AD8336 [ADI]

General-Purpose, −55 to +125, Wide Bandwidth, DC-Coupled VGA; 通用, -55 〜+ 125 ,宽带宽,直流耦合VGA
AD8336
型号: AD8336
厂家: ADI    ADI
描述:

General-Purpose, −55 to +125, Wide Bandwidth, DC-Coupled VGA
通用, -55 〜+ 125 ,宽带宽,直流耦合VGA

文件: 总28页 (文件大小:1237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
General-Purpose, −55°C to +125°C,  
Wide Bandwidth, DC-Coupled VGA  
AD8336  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
PRAO VGAI  
Low noise  
8
9
Voltage noise: 3 nV/√Hz  
Current noise: 3 pA/√Hz  
Small signal BW: 115 MHz  
Large signal BW: 2 V p-p = 80 MHz  
Slew rate: 550 V/µs, 2 V p-p  
Gain ranges (specified)  
−14 dB to +46 dB,  
AD8336  
4
5
INPP  
INPN  
+
PrA  
ATTENUATOR  
–60dB TO 0dB  
34dB  
1
VOUT  
GAIN CONTROL  
INTERFACE  
PWRA  
2
BIAS  
0 dB to 60 dB  
Gain scaling: 50 dB/V  
DC-coupled  
10  
13  
VPOS  
3
11  
12  
VNEG  
VCOM  
GPOS  
GNEG  
Single-ended input and output  
Supplies: 3 V to 12 V  
Temperature Range: −55°C to +125°C  
Power  
Figure 1.  
150 mW @ 3 V, −55°C < T < +125°C  
84 mW @ 3 V, PWRA = 3 V  
APPLICATIONS  
Industrial process controls  
High performance AGC systems  
I/Q signal processing  
Video  
Industrial and medical ultrasound  
Radar receivers  
GENERAL DESCRIPTION  
The AD8336 is a low noise, single-ended, linear-in-dB, general-  
purpose variable gain amplifier, usable over a large range of  
supply voltages. It features an uncommitted preamplifier  
(preamp) with a usable gain range of 6 dB to 26 dB established  
by external resistors in the classical manner. The VGA gain  
range is 0 dB to 60 dB, and its absolute gain limits are −26 dB to  
+34 dB. When the preamplifier gain is adjusted for 12 dB, the  
combined 3 dB bandwidth of the preamp and VGA is 100 MHz,  
and the amplifier is fully usable to 80 MHz. With 5 V supplies,  
the maximum output swing is 2 V p-p.  
The large supply voltage range makes the AD8336 particularly  
suited for industrial medical applications and for video circuits.  
Dual-supply operation enables bipolar input signals, such as  
those generated by photodiodes or photomultiplier tubes.  
The fully independent voltage feedback preamp allows both  
inverting and noninverting gain topologies, making it a fully  
bipolar VGA. The AD8336 can be used within the specified  
gain range of −14 dB to +60 dB by selecting a preamp gain  
between 6 dB and 26 dB and choosing appropriate feedback  
resistors. For the nominal preamp gain of 4×, the overall gain  
range is −14 dB to +46 dB.  
Thanks to its X-Amp® architecture, excellent bandwidth  
uniformity is maintained across the entire gain range of the  
VGA. Intended for a broad spectrum of applications, the  
differential gain control interface provides precise linear-in-dB  
gain scaling of 50 dB/V over the temperature span of −55°C to  
+125 °C. The differential gain control is easy to interface with a  
variety of external circuits within the common-mode voltage  
limits of the AD8336.  
In critical applications, the quiescent power can be reduced by  
about half by using the power adjust pin, PWRA. This is  
especially useful when operating with high supply voltages of  
up to 12 V, or at high temperatures.  
The operating temperature range is −55°C to +125°C. The  
AD8336 is available in a 16-lead LFCSP (4 mm × 4 mm).  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD8336  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Setting the Gain.......................................................................... 22  
Noise ............................................................................................ 22  
Offset Voltage.............................................................................. 22  
Applications..................................................................................... 23  
Amplifier Configuration ........................................................... 23  
Preamplifier................................................................................. 23  
Circuit Configuration for Noninverting Gain ................... 23  
Circuit Configuration for Inverting Gain........................... 24  
Using the Power Adjust Feature ............................................... 24  
Driving Capacitive Loads.......................................................... 24  
Evaluation Board ............................................................................ 25  
Optional Circuitry...................................................................... 25  
Board Layout Considerations................................................... 25  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Functional Descriptions.......................... 7  
Typical Performance Characteristics ............................................. 8  
Test Circuits ..................................................................................... 17  
Theory of Operation ...................................................................... 21  
Overview...................................................................................... 21  
Preamplifier................................................................................. 21  
VGA.............................................................................................. 21  
REVISION HISTORY  
10/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
AD8336  
SPECIFICATIONS  
VS = 5 V, T = 25°C, gain range = −14 dB to +46 dB, preamp gain = 4×, f = 1 MHz, CL = 5 pF, RL = 500 Ω, PWRA = GND, unless  
otherwise specified.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
PREAMPLIFIER  
−3 dB Small Signal Bandwidth  
−3 dB Large Signal Bandwidth  
Bias Current, Either Input  
Differential Offset Voltage  
Input Resistance  
VOUT = 10 mV p-p  
VOUT = 2 V p-p  
150  
85  
725  
±±00  
900  
3
MHz  
MHz  
nA  
μV  
kΩ  
Input Capacitance  
pF  
PREAMPLIFIER + VGA  
–3 dB Small Signal Bandwidth  
VOUT = 10 mV p-p  
115  
40  
20  
MHz  
MHz  
MHz  
MHz  
VOUT = 10 mV p-p, PWRA = 5 V  
VOUT = 10 mV p-p, PrA gain = 20×  
VOUT = 10 mV p-p, PrA gain = –3×  
125  
–3 dB Large Signal Bandwidth  
Slew Rate  
VOUT = 2 V p-p  
80  
30  
20  
100  
550  
3.0  
MHz  
MHz  
MHz  
MHz  
V/µs  
VOUT = 2 V p-p, PWRA = 5 V  
VOUT = 2 V p-p, PrA gain = 20×  
VOUT = 2 V p-p, PrA gain = –3×  
VOUT = 2 V p-p  
Short-Circuit Preamp Input Voltage  
Noise Spectral Density  
±3 V ≤ VS ≤ ±12 V  
nV/√Hz  
Input Current Noise Spectral Density  
Output Referred Noise  
3.0  
pA/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
VGAIN = 0.7 V, PrA gain = 4×  
±00  
190  
2500  
200  
700  
250  
VGAIN = –0.7 V, PrA gain = 4×  
VGAIN = 0.7 V, PrA gain = 20×  
VGAIN = –0.7 V, PrA gain = 20×  
VGAIN = 0.7 V, –55°C ≤ T ≤ +125°C  
VGAIN = –0.7 V, –55°C ≤ T ≤ +125°C  
DYNAMIC PERFORMANCE  
Harmonic Distortion  
VGAIN = 0 V, VOUT = 1 V p-p  
HD2  
HD3  
HD2  
HD3  
f = 1 MHz  
f = 1 MHz  
f = 10 MHz  
f = 10 MHz  
VGAIN = –0.7 V  
VGAIN = +0.7 V  
VGAIN = 0 V, VOUT = 1 V p-p, f1 = 0.95 MHz, f2 = 1.05 MHz  
VGAIN = 0 V, VOUT = 1 V p-p, f1 = 9.95 MHz, f2 = 10.05 MHz  
VGAIN = 0 V, VOUT = 2 V p-p, f1 = 0.95 MHz, f2 = 1.05 MHz  
VGAIN = 0 V, VOUT = 2 V p-p, f1 = 9.95 MHz, f2 = 10.05 MHz  
VGAIN = 0 V, VOUT = 1 V p-p, f = 1 MHz  
VGAIN = 0 V, VOUT = 1 V p-p, f = 10 MHz  
VGAIN = 0 V, VOUT = 2 V p-p, f = 1 MHz  
VGAIN = 0 V, VOUT = 2 V p-p, f = 10 MHz  
VGAIN = 0.7 V, VIN = 100 mV p-p to 5 mV p-p  
1 MHz < f < 10 MHz, full gain range  
1 MHz < f < 10 MHz, full gain range  
–58  
–±8  
–±0  
–±0  
11  
–23  
–71  
–±9  
–±0  
–58  
34  
32  
34  
33  
50  
±1  
±3  
dBc  
dBc  
dBc  
dBc  
dBm1  
dBm  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dBm  
dBm  
ns  
Input 1 dB Compression Point  
Two-Tone Intermodulation  
Distortion (IMD3)  
Output Third-Order Intercept  
Overdrive Recovery  
Group Delay Variation  
PrA Gain = 20 ×  
ns  
ns  
Rev. 0 | Page 3 of 28  
 
