AD8420ARMZ [ADI]

Wide Supply Range, Micropower,; 宽电源电压范围,微功耗,
AD8420ARMZ
型号: AD8420ARMZ
厂家: ADI    ADI
描述:

Wide Supply Range, Micropower,
宽电源电压范围,微功耗,

仪表放大器 放大器电路 光电二极管 PC
文件: 总28页 (文件大小:513K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wide Supply Range, Micropower,  
Rail-to-Rail Instrumentation Amplifier  
AD8420  
Data Sheet  
FEATURES  
PIN CONFIGURATION  
AD8420  
Maximum supply current: 80 μA  
Minimum CMRR: 100 dB  
Drives heavy capacitive loads: ~700 pF  
Rail-to-rail output  
Input voltage range goes below ground  
Gain set with 2 external resistors  
Can achieve low gain drift at any gain  
Very wide power supply range  
Single supply: 2.7 V to 36 V  
NC  
+IN  
–IN  
1
2
3
4
8
7
6
5
V
OUT  
+
FB  
+
REF  
TOP VIEW  
(Not to Scale)  
–V  
+V  
S
S
Figure 1.  
Table 1. Instrumentation Amplifiers by Category1  
Dual supply: 2.7 V to 18 V  
Bandwidth (G = 100): 2.5 kHz  
Input voltage noise: 55 nV/√Hz  
High dc precision  
Maximum offset voltage: 125 μV  
Maximum offset drift: 1 μV/°C  
Maximum differential input voltage: 1 V  
8-lead MSOP package  
Zero  
Military Low  
Grade Power  
Digital  
Gain  
General Purpose Drift  
AD8221, AD8222  
AD8220, AD8224  
AD8231 AD620  
AD8290 AD621  
AD8420  
AD8235,  
AD8236  
AD627  
AD8226,  
AD8227  
AD8250  
AD8251  
AD8226, AD8227  
AD8228  
AD8293 AD524  
AD8553 AD526  
AD8253  
AD8231  
AD8295, AD8224  
AD8556 AD624  
AD8557  
AD623  
AD8223  
APPLICATIONS  
1 See www.analog.com for the latest instrumentation amplifiers.  
Bridge amplifiers  
Pressure measurement  
Medical instrumentation  
Portable data acquisition  
Multichannel systems  
GENERAL DESCRIPTION  
Single-supply operation, micropower current consumption, and  
rail-to-rail output swing make the AD8420 ideal for battery-  
powered applications. Its rail-to-rail output stage maximizes  
dynamic range when operating from low supply voltages. Dual-  
supply operation (±±1 ꢀV and low power consumption make  
the AD8420 ideal for a wide variety of applications in medical  
or industrial instrumentation.  
The AD8420 is a low cost, micropower, wide supply range,  
instrumentation amplifier with a rail-to-rail output and a novel  
architecture that allows for extremely flexible design. It is optimized  
to amplify small differential voltages in the presence of large  
common-mode signals.  
The AD8420 is based on an indirect current feedback architecture  
that gives it an excellent input common-mode range. Unlike  
conventional instrumentation amplifiers, the AD8420 can easily  
amplify signals at or even slightly below ground without requiring  
dual supplies. The AD8420 has rail-to-rail output, and the output  
voltage swing is completely independent of the input common-  
mode voltage.  
The AD8420 is available in an 8-lead MSOP package. Performance  
is specified over the full temperature range of −40°C to +81°C,  
and the part is operational from −40°C to +±21°C.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2012 Analog Devices, Inc. All rights reserved.  
 
AD8420  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. ±  
Gain Accuracy ............................................................................ 20  
Input ꢀoltage Range................................................................... 20  
Input Protection ......................................................................... 20  
Layout .......................................................................................... 2±  
Driving the Reference Pin......................................................... 2±  
Input Bias Current Return Path ............................................... 22  
Radio Frequency Interference (RFIV........................................ 22  
Output Buffering ........................................................................ 23  
Applications Information.............................................................. 24  
AD8420 in Electrocardiography (ECGV.................................. 24  
Classic Bridge Circuit ................................................................ 21  
4 mA to 20 mA Single-Supply Receiver .................................. 21  
Outline Dimensions....................................................................... 26  
Ordering Guide .......................................................................... 26  
Applications....................................................................................... ±  
Pin Configuration............................................................................. ±  
General Description......................................................................... ±  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... ±9  
Architecture................................................................................. ±9  
Setting the Gain .......................................................................... ±9  
REVISION HISTORY  
3/12—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
Data Sheet  
AD8420  
SPECIFICATIONS  
+ꢀS = +1 , S = 0 , REF = 0 , +IN = 0 , −IN = 0 , TA = 21°C, G = ± to ±000, RL = 20 kΩ, specifications referred to input, unless  
otherwise noted. All Table 2 limits are valid from ꢀS = 3 ꢀ to ꢀS = ±1 , unless otherwise specified.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
COMMON-MODE REJECTION RATIO (CMRR)  
CMRR DC to 60 Hz  
CMRR at 1 kHz  
NOISE  
VCM = 0 V to 2.7 V  
100  
100  
dB  
dB  
Voltage Noise  
Spectral Density  
Peak to Peak  
f = 1 kHz, VDIFF ≤ 100 mV  
f = 0.1 Hz to 10 Hz, VDIFF ≤ 100 mV  
55  
1.5  
nV/√Hz  
μV p-p  
Current Noise  
Spectral Density  
Peak to Peak  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
80  
3
fA/√Hz  
pA p-p  
VOLTAGE OFFSET  
Offset  
VS = 3 V to VS = 5 V  
VS = 5 V  
TA = −40°C to +85°C  
VS = 2.7 V to 5 V  
125  
150  
1
μV  
μV  
μV/°C  
dB  
Average Temperature Coefficient  
Offset RTI vs. Supply (PSR)  
INPUTS  
86  
Valid for REF and FB pair, as well  
as +IN and −IN  
TA = +25°C  
TA = +85°C  
TA = −40°C  
TA = −40°C to +85°C  
TA = +25°C  
TA = +85°C  
Input Bias Current1  
20  
30  
27  
24  
30  
nA  
nA  
nA  
pA/°C  
nA  
Average Temperature Coefficient  
Input Offset Current  
1
1
1
nA  
nA  
TA = −40°C  
Average Temperature Coefficient  
Input Impedance  
TA = −40°C to +85°C  
0.5  
pA/°C  
Differential  
130||2  
MΩ||pF  
Common Mode  
1000||2  
MΩ||pF  
Differential Input Operating Voltage  
Input Operating Voltage (+IN, −IN, REF, or FB)  
TA = –40°C to +85°C  
TA = +25°C  
TA = +85°C  
−1  
+1  
V
V
V
V
−VS − 0.15  
−VS − 0.05  
−VS − 0.2  
+VS − 2.2  
+VS − 1.8  
+VS − 2.7  
TA = –40°C  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 1  
G = 10  
G = 100  
G =1000  
Settling Time 0.01%  
G = 1  
G = 10  
G = 100  
250  
25  
2.5  
kHz  
kHz  
kHz  
kHz  
0.25  
VS = 5 V  
−1 V to +1 V output step  
−4.5 V to +4.5 V output step  
−4.5 V to +4.5 V output step  
3
130  
1
μs  
μs  
ms  
V/μs  
Slew Rate  
1
Rev. 0 | Page 3 of 28  
 
