p-p, f = 10 MHz  
33  
Channel-to-Channel Crosstalk  
(AD8332)  
V
GAIN = 0.7 V, VOUT = 1 V p-p, f = 1 MHz  
–84  
dB  
Overload Recovery  
VGAIN = 1.0 V,  
VIN = 70 mV p-p/1 V p-p,  
f = 10 MHz  
7
2
ns  
ns  
Group Delay Variation  
ACCURACY  
Absolute Gain Error2  
7 MHz < f < 70 MHz, Full Gain Range  
0.07 V < VGAIN < 0.10 V  
0.10 V < VGAIN < 0.97 V  
0.97 V < VGAIN < 1.0 V  
0.1 V < VGAIN < 0.97 V  
0.1 V < VGAIN < 0.97 V  
–1  
–1  
–2  
+0.7  
0.3  
–1  
0.2  
0.1  
+2  
+1  
+1  
dB  
dB  
dB  
dB  
dB  
Gain Law Conformance3  
Channel-to-Channel Gain Matching  
GAIN CONTROL INTERFACE  
(Pin GAIN)  
Gain Scaling Factor  
Gain Range  
0.10 V < VGAIN < 0.97 V  
LO Gain  
HI Gain  
70  
–4.7 to +43.7  
+ꢀ.7 to +77.7  
0 to 1.0  
10  
dB/V  
dB  
dB  
V
MΩ  
ns  
Input Voltage (VGAIN) Range  
Input Impedance  
Response Time  
48 dB Gain Change to 90% Full Scale  
ꢀ70  
COMMON-MODE INTERFACE  
(Pin VCMn)  
Input Resistance  
Output CM Offset Voltage  
Voltage Range  
Current Limited to 1 mA  
VCM = 2.7 V  
30  
–27  
mV  
–127  
+100  
V
OUT = 2.0 V p-p  
1.7 to 3.7  
V
ENABLE INTERFACE  
(Pins ENB, ENBL, ENBV)  
Logic Level to Enable Power  
Logic Level to Disable Power  
Input Resistance  
2.27  
0
7
1.0  
V
V
Pin ENB  
Pin ENBL  
Pin ENBV  
VINH = 30 mV p-p  
27  
40  
ꢀ0  
300  
4
kΩ  
kΩ  
kΩ  
µs  
ms  
Power-Up Response Time  
V
INH = 170 mV p-p  
HILO GAIN RANGE INTERFACE  
(Pin HILO)  
Logic Level to Select HI Gain Range  
Logic Level to Select LO Gain Range  
Input Resistance  
2.27  
0
7
1.0  
V
V
kΩ  
70  
1 All dBm values are referred to 70 Ω, unless otherwise noted.  
2 Conformance to theoretical gain expression (see Equation 1).  
3 Conformance to best fit dB linear curve.  
Rev. C | Page 4 of 32  
 
 
 
AD8331/AD8332  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
OUTPUT CLAMP INTERFACE  
(Pin RCLMP; HI or LO Gain)  
Accuracy  
HILO = LO  
HILO = HI  
RCLMP = 2.ꢀ4 kΩ, VOUT = 1 V p-p (Clamped)  
RCLMP = 2.21 kΩ, VOUT = 1 V p-p (Clamped)  
70  
ꢀ7  
mV  
mV  
MODE INTERFACE  
(Pin MODE)  
Logic Level for Positive Gain Slope  
Logic Level for Negative Gain Slope  
Input Resistance  
0
2.27  
1.0  
7
V
V
kΩ  
200  
POWER SUPPLY  
(Pins VPS1, VPS2, VPSV, VPSL, VPOS)  
Supply Voltage  
4.7  
7.0  
27  
127  
7.7  
V
mA  
mW  
Quiescent Current per Channel  
Power Dissipation per channel  
Disable Current  
No Signal  
AD8332 (VGA and LNA)  
AD8331 (VGA and LNA)  
AD8332 (ENBL)  
AD8332 (ENBV)  
AD8331 (ENBL)  
300  
240  
12  
13  
11  
600  
400  
µA  
µA  
Each Channel  
Each Channel  
mA  
mA  
mA  
mA  
dB  
AD8331 (ENBV)  
PSRR  
14  
–68  
VGAIN = 0, f = 100 kHz  
Rev. C | Page 7 of 32  
AD8331/AD8332  
ABSOLUTE MAXIMUM RATINGS  
Table 2. Absolute Maximum Ratings  
Parameter  
Rating  
Stresses above those listed under the Absolute Maximum  
Ratings may cause permanent damage to the device. This is a  
stress rating only; functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Voltage  
Supply Voltage (VPSn, VPSV, VPSL, VPOS)  
Input Voltage (INHn)  
ENB, ENBL, ENBV, HILO Voltage  
GAIN Voltage  
7.7 V  
VS + 200 mV  
VS + 200 mV  
2.7 V  
Power Dissipation  
RU-28 Package (AD8332)4  
CP-32 Package (AD8332)7  
RQ-20 Package (AD8331)4  
Temperature  
0.96 W  
1.9ꢀ W  
0.ꢀ8 W  
Operating Temperature  
Storage Temperature  
Lead Temperature (Soldering 60 sec)  
θJA  
–40°C to +87°C  
–67°C to +170°C  
300°C  
RU-28 Package (AD8332)4  
CP-32 Package (AD8332)7  
RQ-20 Package (AD8331)4  
θJC  
68°C/W  
33°C/W  
83°C/W  
RU-28 Package (AD8332)4  
CP-32 Package (AD8332)7  
RQ-20 Package (AD8331)4  
14°C/W  
33°C/W  
n/a  
4 Four-Layer JEDEC Board (2S2P).  
7 Exposed pad soldered to board, nine thermal vias in pad — JEDEC 4-Layer  
Board J-STD-71-9.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. C | Page 6 of 32  
 
 
AD8331/AD8332  
AD8331, AD8332—TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = 5 V, RL = 500 Ω, RS = RIN = 50 Ω, RFB = 280 Ω, CSH = 22 pF, f = 10 MHz, RCLMP = ∞, CL = 1 pF, VCM = 2.5 V,  
–4.5 dB to +43.5 dB gain (HILO = LO), and differential signal voltage, unless otherwise specified.  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
SAMPLE SIZE = 80 UNITS  
= 0.5V  
V
GAIN  
HILO = HI  
MODE = HI  
(AC PACKAGE  
ONLY)  
MODE = LO  
HILO = LO  
–10  
0
0
0.2  
0.4  
0.6  
(V)  
0.8  
1.0 1.1  
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
V
GAIN  
GAIN ERROR (dB)  
Figure 3. Gain vs. VGAIN and MODE (MODE Available on AC Package)  
Figure 6. Gain Error Histogram  
2.0  
25  
20  
15  
10  
5
SAMPLE SIZE = 50 UNITS  
V = 0.2V  
1.5  
1.0  
GAIN  
+25°C  
–40°C  
0.5  
0
0
25  
20  
15  
10  
5
–0.5  
V
= 0.7V  
GAIN  
+85°C  
–1.0  
–1.5  
–2.0  
0
0
0.2  
0.4  
0.6  
(V)  
0.8  
1.0 1.1  
V
GAIN  
CHANNEL-TO-CHANNEL GAIN MATCH (dB)  
Figure 4. Absolute Gain Error vs. VGAIN at Three Temperatures  
Figure 7. Gain Match Histogram for VGAIN = 0.2 V and 0.7 V  
2.0  
50  
1.5  
1.0  
V
= 1V  
GAIN  
40  
0.8V  
30  
0.5  
10MHz  
0.6V  
1MHz  
0
20  
0.4V  
0.2V  
–0.5  
10  
30MHz  
70MHz  
–1.0  
–1.5  
–2.0  
0
0V  
–10  
–20  
0
0.2  
0.4  
0.6  
(V)  
0.8  
1.0 1.1  
V
GAIN  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
Figure 5. Absolute Gain Error vs. VGAIN at Various Frequencies  
Figure 8. Frequency Response for Various Values of VGAIN  
Rev. C | Page ꢀ of 32  
 
 
AD8331/AD8332  
60  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
V
= 1V  
GAIN  
V
= 1 V p-p  
OUT  
50  
40  
0.8V  
0.6V  
0.4V  
30  
20  
10  
V
= 1V  
0.2V  
0V  
GAIN  
0.9V  
0.7V  
0.4V  
0
0.5V  
–10  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
Figure 9. Frequency Response for Various Values of VGAIN, HILO = HI  
Figure 12. Channel-to-Channel Crosstalk vs.  
Frequency for Various Values of VGAIN  
30  
50  
45  
40  
35  
30  
25  
20  
15  
10  
V
= 0.5 V  
GAIN  
0.1µF  
COUPLING  
R
= R = 50, 75, 100Ω  
S
IN  
20  
10  
R
= R = 1kΩ  
IN  
S
R
= R = 500Ω  
S
IN  
0
R
= R = 200Ω  
IN  
S
–10  
–20  
–30  
–40  
1µF  
COUPLING  
5
0
1M  
10M  
100M  
1G  
100k  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
FREQUENCY (Hz)  
Figure 13. Group Delay vs. Frequency  
Figure 10. Frequency Response for Various Matched Source Impedances  
20  
10  
30  
T = –40°C  
HI GAIN  
T = +85°C  
V
R
= 0.5V  
GAIN  
= ∞  
T = +25°C  
FB  
T = +25°C  
20  
10  
0
–10  
–20  
T = +85°C  
T = –40°C  
0
20  
10  
–10  
–20  
–30  
–40  
LO GAIN  
T = +85°C  
T = –40°C  
0
T = +25°C  
T = –40°C  
–10  
–20  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1  
(V)  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
V
GAIN  
Figure 11. Frequency Response, Unterminated, RS = 50 Ω  
Figure 14. Representative Differential Output Offset Voltage vs. VGAIN at Three  
Temperatures  
Rev. C | Page 8 of 32  
 