AD8336  
Parameter  
ABSOLUTE GAIN ERROR2  
Conditions  
Min  
0
0
−1.25 ±0.2  
±0.5  
Typ  
Max  
±
3
+1.25  
1.25  
Unit  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
−0.7 V < VGAIN < −0.± V  
−0.± V < VGAIN < −0.5 V  
−0.5 V < VGAIN < 0.5 V  
−0.5 V < VGAIN < 0.5 V, ±3 V ≤ VS ≤ ±12 V  
−0.5 V < VGAIN < 0.5 V, −55 °C ≤ T ≤ +125 °C  
−0.5 V < VGAIN < 0.5 V, PrA gain = −3×  
0.5 V < VGAIN < 0.± V  
1 to 5  
0.5 to1.5  
±0.5  
±0.5  
−1.5 to −3.0  
−1 to −5  
−4.0  
−9.0  
0
0
0.± V < VGAIN < 0.7 V  
GAIN CONTROL INTERFACE  
Gain Scaling Factor  
Intercept  
48  
49.9  
1±.4  
4.5  
52  
dB/V  
dB  
dB  
dB  
V
μA  
pF  
ns  
Preamp + VGA  
VGA Only  
Gain Range  
Input Voltage (VGAIN) Range  
Input Current  
Input Capacitance  
Response Time  
58  
−VS  
±0  
±2  
+VS  
No foldover  
1
±0 dB gain change  
300  
OUTPUT PERFORMANCE  
Output Impedance, DC to 10 MHz  
Output Signal Swing  
±3 V ≤ VS ≤ ±12 V  
2.5  
V
V
mA  
mA  
mA  
mA  
mV  
mV  
mV  
RL ≥ 500 Ω (for |VSUPPLY| ≤ ±5V); RL ≥ 1 kΩ above that  
RL ≥ 1 kΩ (for |VSUPPLY| = ±12V)  
Linear operation − minimum discernable distortion  
VS = ±3 V  
VS = ±5 V  
VS = ±12 V  
VGAIN = 0.7 V, gain = 200×  
±3 V ≤ VS ≤ ±12 V  
−55°C ≤ T ≤ +125°C  
|VSUPPLY| − 1.5  
|VSUPPLY| − 2.25  
20  
+123/−72  
+123/−72  
+72/−73  
−125  
Output Current  
Short-Circuit Current  
Output Offset Voltage  
−250  
150  
−200  
−200  
PWRA Pin  
Normal Power (Logic Low)  
Low Power (Logic High)  
Normal Power (Logic Low)  
Low Power (Logic High)  
Normal Power (Logic Low)  
Low Power (Logic High)  
POWER SUPPLY  
Supply Voltage Operating Range  
Quiescent Current  
VS = ±3 V  
VS = ±3 V  
VS = ±3 V  
VS = ±5 V  
VS = ±5 V  
VS = ±12 V  
VS = ±12 V  
0.7  
1.2  
3.2  
V
V
V
V
V
V
1.5  
2.0  
4.0  
±3  
22  
±12  
30  
V
25  
−55°C ≤ T ≤ +125°C  
PWRA = 3 V  
23 to 31  
14  
2±  
23 to 31  
14  
28  
mA  
mA  
mA  
10  
22  
18  
30  
VS = ±5 V  
−55°C ≤ T ≤ +125°C  
PWRA = 5 V  
10  
23  
18  
31  
VS = ±12 V  
−55°C ≤ T ≤ +125°C  
PWRA = 5 V  
24 to 33  
1±  
Rev. 0 | Page 4 of 28  
AD8336  
Parameter  
Conditions  
VS = ±3 V  
VS = ±5 V  
VS = ±12 V  
VGAIN = 0.7 V, f = 1 MHz  
Min  
Typ  
150  
2±0  
±72  
−40  
Max  
Unit  
mW  
mW  
mW  
dB  
Power Dissipation  
PSRR  
1 All dBm values are calculated with 50 Ω reference, unless otherwise noted.  
2 Conformance to theoretical gain expression (see the Setting the Gain section).  
Rev. 0 | Page 5 of 28  
AD8336  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under the Absolute Maximum  
Ratings may cause permanent damage to the device. This is a  
stress rating only; functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage (VPOS, VNEG)  
Input Voltage (INPP, INPN)  
Gain Voltage (GPOS, GNEG)  
PWRA  
Power Dissipation  
VS ≤ ±5 V  
15 V  
VPOS, VNEG  
VPOS, VNEG  
5 V, GND  
0.43 W  
1.12 W  
±5 V < VS ≤ ±12 V  
Operating Temperature Range  
±3 V < VS ≤ ±10 V  
±10 V < VS ≤ ±12 V  
Storage Temperature Range  
Lead Temperature (Soldering ±0 sec)  
ESD CAUTION  
–55°C to +125°C  
–55°C to +85°C  
–±5°C to +150°C  
300°C  
Thermal Data (4-layer JEDEC board, no air  
flow, exposed pad soldered to PC board)  
θJA  
θJB  
θJC  
ΨJT  
ΨJB  
58.2°C/W  
35.9°C/W  
9.2°C/W  
1.1°C/W  
34.5°C/W  
Rev. 0 | Page ± of 28  
 
 
AD8336  
PIN CONFIGURATION AND FUNCTIONAL DESCRIPTIONS  
16 15 14 13  
VOUT  
PWRA  
VCOM  
INPP  
1
2
3
4
12 GNEG  
11 GPOS  
10 VNEG  
PIN 1  
INDICATOR  
AD8336  
TOP VIEW  
(Not to Scale)  
9
VGAI  
5
6
7
8
NC = NO CONNECT  
Figure 2. 16-Lead LFCSP Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No. Mnemonic Function  
1
2
3
4
5
±
VOUT  
PWRA  
VCOM  
INPP  
INPN  
NC  
Output Voltage.  
Power Control. Normal power when grounded; power reduced by half if VPWRA is pulled high.  
Common-Mode Voltage. Normally GND when using a dual supply.  
Positive Input to Preamp.  
Negative Input to Preamp.  
No Connect.  
7
NC  
No Connect.  
8
9
PRAO  
VGAI  
VNEG  
GPOS  
GNEG  
VPOS  
NC  
Preamp Output.  
VGA Input.  
Negative Supply.  
Positive Gain Control Input.  
Negative Gain Control Input.  
Positive Supply.  
No Connect.  
No Connect.  
No Connect.  
10  
11  
12  
13  
14  
15  
1±  
NC  
NC  
Rev. 0 | Page 7 of 28  
 
AD8336  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 5 V, T = 25°C, gain range = −14 dB to +46 dB, PrA gain = +4×, f = 1 MHz, CL = 5 pF, RL = 500 Ω, PWRA = GND, unless otherwise  
specified.  
50  
40  
2.0  
T = +125°C  
T = +25°C  
T = –55°C  
T = +125°C  
T = +25°C  
T = –55°C  
1.5  
1.0  
30  
0.5  
20  
0
10  
–0.5  
–1.0  
–1.5  
–2.0  
0
–10  
–20  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
V
(mV)  
V
(mV)  
GAIN  
GAIN  
Figure 3. Gain vs. VGAIN for Three Values of Temperature (T)  
Figure 6. Gain Error vs. VGAIN for Three Values of Temperature (T)  
50  
40  
2.0  
V
V
V
= ±12V  
= ±5V  
= ±3V  
V
V
V
= ±12V  
= ±5V  
= ±3V  
S
S
S
S
S
S
1.5  
1.0  
30  
0.5  
20  
0
10  
–0.5  
–1.0  
–1.5  
–2.0  
0
–10  
–20  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
V
(mV)  
V
(mV)  
GAIN  
GAIN  
Figure 4. Gain vs. VGAIN for Three Values of Supply Voltage (VS)  
Figure 7. Gain Error vs. VGAIN for Three Values of Supply Voltage (VS)  
70  
2.0  
PREAMP GAIN = 20×  
PREAMP GAIN = 4×  
60  
50  
1.5  
1.0  
0.5  
40  
30  
PREAMP GAIN = 20×  
PREAMP GAIN = 4×  
0
20  
–0.5  
–1.0  
–1.5  
–2.0  
10  
0
–10  
–20  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
V
(mV)  
V
(mV)  
GAIN  
GAIN  
Figure 5 Gain vs. VGAIN for Preamp Gains of 4× and 20×  
Figure 8. Gain Error vs. VGAIN for Preamp Gains of 4× and 20×  
Rev. 0 | Page 8 of 28  
 