 
AD8420  
Data Sheet  
Parameter  
GAIN2  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
G = 1 + (R2/R1)  
Gain Range  
Gain Error  
G = 1  
G = 10 to 1000  
Gain vs. Temperature  
OUTPUT  
1
1000  
V/V  
VOUT = 0.1 V to 1.1 V, VREF = 0.1 V  
VOUT = 0.2 V to 4.8 V  
TA = −40°C to +85°C  
0.02  
0.1  
10  
%
%
0.05  
ppm/°C  
Output Swing  
VS = 5 V, RL = 10 kΩ to midsupply  
VS = 5 V, RL = 20 kΩ to ground  
TA = +25°C  
−VS + 0.1  
−VS + 0.1  
−VS + 0.1  
+VS − 0.15  
+VS − 0.2  
+VS − 0.15  
V
V
V
TA = +85°C  
TA = −40°C  
Short-Circuit Current  
POWER SUPPLY  
Operating Range  
10  
70  
mA  
Single-supply operation3  
2.7  
55  
36  
V
Quiescent Current  
VS = 5 V  
TA = +25°C  
TA = +85°C  
TA = −40°C  
80  
95  
65  
μA  
μA  
μA  
TEMPERATURE RANGE  
Specified  
Operational4  
−40  
−40  
+85  
+125  
°C  
°C  
1 The input stage uses PNP transistors; therefore, input bias current always flows out of the part.  
2 For G > 1, errors from External Resistor R1 and External Resistor R2 should be considered in addition to these specifications, including error from FB pin bias current.  
3 Minimum supply voltage indicated for V+IN, V−IN, and VREF = 0 V.  
4 See the Typical Performance Characteristics section for operation between 85°C and 125°C.  
Rev. 0 | Page 4 of 28  
 
Data Sheet  
AD8420  
+ꢀS = +±1 , S = −±1 , REF = 0 , TA = 21°C, G = ± to ±000, RL = 20 kΩ, specifications referred to input, unless otherwise noted.  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
COMMON-MODE REJECTION RATIO (CMRR)  
CMRR DC to 60 Hz  
CMRR at 1 kHz  
VCM = −10 V to +10 V  
100  
100  
dB  
dB  
NOISE  
Voltage Noise  
Spectral Density  
Peak to Peak  
f = 1 kHz, VDIFF ≤ 100 mV  
f = 0.1 Hz to 10 Hz, VDIFF ≤ 100 mV  
55  
1.5  
nV/√Hz  
μV p-p  
Current Noise  
Spectral Density  
Peak to Peak  
f = 1 kHz  
f = 0.1 Hz to 10 Hz  
80  
3
fA/√Hz  
pA p-p  
VOLTAGE OFFSET  
Offset  
Average Temperature Coefficient  
Offset RTI vs. Supply (PSR)  
INPUTS  
VS = 15 V1  
TA = −40°C to +85°C  
VS = 15 V  
250  
1
μV  
μV/°C  
dB  
100  
Valid for REF and FB pair, as well  
as +IN and −IN  
TA = +25°C  
TA = +85°C  
TA = −40°C  
TA = −40°C to +85°C  
TA = +25°C  
TA = +85°C  
Input Bias Current2  
20  
30  
27  
24  
30  
nA  
nA  
nA  
pA/°C  
nA  
Average Temperature Coefficient  
Input Offset Current  
1
1
1
nA  
nA  
TA = −40°C  
Average Temperature Coefficient  
Input Impedance  
TA = −40°C to +85°C  
0.5  
pA/°C  
Differential  
130||3  
MΩ||pF  
Common Mode  
1000||3  
MΩ||pF  
Differential Input Operating Voltage  
Input Operating Voltage (+IN, −IN, REF, or FB)  
TA = −40°C to +85°C  
TA = +25°C  
TA = +85°C  
−1  
1
V
V
V
V
−VS − 0.15  
−VS − 0.05  
−VS − 0.2  
+VS − 2.2  
+VS − 1.8  
+VS − 2.7  
TA = −40°C  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 1  
250  
25  
2.5  
kHz  
kHz  
kHz  
kHz  
G = 10  
G = 100  
G =1000  
0.25  
Settling Time 0.01%  
G = 1  
G = 10  
G = 100  
Slew Rate  
−1 V to +1 V output step  
−5 V to +5 V output step  
−5 V to +5 V output step  
3
130  
1
μs  
μs  
ms  
V/μs  
1
GAIN3  
G = 1 + (R2/R1)  
Gain Range  
Gain Error  
1
1000  
V/V  
G = 1  
G = 10 to 1000  
Gain vs. Temperature  
VOUT  
VOUT  
=
=
1 V  
10 V  
0.02  
0.1  
10  
%
%
0.05  
TA = −40°C to +85°C  
ppm/°C  
Rev. 0 | Page 5 of 28  
AD8420  
Data Sheet  
Parameter  
OUTPUT  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
Output Swing  
RL = 20 kΩ to Ground  
TA = +25°C  
TA = +85°C  
TA = –40°C  
−VS + 0.13  
−VS + 0.15  
−VS + 0.11  
+VS − 0.2  
+VS − 0.23  
+VS − 0.16  
V
V
V
Short-Circuit Current  
POWER SUPPLY  
Operating Range  
Quiescent Current  
10  
85  
mA  
Dual-supply operation4  
VS = 15 V  
TA = +25°C  
TA = +85°C  
TA = −40°C  
2.7  
70  
18  
V
100  
120  
90  
μA  
μA  
μA  
TEMPERATURE RANGE  
Specified  
Operational5  
−40  
−40  
+85  
+125  
°C  
°C  
1 See the Typical Performance Characteristics section for the offset voltage vs. supply.  
2 The input stage uses PNP transistors; therefore, input bias current always flows out of the part.  
3 For G > 1, errors from External Resistor R1 and External Resistor R2 should be considered in addition to these specifications, including error from FB pin bias current.  
4 Minimum positive supply voltage indicated for V+IN, V−IN, and VREF = 0 V. With V+IN, V−IN, and VREF = −VS, minimum supply is 1.35 V.  
5 See the Typical Performance Characteristics section for operation between 85°C and 125°C.  
Rev. 0 | Page 6 of 28  
 