AD8331/AD8332  
50j  
35  
30  
25  
20  
15  
10  
5
SAMPLE SIZE = 100  
0.2V < V < 0.7V  
100j  
25j  
GAIN  
f = 100kHz  
R
R
= 50Ω  
= 270  
IN  
,
FB  
R
R
= 75,  
IN  
= 412  
FB  
R
R
= 100  
,
IN  
= 549  
FB  
17  
0
R
R
= 200  
= 1.1k  
,
IN  
FB  
0
49.6 49.7 49.8 49.9 50.0 50.1 50.2 50.3 50.4 50.5  
GAIN SCALING FACTOR  
R
R
= 6k,  
IN  
=
FB  
–25j  
–100j  
Figure 15. Gain Scaling Factor Histogram  
–50j  
Figure 18. Smith Chart, S11 vs. Frequency, 0.1 MHz to 200 MHz  
for Various Values of RFB  
100  
10  
1
SINGLE ENDED, PIN VOH OR VOL  
R
=  
L
20  
RIN = 50  
, 75  
,
AND 100  
15  
10  
RIN = 200  
5
RIN = 1k  
RIN = 200  
RIN = 500  
0
–5  
–10  
–15  
–20  
0.1  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
Figure 16. Output Impedance vs. Frequency  
Figure 19. LNA Frequency Response,  
Single-Ended, for Various Values of RIN  
10k  
1k  
R
= , C = 0pF  
SH  
FB  
20  
15  
R
R
= 6.65k, C = 0pF  
SH  
FB  
10  
R
=  
= 3.01k, C = 0pF  
SH  
FB  
FB  
5
R
= 1.1k, C = 1.2pF  
SH  
FB  
0
R
= 549, C = 8.2pF  
FB  
SH  
100  
–5  
R
R
= 412, C = 12pF  
–10  
–15  
–20  
FB  
FB  
SH  
= 270, C = 22pF  
SH  
10  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 17. LNA Input Impedance vs. Frequency for  
Various Values of RFB and CSH  
Figure 20. LNA Frequency Response, Unterminated, Single-Ended  
Rev. C | Page 9 of 32  
 
 
AD8331/AD8332  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
500  
R
= 0, R = ,  
FB  
= 1V, f = 10MHz  
S
f = 10MHz  
V
GAIN  
400  
300  
200  
100  
0
HILO = HI  
HILO = LO  
–50  
–30  
–10  
10  
30  
50  
70  
90  
0
0.2  
0.4  
0.6  
0.8  
1.0  
TEMPERATURE (°C)  
V
(V)  
GAIN  
Figure 24. Short-Circuit Input-Referred Noise vs. Temperature  
Figure 21. Output-Referred Noise vs. VGAIN  
10  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
R
= 0, R = , V = 1V  
FB GAIN  
S
f = 5MHz, R  
=
, V  
= 1V  
GAIN  
FB  
HILO = LO OR HI  
1.0  
R
= THERMAL NOISE ALONE  
S
0.1  
1
10  
100  
1k  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
SOURCE RESISTANCE (  
)
Figure 22. Short-Circuit Input-Referred Noise vs. Frequency  
Figure 25. Input-Referred Noise vs. RS  
100  
7
6
5
4
3
2
1
0
INCLUDES NOISE OF VGA  
R
= 0, R = ,  
FB  
S
HILO = LO OR HI, f = 10MHz  
R
= 50Ω  
10  
IN  
75Ω  
100Ω  
200Ω  
1
R
= ∞  
FB  
SIMULATION  
100  
0.1  
50  
1k  
0
0.2  
0.4  
0.6  
(V)  
0.8  
1.0  
SOURCE RESISTANCE ()  
V
GAIN  
Figure 26. Noise Figure vs. RS for Various Values of RIN  
Figure 23. Short-Circuit Input-Referred Noise vs. VGAIN  
Rev. C | Page 10 of 32  
 
 
AD8331/AD8332  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
f = 10MHz  
= 1V p-p  
f = 10MHz, R = 50  
S
V
OUT  
HILO = LO,  
HD3  
HILO = LO, R = 50Ω  
IN  
HILO = HI, R = 50Ω  
IN  
HILO = LO,  
HD2  
HILO = LO, R = ∞  
FB  
HILO = HI,  
HD2  
HILO = HI,  
HD3  
HILO = HI, R = ∞  
FB  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1  
0
200 400 600 800 1.0k 1.2k 1.4k 1.6k 1.8k 2.0k  
()  
V
(V)  
R
GAIN  
LOAD  
Figure 27. Noise Figure vs. VGAIN  
Figure 30. Harmonic Distortion vs. RLOAD  
30  
25  
20  
15  
10  
5
–40  
–50  
–60  
–70  
–80  
–90  
–100  
f = 10MHz  
= 1V p-p  
V
OUT  
HILO = HI, R = 50Ω  
IN  
HILO = HI, R = ∞  
FB  
HILO = HI,  
HD2  
HILO = LO,  
HD3  
HILO = LO, R = 50Ω  
IN  
HILO = HI,  
HD3  
HILO = LO,  
HD2  
HILO = LO, R = ∞  
FB  
f = 10MHz, R = 50Ω  
S
0
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
0
10  
20  
30  
(pF)  
40  
50  
GAIN (dB)  
C
LOAD  
Figure 28. Noise Figure vs. Gain  
Figure 31. Harmonic Distortion vs. CLOAD  
0
–40  
–50  
–60  
–70  
–80  
–90  
–100  
f = 10MHz  
G = 30dB  
–10  
GAIN = 30 dB  
V
= 1V  
OUT  
P-P  
HILO = HI,  
HD3  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
HILO = LO,  
HD3  
HILO = LO,  
HD3  
HILO = LO,  
HD2  
HILO = HI,  
HD2  
HILO = LO,  
HD2  
HILO = HI,  
HD2  
HILO = HI,  
HD3  
1M  
10M  
FREQUENCY (Hz)  
100M  
0
1
2
3
4
V
(V p-p)  
OUT  
Figure 29. Harmonic Distortion vs. Frequency  
Figure 32. Harmonic Distortion vs. Differential Output Voltage  
Rev. C | Page 11 of 32  
 
 
AD8331/AD8332  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
V
= 1V p-p COMPOSITE (f + f )  
OUT  
1
2
V
= 1V p-p  
OUT  
G = 30dB  
–20  
–40  
INPUT RANGE  
LIMITED WHEN  
HILO = LO  
HILO = LO,  
HD3  
HILO = LO,  
HD2  
–60  
HILO = HI,  
HD2  
–80  
HILO = HI,  
HD3  
–100  
–120  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.0  
1.0  
10M  
100M  
1M  
V
(V)  
FREQUENCY (Hz)  
GAIN  
Figure 36. IMD3 vs. Frequency  
Figure 33. Harmonic Distortion vs. VGAIN, f = 1 MHz  
40  
35  
30  
25  
20  
15  
10  
5
0
–20  
HILO = HI,  
1MHz  
V
= 1V p-p  
OUT  
HILO = LO,  
10MHz  
HILO = LO,  
HD2  
INPUT RANGE  
LIMITED WHEN  
HILO = LO  
HILO = HI,  
10MHz  
–40  
HILO = LO,  
HD3  
HILO = LO,  
1MHz  
–60  
V
= 1V p-p COMPOSITE (f + f )  
OUT  
1
2
–80  
HILO = HI,  
HD2  
HILO = HI,  
HD3  
–100  
–120  
0
0
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0.1  
0.2  
0.3  
0.4  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
V
(V)  
GAIN  
V
(V)  
GAIN  
Figure 37. Output Third Order Intercept vs. VGAIN  
Figure 34. Harmonic Distortion vs. VGAIN, f = 10 MHz  
10  
5
2mV  
100  
90  
f = 10MHz  
0
HILO = LO  
HILO = HI  
–5  
–10  
–15  
–20  
–25  
–30  
10  
0
10ns  
50mV  
Figure 38. Small Signal Pulse Response, G = 30 dB,  
Top: Input, Bottom: Output Voltage, HILO = HI or LO  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
V
(V)  
GAIN  
Figure 35. Input 1 dB Compression vs. VGAIN  
Rev. C | Page 12 of 32  
 
AD8331/AD8332  
5
4
3
2
1
0
20mV  
100  
90  
HILO = HI  
HILO = LO  
10  
0
10ns  
500mV  
0
10  
20  
30  
40  
50  
Figure 39. Large Signal Pulse Response, G = 30 dB,  
HILO = HI or LO, Top: Input, Bottom: Output Voltage  
R
(k)  
CLMP  
Figure 42. Clamp Level vs. RCLMP  
2
1
0
4
C
= 50pF  
= 0pF  
G = 30dB  
INPUT  
L
G = 40dB  
3
2
R
= 48.1kΩ  
= 7.15kΩ  
R
= 16.5kΩ  
CLMP  
CLMP  
C
L
1
0
R
R
= 2.67kΩ  
CLMP  
CLMP  
–1  
–2  
–3  
–4  
–1  
INPUT IS NOT TO SCALE  
–40 –30 –20 –10  
–2  
0
10 20 30 40  
TIME (ns)  
50 60  
70 80  
–10  
0
10  
20  
30  
40  
50  
60  
TIME (ns)  
Figure 40. Large Signal Pulse Response for  
Various Capacitive Loads, CL = 0 pF, 10 pF, 20 pF, 50 pF  
Figure 43. Clamp Level Pulse Response  
200mV  
500mV  
100  
90  
10  
0
100ns  
200mV  
400ns  
Figure 44. LNA Overdrive Recovery, VINH 0.05 V p-p to  
1 V p-p Burst, VGAIN = 0.27 V, VGA Output Shown  
Figure 41. Pin GAIN Transient Response,  
Top: VGAIN, Bottom: Output Voltage  
Rev. C | Page 13 of 32  
 
AD8331/AD8332  
2V  
50mV  
100  
90  
10  
0
100ns  
1V  
1ms  
Figure 45. VGA Overdrive Recovery, VINH 4 mV p-p to 70 mV p-p Burst,  
GAIN = 1 V, VGA Output Shown Attenuated 24 dB  
Figure 48. Enable Response, Large Signal,  
Top: VENB, Bottom: VOUT, VINH = 150 mV p-p  
V
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
50mV  
VPS1, V  
= 0.5V  
GAIN  
100  
90  
VPSV, V  
= 0.5V  
GAIN  
VPS1, V  
GAIN  
= 0V  
10  
0
100ns  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
Figure 46. VGA Overdrive Recovery, VINH 4 mV p-p to 275 mV p-p Burst,  
GAIN = 1 V, VGA Output Shown Attenuated 24 dB  
Figure 49. PSRR vs. Frequency (No Bypass Capacitor)  
V
60  
55  
50  
V
= 0.5V  
GAIN  
2V  
AD8332  
45  
40  
35  
30  
25  
20  
AD8331  
40  
200mV  
1ms  
0
20  
60  
80  
100  
–40  
–20  
TEMPERATURE (°C)  
Figure 47. Enable Response, Top: VENB, Bottom: VOUT, VINH = 30 mV p-p  
Figure 50. Quiescent Supply Current vs. Temperature  
Rev. C | Page 14 of 32  
 