 
AD8336  
2.0  
1.5  
50  
40  
30  
20  
10  
0
60 UNITS  
PREAMP GAIN = 4×, f = 1MHz  
PREAMP GAIN = 4×, f = 10MHz  
PREAMP GAIN = 20×, f = 1MHz  
PREAMP GAIN = 20×, f = 10MHz  
V
= –0.3V  
= +0.3V  
GAIN  
V
GAIN  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–800 –600  
–400  
–200  
0
200  
400  
600  
800  
V
(mV)  
GAIN  
GAIN ERROR (dB)  
Figure 9. Gain Error vs. VGAIN at 1 MHz and 10 MHz and  
for Preamp Gains of 4× and 20×  
Figure 12. Gain Error Histogram  
50  
40  
30  
20  
10  
0
2.0  
1.5  
60 UNITS  
PREAMP GAIN = –3×, f = 1MHz  
PREAMP GAIN = –3×, f = 10MHz  
PREAMP GAIN = –19×, f = 1MHz  
–0.3V V  
0.3V  
GAIN  
PREAMP GAIN = –19×, f = 10MHz  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
49.6  
49.7  
49.8  
49.9  
50.0  
50.1  
50.2  
V
(mV)  
GAIN  
GAIN SCALING (dB/V)  
Figure 13. Gain Scaling Factor Histogram  
Figure 10. Gain Error vs. VGAIN at 1 MHz and 10 MHz and  
for Inverting Preamp Gains of −3× and −19×  
20  
0
50  
45  
40  
–20  
V
V
V
= ±12V  
= ±5V  
= ±3V  
S
S
S
–40  
–60  
35  
0
–80  
–100  
–120  
–140  
–160  
–180  
–200  
–220  
–5  
–10  
–15  
T = +125°C  
T = +85°C  
T = +25°C  
T = –40°C  
T = –55°C  
–15  
–10  
–5  
0
5
10  
15  
COMMON-MODE VOLTAGE OF V  
GAIN  
–0.8  
–0.6  
–0.4  
–0.2  
0
0.2  
0.4  
0.6  
0.8  
V
(V)  
GAIN  
Figure 14. Output Offset Voltage vs. VGAIN for  
Various Values of Temperature (T)  
Figure 11. Common-Mode Voltage at Pin VGAIN vs. VGAIN  
Rev. 0 | Page 9 of 28  
AD8336  
20  
0
50  
40  
VGAIN = +0.7V  
+0.5V  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
30  
+0.2V  
0V  
20  
10  
–0.2V  
0
–0.5V  
–0.7V  
–10  
–20  
–30  
V
V
V
= ±12V  
= ±5V  
= ±3V  
S
S
S
–180  
–200  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M 200M  
–0.8  
–0.6  
–0.4  
–0.2  
0
0.2  
0.4  
0.6  
0.8  
V
(V)  
GAIN  
Figure 15. Output Offset Voltage vs. VGAIN for  
Three Values of Supply Voltage (VS)  
Figure 18. Frequency Response for Various Values of VGAIN  
30  
20  
10  
0
50  
40  
VGAIN = +0.7V  
+0.5V  
SAMPLE SIZE = 60 UNITS  
= 0.7V  
V
GAIN  
30  
+0.2V  
20  
0V  
–240 –200 –160 –120  
–80  
–40  
0
40  
80  
OUTPUT OFFSET (mV)  
10  
–0.2V  
30  
20  
10  
0
0
V
= 0V  
GAIN  
–0.5V  
–0.7V  
–10  
–20  
–30  
LOW POWER MODE  
–24  
–20  
–16  
–12  
–8  
–4  
0
4
8
100k  
1M  
10M  
100M 200M  
FREQUENCY (Hz)  
OUTPUT OFFSET (mV)  
Figure 16. Output Offset Histogram  
Figure 19. Frequency Response for Various Values of VGAIN, Low Power Mode  
70  
50  
60 UNITS  
V
GAIN  
= +0.7V  
60  
50  
40  
30  
20  
10  
0
+0.5V  
40  
30  
20  
10  
0
+0.2V  
0V  
–0.2V  
–0.5V  
–0.7V  
PREAMP GAIN = 20×  
–10  
100k  
1M  
10M  
100M 200M  
16.25  
16.30  
16.35  
16.40  
16.45  
16.50  
16.55  
FREQUENCY (Hz)  
INTERCEPT (dB)  
Figure 17. Intercept Histogram  
Figure 20. Frequency Response for Various Values of VGAIN  
when the Preamp Gain is 20×  
Rev. 0 | Page 10 of 28  
AD8336  
50  
40  
30  
25  
20  
15  
10  
5
VGAIN = +0.7V  
+0.5V  
GAIN = 20×  
GAIN = 4×  
30  
20  
+0.2V  
0V  
10  
–0.2V  
0
–0.5V  
–0.7V  
0
–10  
–20  
–30  
–5  
–10  
V
V
V
= ±12V  
= ±5V  
= ±3V  
S
S
S
PREAMP GAIN = –3×  
100k  
1M  
10M  
100M  
500M  
100k  
1M  
10M  
100M 200M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. Frequency Response for Various Values of VGAIN  
for Preamp Gain of −3×  
Figure 24. Preamp Frequency Response for Three Values of Supply Voltage (VS)  
and Inverting Gain Values of −3× and −19×  
20  
25  
20  
15  
10  
5
PREAMP GAIN = 20×  
PREAMP GAIN = 4×  
V
= 0V  
GAIN  
15  
10  
5
0
C
C
C
C
= 47pF  
= 22pF  
= 10pF  
= 0pF  
LOAD  
LOAD  
LOAD  
LOAD  
–5  
–10  
0
1M  
10M  
100M  
100k  
1M  
10M  
100M 200M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 25. Group Delay vs. Frequency for Preamp Gains of 4× and 20×  
Figure 22. Frequency Response for Various Values of Load Capacitance (CLOAD  
)
1k  
30  
GAIN = 20×  
25  
20  
100  
10  
15  
GAIN = 4×  
10  
5
1
0
0.1  
V
V
V
= ±12V  
= ±5V  
= ±3V  
S
S
S
–5  
0.01  
100k  
–10  
100k  
1M  
10M  
100M  
500M  
1M  
10M  
100M  
500M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. Preamp Frequency Response for Three Values of Supply Voltage (VS)  
and for Preamp Gains of 4× and 20×  
Figure 26. Output Resistance vs. Frequency of the Preamplifier  
Rev. 0 | Page 11 of 28  
AD8336  
1k  
100  
10  
1k  
100  
10  
f = 5MHz  
PREAMP GAIN = 4×  
1
0.1  
V
V
V
= ±12V  
= ±5V  
= ±3V  
S
S
S
PREAMP GAIN = 20×  
1
–800  
0.01  
100k  
–600  
–400  
–200  
0
200  
400  
600  
800  
1M  
10M  
100M  
500M  
V
(mV)  
GAIN  
FREQUENCY (Hz)  
Figure 27. Output Resistance vs. Frequency of the VGA  
for Three Values of Supply Voltage (VS)  
Figure 30. Input Referred Noise vs. VGAIN for Preamp Gains of 4× and 20×  
1000  
900  
800  
700  
6
f = 5MHz  
V
= 0.7V  
GAIN  
5
4
3
2
1
600  
500  
400  
300  
200  
100  
0
T = +125°C  
T = +85°C  
T = +25°C  
T = –40°C  
T = –55°C  
V
V
V
= ±12V  
= ±5V  
= ±3V  
S
S
S
0
100k  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
1M  
10M  
FREQUENCY (Hz)  
100M  
V
(mV)  
GAIN  
Figure 31. Short-Circuit Input Referred Noise vs. Frequency at Maximum Gain  
for Three Values of Power Supply Voltage (VS)n  
Figure 28. Output Referred Noise vs. VGAIN at Various Temperatures (T)  
6
3000  
V
= 0.7V  
GAIN  
PREAMP GAIN = –3×  
f = 5MHz  
PREAMP GAIN = 20×  
2700  
5
2400  
2100  
4
3
2
1
1800  
1500  
1200  
900  
T = +125°C  
T = +85°C  
T = +25°C  
T = –40°C  
T = –55°C  
600  
300  
0
0
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
V
(mV)  
GAIN  
Figure 32. Short-Circuit Input Referred Noise vs. Frequency  
at Maximum Inverting Gain  
Figure 29. Output Referred Noise vs. VGAIN at Various Temperatures (T)  
when the Preamp Gain is 20×  
Rev. 0 | Page 12 of 28  
AD8336  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
100  
10  
1
V
V
= 2V p-p  
= 0V  
V
= 0.7V  
OUT  
GAIN  
GAIN  
f = 5MHz  
HD2  
HD3  
INPUT REFERRED NOISE  
R
THERMAL NOISE ALONE  
S
0.1  
10  
100  
1k  
10k  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
SOURCE RESISTANCE ()  
LOAD CAPACITANCE (pF)  
Figure 36. Harmonic Distortion vs. Load Capacitance  
Figure 33. Input Referred Noise vs. Source Resistance  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
70  
60  
50  
40  
30  
20  
10  
0
OUTPUT SWING OF PREAMP  
V
= 1V p-p  
OUT  
f = 10MHz  
LIMITS V  
TO 400mV  
GAIN  
SIMULATED  
DATA  
50SOURCE  
HD2 @ 1MHz  
HD2 @ 10MHz  
HD3 @ 1MHz  
HD3 @ 10MHz  
UNTERMINATED  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
–600  
–400  
–200  
0
200  
400  
600  
800  
V
(mV)  
V
(mV)  
GAIN  
GAIN  
Figure 34. Noise Figure vs. VGAIN  
Figure 37. 2nd and 3rd Harmonic Distortion vs. VGAIN at 1 MHz and 10 MHz  
–40  
–20  
V
V
= 2V p-p  
= 0V  
HD2  
f = 5MHz  
OUTPUT SWING OF PREAMP LIMITS  
LEVELS  
OUT  
V
GAIN  
GAIN  
f = 5MHz  
–45  
–50  
–55  
–60  
–65  
–30  
–40  
–50  
HD2  
HD3  
–60  
–70  
–80  
V
= 0.5V p-p  
= 1V p-p  
= 2V p-p  
= 4V p-p  
OUT  
V
V
V
OUT  
OUT  
OUT  
–70  
0
200 400 600 800 1.0k 1.2k 1.4k 1.6k 1.8k 2.0k 2.2k  
–600  
–400  
–200  
0
200  
(mV)  
400  
600  
800  
LOAD RESISTANCE ()  
V
GAIN  
Figure 35. Harmonic Distortion vs. Load Resistance  
Figure 38. 2nd Harmonic Distortion vs. VGAIN  
for Four Values of Output Voltage (VOUT  
)
Rev. 0 | Page 13 of 28  
AD8336  
–20  
40  
35  
30  
25  
20  
15  
10  
5
HD3  
OUTPUT SWING OF PREAMP LIMITS  
MINIMUM USABLE V LEVELS  
1MHz 500mV  
1MHz 1V  
10MHz 500mV  
10MHz 1V  
f = 5MHz  
GAIN  
–30  
–40  
–50  
–60  
–70  
–80  
V
V
V
V
= 0.5V p-p  
= 1V p-p  
= 2V p-p  
= 4V p-p  
OUT  
OUT  
OUT  
OUT  
V
V
= 1V p-p  
OUT  
= 0V  
GAIN  
COMPOSITE INPUTS SEPARATED BY 100kHz  
0
–600  
–400  
–200  
0
200  
400  
600  
800  
–800  
–600 –400 –200 200 400  
0
600  
800  
V
(mV)  
V
(mV)  
GAIN  
GAIN  
Figure 39. 3rd Harmonic Distortion vs. VGAIN  
for Four Values of Output Voltage (VOUT  
Figure 42. Output Referred IP3 (OIP3) vs. VGAIN  
at Two Frequencies and Two Input Levels  
)
30  
20  
–20  
–30  
–40  
–50  
–60  
–70  
V
V
= 2V p-p  
GAIN  
OUT  
INPUT LEVEL LIMITED  
BY GAIN OF PREAMP  
= 0V  
V
V
= ±12V  
= ±5V  
S
S
10  
V
= ±3V  
S
HD2  
0
–10  
–20  
–30  
HD3  
–800  
–600  
–400  
–200  
0
200  
400  
600  
800  
1M  
10M  
50M  
V
(mV)  
FREQUENCY (Hz)  
GAIN  
Figure 40. Harmonic Distortion vs. Frequency  
Figure 43. Input P1dB (IP1dB) vs. VGAIN at Three Power Supply Values (VS)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
3
2
1
0
V
= 1V p-p  
= 0V  
OUT  
V
GAIN  
TONES SEPARATED BY 100kHz  
V
V
(V)  
(V)  
IN  
OUT  
–1  
–2  
–3  
–100  
1M  
10M  
FREQUENCY (Hz)  
100M  
0
100  
TIME (ns)  
200  
300  
Figure 41. IMD3 vs. Frequency  
Figure 44. Large Signal Pulse Response of the Preamp  
Rev. 0 | Page 14 of 28  
AD8336  
0.6  
0.4  
25  
20  
15  
10  
2.5  
2.0  
1.5  
1.0  
60  
V
= 0.7V  
GAIN  
OUTPUT  
= 0.7V  
40  
V
GAIN  
PREAMP GAIN = –3  
0.2  
20  
5
0
0.5  
0
0
0
–5  
–0.5  
–0.2  
–0.4  
–0.6  
–20  
–40  
–60  
–10  
–15  
–20  
–25  
–1.0  
–1.5  
–2.0  
INPUT  
INPUT  
OUTPUT WHEN PWRA = 0  
OUTPUT WHEN PWRA = 1  
–2.5  
350  
–100 –50  
0
50  
100  
150  
200  
250  
300  
–100 –50  
0
50  
100  
150  
200  
250  
300  
350  
TIME (ns)  
TIME (ns)  
Figure 45. Noninverting Small Signal Pulse Response for Both Power Levels  
Figure 48. Inverting Gain Large Signal Pulse Response  
0.6  
0.4  
60  
20  
15  
2.0  
V
= 0.7V  
OUTPUT  
= 0.7V  
GAIN  
V = ±3V  
S
1.5  
40  
V
GAIN  
10  
1.0  
PREAMP GAIN = –3  
0.2  
20  
5
0.5  
0
0
0
0
–5  
–0.5  
–1.0  
–1.5  
–2.0  
–0.2  
–0.4  
–0.6  
–20  
–40  
–60  
INPUT  
C
C
C
C
= 0pF  
L
L
L
L
INPUT  
= 10pF  
= 22pF  
= 47pF  
–10  
–15  
–20  
–100 –50  
0
50  
100  
150  
200  
250  
300  
350  
–100 –50  
0
50  
100 150 200 250 300 350 400  
TIME (ns)  
TIME (ns)  
Figure 46. Inverting Gain Small Signal Pulse Response  
Figure 49. Large Signal Pulse Response for Various Values of Load  
Capacitance Using 3V Power Supplies  
25  
20  
15  
10  
2.5  
2.0  
30  
3
V
V
= 0.7V  
= ±5V  
V
= 0.7V  
GAIN  
GAIN  
S
2
20  
1.5  
1.0  
1
10  
0.5  
5
0
0
0
0
–5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
INPUT  
CL = 0pF  
–1  
–2  
–3  
–10  
–20  
–30  
C
L = 10pF  
–10  
–15  
–20  
–25  
CL = 22pF  
CL = 47pF*  
INPUT  
OUTPUT WHEN PWRA = 0  
OUTPUT WHEN PWRA = 1  
*WITH 20RESISTOR IN SERIES WITH OUTPUT.  
50 100 150 200 250  
–100 –50  
0
300  
350  
–100 –50  
0
50  
100  
150  
200  
250  
300  
350  
TIME (ns)  
TIME (ns)  
Figure 50. Large Signal Pulse Response for Various Values of Load  
Capacitance Using 5V Power Supplies  
Figure 47. Large Signal Pulse Response for Both Power Levels  
Rev. 0 | Page 15 of 28  
 