Data Sheet  
AD8420  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
θJA is specified for a device in free air.  
Parameter  
Rating  
Supply Voltage  
18 V  
Table 5.  
Output Short-Circuit Current  
Maximum Voltage at −IN or +IN  
Minimum Voltage at −IN or +IN  
Maximum Voltage at REF or FB  
Minimum Voltage at REF or FB  
Storage Temperature Range  
ESD  
Indefinite  
−VS + 40 V  
−VS − 0.5 V  
+VS + 0.5 V  
−VS − 0.5 V  
−65°C to +150°C  
Package  
θJA  
Unit  
8-Lead MSOP, 4-Layer JEDEC Board  
135  
°C/W  
ESD CAUTION  
Human Body Model  
Charge Device Model  
Machine Model  
2.5 kV  
1.5 kV  
0.1 kV  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 7 of 28  
 
 
AD8420  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD8420  
NC  
+IN  
–IN  
1
2
3
4
8
7
6
5
V
OUT  
+
FB  
+
REF  
TOP VIEW  
(Not to Scale)  
–V  
+V  
S
S
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
NC  
This pin is not connected internally. For best CMRR vs. frequency and leakage performance, connect this pin to  
negative supply.  
2
3
4
5
6
7
8
+IN  
−IN  
−VS  
+VS  
REF  
FB  
Positive Input.  
Negative Input  
Negative Supply.  
Positive Supply.  
Reference Input.  
Feedback Input.  
Output.  
VOUT  
Rev. 0 | Page 8 of 28  
 
Data Sheet  
AD8420  
TYPICAL PERFORMANCE CHARACTERISTICS  
T = 21°C, +ꢀS = 1 , RL = 20 kꢁ, unless otherwise noted.  
MEAN: 4.63764  
SD: 1.09498  
MEAN: –34.8195  
SD: 31.3406  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
–150  
–100  
–50  
0
50  
100  
150  
0
2
4
6
8
10  
V
(µV)  
CMRR, ±15V (µV/V)  
OS  
Figure 3. Typical Distribution of Input Offset Voltage  
Figure 6. Typical Distribution of CMRR  
700  
600  
500  
400  
300  
200  
100  
0
MEAN: 22.6643  
SD: 0.6058  
MEAN: 22.706  
SD: 0.615728  
700  
600  
500  
400  
300  
200  
100  
0
20  
21  
22  
23  
24  
25  
20  
21  
22  
23  
24  
25  
POSITIVE BIAS CURRENT (nA)  
g
POSITIVE BIAS CURRENT (nA)  
m2  
Figure 7. Typical Distribution of REF, FB Bias Current  
Figure 4. Typical Distribution of Input Bias Current  
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
MEAN: 0.000646761  
SD: 0.111551  
MEAN: 0.00144205  
SD: 0.112088  
–0.9  
–0.6  
–0.3  
0
0.3  
0.6  
0.9  
–0.9  
–0.6  
–0.3  
0
0.3  
0.6  
0.9  
g
OFFSET CURRENT (nA)  
OFFSET CURRENT (nA)  
m2  
Figure 5. Typical Distribution of Input Offset Current  
Figure 8. Typical Distribution of REF, FB Offset Current  
Rev. 0 | Page 9 of 28  
 
 
AD8420  
Data Sheet  
3.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0
15  
10  
5
0.6  
0.4  
0.2  
0
V
G = 1  
= +5V  
V = ±15V  
S
G = 100  
S
V
OUT  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
I
IN  
OUT  
I
IN  
0
–5  
–10  
–15  
–0.2  
–0.4  
–0.6  
–0.1  
–5  
0
5
10  
15  
20  
25  
30  
35  
40  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
25  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 9. Input Overvoltage Performance, G = 1  
Figure 12. Input Overvoltage Performance, G = 100, VS = 15 V  
3
2
0.6  
0.4  
0.2  
0
15  
V
G = 1  
= ±15V  
S
V
OUT  
–1.0V, +12.3V  
0.0V, +12.8V  
+1.0V, +12.3V  
10  
5
I
IN  
1
0
0
–5  
–1  
–2  
–3  
–0.2  
–0.4  
–0.6  
–10  
–15  
–20  
–1.0V, –14.6V  
+1.0V, –14.6V  
0.0V, –15.1V  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
25  
–1.2 –1.0 –0.8 –0.6 –0.4 –0.2  
0
0.2 0.4 0.6 0.8 1.0 1.2  
INPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 10. Input Overvoltage Performance, G = 1, VS = 15 V  
Figure 13. Input Common-Mode Voltage vs. Output Voltage,  
G = 1, VS = 15 V  
3.0  
6
5
4
3
2
1
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 5V  
S
G = 100  
V
OUT  
2.5  
2.0  
1.5  
1.0  
0.5  
0
+4mV, +2.8V  
+1.0V, +2.3V  
I
IN  
+1.0V, +0.4V  
+4mV, –0.1V  
–0.5  
–0.1  
–0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
–5  
0
5
10  
15  
20  
25  
30  
35  
40  
OUTPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 11. Input Overvoltage Performance, G = 100  
Figure 14. Input Common-Mode Voltage vs. Output Voltage, G = 1, VS = 5 V  
Rev. 0 | Page 10 of 28  
 
 
 