 
AD8331/AD8332  
TEST CIRCUITS  
NETWORK ANALYZER  
50  
OUT  
50Ω  
IN  
1.8nF  
270Ω  
FB*  
120nH  
237Ω  
0.1µF  
0.1µF  
DUT  
INH  
LMD  
28Ω  
1:1  
22pF  
237Ω  
28Ω  
0.1µF  
0.1µF  
*FERRITE BEAD  
Figure 51. Gain and Bandwidth Measurements  
OSCILLOSCOPE  
1.8nF  
270Ω  
237Ω  
FB*  
120nH  
50Ω  
0.1µF  
0.1µF  
DUT  
INH  
LMD  
IN  
28Ω  
22pF  
1:1  
50Ω  
237Ω  
0.1µF  
0.1µF  
28Ω  
*FERRITE BEAD  
Figure 52. Transient Measurements  
SPECTRUM  
ANALYZER  
A
G
B
FB*  
120nH  
0.1µF  
0.1µF  
50Ω  
0.1µF  
49Ω  
INH  
LMD  
IN  
1:1  
DUT  
1Ω  
22pF  
50Ω  
*FERRITE BEAD  
0.1µF  
Figure 53. Used for Noise Measurements  
Rev. C | Page 17 of 32  
 
 
AD8331/AD8332  
SPECTRUM  
ANALYZER  
1.8nF  
270Ω  
237Ω  
FB*  
50  
0.1µF  
DUT  
0.1µF  
120nH  
INH  
IN  
28Ω  
1:1  
22pF  
LMD  
50Ω  
237Ω  
28Ω  
0.1µF  
0.1µF  
*FERRITE BEAD  
Figure 54. Distortion  
NETWORK ANALYZER  
50Ω  
OUT  
50Ω  
IN  
50Ω  
1.8nF  
270Ω  
FB*  
237Ω  
0.1µF  
DUT  
120nH 0.1µF  
INH  
LMD  
50Ω  
28Ω  
237Ω  
1:1  
22pF  
0.1µF  
*FERRITE BEAD  
0.1µF  
28Ω  
Figure 55. S11 Measurements  
Rev. C | Page 16 of 32  
 
AD8331/AD8332  
THEORY OF OPERATION  
60  
50  
40  
30  
20  
10  
0
OVERVIEW  
MODE = HI  
(WHERE AVAILABLE)  
The following discussion applies to all part numbers. Figure 56  
and Figure 1 are functional block diagrams of the AD8331 and  
AD8332, respectively.  
HILO = HI  
LON LOP VIP VIN  
VPOS  
14  
VCM  
11  
HILO  
19  
4
5
7
8
MODE = LO  
3.5dB/  
15.5dB  
VPSL  
3
6
V
MID  
AD8331  
COML  
VGA  
15  
16  
VOH  
VOL  
2
1
INH  
POST  
AMP1  
HILO = LO  
G = –48dB to 0dB  
+21dB  
LNA  
LMD  
LNA  
BIAS  
BIAS AND  
INTERPOLATOR  
GAIN  
INT  
CLAMP  
9
MODE  
–10  
(V  
)
MID  
0
0.2  
0.4  
0.6  
(V)  
0.8  
1.0 1.1  
GAIN 10  
V
GAIN  
12  
20  
17  
19  
18  
COMM  
COMM ENBL  
ENBV  
RCLMP  
Figure 58. Gain Control Characteristics  
Figure 56. Functional Block Diagram — AD8331  
When MODE is set high, (where available):  
Each channel contains an LNA that provides user-adjustable  
input impedance termination, a differential X-AMP VGA, and a  
programmable gain postamplifier with adjustable output  
voltage limiting. Figure 57 shows a simplified block diagram.  
GAIN(dB) = – 50 dB V ×V  
+ 45.5 dB, HILO = LO  
3
( )  
(
)
(
)
GAIN  
or  
GAIN(dB) = – 50 dB V ×V  
+ 57.5 dB, HILO = HI  
4
( )  
(
)
(
)
GAIN  
LON  
VIN  
The LNA converts a single-ended input to a differential output  
with a voltage gain of 19 dB. When only one output is used, the  
gain is 13 dB. The inverting output is used for active input  
impedance termination. Each of the LNA outputs is capacitively  
coupled to a VGA input. The VGA consists of an attenuator  
with a range of 48 dB followed by an amplifier with 21 dB of  
gain, for a net gain range of –27 dB to +21 dB. The X-AMP  
gain-interpolation technique results in low gain error and  
uniform bandwidth, and differential signal paths minimize  
distortion.  
X-AMP VGA  
POSTAMP  
PREAMPLIFIER  
19dB  
[(–48 to 0) + 21] dB  
3.5dB/15.5dB  
INH  
+
VOH  
VOL  
LNA  
LMD  
VIP  
LOP  
RCLMP  
HILO  
BIAS AND  
INTERPOLATOR*  
BIAS  
(V  
GAIN  
V
CLAMP*  
MID  
)
MID  
INTERFACE*  
GAIN  
VCM  
*SHARED BETWEEN CHANNELS  
Figure 57. Simplified Block Diagram  
The final stage is a logic programmable amplifier with gains of  
3.5 dB or 15.5 dB. The LO and HI gain modes are optimized  
for 12-bit and 10-bit A/D converter applications, in terms of  
output-referred noise and absolute gain range. Output voltage  
limiting may be programmed by the user.  
The linear-in-dB gain control interface is trimmed for slope and  
absolute accuracy. The overall gain range is 48 dB, extending  
from –4.5 dB to +43.5 dB or from +7.5 dB to +55.5 dB,  
depending on the setting of the HILO pin. The slope of the gain  
control interface is 50 dB/V, and the gain control range is 40 mV  
to 1 V, leading to the following expressions for gain:  
LOW NOISE AMPLIFIER (LNA)  
Good noise performance relies on a proprietary ultralow noise  
preamplifier at the beginning of the signal chain, which  
minimizes the noise contribution in the following VGA. Active  
impedance control optimizes noise performance for  
applications that benefit from input matching.  
GAIN(dB) = 50  
(
dB V  
)
×VGAIN6.5 dB, HILO = LO 1  
( )  
( )  
or  
GAIN(dB) = 50  
(
dB V ×VGAIN + 5.5 dB, HILO = HI 2  
( )  
( )  
)
The gain characteristics are shown in Figure 58.  
Rev. C | Page 1ꢀ of 32  
 
 
 
AD8331/AD8332  
CFB is needed in series with RFB, since the dc levels at Pins LON  
and INH are unequal. Expressions for choosing RFB in terms of  
RIN and for choosing CFB are found in the Applications section.  
CSH and the ferrite bead enhance stability at higher frequencies  
where the loop gain declines and prevents peaking. Frequency  
response plots of the LNA are shown in Figure 19 and Figure 20.  
The bandwidth is approximately 130 MHz for matched input  
impedances of 50 Ω to 200 Ω and declines at higher source  
impedances. The unterminated bandwidth (RFB = ∞) is  
approximately 80 MHz.  
A simplified schematic of the LNA is shown in Figure 59. INH  
is capacitively coupled to the source. An on-chip bias generator  
centers the output dc levels at 2.5 V and the input voltages at  
3.25 V. A capacitor CLMD of the same value as the input coupling  
capacitor CINH is connected from the LMD pin to ground.  
C
FB  
R
FB  
LOP  
VPOS  
LON  
I
I
0
0
Each output can drive external loads as low as 100 Ω in addition  
to the 100 Ω input impedance of the VGA (200 Ω differential).  
Capacitive loading up to 10 pF is permissible. All loads should  
be ac-coupled. Typically, Pin LOP output is used as a single-  
ended driver for auxiliary circuits, such as those used for  
Doppler mode ultrasound imaging, and Pin LON drives RFB.  
Alternatively, a differential external circuit can be driven from  
the two outputs, in addition to the active feedback termination.  
In both cases, important stability considerations discussed in  
the Applications section should be carefully observed.  
C
INH  
INH  
LMD  
Q2  
Q1  
C
LMD  
C
SH  
R
S
I
I
0
0
Figure 59. Simplified LNA Schematic  
The LNA supports differential output voltages as high as  
The impedance at each LNA output is 5 Ω. A 0.4 dB reduction  
in open-circuit gain results when driving the VGA, and 0.8 dB  
with an additional 100 Ω load at the output. The differential  
gain of the LNA is 6 dB higher. If the load is less than 200 Ω on  
either side, a compensating load is recommended on the  
opposite output.  
5 V p-p with positive and negative excursions of 1.25 V, about  
a common-mode voltage of 2.5 V. Since the differential gain  
magnitude is 9, the maximum input signal before saturation is  
275 mV or 550 mV p-p. Overload protection ensures quick  
recovery time from large input voltages. Since the inputs are  
capacitively coupled to a bias voltage near midsupply, very large  
inputs can be handled without interacting with the ESD  
protection.  
LNA Noise  
The input-referred voltage noise sets an important limit on  
system performance. The short-circuit input voltage noise of the  
LNA is 0.74 nV/√Hz or 0.82 nV/√Hz (at maximum gain),  
including the VGA noise. The open-circuit current noise is  
2.5 pA/√Hz. These measurements, taken without a feedback  
resistor, provide the basis for calculating the input noise and  
noise figure performance of the configurations in Figure 60.  
Figure 61 and Figure 62 are simulations extracted from these  
results, and the 4.1 dB NF measurement with the input actively  
matched to a 50 Ω source. Unterminated (RFB = ∞) operation  
exhibits the lowest equivalent input noise and noise figure.  
Figure 61 shows the noise figure versus source resistance, rising  
at low RS, where the LNA voltage noise is large compared to the  
source noise, and again at high RS due to current noise. The  
VGA’s input-referred voltage noise of 2.7 nV/√Hz is included in  
all of the curves.  
Low value feedback resistors and the current-driving capability  
of the output stage allow the LNA to achieve a low input-  
referred voltage noise of 0.74 nV/√Hz. This is achieved with a  
modest current consumption of 10 mA per channel (50 mW).  
On-chip resistor matching results in precise gains of 4.5 per side  
(9 differential), critical for accurate impedance control. The use  
of a fully differential topology and negative feedback minimizes  
distortion. Low HD2 is particularly important in second  
harmonic ultrasound imaging applications. Differential  
signaling enables smaller swings at each output, further  
reducing third order distortion.  
Active Impedance Matching  
The LNA supports active impedance matching through an  
external shunt feedback resistor from Pin LON to Pin INH. The  
input resistance RIN is given by Equation 5, where A is the  
single-ended gain of 4.5, and 6 kΩ is the unterminated input  
impedance.  
6 kΩ × RFB  
RFB  
1+ A  
RIN  
=
6 kΩ =  
5
( )  
33 kΩ + RFB  
Rev. C | Page 18 of 32  
 