 
AD8336  
30  
3
10  
0
V
V
= 0.7V  
= ±12V  
PSRR  
POS NEG  
GAIN  
V
V
S
V
V
V
= 0.7V  
= 0V  
= –0.7V  
GAIN  
GAIN  
GAIN  
2
20  
10  
–10  
–20  
–30  
–40  
–50  
–60  
1
0
0
INPUT  
L = 0pF  
CL = 10pF*  
CL = 22pF*  
CL = 47pF*  
C
–1  
–2  
–3  
–10  
–20  
–30  
*WITH 20RESISTOR IN SERIES WITH OUTPUT  
50 100 150 200 250  
–100 –50  
0
300  
350  
100k  
1M  
FREQUENCY (Hz)  
5M  
TIME (ns)  
Figure 54 PSRR vs. Frequency for Three Values of VGAIN  
Figure 51. Large Signal Pulse Response for Various Values of Load  
Capacitance Using 12V Power Supplies  
40  
30  
20  
10  
0
2.5  
1.5  
0.5  
HIGH POWER  
LOW POWER  
V
V
OUT  
–0.5  
–1.5  
–2.5  
GAIN  
V
V
V
= ±12V  
= ±5V  
= ±3V  
S
S
S
–65 –45 –25  
–5  
15  
25  
45  
55  
75  
95  
125  
–0.5  
0
0.5  
TIME (µs)  
1.0  
1.5  
2.0  
TEMPERATURE (°C)  
Figure 55. IQ vs. Temperature for Three Values of Supply Voltage  
and High and Low Power  
Figure 52. Gain Response  
0.5  
0.4  
5
4
3
2
1
0
V
= 0.7V  
GAIN  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–1  
–2  
–3  
–4  
–5  
V
V
(V)  
(V)  
IN  
OUT  
–9  
–6  
–3  
0
3
6
TIME (µs)  
Figure 53. VGA Overdrive Recovery  
Rev. 0 | Page 1± of 28  
 