Data Sheet  
AD8420  
3.5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
R
= 2.5V  
= 10kTO MIDSUPPLY  
REF  
L
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
+2.5V, +2.8V  
+44mV, +2.8V  
+4.8V, +2.78V  
+3.03V, +2.46V  
+1.5V, +2.3V  
+1.5V, +0.4V  
+3.03V, +0.16V  
+44mV, –0.1V  
+4.8V, –80mV  
+2.5V, –0.1V  
–0.5  
–0.5  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
–0.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 15. Input Common-Mode Voltage vs. Output Voltage,  
G = 1, VS = 5 V, VREF = 2.5 V  
Figure 18. Input Common-Mode Voltage vs. Output Voltage,  
G = 100, VS = 5 V  
0.6  
3.5  
3.0  
+4mV, +0.5V  
0.5  
+86mV, +2.79V  
+2.5V, +2.8V  
+4.8V, +2.79V  
0.4  
0.3  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.2  
0.1  
+0.6V, +0.2V  
0
+86mV, –90mV  
+2.5V, –0.1V  
+4.8V, –90mV  
–0.1  
–0.2  
+4mV, –0.1V  
0.1  
–0.5  
–0.5  
–0.1  
0
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 16. Input Common-Mode Voltage vs. Output Voltage, G = 1, VS = 2.7 V  
Figure 19. Input Common-Mode Voltage vs. Output Voltage,  
G = 100, VS = 5 V, VREF = 2.5 V  
20  
15  
0.6  
+29mV, +0.5V  
+2.53V, +0.49V  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–14.9V, +12.7V  
+14.8V, +12.7V  
0.0V, +12.8V  
10  
5
0
–5  
–10  
–15  
–20  
0.0V, –15.1V  
–0.1  
–0.2  
–14.9V, –15.0V  
+14.8V, –15.0V  
+29mV, –0.1V  
0.5  
+2.53V, –90mV  
2.0 2.5  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
–0.5  
0
1.0  
1.5  
3.0  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 17. Input Common-Mode Voltage vs. Output Voltage,  
G = 100, VS = 15 V  
Figure 20. Input Common-Mode Voltage vs. Output Voltage,  
G = 100, VS = 2.7 V  
Rev. 0 | Page 11 of 28  
AD8420  
Data Sheet  
40  
35  
30  
25  
20  
15  
10  
120  
100  
80  
60  
40  
20  
0
V
= ±15V  
S
–0.2V  
+2.7V  
GAIN = 1000  
GAIN = 100  
GAIN = 10  
BANDWIDTH  
LIMIT  
I
I
(+IN)  
(–IN)  
BIAS  
BIAS  
GAIN = 1  
5
–2.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.1  
1
10  
100  
1k  
10k  
100k  
COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 21. Input Bias Current vs. Common-Mode Voltage  
Figure 24. Positive PSRR vs. Frequency, RTI, VS = 15 V  
400  
120  
100  
80  
60  
40  
20  
0
V
= ±15V  
S
SPECIFIED  
300  
200  
PERFORMANCE RANGE  
GAIN = 1000  
I
(+IN)  
BIAS  
GAIN = 100  
100  
0
BANDWIDTH  
LIMIT  
–100  
–200  
–300  
–400  
GAIN = 10  
GAIN = 1  
I
(–IN)  
BIAS  
–1.5  
–2.0  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
0.1  
1
10  
100  
FREQUENCY (Hz)  
1k  
10k  
100k  
DIFFERENTIAL INPUT VOLTAGE (V)  
Figure 22. Input Bias Current vs. Differential Input Voltage, VS = 15  
Figure 25. Negative PSRR vs. Frequency, RTI, VS = 15 V  
100  
70  
V
= ±15V  
S
GAIN = 1000  
GAIN = 100  
60  
50  
80  
40  
GAIN = 1000  
60  
30  
GAIN = 10  
GAIN = 1  
20  
GAIN = 100  
40  
10  
GAIN = 10  
0
BANDWIDTH  
20  
0
–10  
–20  
–30  
LIMIT  
GAIN = 1  
10k  
0.1  
1
10  
100  
1k  
100k  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. PSRR vs. Frequency on 5 V Supply  
Figure 26. Gain vs. Frequency  
Rev. 0 | Page 12 of 28  
 
 
Data Sheet  
AD8420  
70  
120  
100  
80  
60  
40  
20  
0
V
= 2.7V  
S
GAIN = 1000  
60  
50  
GAIN = 100  
40  
30  
GAIN = 10  
20  
10  
GAIN = 1  
0
–10  
–20  
–30  
V
V
= ±15V  
S
= ±10V  
CM  
1
10  
100  
1k  
10k  
100k  
1M  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
FREQUENCY (Hz)  
DIFFERENTIAL INPUT VOLTAGE (V)  
Figure 27. Gain vs. Frequency, 2.7 V Single Supply  
Figure 30. CMRR vs. Differential Input Voltage  
140  
120  
100  
80  
120  
110  
100  
90  
V
= ±15V  
V
= 5V  
S
BANDWIDTH  
LIMIT  
S
GAIN = 1000  
GAIN = 100  
80  
70  
60  
GAIN = 10  
60  
50  
GAIN = 1  
40  
40  
20  
30  
0
20  
0.1  
1
10  
100  
FREQUENCY (Hz)  
1k  
10k  
100k  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 28. CMRR vs. Frequency, RTI, VS = 15 V  
Figure 31. Supply Current vs. Temperature, VS = +5 V  
140  
120  
100  
80  
30  
25  
20  
15  
10  
5
250  
200  
150  
100  
50  
V
= ±15V  
S
–IN BIAS CURRENT  
+IN BIAS CURRENT  
GAIN = 1000  
GAIN = 100  
60  
GAIN = 10  
GAIN = 1  
40  
0
OFFSET CURRENT  
20  
0
0
–50  
0.1  
1
10  
100  
1k  
10k  
100k  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 29. CMRR vs. Frequency, RTI, 1 kΩ Source Imbalance, VS = 15 V  
Figure 32. Input Bias Current and Input Offset Current vs. Temperature  
Rev. 0 | Page 13 of 28  
AD8420  
Data Sheet  
30  
25  
20  
15  
10  
5
200  
150  
100  
50  
400  
300  
NORMALIZED TO 25°C  
–IN BIAS CURRENT  
+IN BIAS CURRENT  
200  
100  
0
–100  
–200  
–300  
–400  
0
OFFSET CURRENT  
–50  
–100  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 33. FB, REF Bias Current and FB, REF Offset Current vs. Temperature  
Figure 36. Offset Drift  
1000  
5
4
REPRESENTATIVE DATA  
NORMALIZED AT 25°C  
V
V
= ±1V  
= ±15V  
V = ±15V  
S
IN  
S
800  
600  
3
PART A  
PART B  
400  
2
200  
1
PART A: 0.024ppm/°C  
PART B: 0.038ppm/°C  
0
0
–200  
–400  
–600  
–800  
–1000  
–1  
–2  
–3  
–4  
REPRESENTATIVE DATA  
NORMALIZED TO 25ºC  
–40  
–25  
–10  
5
20  
35  
50  
65  
80  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 34. Gain Error vs. Temperature, G = 1, VIN  
=
1 V, VS = 15 V  
Figure 37. CMRR vs. Temperature, G = 1, VS = 15 V  
1000  
+V  
S
V
V
= ±0.1V  
= ±15V  
R
= 20k  
IN  
S
L
800  
600  
–0.1  
–0.2  
–0.3  
400  
–40°C  
+25°C  
+85°C  
+125°C  
PART A  
PART B  
200  
0
–200  
–400  
–600  
–800  
–1000  
+0.3  
+0.2  
+0.1  
REPRESENTATIVE DATA  
NORMALIZED TO 25ºC  
–V  
S
–40  
–25  
–10  
5
20  
35  
50  
65  
80  
2
4
6
8
10  
12  
16  
18  
20  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (±V )  
S
Figure 38. Output Voltage Swing vs. Supply Voltage, RL = 20 kΩ  
Figure 35. Gain Error vs. Temperature, G = 1, VIN  
=
0.1 V, VS = 15 V  
Rev. 0 | Page 14 of 28  
Data Sheet  
AD8420  
+V  
+V  
S
S
–0.2  
–0.4  
–0.6  
–0.8  
–0.2  
–0.4  
–0.6  
–0.8  
–40°C  
+25°C  
+85°C  
+125°C  
–40°C  
+25°C  
+85°C  
+125°C  
+0.8  
+0.6  
+0.4  
+0.2  
+0.8  
+0.6  
+0.4  
+0.2  
V
V
= 5V  
= 2.5V  
S
REF  
–V  
–V  
S
S
1k  
10k  
100k  
1M  
0.1  
1
LOAD RESISTANCE ()  
OUTPUT CURRENT (mA)  
Figure 39. Output Voltage Swing vs. Load Resistance, VS = 5 V  
Figure 42. Output Voltage Swing vs. Output Current, VS = 15  
+V  
S
2k  
1k  
–0.2  
–0.4  
–0.6  
–0.8  
–40°C  
+25°C  
+85°C  
+125°C  
+0.8  
GAIN = 1  
100  
+0.6  
GAIN = 10  
V
V
= 5V  
S
+0.4  
+0.2  
= 2.5V  
REF  
GAIN = 100  
1k  
–V  
S
0.1  
20  
0.1  
1
1
10  
100  
10k  
100k  
OUTPUT CURRENT (mA)  
FREQUENCY (Hz)  
Figure 40. Output Voltage Swing vs. Load Resistance, VS = 5 V  
Figure 43. Voltage Noise Spectral Density vs. Frequency, RTI  
15  
10  
5
0
–5  
–40°C  
–10  
+25°C  
+85°C  
+125°C  
0.4µV/DIV  
1s/DIV  
–15  
1k  
10k  
100k  
1M  
LOAD RESISTANCE ()  
Figure 41. Output Voltage Swing vs. Load Resistance, VS = 15 V  
Figure 44. 0.1 Hz to 10 Hz RTI Voltage Noise, G = 1  
Rev. 0 | Page 15 of 28  
 