AD8331/AD8332  
UNTERMINATED  
The primary purpose of input impedance matching is to  
R
IN  
improve the system transient response. With resistive  
termination, the input noise increases due to the thermal noise  
of the matching resistor and the increased contribution of the  
LNA’s input voltage noise generator. With active impedance  
matching, however, the contributions of both are smaller than  
they would be for resistive termination by a factor of 1/(1 +  
LNA Gain). Figure 61 shows their relative noise figure (NF)  
performance. In this graph, the input impedance has been swept  
with RS to preserve the match at each point. The noise figures  
for a source impedance of 50 Ω are 7.1 dB, 4.1 dB, and 2.5 dB,  
respectively, for the resistive, active, and unterminated  
configurations. The noise figures for 200 Ω are 4.6 dB, 2.0 dB,  
and 1.0 dB, respectively.  
R
S
+
V
OUT  
V
IN  
RESISTIVE TERMINATION  
R
IN  
R
S
+
R
V
S
OUT  
V
IN  
ACTIVE IMPEDANCE MATCH –R = R  
S
IN  
R
FB  
R
IN  
R
S
+
V
OUT  
V
IN  
Figure 62 is a plot of the NF versus RS for various values of RIN,  
which is helpful for design purposes. The plateau in the NF for  
actively matched inputs mitigates source impedance variations.  
For comparison purposes, a preamp with a gain of 19 dB and  
noise spectral density of a 1.0 nV/√Hz, combined with a VGA  
with 3.75 nV/√Hz, would yield a noise figure degradation of  
approximately 1.5 dB (for most input impedances), significantly  
worse than the AD8332 performance.  
R
FB  
R
=
IN  
1 + 4.5  
Figure 60. Input Configurations  
7
6
5
4
3
2
1
0
INCLUDES NOISE OF VGA  
RESISTIVE TERMINATION  
The equivalent input noise of the LNA is the same for single-  
ended and differential output applications. The LNA noise  
figure improves to 3.5 dB at 50 Ω without VGA noise, but this  
is exclusive of noise contributions from other external circuits  
connected to LOP. A series output resistor is usually  
recommended for stability purposes, when driving external  
circuits on a separate board (see the Applications section). In  
low noise applications, a ferrite bead is even more desirable.  
(R = R  
)
S
IN  
ACTIVE IMPEDANCE MATCH  
UNTERMINATED  
SIMULATION  
100  
VARIABLE GAIN AMPLIFIER  
50  
1k  
The differential X-AMP VGA provides precise input  
attenuation and interpolation. It has a low input-referred noise  
of 2.7 nV/√Hz and excellent gain linearity. A simplified block  
diagram is shown in Figure 63.  
R
()  
S
Figure 61. Noise Figure vs. RS for Resistive,  
Active Matched, and Unterminated Inputs  
7
6
INCLUDES NOISE OF VGA  
GAIN  
GAIN INTERPOLATOR  
(BOTH CHANNELS)  
POST-AMP  
5
4
3
2
R
= 50  
IN  
g
m
6dB  
VIP  
70Ω  
48dB  
R
2R  
100  
200  
VIN  
R
=
FB  
1
0
SIMULATION  
100  
POST-AMP  
50  
1k  
R
()  
S
Figure 63. Simplified VGA Schematic  
Figure 62. Noise Figure vs. RS for Various Fixed Values of RIN, Actively Matched  
Rev. C | Page 19 of 32  
 
 
 
AD8331/AD8332  
Gain control response time is less than 750 ns to settle within  
10% of the final value for a change from minimum to max-  
imum gain.  
X-AMP VGA  
The input of the VGA is a differential R-2R ladder attenuator  
network, with 6 dB steps per stage and a net input impedance of  
200 Ω differential. The ladder is driven by a fully differential  
input signal from the LNA and is not intended for single-ended  
operation. LNA outputs are ac-coupled to reduce offset and  
isolate their common-mode voltage. The VGA inputs are biased  
through the ladders center tap connection to VCM, which is  
typically set to 2.5 V and is bypassed externally to provide a  
clean ac ground.  
VGA Noise  
In a typical application, a VGA compresses a wide dynamic  
range input signal to within the input span of an ADC. While  
the input-referred noise of the LNA limits the minimum  
resolvable input signal, the output-referred noise, which  
depends primarily on the VGA, limits the maximum  
instantaneous dynamic range that can be processed at any one  
particular gain control voltage. This limit is set in accordance  
with the quantization noise floor of the ADC.  
The signal level at successive stages in the input attenuator falls  
from 0 dB to –48 dB, in 6 dB steps. The input stages of the  
X-AMP are distributed along the ladder, and a biasing interpolator,  
controlled by the gain interface, determines the input tap point.  
With overlapping bias currents, signals from successive taps merge  
to provide a smooth attenuation range from 0 dB to –48 dB. This  
circuit technique results in excellent, linear-in-dB gain law  
conformance and low distortion levels and deviates 0.2 dB or less  
from ideal. The gain slope is monotonic with respect to the control  
voltage and is stable with variations in process, temperature, and  
supply.  
Output and input-referred noise as a function of VGAIN are  
plotted in Figure 21 and Figure 23 for the short-circuited input  
condition. The input noise voltage is simply equal to the output  
noise divided by the measured gain at each point in the control  
range.  
The output-referred noise is flat over most of the gain range,  
since it is dominated by the fixed output-referred noise of the  
VGA. Values are 48 nV/√Hz in LO gain mode and 178 nV/√Hz  
in HI gain mode. At the high end of the gain control range, the  
noise of the LNA and source prevail. The input-referred noise  
reaches its minimum value near the maximum gain control  
voltage, where the input-referred contribution of the VGA  
becomes very small.  
The X-AMP inputs are part of a gain-of-12 feedback amplifier,  
which completes the VGA. Its bandwidth is 150 MHz. The input  
stage is designed to reduce feedthrough to the output and  
ensure excellent frequency response uniformity across gain  
setting (see Figure 8 and Figure 9).  
At lower gains, the input-referred noise, and thus noise figure,  
increases as the gain decreases. The instantaneous dynamic  
range of the system is not lost, however, since the input capacity  
increases with it. The contribution of the ADC noise floor has  
the same dependence as well. The important relationship is  
the magnitude of the VGA output noise floor relative to that  
of the ADC.  
Gain Control  
Position along the VGA attenuator is controlled by a single-  
ended analog control voltage, VGAIN, with an input range of 40 mV  
to 1.0 V. The gain control scaling is trimmed to a slope of 50 dB/V  
(20 mV/dB). Values of VGAIN beyond the control range saturate to  
minimum or maximum gain values. Both channels of the  
AD8332 are controlled from a single gain interface to preserve  
matching. Gain can be calculated using Equations 1 and 2.  
With its low output-referred noise levels, these devices ideally  
drive low-voltage ADCs. The converter noise floor drops 12 dB  
for every 2 bits of resolution and drops at lower input full-scale  
voltages and higher sampling rates. ADC quantization noise is  
discussed in the Applications section.  
Gain accuracy is very good since both the scaling factor and  
absolute gain are factory trimmed. The overall accuracy relative  
to the theoretical gain expression is 1 dB for variations in  
temperature, process, supply voltage, interpolator gain ripple, trim  
errors, and tester limits. The gain error relative to a best-fit line for  
a given set of conditions is typically 0.2 dB. Gain matching  
between channels is better than 0.1 dB (see Figure 7, which shows  
gain errors in the center of the control range). When VGAIN < 0.1  
or > 0.95, gain errors are slightly greater.  
The preceding noise performance discussion applies to a  
differential VGA output signal. Although the LNA noise  
performance is the same in single-ended and differential  
applications, the VGA performance is not. The noise of the  
VGA is significantly higher in single-ended usage, since the  
contribution of its bias noise is designed to cancel in the  
differential signal. A transformer can be used with single-ended  
applications when low noise is desired.  
The gain slope may be inverted, as shown in Figure 58 (avail-  
able in most versions). The gain drops with a slope of  
–50 dB/V across the gain control range from maximum to  
minimum gain. This slope is useful in applications, such as  
automatic gain control, where the control voltage is  
proportional to the measured output signal amplitude. The  
inverse gain mode is selected by setting the MODE pin HI.  
Rev. C | Page 20 of 32  
AD8331/AD8332  
Gm2  
Gm1  
+
Gain control noise is a concern in very low noise applications.  
Thermal noise in the gain control interface can modulate the  
channel gain. The resultant noise is proportional to the output  
signal level and usually only evident when a large signal is  
present. Its effect is observable only in LO gain mode, where the  
noise floor is substantially lower. The gain interface includes an  
on-chip noise filter, which reduces this effect significantly at  
frequencies above 5 MHz. Care should be taken to minimize  
noise impinging at the GAIN input. An external RC filter may  
be used to remove VGAIN source noise. The filter bandwidth  
should be sufficient to accommodate the desired control  
bandwidth.  
VOH  
F2  
VCM  
F1  
Gm2  
VOL  
Gm1  
Figure 64. Postamplifier Block Diagram  
Common-Mode Biasing  
Although the quantization noise floor of an ADC depends on a  
number of factors, the 48 nV/√Hz and 178 nV/√Hz levels are  
well suited to the average requirements of most 12-bit and  
10-bit converters, respectively. An additional technique,  
described in the Applications section, can extend the noise floor  
even lower for possible use with 14-bit ADCs.  
An internal bias network connected to a midsupply voltage  
establishes common-mode voltages in the VGA and postamp.  
An externally bypassed buffer maintains the voltage. The bypass  
capacitors form an important ac ground connection, since the  
VCM network makes a number of important connections  
internally, including the center tap of the VGA’s differential  
input attenuator, the feedback network of the VGA’s fixed gain  
amplifier, and the feedback network of the postamplifier in both  
gain settings. For best results, use a 1 nF and a 0.1 µF capacitor  
in parallel, with the 1 nF nearest to Pin VCM. Separate VCM  
pins are provided for each channel. For dc-coupling to a 3 V  
ADC, the output common-mode voltage is adjusted to 1.5 V by  
biasing the VCM pin.  
Output Clamping  
Outputs are internally limited to a level of 4.5 V p-p differential  
when operating at a 2.5 V common-mode voltage. The postamp  
implements an optional output clamp engaged through a  
resistor from RCLMP to ground. Table shows a list of  
recommended resistor values.  
Output clamping can be used for ADC input overload  
protection, if needed, or postamp overload protection when  
operating from a lower common-mode level, such as 1.5 V. The  
user should be aware that distortion products increase as output  
levels approach the clamping levels and should adjust the clamp  
resistor accordingly. Also, see the Applications section.  
POSTAMPLIFIER  
The final stage has a selectable gain of 3.5 dB or 15.5 dB, set by  
the logic Pin HILO. These correspond to linear gains of 1.5 or 6.  
A simplified block diagram of the postamplifier is shown in  
Figure 64.  
The accuracy of the clamping levels is approximately 5% in LO  
or HI mode. Figure 65 illustrates the output characteristics for a  
Separate feedback attenuators implement the two gain settings.  
These are selected in conjunction with an appropriately scaled  
input stage to maintain a constant 3 dB bandwidth between the  
two gain modes (~150 MHz). The slew rate is 1200 V/µs in HI  
gain mode and 300 V/µs in LO gain mode. The feedback  
networks for HI and LO gain modes are factory trimmed to  
adjust the absolute gains of each channel.  
few values of RCLMP  
.
5.0  
4.5  
R
=
CLMP  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
8.8k  
3.5k  
Noise  
R
= 1.86k  
The topology of the postamplifier provides constant input-  
referred noise with the two gain settings and variable output-  
referred noise. The output-referred noise in HI gain mode  
increases (with gain) by four. This setting is recommended  
when driving converters with higher noise floors. The extra gain  
boosts the output signal levels and noise floor appropriately.  
When driving circuits with lower input noise floors, the LO gain  
mode optimizes the output dynamic range.  
CLMP  
–3  
–2  
–1  
0
1
2
3
V
(V)  
INH  
Figure 65. Output Clamping Characteristics  
Rev. C | Page 21 of 32  
 