AD8336  
TEST CIRCUITS  
NETWORK ANALYZER  
NETWORK ANALYZER  
OUT  
IN  
OUT  
IN  
50  
50Ω  
50  
50Ω  
AD8336  
AD8336  
453Ω  
4
5
+
453Ω  
PrA  
1
4
5
+
49.9Ω  
PrA  
1
49.9Ω  
8
9
12  
11  
8
9
12  
11  
301Ω  
301Ω  
V
GAIN  
100Ω  
100Ω  
Figure 56. Gain vs. VGAIN and Gain Error vs. VGAIN  
Figure 59. Group Delay  
NETWORK ANALYZER  
OUT  
IN  
50  
50Ω  
AD8336  
4
5
+
PrA  
453  
50Ω  
1
453Ω  
AD8336  
DMM  
4
5
+
8
9
12  
11  
+
PrA  
1
49.9Ω  
301Ω  
¯
100Ω  
5
8
12  
11  
OPTIONAL  
C
301Ω  
LOAD  
V
GAIN  
100Ω  
Figure 57. Frequency Response  
Figure 60. Offset Voltage  
NETWORK ANALYZER  
NETWORK ANALYZER  
CONFIGURE TO  
MEASURE  
Z-CONVERTED S22  
OUT  
IN  
IN  
50  
50Ω  
50  
0Ω  
AD8336  
AD8336  
NC  
4
5
NC  
453Ω  
4
5
+
+
0Ω  
49.9Ω  
PrA  
1
PrA  
1
49.9Ω  
8
9
12  
11  
8
9
12  
11  
301Ω  
301Ω  
NC  
453Ω  
NC  
100Ω  
100Ω  
NC = NO CONNECT  
NC = NO CONNECT  
Figure 61. Output Resistance vs. Frequency  
Figure 58. Frequency Response of the Preamp  
Rev. 0 | Page 17 of 28  
 
AD8336  
OSCILLOSCOPE  
PULSE  
GENERATOR  
SPECTRUM ANALYZER  
POWER  
SPLITTER  
OUT  
CH1  
CH2  
IN  
50  
50Ω  
50  
AD8336  
OPTIONAL  
AD8336  
20453Ω  
4
5
+
PrA  
4
5
+
1
PrA  
1
49.9Ω  
8
9
12 11  
8
9
12  
11  
301Ω  
301Ω  
0.7V  
V
GAIN  
100Ω  
100Ω  
Figure 62. Input Referred Noise and Output Referred Noise  
Figure 65. Pulse Response  
OSCILLOSCOPE  
FUNCTION  
GENERATOR GENERATOR SPLITTER  
PULSE  
POWER  
NOISE FIGURE METER  
NOISE  
SINE  
WAVE  
SQUARE  
WAVE  
SOURCE  
DRIVE  
INPUT  
CH1  
CH2  
50  
50Ω  
NOISE  
SOURCE  
0  
DIFFERENTIAL  
FET PROBE  
11  
AD8336  
AD8336  
4
+
0Ω  
49.9Ω  
(OR )  
4
453Ω  
+
PrA  
PrA  
1
NC  
5
49.9Ω  
5
8
9
12  
11  
8
9
12  
301Ω  
301Ω  
V
GAIN  
100Ω  
100Ω  
NC = NO CONNECT  
Figure 63. Noise Figure vs. VGAIN  
Figure 66. Gain Response  
OSCILLOSCOPE  
–20dB  
SPECTRUM ANALYZER  
INPUT  
ARBITRARY  
WAVEFORM  
GENERATOR  
R
LOAD  
SIGNAL  
GENERATOR  
CH1  
CH2  
50  
POWER  
SPLITTER  
50  
50Ω  
LOW-PASS  
FILTER  
AD8336  
AD8336  
4
453Ω  
+
4
+
PrA  
PrA  
1
NC  
1
49.9Ω  
49.9Ω  
5
5
C
LOAD  
8
9
12  
11  
8
9
12  
11  
301Ω  
301Ω  
0.7V  
V
GAIN  
100Ω  
100Ω  
NC = NO CONNECT  
Figure 64. Harmonic Distortion  
Figure 67. VGA Overdrive Recovery  
Rev. 0 | Page 18 of 28  
AD8336  
POWER SUPPLIES  
CONNECTED TO  
NETWORK ANALYZER  
BIAS PORT  
NETWORK ANALYZER  
DMM  
(+I)  
BENCH  
POWER SUPPLY  
OUT  
50  
IN  
13  
AD8336  
50Ω  
4
5
+
BYPASS  
PrA  
1
VPOS OR VNEG  
CAPACITORS  
REMOVED FOR  
MEASUREMENT  
AD8336  
8
9
12  
11  
10  
4
5
+
PrA  
1
301  
49.9Ω  
DIFFERENTIAL  
FET PROBE  
100Ω  
DMM  
(–I)  
8
9
12  
11  
301Ω  
V
GAIN  
100Ω  
Figure 71. Power Supply Rejection Ratio  
Figure 68. Supply Current  
NETWORK ANALYZER  
SPECTRUM ANALYZER  
OUT  
IN  
IN  
50  
50Ω  
50  
453Ω  
AD8336  
AD8336  
4
+
4
5
+
PrA  
PrA  
1
1
5
100Ω  
100Ω  
49.9Ω  
8
9
12 11  
301  
8
9
12  
11  
0.7V  
301Ω  
100  
V
GAIN  
Figure 69. Frequency Response, Inverting Gain  
Figure 72. Input Referred Noise vs. Source Resistance  
SPECTRUM ANALYZER  
OSCILLOSCOPE  
PULSE  
GENERATOR  
POWER  
SPLITTER  
IN  
OUT  
CH1  
CH2  
50  
50  
50  
AD8336  
AD8336  
4
+
4
5
+
453  
PrA  
1
PrA  
1
100  
5
100Ω  
49.9  
8
9
12 11  
8
9
12 11  
301Ω  
301  
0.7V  
0.7V  
100Ω  
Figure 70. Pulse Response, Inverting Gain  
Figure 73. Short-Circuit Input Noise vs. Frequency  
Rev. 0 | Page 19 of 28  
AD8336  
SPECTRUM  
ANALYZER  
SIGNAL  
GENERATOR  
IN  
OUT  
50  
50Ω  
OPTIONAL 20dB  
ATTENUATOR  
22dB  
AD8336  
453Ω  
4
5
+
PrA  
1
49.9Ω  
8
9
12  
11  
301Ω  
V
GAIN  
100Ω  
Figure 74. IP1dB vs. VGAIN  
SPECTRUM  
ANALYZER  
SIGNAL  
GENERATOR  
OUT  
IN  
50  
50Ω  
–20dB  
AD8336 AMPLIFIER  
AD8336 DUT  
453Ω  
0Ω  
4
5
+
PrA  
4
5
+
1
PrA  
1
49.9Ω  
8
9
12  
11  
8
9
12  
11  
301Ω  
301Ω  
0.7V  
V
GAIN  
100Ω  
100Ω  
Figure 75. IP1dB vs. VGAIN, High Signal Level Inputs  
SPECTRUM ANALYZER  
INPUT  
50Ω  
+22dB –6dB  
SIGNAL  
COMBINER  
–6dB  
GENERATOR  
453Ω  
AD8336 DUT  
4
5
+
PrA  
1
49.9Ω  
+22dB  
–6dB  
SIGNAL  
GENERATOR  
8
9
12  
11  
301Ω  
V
GAIN  
100Ω  
Figure 76. IMD and OIP3  
Rev. 0 | Page 20 of 28  
AD8336  
PREAMPLIFIER  
THEORY OF OPERATION  
The gain of the uncommitted voltage feedback preamplifier is  
set with external resistors. The combined preamplifier and VGA  
gain is specified in two ranges, between −14 dB to +46 dB and  
0 dB to 60 dB. Since the VGA gain is fixed at 34 dB (50×), the  
preamp gain is adjusted for gains of 12 dB (4×) and 26 dB (200×).  
OVERVIEW  
The AD8336 is the first VGA designed for operation over  
exceptionally broad ranges of temperature and supply voltage.  
Its performance has been characterized from temperatures  
extending from −55°C to 125°C, and supply voltages from 3 V  
to 12 V. It is ideal for applications requiring dc coupling, large  
output voltage swings, very large gain ranges, extreme  
temperature variations, or a combination thereof.  
With low preamplifier gains between 2× and 4×, it may be  
desirable to reduce the high frequency gain with a shunt  
capacitor across RFB2, to ameliorate peaking in the frequency  
domain (see Figure 77). To maintain stability, the gain of the  
preamplifier must be 6 dB (2×) or greater.  
The simplified block diagram is shown in Figure 77. The  
AD8336 includes a voltage feedback preamplifier, an amplifier  
with a fixed gain of 34 dB, a 60 dB attenuator, and various bias  
and interface circuitry. The independent voltage feedback op  
amp can be used in noninverting and inverting configurations,  
and functions as a preamplifier to the variable gain amplifier  
(VGA). If desired, the op amp output (PRAO) and VGA input  
(VGAI) pins provide for connection of an interstage filter to  
eliminate noise and offset. The bandwidth of the AD8336 is dc  
to 100 MHz with a gain range of 60 dB (−14 dB to +46 dB.)  
Typical of voltage feedback amplifier configurations, the gain-  
bandwidth product of the AD8336 is fixed (at 400); thus, the  
bandwidth decreases as the gain is increased beyond the nominal  
gain value of 4×. For example, if the preamp gain is increased to  
20×, the bandwidth reduces by a factor-of-five to about 20 MHz.  
The −3 dB bandwidth of the preamplifier with a gain of 4× is  
about 150 MHz, and for the 20× gain is about 30 MHz.  
The preamp gain diminishes for an amplifier configured for  
inverting gain, using the same value of feedback resistors as for  
a noninverting amplifier, but the bandwidth remains unchanged.  
For example, if the noninverting gain is 4×, the inverting gain is  
−3×, but the bandwidth stays the same as in the noninverting  
gain of 4×. However, because the output referred noise of the  
preamplifier is the same in both cases, the input referred noise  
increases as the ratio of the two gain values. For the previous  
example, the input referred noise will increase by a factor of 4/3.  
For applications that require large supply voltages, a reduction  
in power is advantageous. The power reduction pin (PWRA)  
permits the power and bandwidth to be reduced by about half  
in such applications.  
R
FB2  
301  
*
PRAO  
VGAI  
12dB  
34dB  
INPP  
INPN  
FB1  
–60dB TO 0dB  
ATTENUATOR  
AND  
GAIN CONTROL  
INTERFACE  
VOUT  
+
_
+
PrA  
VGA  
4.48kΩ  
91.43Ω  
R
100Ω  
The architecture of the variable gain amplifier (VGA) section  
of the AD8336 is based on the Analog Devices, Inc., X-AMP  
(exponential amplifier), found in a wide variety of Analog  
Devices variable gain amplifiers. This type of VGA combines a  
ladder attenuator and interpolator, followed by a fixed-gain  
amplifier.  
BIAS  
PWRA VPOS VNEG  
GPOS  
GNEG VCOM  
*OPTIONAL DEPEAKING CAPACITOR. SEE TEXT.  
Figure 77. Simplified Block Diagram  
To maintain low noise, the output stages of both the preamplifier  
and the VGA are capable of driving relatively small load  
resistances. However, at the largest supply voltages, the signal  
current may exceed safe operating limits for the amplifiers and  
the load current must not exceed 50 mA. With a 12 V supply  
and 10 V output voltage at the preamplifier or VGA output,  
load resistances as low as 200 Ω are acceptable.  
The gain control interface is fully differential, permitting positive  
or negative gain slopes. Note that the common-mode voltage of  
the gain control inputs increases with increasing supply.  
The gain slope is 50 dB/V and the intercept is 16.4 dB when the  
nominal preamp gain is 4× (12 dB). The intercept changes with  
the preamp gain; for example, when the preamp gain is set to  
20× (26 dB) the intercept becomes 30.4 dB.  
For power supply voltages ≥ 10 V, the maximum operating  
temperature range is derated to +85°C, as the power may exceed  
safe limits (see the Absolute Maximum Ratings section).  
Pin VGAI is connected to the input of the ladder attenuator.  
The ladder ratio is R/2R and the nominal resistance is 320 Ω. To  
reduce preamp loading and large-signal dissipation, the input  
resistance at Pin VGAI is 1.28 kΩ. Safe current density and  
power dissipation levels are maintained even when large dc  
signals are applied to the ladder.  
Since harmonic distortion products may increase for various  
combinations of low impedance loads and high output voltage  
swings, it is recommended that the user determine load and  
drive conditions empirically.  
The tap resistance of the resistors within the R/2R ladder is  
640 Ω/3 or 213.3 Ω, the Johnson noise source of the attenuator.  
Rev. 0 | Page 21 of 28  
 