AD8420  
Data Sheet  
1k  
V
= ±5V  
S
1V/DIV  
1.78µs TO 0.1%  
3.31µs TO 0.01%  
100  
0.02%/DIV  
20µs/DIV  
10  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 48. Large Signal Pulse Response and Settling Time, G = 1  
Figure 45. Current Noise Spectral Density vs. Frequency  
V
= ±5V  
S
4.5V/DIV  
67µs TO 0.1%  
138µs TO 0.01%  
0.02%/DIV  
200µs/DIV  
1.5pA/DIV  
1s/DIV  
Figure 46. 0.1 Hz to 10 Hz Current Noise  
Figure 49. Large Signal Pulse Response and Settling Time, G = 10  
30  
27  
24  
21  
18  
15  
12  
9
V
= ±5V  
S
V
= ±15V, G = 15V/V  
S
4.5V/DIV  
600ms TO 0.1%  
1.04ms TO 0.01%  
0.02%/DIV  
6
V
= +5V, G = 5V/V  
S
3
20ms/DIV  
0
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 47. Large Signal Frequency Response  
Figure 50. Large Signal Pulse Response and Settling Time, G = 100  
Rev. 0 | Page 16 of 28  
Data Sheet  
AD8420  
20mV/DIV  
4µs/DIV  
20mV/DIV  
2ms/DIV  
Figure 51. Small Signal Pulse Response, G = 1, RL = 20 kΩ, CL = 100 pF  
Figure 54. Small Signal Pulse Response, G = 1000, RL = 20 kΩ, CL = 100 pF  
NO LOAD  
220pF  
470pF  
780pF  
20mV/DIV  
20µs/DIV  
20mV/DIV  
5µs/DIV  
Figure 52. Small Signal Pulse Response, G = 10, RL = 20 kΩ, CL = 100 pF  
Figure 55. Small Signal Response with Various Capacitive Loads,  
G = 1, RL = ∞  
90  
85  
80  
75  
70  
65  
60  
55  
50  
20mV/DIV  
200µs/DIV  
0
5
10  
15  
20  
25  
30  
35  
40  
SUPPLY VOLTAGE (V)  
Figure 56. Supply Current vs. Supply Voltage  
Figure 53. Small Signal Pulse Response, G = 100, RL = 20 kΩ, CL = 100 pF  
Rev. 0 | Page 17 of 28  
AD8420  
Data Sheet  
90  
TESTED WITH DUAL SUPPLIES  
CENTERED AT 0V  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
0
4
8
12  
16  
20  
24  
28  
32  
36  
SUPPLY VOLTAGE (V)  
Figure 57. Offset Voltage vs. Supply Voltage  
Rev. 0 | Page 18 of 28  
Data Sheet  
AD8420  
THEORY OF OPERATION  
+V  
S
+
AD8420  
A
g
V
OUT  
I3  
–V  
+V  
S
S
V
R2  
R1  
b
+
ESD  
PROTECTION  
FB  
+IN  
–V  
+V  
S
S
g
m1  
m2  
I1  
I2  
ESD  
PROTECTION  
REF  
–IN  
–V  
S
Figure 58. Simplified Schematic  
ARCHITECTURE  
Table 7. Suggested Resistors for Various Gains, 1% Resistors  
The AD8420 is based on an indirect current feedback topology  
consisting of three amplifiers: two matched transconductance  
amplifiers that convert voltage to current and one integrator  
amplifier that converts current to voltage.  
R1 (kΩ)  
R2 (kΩ)  
Short  
49.9  
80.6  
90.9  
95.3  
97.6  
100  
Gain  
1.00  
2.00  
5.03  
10.09  
20.06  
49.8  
101  
None  
49.9  
20  
10  
5
2
1
1
1
For the AD8420, assume that all initial voltages and currents are  
zero until a positive differential voltage is applied between the  
inputs, +IN and −IN. Transconductance Amplifier gconverts this  
input voltage into a current, I±. Because the voltage across gm2 is  
initially zero, I2 is zero and I3 equals I±.  
200  
499  
1000  
201  
500  
1001  
I3 is integrated to the output, making the output voltage, ꢀOUT  
increase. This voltage continues to increase until the same differ-  
,
1
While the ratio of R2 to R± sets the gain, the designer determines  
the absolute value of the resistors. Larger values reduce power  
consumption and output loading; smaller values limit the FB input  
bias current and offset current error. For best output swing and  
distortion performance, keep (R± + R2V || RL ≥ 20 kꢁ.  
ential input voltage across the inputs of gis replicated across  
the inputs of gm2, generating a current (I2V equal to I±. This reduces  
the Difference Current I3 to zero so that the output remains at a  
stable voltage. The gain in the configuration shown in Figure 18 is  
set by R2 and R±.  
A method that allows large value feedback resistors while limiting  
FB bias current error is to place a resistor of value R± || R2 in  
series with the REF terminal, as shown in Figure 19. At higher  
gains, this resistor can simply be the same value as R±.  
In traditional instrumentation amplifiers, the input common-  
mode voltage can limit the available output swing, typically  
depicted in a hexagon plot. Because the AD8420 converts the  
input differential signals to current, this limit does not apply. This  
is particularly important when amplifying a signal with a common-  
mode voltage near one of the supply rails.  
+IN  
V
I
+
OUT  
B
AD8420  
To improve robustness and ease of use, the AD8420 includes  
overvoltage protection on its inputs. This protection scheme  
allows wide differential input voltages without damaging the part.  
I
B
FB  
I
REF  
F
–IN  
B
I
R
B
SETTING THE GAIN  
+
R1||R2  
R1  
R2  
The transfer function of the AD8420 is  
R2  
R1  
G = 1 +  
V
V
OUT = G(V+IN V−INV + VREF  
REF  
where:  
Figure 59. Cancelling Out Error from FB Input Bias Current  
R2  
R1  
G =±+  
Rev. 0 | Page 19 of 28  
 