 
AD8331/AD8332  
C
LMD  
0.1µF  
LNA  
SOURCE  
FB  
APPLICATIONS  
1
2
3
28  
27  
26  
LMD2  
LMD1  
INH1  
0.1µF  
LNA – EXTERNAL COMPONENTS  
CSH  
*
INH2  
The LMD pin (connected to the bias circuitry) must be  
bypassed to ground, and signal source to the INH pin  
capacitively coupled using 2.2 nF to 0.1 μF capacitors (see  
Figure 66).  
1nF  
5V  
0.1  
CFB  
RFB  
*
+5V  
VPS2  
VPS1  
*
F
4
5
6
7
8
9
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
LON2  
LOP2  
COM2  
VIP2  
LON1  
LOP1  
COM1  
VIP1  
LNA OUT  
The unterminated input impedance of the LNA is 6 kΩ. The  
user may synthesize any LNA input resistance between 50 Ω  
and 6 kΩ. RFB is calculated according to Equation 6 or selected  
from Table .  
1nF  
0.1µF  
0.1µF  
VIN2  
VIN1  
1nF  
VGAIN  
VCM2  
GAIN  
RCLMP  
VOH2  
VOL2  
COMM  
VCM1  
33 kΩ × R  
(
)
IN  
1nF  
0.1µF  
RFB  
=
6
( )  
10  
11  
12  
6 kΩ – R  
HILO  
ENB  
(
)
5V  
5V  
IN  
1nF  
Table 3. LNA External Component Values  
for Common Source Impedances  
0.1µF  
*
*
VOH1  
VOL1  
VPSV  
VGA OUT  
VGA OUT  
13  
14  
RIN (Ω) RFB (Nearest STD 1% Value, Ω)  
CSH (pF)  
22  
12  
8
1.2  
0.1µF  
15  
70  
ꢀ7  
100  
200  
700  
6k  
280  
412  
762  
1.13k  
3.01k  
5V  
1nF  
*
SEE TEXT  
Figure 66. Basic Connections for a Typical Channel (AD8332 Shown)  
None  
None  
TO EXT  
CIRCUIT  
When active input termination is used, a 0.1 µF capacitor (CFB) is  
required to isolate the input and output bias voltages of the LNA.  
VIP  
50  
50Ω  
5Ω  
5Ω  
LON  
LOP  
100Ω  
100Ω  
VCM  
The shunt input capacitor, CSH, reduces gain peaking at higher  
frequencies where the active termination match is lost due to  
the HF gain roll-off of the LNA. Suggested values are shown in  
Table ; for unterminated applications, reduce the capacitor value  
by half.  
LNA  
CSH  
VIN  
TO EXT  
CIRCUIT  
When a long trace to Pin INH is unavoidable, or if both LNA  
outputs drive external circuits, a small ferrite bead (FB) in series  
with Pin INH preserves circuit stability with negligible effect on  
noise. The bead shown is 75 Ω at 100 MHz (Murata BLM21 or  
equivalent). Other values may prove useful.  
Figure 67. Interconnections of the LNA and VGA  
Both LNA outputs are available for driving external circuits. Pin  
LOP should be used in those instances when a single-ended  
LNA output is required. The user should be aware of stray  
capacitance loading of the LNA outputs, in particular LON. The  
LNA can drive 100 Ω in parallel with 10 pF. If an LNA output is  
routed to a remote PC board, it will tolerate a load capacitance  
up to 100 pF with the addition of a 49.9 Ω series resistor or  
ferrite 75 Ω/100 MHz bead.  
Figure 67 shows the interconnection details of the LNA output.  
Capacitive coupling between LNA outputs and the VGA inputs  
is required because of differences in their dc levels and to  
eliminate the offset of the LNA. Capacitor values of 0.1 µF are  
recommended. There is 0.4 dB loss in gain between the LNA  
output and the VGA input due to the 5 Ω output resistance.  
Additional loading at the LOP and LON outputs will affect  
LNA gain.  
Rev. C | Page 22 of 32  
 
 
 
AD8331/AD8332  
Gain Input  
Logic Inputs—ENB, MODE, and HILO  
Pin GAIN is common to both channels of the AD8332. The  
input impedance is nominally 10 Mand a bypass capacitor  
from 100 pF to1 nF is recommended.  
The input impedance of all enable pins is nominally 25 kΩ and  
may be pulled up to 5 V (a pull-up resistor is recommended) or  
driven by any 3 V or 5 V logic families. The enable pins perform  
a power-down function, when disabled, the VGA outputs are  
near ground. Multiple devices may be driven from a common  
source. Consult the pin-function tables for circuit functions  
controlled by the enable pins.  
Parallel connected devices may be driven by a common voltage  
source or DAC. Decoupling should take into account any  
bandwidth considerations of the drive waveform, using the total  
distributed capacitance.  
Pin HILO is compatible with 3 V or 5 V CMOS logic families. It  
is either connected to ground or pulled up to 5 V, depending on  
the desired gain range and output noise.  
If gain control noise in LO gain mode becomes a factor,  
maintaining ≤15 nV/√Hz noise at the GAIN pin will ensure  
satisfactory noise performance. Internal noise prevails below  
15 nV/√Hz at the GAIN pin. Gain control noise is negligible in  
HI gain mode.  
Optional Output Voltage Limiting  
The RCLMP pin provides the user with a means to limit the  
output voltage swing when used with loads that have no  
provisions for prevention of input overdrive. The peak-to-peak  
limited voltage is adjusted by a resistor to ground, and Table  
lists several voltage levels and the corresponding resistor value.  
Unconnected, the default limiting level is 4.5 V p-p.  
VCM Input  
The common-mode voltage of Pins VCM, VOL, and VOH  
defaults to 2.5 Vdc. With output ac-coupled applications, the  
VCM pin will be unterminated; however, it must still be  
bypassed in close proximity for ac grounding of internal  
circuitry. The VGA outputs may be dc connected to a  
differential load, such as an ADC. Common-mode output  
voltage levels between 1.5 V and 3.5 V may be realized at Pins  
VOH and VOL by applying the desired voltage at Pin VCM.  
DC-coupled operation is not recommended when driving loads  
on a separate PC board.  
Note that third harmonic distortion will increase as waveform  
amplitudes approach clipping. For lowest distortion, the clamp  
level should be set higher than the converter input span. A  
clamp level of 1.5 V p-p is recommended for a 1 V p-p linear  
output range, 2.7 V p-p for a 2 V p-p range, or 1 V p-p for a  
0.5 V p-p operation. The best solution will be determined  
experimentally. Figure 69 shows third harmonic distortion  
as a function of the limiting level for a 2 V p-p output signal.  
A wider limiting level is desirable in HI gain mode.  
The voltage on the VCM pin is sourced by an internal buffer  
with an output impedance of 30 Ω and a 2 mA default output  
current (see Figure 68). If the VCM pin is driven from an  
external source, its output impedance should be <<30 Ω and its  
current drive capability should be >>2 mA. If the VCM pins of  
several devices are connected in parallel, the external buffer  
should be capable of overcoming their collective output  
currents. When a common-mode voltage other than 2.5 V is  
used, a voltage-limiting resistor, RCLMP, is needed to protect  
against overload.  
–20  
V
= 0.75V  
GAIN  
–30  
–40  
–50  
–60  
–70  
–80  
HILO = LO  
HILO = HI  
INTERNAL  
CIRCUITRY  
2mA MAX  
R
<< 30Ω  
NEW V  
O
CM  
V
CM  
30Ω  
100pF  
0.1µF  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
AC GROUNDING FOR  
INTERNAL CIRCUITRY  
CLAMP LIMIT LEVEL (V p-p)  
Figure 69. HD3 vs. Clamping Level for 2 V p-p Differential Input  
Figure 68. VCM Interface  
Rev. C | Page 23 of 32  
 