AD8336  
SETTING THE GAIN  
NOISE  
The overall gain of the AD8336 is the sum (in dB) or the  
product (magnitude) of the preamp gain and the VGA gain.  
The preamp gain is calculated as with any op amp, as seen in  
the Applications section. It is most convenient to think of the  
device gain in exponential terms (that is, in dB) since the VGA  
responds linearly-in-dB with changes in control voltage VGAIN at  
the gain pins.  
The noise of the AD8336 is dependent on the value of the VGA  
gain. At maximum VGAIN, the dominant noise source is the  
preamp but shifts to the VGA as VGAIN diminishes.  
The input referred noise at the highest VGA gain and a preamp  
gain of 4×, with RFB1 =100 Ω and RFB2 = 301 Ω, is 3 nV/Hz, and  
determined by the preamp and its gain setting resistors. See  
Table 4 for the noise components for the preamp.  
The gain equation for the VGA is  
Table 4. AD8336 Noise Components for Preamp Gain = 4×  
50 dB  
V
Noise Component  
Noise Voltage (nV/√Hz)  
VGA Gain (dB) = VG AIN(V) ×  
+ 4. 4dB  
Op Amp (Gain = 4×) 2.±  
RFB1 = 100 Ω  
RFB2 = 301 Ω  
VGA  
0.9±  
0.55  
0.77  
where VG = VGPOS VGNEG  
The gain and gain range of the VGA are both fixed at 34 dB and  
60 dB, respectively; thus, the composite device gain is changed  
by adjusting the preamp gain. For a preamp gain of 12 dB (4×),  
the composite gain is −14 dB to +46 dB. Thus, the calculation  
for the composite gain (in dB) is  
Using the listed values, the total noise of the AD8336 is slightly  
less than 3 nV/Hz, referred to the input. Although the output  
noise VGA is 3.1 nV/Hz, the input referred noise is 0.77 nV/Hz  
when divided by the preamplifier gain of 4×  
Composite Gain = GPRA + [VG (V) × 49.9 dB/V] + 4.4 dB  
At other than maximum gain, the noise of the VGA is determined  
from the output noise. The noise in the center of the gain range  
is about 150 nV/Hz. Since the gain of the fixed gain amplifier  
that is part of the VGA is 50×, the VGA input referred noise is  
approximately 3 nV/Hz, the same value as the preamp and  
VGA combined. This is expected since the input referred noise  
is the same at the input of the attenuator at maximum gain.  
However, the noise referred to the VGAI pin (the preamp  
output) increases by the amount of attenuation through the  
ladder network. The noise at any point along the ladder  
network is primarily comprised of the ladder resistance noise,  
the noise of the input devices, and the feedback resistor network  
noise. The ladder network and the input devices are the largest  
noise sources.  
For example, the midpoint gain when the preamp gain is 12 dB is  
12 dB + [0 V× 49.9 dB /V] + 4.4 dB = 16.4 dB  
Figure 3 is a plot of gain in dB vs. VGAIN in mV, when the  
preamp gain is 12 dB (4×). Note that the computed result  
closely matches the plot of actual gain.  
In Figure 3, the gain slope flattens at the limits of the VG input.  
The gain response is linear-in-dB over the center 80% of the  
control range of the device. Figure 78 shows the ideal gain  
characteristics for the VGA stage and composite VGA + preamp.  
70  
GAIN CHARACTERISTICS  
COMPOSITE GAIN  
60  
50  
VGA STAGE GAIN  
FOR PREAMP GAIN = 26dB  
USABLE GAIN RANGE OF  
At minimum gain, the output noise increases slightly to about  
180 nV/Hz because of the finite structure of the X-AMP.  
40  
AD8336  
30  
OFFSET VOLTAGE  
20  
Extensive cancellation circuitry included in the variable gain  
amplifier section minimizes locally generated offset voltages.  
However when operated at very large values of gain, dc voltage  
errors at the output can still result from small dc input voltages.  
When configured for the nominal gain range of −14 dB to 46 dB,  
the maximum gain is 200× and an offset of only 100 μV at the  
input generates 20 mV at the output.  
10  
0
FOR PREAMP GAIN = 12dB  
FOR PREAMP GAIN = 6dB  
–10  
–20  
–30  
–0.7  
–0.5  
–0.3  
–0.1  
0.1  
(V)  
0.3  
0.5  
0.7  
V
G
Figure 78. Ideal Gain Characteristics of the AD8336  
The primary source for dc offset errors is the preamplifier;  
ac coupling between the PRAO and VGAI pins is the simplest  
solution. In applications where dc coupling is essential, a  
compensating current can be injected at the INPN input (Pin 5)  
to cancel preamp offset. The direction of the compensating  
current depends on the polarity of the offset voltage.  
Rev. 0 | Page 22 of 28  
 