 
 
AD8420  
Data Sheet  
GAIN ACCURACY  
INPUT PROTECTION  
Unlike most instrumentation amplifiers, the relative match of  
the two gain setting resistors determines the gain accuracy of  
the AD8420 rather than a single resistor. For example, if two  
resistors have exactly the same absolute error, there is no error  
in gain. Conversely, two ±% resistors can cause approximately 2%  
maximum gain error at high gains. Temperature coefficient  
mismatch of the gain setting resistors increases the gain drift  
of the instrumentation amplifier circuit. Because these external  
resistors do not have to match any on-chip resistors, resistors  
with good TC tracking can achieve excellent gain drift.  
The current into the AD8420 inputs is limited internally. This  
ensures that the diodes that limit the differential voltage seen by  
the internal amplifier do not draw excessive current when they  
turn on. The part can handle large differential input voltages,  
regardless of the amount of gain applied, without damage. As a  
result, the AD8420 inputs are protected from voltages beyond  
the positive rail. If voltages beyond the negative rail are expected,  
external protection must be used.  
Keep all of the AD8420 terminals within the voltage range specified  
in the Absolute Maximum Ratings section. All terminals of the  
AD8420 are protected against ESD.  
When the differential voltage at the inputs approaches the  
differential input limit, the diodes start to conduct, limiting  
the voltage seen by the inputs. This can look like increased gain  
error at large differential inputs. Performance of the AD8420 is  
specified for ±± ꢀ differential from −40°C to +81°C. However,  
at higher temperatures, the reduced forward voltage of the diodes  
limits the differential input to a smaller voltage. Figure 60 tracks  
±% error across the operating temperature range to show the  
effect of temperature on the input limit.  
Input Voltages Beyond the Rails  
For applications that require protection beyond the negative rail,  
one option is to use an external resistor in series with each input  
to limit current during overload conditions. In this case, size the  
resistors to limit the current into the AD8420 to 6 mA.  
R
PROTECT ≥ (Negative Supply VINV/6 mA  
Although the AD8420 inputs must still be kept within the −ꢀS +  
40 ꢀ limitation, the I × R drop across the protection resistor  
increases the protection on the positive side to approximately  
(40 ꢀ + Negative SupplyV + 300 μA × RPROTECT  
2.0  
NEGATIVE VOLTAGE  
V = ±15V  
S
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
An alternate protection method is to place diodes at the AD8420  
inputs to limit voltage and resistors in series with the inputs to  
limit the current into these diodes. To keep input bias current at  
a minimum for normal operation, use low leakage diode clamps,  
such as the BA±99. The AD8420 also combines well with TꢀS  
diodes, such as the PTꢀSxS±UR.  
POSITIVE VOLTAGE  
+V  
S
+V  
+V  
S
S
R
R
PROTECT  
PROTECT  
I
+
IN+  
+
IN+  
V
V
–V  
+V  
S
S
AD8420  
AD8420  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
R
R
TEMPERATURE (°C)  
PROTECT  
PROTECT  
+
+
IN–  
Figure 60. Differential Input Limit vs. Temperature  
–V  
–V  
S
S
V
V
IN–  
–V  
S
INPUT VOLTAGE RANGE  
SIMPLE METHOD  
ALTERNATE METHOD  
The allowed input range of the AD8420 is much simpler than  
traditional architectures. For the transfer function of the AD8420  
to be valid, the input voltage should follow two rules:  
Figure 61. Protection for Voltages Beyond the Rails  
Large Differential Input Voltage  
The AD8420 is able to handle large differential input voltage  
without damage to the part. Refer to Figure 9, Figure ±0,  
Figure ±±, and Figure ±2 for overvoltage performance. The  
AD8420 differential voltage is internally limited with diodes to  
±± . If this limit is exceeded, the diodes start to conduct and  
draw current, as shown in Figure 22. This current is limited  
internally to a value that is safe for the AD8420, but if the input  
current cannot be tolerated in the system, place resistors in  
series with each input with the following value:  
Keep the differential input voltage within ±± .  
Keep the voltage on the +IN, −IN, REF, and FB pins in the  
specified input voltage range.  
Because the output swing is completely independent of the  
input common-mode voltage, there are no hexagonal figures  
or complicated formulas to follow, and no limitation for the  
output swing the amplifier has for input signals with changing  
common mode.  
VDIFF ±ꢀ  
±
2
RPROTECT  
IMAX  
Rev. 0 | Page 20 of 28  
 