 
AD8331/AD8332  
Table 4. Clamp Resistor Values  
The relative noise and distortion performance of the two gain  
modes can be compared in Figure 21 and Figure 27 through  
Figure 37. The 48 nV/√Hz noise floor of the LO gain mode is  
suited to converters with higher sampling rates or resolutions  
(such as 12 bits). Both gain modes can accommodate ADC full-  
scale voltages as high as 4 V p-p. Since distortion performance  
remains favorable for output voltages as high as 4 V p-p (see  
Figure 32), it is possible to lower the output-referred noise even  
further by using a resistive attenuator (or transformer) at the  
output. The circuit in Figure 71 has an output full-scale range of  
2 V p-p, a gain range of –10.5 dB to +37.5 dB, and an output  
noise floor of 24 nV/√Hz, making it suitable for some 14-bit  
ADC applications.  
Clamp Level  
(V p-p)  
Clamp Resistor Value (kΩ)  
HILO = LO  
1.21  
2.ꢀ4  
4.ꢀ7  
ꢀ.7  
HILO = HI  
0.7  
1.0  
1.7  
2.0  
2.7  
3.0  
3.7  
4.0  
4.4  
2.21  
4.02  
6.49  
9.73  
14.ꢀ  
23.2  
39.2  
ꢀ3.2  
11  
16.9  
26.ꢀ  
49.9  
100  
4V p-p DIFF, 2V p-p DIFF,  
Output Filtering and Series Resistor  
Requirements  
48n V/  
24n V/  
HZ  
HZ  
187Ω  
2:1  
LPF  
VOH  
VOL  
To ensure stability at the high end of the gain control range,  
series resistors or ferrite beads are recommended for the  
outputs when driving large capacitive loads, or circuits on other  
boards,. These components can be part of the external  
noise filter.  
ADC  
AD6644  
374Ω  
187Ω  
Figure 71. Adjusting the Noise Floor for 14-Bit ADCs  
OVERLOAD  
Recommended resistor values are 84.5 Ω for LO gain mode and  
100 Ω for HI gain mode (see Figure 66) and are placed near  
Pins VOH and VOL. Lower value resistors are permissible for  
applications with nearby loads or with gains less than 40 dB.  
Lower values are best selected empirically.  
These devices respond gracefully to large signals that overload  
its input stage and to normal signals that overload the VGA  
when the gain is set unexpectedly high. Each stage is designed  
for clean-limited overload waveforms and fast recovery when  
gain setting or input amplitude is reduced.  
An antialiasing noise filter is typically used with an ADC. Filter  
requirements are application dependent.  
Signals larger than 275 mV at the LNA input are clipped to  
5 V p-p differential prior to the input of the VGA. Figure 44  
shows the response to a 1 V p-p input burst. The symmetric  
overload waveform is important for applications, such as CW  
Doppler ultrasound, where the spectrum of the LNA outputs  
during overload is critical. The input stage is also designed to  
accommodate signals as high as 2.5 V without triggering the  
slow-settling ESD input protection diodes.  
When the ADC resides on a separate board, the majority of  
filter components should be placed nearby to suppress noise  
picked up between boards and mitigates charge kickback from  
the ADC inputs. Any series resistance beyond that required for  
output stability should be placed on the ADC board. Figure 70  
shows a second order low-pass filter with a bandwidth of  
20 MHz. The capacitor is chosen in conjunction with the 10 pF  
input capacitance of the ADC.  
Both stages of the VGA are susceptible to overload. Postamp  
limiting is more common and results in the clean-limited  
output characteristics found in Figure 45. Under more extreme  
conditions, the X-AMP will overload, causing the minor glitches  
evident in Figure 46. Recovery is fast in all cases. The graph in  
Figure 72 summarizes the combinations of input signal and  
gain that lead to the different types of overload.  
OPTIONAL  
BACKPLANE  
0.1µ  
0.1µ  
F
F
1.5µ  
1.5µ  
H
H
84.5Ω  
84.5Ω  
158Ω  
158Ω  
18pF  
ADC  
Figure 70. 20 MHz Second-Order Low-Pass Filter  
DRIVING ADCS  
The output drive will accommodate a wide range of ADCs. The  
noise floor requirements of the VGA will depend on a number  
of application factors, including bit resolution, sampling rate,  
full-scale voltage, and the bandwidth of the noise/antialias filter.  
The output noise floor and gain range can be adjusted by  
selecting HI or LO gain mode.  
Rev. C | Page 24 of 32  
 
 
 
AD8331/AD8332  
POSTAMP  
X-AMP  
POSTAMP  
X-AMP  
OVERLOAD  
OVERLOAD  
OVERLOAD  
OVERLOAD  
LAYOUT, GROUNDING, AND BYPASSING  
15mV 25mV  
4mV  
25mV  
43.5  
56.5  
Due to their excellent high frequency characteristics, these  
devices are sensitive to their PCB environment. Realizing  
expected performance requires attention to detail critical to  
good high speed board design.  
41dB  
29dB  
24.5dB  
24.5dB  
LO GAIN  
MODE  
HI GAIN  
MODE  
A multilayer board with power and ground plane is  
recommended, and unused area in the signal layers should be  
filled with ground. The multiple power and ground pins provide  
robust power distribution to the device and must all be  
connected. The power supply pins should each be with multiple  
values of high frequency ceramic chip capacitors to maintain  
low impedance paths to ground over a wide frequency range.  
These should have capacitance values of 0.01 μF to 0.1 μF in  
parallel with 100 pF to 1 nF, and be placed as close as possible to  
the pins. The LNA power pins should be decoupled from the  
VGA using ferrite beads. Together with the decoupling  
capacitors, ferrite beads help eliminate undesired high  
frequencies without reducing the headroom, as do small value  
resistors.  
–4.5  
1m  
7.5  
1m  
10m  
0.1 .275  
1
10m  
0.1 0.275  
1
INPUT AMPLITUDE (V)  
INPUT AMPLITUDE (V)  
Figure 72. Overload Gain and Signal Conditions  
The previously mentioned clamp interface controls the  
maximum output swing of the postamp and its overload  
response. When no RCLMP resistor is provided, this level defaults  
to near 4.5 V p-p differential to protect outputs centered at a  
2.5 V common mode. When other common-mode levels are set  
through the VCM pin, the value of RCLMP should be chosen for  
graceful overload. A value of 8.3 kΩ or less is recommended for  
1.5 V or 3.5 V common-mode levels (7.2 kΩ for HI gain mode).  
This limits the output swing to just above 2 V p-p diff.  
Several critical LNA areas require special care. The LON and  
LOP output traces must be as short as possible before  
connecting to the coupling capacitors connected to Pins VIN  
and VIP. RFB must be placed nearby the LON pin as well.  
Resistors must be placed as close as possible to the VGA output  
pins VOL and VOH to mitigate loading effects of connecting  
traces. Values are discussed in the section entitled Output  
Filtering and Series Resistor  
OPTIONAL INPUT OVERLOAD PROTECTION.  
Applications in which high transients are applied to the LNA  
input may benefit from the use of clamp diodes. A pair of back-  
to-back Schottky diodes can reduce these transients to  
manageable levels. Figure 73 illustrates how such a diode-  
protection scheme may be connected.  
Requirements.  
OPTIONAL  
SCHOTTKY  
Signal traces must be short and direct to avoid parasitic effects.  
Wherever there are complementary signals, symmetrical layout  
should be employed to maintain waveform balance. PCB traces  
should be kept adjacent when running differential signals over a  
long distance.  
OVERLOAD  
CLAMP  
COMM 20  
ENBL 19  
0.1µF  
RSH  
CSH  
FB  
2
INH  
CFB  
RFB  
3
3
4
VPS  
LON  
MULTIPLE INPUT MATCHING  
2
1
Matching of multiple sources with dissimilar impedances can  
be accomplished as shown in the circuit of Figure 75. A relay  
and low supply voltage analog switch may be used to select  
between multiple sources and their associated feedback  
resistors. An ADG736 dual SPDT switch is shown in this  
example; however, multiple switches are also available and users  
are referred to the Analog Devices Selection Guide for switches  
and multiplexers.  
BAS40-04  
Figure 73. Input Overload Clamping  
When selecting overload protection, the important parameters  
are forward and reverse voltages and trr (or τrr.). The Infineon  
BAS40 series shown in Figure 73 has a τrr of 100 ps and VF of  
310 mV at 1 mA. Many variations of these specifications can be  
found in vendor catalogs.  
DISABLING THE LNA  
Where accessible, connection of the LNA enable pin to ground  
will power down the LNA, resulting in a current reduction of  
about half. In this mode, the LNA input and output pins may be  
left unconnected, however the power must be connected to all  
the supply pins for the disabling circuit to function. Figure 74  
illustrates the connections using an AD8331 as an example.  
Rev. C | Page 27 of 32  
 