 
 
AD8336  
APPLICATIONS  
AMPLIFIER CONFIGURATION  
Circuit Configuration for Noninverting Gain  
The noninverting configuration is shown in Figure 80. The  
preamp gain is described by the classical op amp gain equation  
The AD8336 amplifiers can be configured in various options.  
In addition to the 60 dB gain range variable gain stage, an  
uncommitted voltage gain amplifier is available to the user as a  
preamplifier. The preamplifier connections are separate to  
enable noninverting or inverting gain configurations or the use  
of interstage filtering. The AD8336 can be used as a cascade  
connected VGA with preamp input, as a standalone VGA, or as  
a standalone preamplifier. This section describes some of the  
possible applications.  
RFB2  
Gain =  
+ 1  
RFB1  
The practical gain limits for this amplifier are 6 dB to 26 dB.  
The gain bandwidth product is about 600 MHz, so that at 150  
MHz, the maximum achievable gain is 12 dB (4×). The minimum  
gain is established internally by fixed loop compensation, and is  
6 dB (2×). This amplifier is not designed for unity gain operation.  
Table 5 shows the gain bandwidth for the noninverting gain  
configuration.  
PRAO VGAI  
8
9
INPP  
INPN  
4
5
+
PrA  
CIRCUIT CONFIGURATION FOR NONINVERTING GAIN  
ATTENUATOR  
–60dB TO 0dB  
34dB  
1 VOUT  
AD8336  
INPP  
AD8336  
PREAMPLIFIER  
4
INPN  
5
34dB  
–60dB TO 0dB  
1
VOUT  
R
R
FB1  
FB2  
100301Ω  
PRAO  
GAIN CONTROL  
INTERFACE  
PWRA  
2
BIAS  
8
VGAI PWRA VNEG VCOM VPOS  
GAIN = 12dB  
9
2
10  
3
13  
+5V  
–5V  
10  
13  
VPOS  
3
11  
12  
VNEG  
VCOM  
GPOS  
GNEG  
Figure 80. Circuit Configuration for Noninverting Gain  
Figure 79. Application Block Diagram  
The preamplifier output reliably sources and sinks currents up  
to 50 mA. When using 5 V power supplies, the suggested sum  
of the output resistor values is 400 Ω total for the optimal trade-  
off between distortion and noise. Much of the low gain value  
device characterization was performed with resistor values of  
301 Ω and 100 Ω, resulting in a preamplifier gain of 12 dB (4×).  
With supply voltages between 5 V and 12 V, the sum of the  
output resistance should be increased accordingly and a total  
resistance of 1 kΩ is recommended. Larger resistance values,  
subject to a trade-off in higher noise performance, can be used  
if circuit power and load driving is an issue. When considering  
the total power dissipation, remember that the input ladder  
resistance of the VGA is part of the preamp load.  
PREAMPLIFIER  
While observing just a few constraints, the uncommitted  
voltage feedback preamplifier of the AD8336 can be connected  
in a variety of standard high frequency op amp configurations.  
The amplifier is optimized for a gain of 4×, (12 dB) and has a  
gain bandwidth product of 600 MHz. At a gain of 4×, the  
bandwidth is 150 MHz. The preamplifier gain can be adjusted  
to a minimum gain of 2×; however, there will be a small peak in  
the response at high frequencies. At higher preamplifier gains,  
the bandwidth diminishes proportionally in conformance to the  
classical voltage gain amplifier GBW relationship.  
While setting the overall gain of the AD8336, the user needs to  
consider the input referred offset voltage of the preamplifier.  
Although the offset of the attenuator and postamplifier are  
almost negligible, the preamplifier offset voltage, if uncorrected,  
is increased by the combined gain of the preamplifier and  
postamplifier. Thus for a maximum gain of 60 dB, an input offset  
voltage of only 200 μV results in an error of 200 mV at the output.  
Table 5. Gain vs. Bandwidth for Noninverting Preamplifier  
Configuration.  
Preamp Gain  
Preamp BW  
(MHz)  
Composite  
Gain (dB)  
Numerical  
dB  
12  
18  
24  
2±  
4×  
8×  
1±×  
20×  
150  
±0  
30  
−14 to +4±  
−8 to +52  
−2 to +58  
0 to ±0  
25  
Rev. 0 | Page 23 of 28  
 
AD8336  
USING THE POWER ADJUST FEATURE  
Circuit Configuration for Inverting Gain  
The AD8336 has the provision to operate at lower power with  
a trade-off in bandwidth. The power reduction applies to the  
preamp and the VGA sections, and the bandwidth is reduced  
equally between them. Reducing the power is particularly useful  
when operating with higher supply voltages and lower values of  
output loading that would otherwise stress the output amplifiers.  
When Pin PWRA is grounded, the amplifiers operate in their  
default mode, and the combined 3 dB bandwidth is 80 MHz  
with the preamp gain adjusted to 4×. When the voltage on  
Pin PWRA is between 1.2 V and 5 V, the power is reduced by  
approximately half and the 3 dB bandwidth reduces to  
approximately 35 MHz. The voltage at pin PWRA must not  
exceed 5 V.  
The preamplifier can also be used in an inverting configuration,  
as shown in Figure 81.  
CIRCUIT CONFIGURATION FOR INVERTING GAIN  
AD8336  
PREAMPLIFIER  
INPP  
4
+
34dB  
–60dB TO 0dB  
1
VOUT  
GAIN = 9.6dB INPN  
5
8
R
R
FB1  
100  
FB2  
301Ω  
PRAO  
PWRA VNEG VCOM VPOS  
9
2
10  
3
13  
–5V  
+5V  
Figure 81. Circuit Configuration for Inverting Gain  
The same considerations regarding total resistance vs. distortion,  
noise, and power as noted in the noninverting case apply, except  
that the amplifier can be operated at unity inverting gain. The  
signal gain is reduced while the noise gain is the same as for the  
noninverting configuration:  
DRIVING CAPACITIVE LOADS  
The output stages of the AD8336 are stable with capacitive loads  
up to 47 pF for a supply voltage of 3 V, and capacitive loads up  
to 10 pF for supply voltages up to 8 V. For larger combined  
values of load capacitance and/or supply voltage, a 20 Ω series  
resistor is recommended for stability.  
RFB2  
Signal Gain =  
RFB1  
and  
The influence of capacitance and supply voltage are shown in,  
Figure 50 and Figure 51, where representative combinations of  
load capacitance and supply voltage requiring a 20 Ω resistor  
are marked with an asterisk. No resistor is required for the 3 V  
plots in Figure 49, while a resistor is required for most of the  
12 V plots in Figure 51.  
RFB2  
Noise Gain =  
+ 1  
RFB1  
Rev. 0 | Page 24 of 28  
 