 
Data Sheet  
AD8420  
Reference  
LAYOUT  
The output voltage of the AD8420 is developed with respect to  
the potential on the reference terminal. Take care to tie REF to the  
appropriate local ground. The differential voltage at the inputs is  
reproduced between the REF and FB pins; therefore, it is important  
to set ꢀREF so that the voltage at FB does not exceed the input range.  
Common-Mode Rejection Ratio over Frequency  
Poor layout can cause some of the common-mode signal to be  
converted to a differential signal before reaching the in-amp. This  
conversion can occur when the path to the positive input pin  
has a different frequency response than the path to the negative  
input pin. For best CMRR vs. frequency performance, the input  
source impedance and capacitance of each path should be closely  
matched. This includes connecting Pin ± to −ꢀS, which matches the  
parasitic capacitance and the leakage between the inputs and  
adjacent pins. Place additional source resistance in the input  
path (for example, for input protectionV close to the in-amp inputs  
to minimize their interaction with the parasitic capacitance from  
the printed circuit board (PCBV traces.  
DRIVING THE REFERENCE PIN  
Traditional instrumentation amplifier architectures require the  
reference pin to be driven with a low impedance source. In these  
architectures, impedance at the reference pin degrades both CMRR  
and gain accuracy. With the AD8420 architecture, resistance at  
the reference pin has no effect on CMRR.  
+IN  
V
OUT  
Power Supplies  
AD8420  
FB  
Use a stable dc voltage to power the instrumentation amplifier.  
Noise on the supply pins can adversely affect performance. For  
more information, see the PSRR performance curves in Figure 24  
and Figure 21.  
REF  
R1  
–IN  
R2  
R
REF  
R2 + R  
REF  
G = 1 +  
R1  
V
REF  
Place a 0.± μF capacitor as close as possible to each supply pin.  
As shown in Figure 62, a ±0 μF tantalum capacitor can be used  
farther away from the part. This capacitor, which is intended to  
be effective at low frequencies, can usually be shared by other  
precision integrated circuits. Keep the traces between these  
integrated circuits short to minimize interaction of the trace  
parasitic inductance with the shared capacitor.  
Figure 63. Calculating Gain with Reference Resistance  
Resistance at the reference pin does affect the gain of the AD8420,  
but if this resistance is constant, the gain setting resistors can be  
adjusted to compensate. For example, the AD8420 can be driven  
with a voltage divider as shown in Figure 64.  
+V  
S
+IN  
V
OUT  
0.1µF  
10µF  
AD8420  
FB  
+IN  
–IN  
REF  
V
–IN  
V
S
OUT  
R1  
R2  
AD8420  
R3  
R4  
R2 + R3||R4  
R1  
G = 1 +  
R1  
R2  
Figure 64. Using Resistor Divider to Set Reference Voltage  
0.1µF  
10µF  
–V  
S
Figure 62. Supply Decoupling, REF, and Output Referred to Local Ground  
Rev. 0 | Page 21 of 28  
 
 
 
AD8420  
Data Sheet  
INCORRECT  
CORRECT  
+V  
+V  
S
S
V
V
V
V
OUT  
OUT  
OUT  
OUT  
AD8420  
AD8420  
–V  
–V  
S
S
TRANSFORMER  
TRANSFORMER  
+V  
+V  
S
S
V
OUT  
AD8420  
AD8420  
10M  
–V  
–V  
S
S
THERMOCOUPLE  
THERMOCOUPLE  
+V  
+V  
S
S
C
C
C
V
OUT  
1
R
R
fHIGH-PASS  
=
2πRC  
AD8420  
AD8420  
C
–V  
–V  
S
S
CAPACITIVELY COUPLED  
CAPACITIVELY COUPLED  
Figure 65. Creating an IBIAS Path  
+V  
S
INPUT BIAS CURRENT RETURN PATH  
0.1µF  
10µF  
The input bias current of the AD8420 must have a return path  
to ground. When the source, such as a thermocouple, cannot  
provide a return current path, create one, as shown in Figure 61.  
C
330pF  
5%  
C
R
20kꢀ  
1%  
+IN  
–IN  
V
OUT  
R
20kꢀ  
1%  
C
D
AD8420  
RADIO FREQUENCY INTERFERENCE (RFI)  
3300pF  
All instrumentation amplifiers can rectify high frequency out-of-  
band signals. Once rectified, these signals appear as dc offset errors  
at the output. High frequency signals can be filtered with a low-pass  
RC network placed at the input of the instrumentation amplifier, as  
shown in Figure 66. The filter limits the input signal bandwidth  
according to the following relationship:  
C
330pF  
5%  
C
R1  
R2  
0.1µF  
10µF  
–V  
S
Figure 66. Suggested RFI Suppression Filter  
CD affects the differential signal and CC affects the common-mode  
signal. alues of R and CC are chosen to minimize out of band  
RFI at the expense of reduced signal bandwidth. Mismatch  
between the R × CC at the positive input and the R × CC at the  
negative input degrades the CMRR of the AD8420. By using a  
value of CD that is at least one magnitude larger than CC, the  
effect of the mismatch is reduced and performance is improved.  
±
FilterFrequencyDIFF  
FilterFrequencyCM  
=
R(2CD +CC V  
±
=
RCC  
where CD ±0 CC.  
Rev. 0 | Page 22 of 28  
 
 
 
Data Sheet  
AD8420  
Because the ADA4692-2 is a dual op amp, another op amp is  
OUTPUT BUFFERING  
now free for use as an active filter stage or to buffer another  
AD8420 output on the same PCB. Figure 68 shows another  
suggestion for how to use this second op amp. In this circuit,  
the voltage from the wiper of a potentiometer is buffered by the  
ADA4692-2, allowing a variable level shift of the output. Resistors  
above and below the potentiometer reduce the total range of the  
level shift but increase the precision. If the potentiometer were  
connected directly to the REF pin of the AD8420, gain error would  
be introduced from the variable resistance. The potentiometer can  
be tuned in hardware or software, depending on the type of  
potentiometer chosen. For a list of digital potentiometers made  
by Analog Devices, Inc., visit www.analog.com/digipots/.  
+5V  
The AD8420 is designed to drive loads of 20 kꢁ or greater but  
can deliver up to ±0 mA to heavier loads at lower output voltage  
swings (see Figure 42V. If more output current is required, buffer  
the AD8420 output with a precision op amp. Figure 67 shows  
the recommended configuration using the ADA4692-2 as a single  
supply. This low power op amp can swing its output from ± ꢀ to  
4 ꢀ on a single 1 ꢀ supply while sourcing or sinking more than  
30 mA of current. When using this configuration, the load seen  
by the AD8420 is approximately R± + R2.  
+5V  
0.1µF  
+V  
S
0.1µF  
+V  
S
0.1µF  
V
IN  
AD8420  
V
ADA4692-2  
OUT  
R1  
R2  
0.1µF  
V
V
–V  
IN  
AD8420  
OUT  
S
V
REF  
R
R
–V  
S
CW  
R1  
R2  
W
REF  
Figure 67. Output Buffering  
CCW  
ADA4692-2  
SUGGESTION FOR SECOND  
AMPLIFIER: VARIABLE  
LEVEL SHIFT WITHOUT  
AFFECTING GAIN  
Figure 68. Variable Level Shift  
Rev. 0 | Page 23 of 28  
 