AD8331/AD8332  
1
20  
19  
18  
17  
16  
NC  
COMM  
LMD  
MEASUREMENT CONSIDERATIONS  
Figure 51 through Figure 55 show typical measurement  
configurations and proper interface values for measurements  
with 50 Ω conditions.  
AD8331  
2
NC  
INH  
ENBL  
ENBV  
COMM  
VOL  
C
FB  
0.018µF  
Short-circuit input noise measurements are made using  
Figure 53. The input-referred noise level is determined by  
dividing the output noise by the numerical gain between Point  
A and Point B and accounting for the noise floor of the  
spectrum analyzer. The gain should be measured at each  
frequency of interest and with low signal levels since a 50 Ω  
load is driven directly. The generator is removed when noise  
measurements are made.  
+5V  
3
VPS  
LON  
LOP  
COML  
+5V  
4
5
NC  
NC  
VOUT  
ULTRASOUND TGC APPLICATION  
6
15  
14  
13  
12  
11  
VOH  
The AD8332 ideally meets the requirements of medical and  
industrial ultrasound applications. The TGC amplifier is a key  
subsystem in such applications, since it provides the means for  
echolocation of reflected ultrasound energy.  
0.1µF  
7
VIP  
VPOS  
+5V  
VIN  
Figure 76 through Figure 78 are schematics of a dual, fully  
differential system using the AD8332 and AD9238 12-bit high  
speed ADC with conversion speeds as high as 65 MSPS. In this  
example, the VGA outputs are dc-coupled, using the reference  
output of the ADC and a level shifter to center the common-  
mode output voltage to match that of the converter. Consult the  
data sheet of the converter to determine whether external CMV  
biasing is required. AC coupling is recommended if the CMV  
of the VGA and ADC are widely disparate.  
0.1µF  
8
HILO  
CLMP  
VCM  
VIN  
HILO  
9
MODE  
MODE  
R
CLMP  
10  
GAIN  
VCM  
GAIN  
Using the circuit shown, and a high speed ADC FIFO  
evaluation kit connected to a laptop PC, an FFT can be  
performed on the AD8332. With the on-board clock of 20 MHz,  
and minimal low-pass filtering, and both channels driven with a  
1 MHz filtered sine wave, the THD is –75 dB, noise floor –93 dB  
and HD2 –83 dB.  
Figure 74. Disabling the LNA  
ADG736  
1.13k  
SELECTRFB  
280Ω  
LON  
18nF  
5Ω  
200Ω  
INH  
LOP  
LNA  
LMD  
5Ω  
50Ω  
0.1µF  
AD8332  
Figure 75. Accommodating Multiple Sources  
Rev. C | Page 26 of 32  
AD8331/AD8332  
S3  
E
IN2  
TP5  
AD8332ARU  
C50  
0.1µF  
1
28  
27  
26  
LMD1  
LMD2  
C49  
0.1µF  
TP6  
C70  
0.1µF  
L12  
120nH FB  
TP3  
(RED)  
L13  
C60  
0.1µF  
+5V  
120nH FB  
2
3
S1  
IN1  
TB1  
+5V  
INH2  
INH1  
VPS1  
LON1  
LOP1  
COM1  
VIP1  
E
C79  
C80  
22PF  
JP5  
IN2  
JP6  
IN1  
22 PF  
CFB2  
18nF  
+
C46  
1µF  
CFB1  
18nF  
TP4  
(BLACK)  
TB2  
+5VLNA  
VPS2  
LON2  
LOP2  
COM2  
VIP2  
RFB1  
274Ω  
C41  
0.1µF  
C74  
1nF  
+5VLNA  
RFB2  
274Ω  
GND  
L7  
120nH FB  
+5VGA  
4
25  
24  
23  
22  
21  
20  
19  
L6  
120nH FB  
5
+5VLNA  
C42  
0.1µF  
C59  
0.1µF  
6
C51  
0.1µF  
C53  
0.1µF  
0.1µF  
7
7
3
2
VREF  
AD8541  
6
VCM1  
4
8
VIN2  
VIN1  
JP13  
VCM1  
C71 1nF  
C78  
1nF  
C48  
0.1µF  
JP14  
9
VCM2  
GAIN  
CLMP  
VOH2  
VOL2  
COM  
VCM1  
C43  
0.1µF  
C77  
1nF  
VCM  
R23  
2kΩ  
R22  
1kΩ  
+5VGA  
10  
HI GAIN  
JP10  
TP2 GAIN  
TP7 GND  
HILO  
ENB  
C83  
1nF  
+5VGA  
LO GAIN  
ENABLE  
JP16  
DISABLE  
18  
11  
12  
R3  
C68  
1nF  
C69  
0.1µF  
(R  
)
CLMP  
17  
16  
15  
VOH1  
VOL1  
VPSV  
JP8  
DC2H  
R27  
100Ω  
R24  
100Ω  
JP9  
OPTIONAL 4-POLE LOW-PASS  
FILTER  
OPTIONAL 4-POLE LOW-PASS  
FILTER  
13  
14  
C58  
0.1µF  
L19  
L17  
SAT  
SAT  
C54  
0.1µF  
L11  
120nH FB  
L9  
L1  
SAT  
L15  
SAT  
120nH FB  
V
+A  
IN  
V
+B  
IN  
C64  
SAT  
C65  
SAT  
JP17  
C67  
SAT  
C66  
SAT  
JP12  
L20  
SAT  
C55  
L10  
C56  
L18  
SAT  
L14  
SAT  
L16  
SAT  
L8  
0.1µF 120nH FB  
0.1µF  
120nF FB  
V
–B  
V
–A  
IN  
IN  
JP7  
DC2L  
R25  
100Ω  
R26  
+5VGA  
C45  
0.1µF  
100Ω  
C85  
1nF  
JP10  
Figure 76. Schematic, TGC, VGA Section  
Rev. C | Page 2ꢀ of 32  
AD8331/AD8332  
VR1  
+3.3VAVDD  
ADP3339AKC-3.3  
L5  
C44  
1µF  
120nH FB  
+3.3VCLK  
C31  
+5V  
+
C22  
0.1µF  
C21  
1nF  
0.1µ  
F
3
2
1
ADCLK  
IN OUT GND  
L4  
R11  
C2  
10µF  
6.3V  
+
120nH FB  
100Ω  
+3.3VADDIG  
C30  
R10  
1
2
3
4
5
6
64  
63  
62  
61  
60  
59  
JP 2  
SHARED  
REF  
AGND  
AVDD  
0Ω  
R5  
OUT  
TAB  
33Ω  
0.1µ  
F
V
+_A  
–_A  
VIN+_A  
VIN –_A  
AGND  
CLK_A  
SHARED_REF  
MUX_SELECT  
PDWN_A  
OEB_A  
OTRA_A  
D11_A(MSB)  
D10_A  
IN  
Y
C61  
18pF  
L3  
N
120nH FB  
V
+3.3VAVDD  
C29  
IN  
R14  
4.7kΩ  
R6  
33Ω  
R4  
R12  
1.5kΩ  
+3.3VADDIG  
0.1µ  
F
C17  
C18  
1nF  
1.5kΩ  
R15  
0Ω  
0.1µF  
C33  
10µF  
6.3V  
AVDD  
L2  
C35  
0.1µF  
120nH FB  
+3.3VDVDD  
C1  
REFT_A  
+
C40  
0.1µF  
C52  
10nF  
7
8
58  
57  
56  
55  
54  
53  
0.1µF  
REFB_A  
VREF  
OTR_A  
C36  
0.1µF  
TP 9  
D11_A  
D10_A  
D9_A  
+
VREF  
C12  
10µF  
6.3V  
C32  
0.1µF  
9
SENSE  
REFB_B  
C34  
10µF  
6.3V  
C38  
0.1µF  
10  
11  
12  
13  
D9_A  
C39  
10µF  
C57  
10nF  
REFT_B  
AVDD  
AGND  
VIN –_B  
VIN+_B  
AGND  
AVDD  
CLK_B  
DCS  
D8_A  
D8_A  
C37  
0.1µF  
+3.3VADDIG  
DRGND  
DRVDD  
D7_A  
C23  
0.1µF  
C25  
1nF  
C16  
0.1µF  
C15  
1nF  
1.5kΩ  
1.5kΩ  
52  
51  
50  
49  
R8  
33Ω  
14  
15  
16  
17  
18  
19  
V
V
–B  
+B  
D7_A  
D6_A  
D5_A  
D4_A  
D3_A  
D2_A  
D1_A  
D0_A  
DNC  
IN  
C62  
18pF  
D6_A  
IN  
R7  
33Ω  
+3.3VCLK  
D5_A  
R18  
48  
47  
46  
D4_A  
S2  
C63  
499Ω  
C20  
0.1µF  
C19  
1nF  
EXT CLOCK  
0.1µF  
R16  
5kΩ  
D3_A  
R17  
49.9Ω  
D2_A  
R19  
499Ω  
JP 3  
JP 11  
20  
21  
22  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
DFS  
D1_A  
R20  
4.7kΩ  
R41  
4.7kΩ  
PDWN_B  
OEB_B  
DNC  
D0_A  
DNC  
+3.3VCLK  
ADCLK  
TP 12  
23  
24  
25  
26  
27  
28  
29  
DNC  
DNC  
DNC  
DNC  
C47  
10µF  
6.3V  
+
C86  
0.1µF  
ADCLK  
4
DNC  
DRVDD  
DRGND  
OTRB_B  
D11_B(MSB)  
D10_B  
C11  
+
C13  
1nF  
C14  
0.1µF  
10µF  
U5  
74VHC04  
U5  
74VHC04  
EXT  
3
6.3V  
D0_B  
D1_B  
D2_B  
D0_B  
R9  
0Ω  
4
1
V
OE  
3
5
1
9
2
DD  
20MHz  
OUT  
JP 4  
D1_B  
OTR_B  
D11_B  
D10_B  
D9_B  
2
3
1
INT  
D2_B  
GND  
TP 13  
DATA  
2
U5  
U5  
74VHC04  
CLK  
DRGND  
DRVDD  
D3_B  
74VHC04  
3
U6  
SG-636PCE  
6
8
D9_B  
1
2
JP 1  
D3_B  
D4_B  
D5_B  
30  
31  
32  
35  
34  
33  
D8_B  
D8_B  
U5  
74VHC04  
D4_B  
D7_B  
D7_B  
13  
12  
10  
D5_B  
D6_B  
D6_B  
SPARES  
11  
+3.3VADDIG  
U5  
74VHC04  
C24  
1nF  
C26  
0.1µF  
Figure 77. Converter Schematic  
Rev. C | Page 28 of 32  
AD8331/AD8332  
R40  
22  
1
20  
+3.3VDVDD  
U10  
74VHC541  
GND  
DATACLKA  
G1  
VCC  
+
C3  
0.1µF  
C28  
19  
2
10  
18  
17  
16  
2
4
6
8
1
3
5
7
10µF  
G2  
A1  
A2  
A3  
22 × 4  
6.3V  
22 × 4  
1
8
1
2
8
Y1  
Y2  
Y3  
RP 9  
7
RP 1  
3
2
3
4
1
7
6
5
8
OTR_A  
D11_A  
3
4
1
6
5
4
5
6
7
8
15  
14  
13  
12  
10  
12  
14  
16  
9
D10_A  
D9_A  
D8_A  
D7_A  
A4  
A5  
A6  
A7  
Y4  
Y5  
Y6  
Y7  
22 × 4  
8
22 × 4  
11  
13  
15  
RP 10  
7
RP2  
2
3
4
2
3
4
1
2
7
6
5
8
7
6
5
9
11  
18  
20  
22  
24  
17  
19  
21  
23  
D6_A  
A8  
Y8  
22 × 4  
RP 3  
3
4
6
5
+3.3VDVDD  
26  
28  
30  
32  
25  
27  
29  
31  
33  
1
20  
10  
18  
17  
U7  
74VHC541  
G1  
G2  
A1  
A2  
VCC  
1
2
8
7
+
22 × 4  
C76  
10µF  
6.3V  
C8  
0.1µF  
C10  
0.1µF  
19  
GND  
RP 4  
8
1
2
3
4
22 × 4  
2
3
D5_A  
D4_A  
Y1  
Y2  
3
4
6
5
RP 11  
7
34  
36  
38  
40  
6
5
4
5
6
7
8
16  
15  
14  
13  
D3_A  
D2_A  
D1_A  
D0_A  
A3  
A4  
A5  
A6  
Y3  
Y4  
Y5  
Y6  
35  
37  
39  
1
8
22 × 4  
RP 12  
7
2
3
4
6
5
12  
11  
DNC  
DNC  
A7  
A8  
Y7  
Y8  
SAM080UPM  
9
+3.3VDVDD  
1
20  
10  
18  
42  
44  
46  
48  
41  
43  
45  
47  
U2  
74VHC541  
G1  
G2  
A1  
VCC  
GND  
Y1  
+
+
C27  
C7  
C9  
0.1µF  
1
8
19  
22 × 4  
10µF  
6.3V  
0.1µF  
RP 13  
22 × 4  
2
3
4
7
6
5
2
3
1
2
3
4
8
7
6
5
8
OTR_B  
RP 5  
17  
16  
15  
14  
D11_B  
D10_B  
D9_B  
D8_B  
D7_B  
A2  
A3  
A4  
A5  
Y2  
Y3  