AD8336  
EVALUATION BOARD  
An evaluation board, AD8336-EVALZ, is available online for  
the AD8336. Figure 82 is a photo of the board.  
The board is shipped from the factory, configured for a preamp  
gain of 4×. To change the value of the gain of the preamp or the  
gain polarity to inverting is a matter of changing component  
values, or installing components in alternate locations provided.  
All components are standard 0603 size, and the board is designed  
for RoHS compliancy. Figure 83 shows the locations of  
components provided for changing the amplifier configuration  
to inverting gain. Simply install the components shown in red  
and remove those in gray.  
OPTIONAL CIRCUITRY  
The AD8336 features differential inputs for the gain control,  
permitting nonzero or floating gain control inputs. In order to  
avoid any delay in making the board operational, the gain input  
circuit is shipped with Pin GNEG connected to ground via a  
0 Ω resistor in location R17. The user can simply adjust the gain  
of the device by driving the GPOS test loop with a power supply  
or voltage reference. Resistor networks are provided for fixed  
gain bias voltages at Pin GNEG and Pin GPOS for common-  
mode voltages other than 0 V. If it is desired to drive the gain  
control with an active input such as a ramp, SMA connectors  
can be installed in the locations GAIN− and GAIN+. Provision  
is made for an optional SMA connector at PRVG for monitoring  
the preamp output or driving the VGA from an external source.  
Remove the 0 Ω resistor at R9 to isolate the preamp from an  
external generator.  
Figure 82. AD8336 Evaluation Board  
BOARD LAYOUT CONSIDERATIONS  
The evaluation board uses four layers, with power and ground  
planes located between two conductor layers. This arrangement  
is highly recommended for customers and several views of the  
board are provided as reference for board layout details. When  
laying out a printed circuit board for the AD8336, remember to  
provide a pad beneath the device to solder the exposed pad of  
the matching device. The pad in the board should have at least  
five vias in order to provide a thermal path for the chip scale  
package. Unlike leaded devices, the thermal pad is the primary  
means to remove heat dissipated within the device.  
Figure 83. Components for Inverting Gain Operation  
Table 6 is a bill of materials for the evaluation board.  
Rev. 0 | Page 25 of 28  
 
 
AD8336  
Figure 84. Component Side Copper  
Figure 87. Internal Ground Plane  
Figure 85. Secondary Side Copper  
Figure 88. Internal Power Plane  
Figure 86. Component Side Silk Screen  
Rev. 0 | Page 2± of 28  
AD8336  
VPOS  
GND1 GND2 GND3 GND4  
+
C4  
10µF  
25V  
L2  
120nH  
(BLK LOOPS IN  
4 CORNERS)  
R1  
0  
VOUT  
GNEG  
GPOS  
C3  
R15  
R14  
0.1µF  
VOUTL  
VP  
VOUTD  
GAIN–  
GAIN+  
16  
15  
14  
13  
C6  
R17  
1nF  
NC NC NC VPOS  
0Ω  
1
2
3
4
12  
11  
10  
R16  
VOUT  
GNEG  
GPOS  
VNEG  
VGAI  
4.99kΩ  
U1  
W1  
CR1  
5.1V  
C8  
0.1µF  
PWRA  
VCOM  
INPP  
C7  
1nF  
AD8336  
R13  
R3  
0Ω  
R4  
0Ω  
C5  
0.1µF  
VIN  
9
L1  
120nH  
VNEG  
INPN NC NC PRAO  
VIN1  
R2  
49.9Ω  
R6  
C2  
10µF  
25V  
R5  
5
6
7
8
R11  
+
0Ω  
R8  
301Ω  
R9  
0Ω  
R12  
0Ω  
PRVG  
R7  
100Ω  
R10  
49.9Ω  
NC = NO CONNECT  
C1  
Figure 89. AD8336-EVALZ Schematic Shown as Shipped, Configured for a Noninverting Gain of 4×  
Table 6. AD8336 Evaluation Board Bill of Materials  
Reference  
Designator  
Qty Name  
Description  
Manufacturer  
Nichicon  
KEMET  
Panasonic  
Diodes, Inc.  
Amphenol  
Mfg. Part Number  
F931E10±MCCC  
C0±03C104K4RSCTU  
ECJ-1VB2A102K  
DFLZ5V1-7  
2
3
1
1
2
4
Capacitor  
Tantalum 10 μF, 25 V  
0.1 μF, 1± V, 0±03, X7R  
1 nF, 50 V, 0±03, X7R  
Zener, 5.1 V, 1 W  
SMA Fem, RA, PC Mt  
Black  
C2, C4  
C3, C5, C8  
C7  
CR1  
VIN, VOUT  
Capacitor  
Capacitor  
Diode  
Connector  
Test Loop  
901-143-±RFX  
TP-104-01-00  
GND, GND1,  
GND2, GND3  
Components Corporation  
2
2
±
Test Loop  
Inductor  
Resistor  
Violet  
Ferrite Bead  
0 Ω, 5%, 0±03  
GNEG, GPOS  
L1, L2  
R1, R3, R4, R9,  
R11, R17  
Components Corporation  
Murata  
Panasonic  
TP-104-01-07  
BLM18BA750SN1D  
ERJ-2GE0R00X  
1
1
1
1
1
1
1
1
4
Resistor  
Resistor  
Resistor  
Resistor  
Test Loop  
Test Loop  
Header  
Integrated Circuit  
Rubber Bumper  
49.9 Ω 1% 1/1± W 0±03  
100 Ω 1% 1/1± W 0±03  
301 Ω 1/1± W 1% 0±03  
4.99 kΩ 1/1± W 1% 0±03 R1±  
Green  
Red  
0.1Center  
VGA  
Foot  
R2  
R7  
R8  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Components Corporation  
Components Corporation  
Molex  
Analog Devices  
3M  
ERJ-3EKF49R9V  
ERJ-3EKF1000V  
ERJ-3EKF3010V  
ERJ-3EKF4991V  
TP-104-01-05  
TP-104-01-02  
22-10-2031  
VNEG  
VPOS  
W1  
Z1  
AD833±ACPZ  
SJ±7A11  
NA  
Rev. 0 | Page 27 of 28  
 
AD8336  
OUTLINE DIMENSIONS  
4.00  
0.60 MAX  
BSC SQ  
(BOTTOM VIEW)  
0.60 MAX  
0.65 BSC  
PIN 1  
INDICATOR  
13  
16  
1
4
12  
PIN 1  
INDICATOR  
2.25  
2.10 SQ  
1.95  
TOP  
VIEW  
3.75  
BSC SQ  
EXPOSED  
PAD  
0.75  
0.60  
0.50  
9
8
5
0.25 MIN  
0.80 MAX  
0.65 TYP  
12° MAX  
1.95 BSC  
THE EXPOSED PAD IS NOT CONNECTED  
INTERNALLY. FOR INCREASED RELIABILITY  
OF THE SOLDER JOINTS AND MAXIMUM  
THERMAL CAPABILITY, IT IS RECOMMENDED  
THAT THE PADDLE BE SOLDERED TO THE  
GROUND PLANE.  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.35  
0.30  
0.25  
0.20 REF  
COPLANARITY  
0.08  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGC  
Figure 90. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
4 mm × 4 mm Body, Very Thin Quad  
(CP-16-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-1±-4  
CP-1±-4  
CP-1±-4  
CP-1±-4  
AD833±ACPZ1  
1±-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
1±-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
1±-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
1±-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
AD833±ACPZ-R71  
AD833±ACPZ-RL1  
AD833±ACPZ-WP1  
AD833±-EVALZ1  
1 Z = Pb-free part.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06228-0-10/06(0)  
Rev. 0 | Page 28 of 28  
 

相关型号:

AD8336-EVALZ

General-Purpose, −55 to +125, Wide Bandwidth, DC-Coupled VGA
ADI

AD8336ACPZ

General-Purpose, −55 to +125, Wide Bandwidth, DC-Coupled VGA
ADI

AD8336ACPZ-R7

General-Purpose, −55 to +125, Wide Bandwidth, DC-Coupled VGA
ADI

AD8336ACPZ-RL

General-Purpose, −55 to +125, Wide Bandwidth, DC-Coupled VGA
ADI

AD8336ACPZ-WP

General-Purpose, −55 to +125, Wide Bandwidth, DC-Coupled VGA
ADI

AD8337

General-Purpose, Low Cost, DC-Coupled VGA
ADI

AD8337-EVAL-INV

General-Purpose, Low Cost, DC-Coupled VGA
ADI

AD8337-EVAL-SS

General-Purpose, Low Cost, DC-Coupled VGA
ADI

AD8337-EVALZ

General-Purpose, Low Cost, DC-Coupled VGA
ADI

AD8337-EVALZ-INV

General-Purpose, Low Cost, DC-Coupled VGA
ADI

AD8337-EVALZ-SS

General-Purpose, Low Cost, DC-Coupled VGA
ADI

AD8337BCPZ-R2

General-Purpose, Low Cost, DC-Coupled VGA
ADI