 
 
AD8420  
Data Sheet  
APPLICATIONS INFORMATION  
architecture, the offset can be accounted for in the input stage  
by unbalancing the transconductance amplifier at the REF and  
FB pins. In the steady state, the offset at the input is not gained  
to the output, and higher frequency signals can be gained and  
passed through. Using the AD8420 in this way, the offset tolerance  
is nearly the differential input range of the part (±± V.  
AD8420 IN ELECTROCARDIOGRAPHY (ECG)  
A high-pass filter is commonly used in ECG signal conditioning  
circuitry to remove electrode offset and motion artifacts. To avoid  
degrading the input impedance and CMRR of the system, this  
filtering is typically implemented after the instrumentation  
amplifier, which limits the gain that can be applied with the  
instrumentation amplifier.  
Figure 69 shows an ECG front end that applies a gain of ±00 to  
the signal while rejecting dc and high frequencies. This circuit  
combines the AD8420 with the AD8617, which is a low power,  
low cost, dual, precision CMOS op amp.  
With a 3-op-amp instrumentation amplifier, gain is applied in the  
first stage. Because of this, the electrode offset is gained and then  
must be removed afterward with a high-pass filter. In the AD8420  
THREE-POLE LPF,  
INSTRUMENTATION  
BESSEL RESPONSE  
AMPLIFIER  
G = +100  
FC = 50Hz  
200pF  
+5V  
402kꢀ  
A
B
100kꢀ  
2000pF  
100kꢀ  
200pF  
0.015μF  
110kꢀ  
200kꢀ  
200kꢀ  
AD8420  
FB  
100kꢀ  
1kꢀ  
500kꢀ  
0.022μF  
+5V  
REF  
–5V  
3.3μF  
8200pF  
C
10Mꢀ  
+5V  
–5V  
AD8657-1  
AD8657-2  
–5V  
INTEGRATOR PROVIDES  
HIGH-PASS POLE AT 0.5Hz  
Figure 69. AD8420 in an ECG Front End  
Rev. 0 | Page 24 of 28  
 
 
Data Sheet  
AD8420  
CLASSIC BRIDGE CIRCUIT  
4 mA TO 20 mA SINGLE-SUPPLY RECEIVER  
Figure 70 shows the AD8420 configured to amplify the signal from  
a classic resistive bridge. This circuit works in dual-supply mode or  
single-supply mode. Typically, the same voltage that powers the  
instrumentation amplifier excites the bridge. Connecting the  
bottom of the bridge to the negative supply of the instrumentation  
amplifier sets up an input common-mode voltage that is located  
midway between the supply voltages. The voltage on the REF pin  
can be varied to suit the application. For example, the REF pin  
is tied to the ꢀREF pin of an analog-to-digital converter (ADCV  
whose input range is (ꢀREF ± ꢀINV. With an available output swing  
on the AD8420 of (−ꢀS + ±00 mꢀV to (+ꢀS − ±10 mꢀV, the  
maximum programmable gain is simply this output range divided  
by the input range.  
The 80 μA maximum supply current, input range that goes  
below ground, and low drift characteristics make the AD8420 a  
very good candidate for use in a 4 mA to 20 mA loop. Figure 7±  
shows how a signal from a 4 mA to 20 mA transducer can be  
interfaced to the AD8420. The signal from a 4 mA to 20 mA  
transducer is single-ended, which initially suggests the need for  
a simple shunt resistor to ground to convert the current to a voltage.  
However, any line resistance in the return path (to the transducerV  
adds a current-dependent offset error; therefore, the current must  
be sensed differentially.  
In this example, a 1 ꢁ shunt resistor generates a differential voltage  
at the inputs of the AD8420 between 20 mꢀ (for 4 mA inV and  
±00 mꢀ (for 20 mA inV with a very low common-mode value.  
With the gain resistors shown, the AD8420 amplifies the ±00 mꢀ  
input voltage by a factor of 40 to 4.0 .  
+V  
S
0.1µF  
V
V
V
AD8420  
DIFF  
OUT  
REF  
0.1µF  
–V  
S
Figure 70. Classic Bridge Circuit  
5V  
0.1µF  
4mA TO 20mA  
TRANSDUCER  
LINE  
IMPEDANCE  
AD8420  
0.8V TO 4.0V  
4mA TO 20mA  
5  
G = 40  
+
+
R1 R2  
POWER  
SUPPLY  
R2 = 97.6kꢀ  
R1 = 2.49kꢀ  
Figure 71. 4 mA to 20 mA Receiver Circuit  
Rev. 0 | Page 25 of 28  
 
 
 
AD8420  
Data Sheet  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 72. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package  
Option  
Model1  
Temperature Range  
Package Description  
Branding  
Y3Y  
Y3Y  
AD8420ARMZ  
AD8420ARMZ-R7  
AD8420ARMZ-RL  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead Mini Small Outline Package [MSOP], Tube  
8-Lead Mini Small Outline Package [MSOP], 7-Inch Tape and Reel  
8-Lead Mini Small Outline Package [MSOP], 13-Inch Tape and Reel  
RM-8  
RM-8  
RM-8  
Y3Y  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 26 of 28  
 
Data Sheet  
NOTES  
AD8420  
Rev. 0 | Page 27 of 28  
AD8420  
NOTES  
Data Sheet  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09945-0-3/12(0)  
Rev. 0 | Page 28 of 28  

相关型号:

AD8420ARMZ-R7

Wide Supply Range, Micropower,
ADI

AD8420ARMZ-RL

Wide Supply Range, Micropower,
ADI

AD8420BRMZ

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8420BRMZ-R7

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8420BRMZ-RL

Wide Supply Range, Rail-to-Rail Output Instrumentation Amplifier
ADI

AD8420_12

Wide Supply Range, Micropower,
ADI

AD8421

3 nV/√Hz, Low Power
ADI

AD8421-KGD-WP

3 nV /√Hz, Low Power Instrumentation Amplifier
ADI

AD8421ARMZ

3 nV/√Hz, Low Power
ADI

AD8421ARMZ-R7

3 nV/√Hz, Low Power
ADI

AD8421ARMZ-RL

3 nV/√Hz, Low Power
ADI

AD8421ARZ

3 nV/√Hz, Low Power
ADI