Y4  
Y5  
4
5
6
7
8
9
50  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
49  
51  
53  
55  
57  
59  
61  
63  
65  
67  
69  
71  
73  
75  
77  
79  
22 × 4  
1
2
8
7
RP 14  
22 × 4  
1
2
3
4
RP 6  
7
6
5
13  
12  
11  
3
6
A6  
A7  
A8  
Y6  
Y7  
Y8  
4
1
5
8
D6_B  
D5_B  
22 × 4  
22 × 4  
1
2
3
4
1
8
7
6
5
8
RP 7  
+3.3VDVDD  
20  
1
19  
2
RP 15  
G1  
G2  
A1  
U3 VCC  
74VHC541  
GND  
+
C75  
10µF  
C4  
0.1µF  
C5  
0.1µF  
C6  
0.1µF  
10  
18  
22 × 4  
6.3V  
2
3
4
1
7
6
5
8
D4_B  
Y1  
RP 8  
2
3
4
7
6
5
3
4
5
6
7
8
9
17  
16  
15  
14  
D3_B  
D2_B  
D1_B  
D0_B  
DNC  
A2  
A3  
A4  
A5  
Y2  
Y3  
Y4  
Y5  
22 × 4  
RP 16  
2
3
4
7
6
5
13  
12  
11  
A6  
A7  
A8  
Y6  
Y7  
Y8  
SAM080UPM  
DNC  
R39  
22Ω  
DATACLK  
Figure 78. Interface Schematic  
Rev. C | Page 29 of 32  
AD8331/AD8332  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD8331  
PIN 1  
1
2
20 COMM  
LMD  
INH  
IDENTIFIER  
19  
18  
ENBL  
ENBV  
VPSL  
LON  
LOP  
3
4
17 COMM  
AD8331  
TOP VIEW  
(Not to Scale)  
5
16  
15  
14  
VOL  
6
VOH  
VPOS  
COML  
VIP  
7
8
VIN  
13 HILO  
MODE  
9
12  
11  
RCLMP  
VCM  
10  
GAIN  
Figure 79. 20-Lead QSOP  
Table 5. 20–Lead QSOP (RQ PACKAGE)  
Pin No.  
Name  
LMD  
INH  
Description  
1
2
LNA Signal Ground  
LNA Input  
3
4
7
6
8
9
10  
11  
12  
13  
14  
17  
16  
1ꢀ  
18  
19  
20  
VPSL  
LON  
LOP  
COML  
VIP  
VIN  
MODE  
GAIN  
VCM  
CLMP  
HILO  
VPOS  
VOH  
LNA 7V Supply  
LNA Inverting Output  
LNA Noninverting Output  
LNA Ground  
VGA Noninverting Input  
VGA Inverting Input  
Gain Slope Logic Input  
Gain Control Voltage  
Common-Mode Voltage  
Output Clamping Level  
Gain Range Select (HI or LO)  
VGA 7 V Supply  
Noninverting VGA Output  
Inverting VGA Output  
VGA Ground  
VGA Enable  
LNA Enable  
VOL  
COMM  
ENBV  
ENBL  
COMM  
VGA Ground  
Rev. C | Page 30 of 32  
AD8331/AD8332  
AD8332  
1
2
PIN 1  
IDENTIFIER  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
LMD2  
INH2  
LMD1  
INH1  
32 31 30 29  
PIN 1  
27 26 25  
28  
3
VPS2  
LON2  
LOP2  
COM2  
VIP2  
VPS1  
LON1  
LOP1  
COM1  
VIP1  
24  
23  
22  
21  
20  
19  
18  
17  
COMM  
VOH1  
VOL1  
VPSV  
NC  
VOL2  
VOH2  
COMM  
LON1  
VPS1  
INH1  
1
2
3
4
5
6
7
8
4
INDICATOR  
5
AD8332  
TOP VIEW  
(Not to Scale)  
AD8332  
TOP VIEW  
(Not to Scale)  
LMD1  
LMD2  
INH2  
VPS2  
LON2  
6
7
8
VIN2  
VIN1  
9
VCM2  
GAIN  
RCLMP  
VOH2  
VOL2  
COMM  
VCM1  
HILO  
9
10  
13 14 15 16  
11 12  
10  
11  
12  
13  
14  
18 ENB  
17 VOH1  
16 VOL1  
15 VPSV  
Figure 81. 32-Lead LFCSP  
Table 7. 32–Lead LFCSP (AC PACKAGE)  
Pin No.  
Name  
LON1  
VPS1  
INH1  
LMD1  
LMD2  
INH2  
VPS2  
LON2  
LOP2  
COM2  
VIP2  
Description  
Figure 80. 28-Lead TSSOP  
1
2
3
4
7
6
8
CH1 LNA Inverting Output  
CH1 LNA Supply 7 V  
CH1 LNA Input  
CH1 LNA Signal Ground  
CH2 LNA Signal Ground  
CH2 LNA Input  
Table 6. 28–Lead TSSOP (AR PACKAGE)  
Pin No.  
Name  
LMD2  
INH2  
VPS2  
LON2  
LOP2  
COM2  
VIP2  
Description  
1
2
3
4
7
6
8
CH2 LNA Signal Ground  
CH2 LNA Input  
CH2 Supply LNA 7 V  
CH2 LNA Inverting Output  
CH2 LNA Noninverting Output  
CH2 LNA Ground  
CH2 VGA Noninverting Input  
CH2 VGA Inverting Input  
CH2 Common-Mode Voltage  
Gain Control Voltage  
Output Clamping Resistor  
CH2 Noninverting VGA Output  
CH2 Inverting VGA Output  
VGA Ground (Both Channels)  
VGA Supply 7 V (Both Channels)  
CH1 Inverting VGA Output  
CH1 Noninverting VGA Output  
Enable—VGA/LNA  
VGA Gain Range Select (HI or LO)  
CH1 Common-Mode Voltage  
CH1 VGA Inverting Input  
CH1 VGA Noninverting Input  
CH1 LNA Ground  
CH2 LNA Supply 7 V  
CH2 LNA Inverting Output  
CH2 LNA Noninverting Output  
CH2 LNA Ground  
CH2 VGA Noninverting Input  
CH2 VGA Inverting Input  
CH2 Common-Mode Voltage  
Gain Slope Logic Input  
Gain Control Voltage  
Output Clamping Level Input  
VGA Ground  
9
10  
11  
12  
13  
14  
17  
16  
1ꢀ  
18  
19  
20  
21  
22  
23  
24  
27  
26  
2ꢀ  
28  
29  
30  
31  
32  
VIN2  
9
VCM2  
GAIN  
RCLMP  
VOH2  
VOL2  
COMM  
VPSV  
VOL1  
VOH1  
ENB  
VIN2  
10  
11  
12  
13  
14  
17  
16  
1ꢀ  
18  
19  
20  
21  
22  
23  
24  
27  
26  
2ꢀ  
28  
VCM2  
MODE  
GAIN  
RCLMP  
COMM  
VOH2  
VOL2  
NC  
VPSV  
VOL1  
VOH1  
COMM  
ENBV  
ENBL  
HILO  
CH2 Noninverting VGA Output  
CH2 Inverting VGA Output  
Not Connected  
VGA Supply 7 V  
HILO  
VCM1  
VIN1  
CH1 Inverting VGA Output  
CH1 Noninverting VGA Output  
VGA Ground  
VGA Enable  
LNA Enable  
VGA Gain Range Select (HI or LO)  
CH1 Common-Mode Voltage  
CH1 VGA Inverting Input  
CH1 VGA Noninverting Input  
CH1 LNA Ground  
VIP1  
COM1  
LOP1  
LON1  
VPS1  
INH1  
LMD1  
CH1 LNA Noninverting Output  
CH1 LNA Inverting Output  
CH1 LNA Supply 7 V  
CH1 LNA Input  
CH1 LNA Signal Ground  
VCM1  
VIN1  
VIP1  
COM1  
LOP1  
CH1 LNA Noninverting Output  
Rev. C | Page 31 of 32  
AD8331/AD8332  
OUTLINE DIMENSIONS  
9.80  
9.70  
9.60  
0.341  
BSC  
20  
1
11  
10  
0.154  
BSC  
28  
15  
0.236  
BSC  
4.50  
4.40  
4.30  
PIN 1  
6.40 BSC  
1
14  
PIN 1  
0.065  
0.049  
0.069  
0.053  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
8°  
0°  
0.010  
0.004  
0.025  
BSC  
0.012  
0.008  
SEATING  
PLANE  
0.050  
0.016  
0.010  
0.006  
8°  
0°  
0.75  
0.60  
0.45  
0.30  
0.19  
0.20  
0.09  
COPLANARITY  
0.004  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-137AD  
COMPLIANT TO JEDEC STANDARDS MO-153AE  
Figure 84. 20 Lead Shrink Outline [QSOP] (RQ-20)  
Dimensions shown in millimeters  
Figure 82. 28-Lead Thin Shrink Small Outline Package [TSSOP] (RU-28)  
Dimensions shown in millimeters  
5.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
3.25  
3.10 SQ  
2.95  
4.75  
BSC SQ  
TOP  
BOTTOM  
VIEW  
VIEW  
0.50  
0.40  
0.30  
17  
16  
8
9
0.25 MIN  
3.50 REF  
0.80 MAX  
12° MAX  
0.65 TYP  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
Figure 83. 32-Lead Frame Chip Scale Package [LFCSP] (CP-32)  
Dimensions shown in millimeters  
ORDERING GUIDE  
AD8331/AD8332  
Models  
Temperature Range  
–40°C to +87°C  
Package Description  
Package Outline  
RQ-20  
AD8331ARQ  
Shrink Small Outline Package 170 mil Body, 27 mil pitch  
Shrink Small Outline Package 170 mil Body, 27 mil pitch  
Shrink Small Outline Package 170 mil Body, 27 mil pitch  
Evaluation Board with AD8331ARQ  
AD8331ARQ-REEL  
AD8331ARQ-REELꢀ  
AD8331-EVAL  
–40°C to +87°C  
RQ-20  
RQ-20  
–40°C to +87°C  
AD8332ARU  
–40°C to +87°C  
–40°C to +87°C  
–40°C to +87°C  
–40°C to +87°C  
–40°C to +87°C  
Thin Shrink Small Outline Package (TSSOP)  
Thin Shrink Small Outline Package (TSSOP)  
Thin Shrink Small Outline Package (TSSOP)  
Lead Frame Chip Scale Package (LFCSP)  
RU-28  
RU-28  
RU-28  
CP-32  
CP-32  
AD8332ARU-REEL  
AD8332ARU-REELꢀ  
AD8332ACP-REEL  
AD8332ACP-REELꢀ  
AD8332-EVAL  
Lead Frame Chip Scale Package (LFCSP)  
Evaluation Board with AD8332ARU  
©
2003 Analog Devices, Inc. All rights reserved. Trademarks  
and registered trademarks are the property of their respective owners.  
C03199-0-11/03(C)  
Rev. C | Page 32 of 32  

相关型号:

AD8331-EVAL

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8331-EVALZ

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8331ARQ

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8331ARQ-REEL

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8331ARQ-REEL7

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8331ARQZ

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8331ARQZ-R7

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8331ARQZ-REEL

SPECIALTY CONSUMER CIRCUIT, PDSO20, MO-137AD, QSOP-20
ADI

AD8331ARQZ-REEL7

SPECIALTY CONSUMER CIRCUIT, PDSO20, MO-137AD, QSOP-20
ADI

AD8331ARQZ-RL

Ultralow Noise VGAs with Preamplifier and Programmable RIN
ADI

AD8331TRQZ-EP

Single VGA with Ultralow Noise Preamplifier and Programmable RIN
ADI

AD8331TRQZ-EP-R7

Single VGA with Ultralow Noise Preamplifier and Programmable RIN
ADI