AD8582AR [ADI]

+5 Volt, Parallel Input Complete Dual 12-Bit DAC; +5伏,并行输入完整的双通道12位DAC
AD8582AR
型号: AD8582AR
厂家: ADI    ADI
描述:

+5 Volt, Parallel Input Complete Dual 12-Bit DAC
+5伏,并行输入完整的双通道12位DAC

转换器 数模转换器 光电二极管
文件: 总8页 (文件大小:311K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
+5 Volt, Parallel Input  
a
Complete Dual 12-Bit DAC  
AD8582  
FEATURES  
FUNCTIO NAL BLO CK D IAGRAM  
Com plete Dual 12-Bit DAC  
No External Com ponents  
Single +5 Volt Operation  
1 m V/ Bit w ith 4.095 V Full Scale  
True Voltage Output, ±5 m A Drive  
Very Low Pow er: 5 m W  
AD8582  
V
V
DD  
12  
12-BIT  
DAC A  
DAC A  
LDA  
OUTA  
REGISTER  
INPUT A  
REGISTER  
CS  
A/B  
APPLICATIONS  
12  
2
DATA  
V
REFERENCE  
REF  
Digitally Controlled Calibration  
Portable Equipm ent  
Servo Controls  
INPUT B  
REGISTER  
Process Control Equipm ent  
PC Peripherals  
12  
DAC B  
REGISTER  
12-BIT  
DAC B  
LDB  
V
OUTB  
AGND  
MSB  
DGND  
RST  
GENERAL D ESCRIP TIO N  
T he high speed parallel data interface connects to the fastest  
processors without wait states. T he double-buffered input struc-  
ture allows the user to load the input registers one at a time,  
then a single load strobe tied to both LDA + LDB inputs will  
update both DAC outputs simultaneously. LDA and LDB can  
also be activated independently to immediately update their re-  
spective DAC registers. An address input decodes DAC A or  
DAC B when the chip select CS input is strobed. An asynchro-  
nous reset input sets the output to zero scale. T he MSB bit can  
be used to establish a preset to midscale when the reset input is  
strobed.  
T he AD8582 is a complete, parallel input, dual 12-bit, voltage  
output DAC designed to operate from a single +5 volt supply.  
Built using a CBCMOS process, this monolithic DAC offers the  
user low cost, and ease-of-use in +5 volt only systems.  
Included on the chip, in addition to the DACs, are a rail-to-rail  
amplifier, latch and reference. T he reference (VREF) is trimmed  
to 2.5 volts output, and the on-chip amplifier gains up the DAC  
output to 4.095 volts full scale. T he user needs only supply a +5  
volt supply.  
T he AD8582 is coded natural binary. T he op amp output  
swings from 0 volt to +4.095 volts for a one-millivolt-per-bit  
resolution, and is capable of driving ±5 mA. Operation down to  
4.3 V is possible with output load currents less than 1 mA.  
T he AD8582 is available in the 24-pin plastic DIP and the sur-  
face mount SOIC-24. Each part is fully specified for operation  
over –40°C to +85°C, and the full +5 V ± 5% power supply  
range.  
5.0  
2.0  
VFS  
DATA = FFF  
1 LSB  
H
V
T
= +5V  
1.5  
1.0  
T
= +25°C  
DD  
A
4.8  
4.6  
4.4  
4.2  
4.0  
= –55°C, +25°C, +85°C  
A
0.5  
PROPER OPERATION  
WHEN V SUPPLY  
VOLTAGE ABOVE  
CURVE  
0.0  
DD  
–0.5  
–1.0  
= +25°C & +85°C  
= –55°C  
–1.5  
–2.0  
0.01  
0.1  
1.0  
10  
100  
0
1024  
2048  
3072  
4096  
OUTPUT LOAD CURRENT – mA  
DIGITAL INPUT CODE – Decimal  
Figure 1. Minim um Supply Voltage vs. Load  
Figure 2. Linearity Error vs. Digital Code and Tem perature  
REV. 0  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood. MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
AD8582–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
(@ V = +5.0 V ± 5%, R = No Load, –40°C T +85°C, unless otherwise noted)  
DD  
L
A
P ar am eter  
Sym bol  
Condition  
Min  
Typ  
Max  
Units  
ST AT IC PERFORMANCE  
Resolution  
N
Note 1  
12  
–2  
–1  
Bits  
Relative Accuracy  
Differential Nonlinearity  
Zero-Scale Error  
Full-Scale Voltage  
Full-Scale T empco  
INL  
DNL  
VZSE  
VFS  
±3/4  
±3/4  
+0.2  
4.095  
±16  
+2  
+1  
+3  
4.111  
LSB  
LSB  
mV  
Monotonic  
Data = 000H  
Data = FFFH,2  
Notes 2 and 3  
4.079  
V
T CVFS  
ppm/°C  
MAT CHING PERFORMANCE  
Linearity Matching Error  
VFSA/B  
±1  
LSB  
REFERENCE OUT PUT  
Output Voltage  
VREF  
IREF  
LNREJ  
LDREG  
2.484  
2.500  
2.516  
–5  
0.08  
0.1  
V
mA  
%/V  
%/mA  
Output Source Current  
Line Rejection  
Load Regulation  
Note 4  
IREF = 0 mA to 5 mA  
ANALOG OUT PUT  
Output Current  
IOUT  
LDREG  
CL  
Data = 800H  
±5  
3
mA  
LSB  
pF  
Load Regulation at Half Scale  
Capacitive Load  
RL = 402 to , Data = 800H  
1
500  
No Oscillation3  
DYNAMIC CHARACT ERIST ICS3  
Crosstalk  
CT  
tS  
FT  
>64  
16  
35  
dB  
µs  
nV s  
Voltage Output Settling T ime5  
Digital Feedthrough  
T o ±1 LSB of Final Value  
Signal Measured at DAC Output, While  
Changing Data (LDA = LDB = “1”)  
LOGIC INPUT S  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance  
VIL  
VIH  
IIL  
0.8  
V
V
µA  
pF  
2.4  
10  
10  
CIL  
Note 3  
T IMING SPECIFICAT IONS3, 6  
Chip Select Pulse Width  
DAC Select Setup  
DAC Select Hold  
Data Setup  
tCSW  
tAS  
tAH  
tDS  
tDH  
tLS  
tLH  
tLDW  
tRSW  
30  
30  
0
30  
10  
20  
10  
20  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Hold  
Load Setup  
Load Hold  
Load Pulse Width  
Reset Pulse Width  
SUPPLY CHARACT ERIST ICS  
Positive Supply Current  
IDD  
VIH = 2.4 V, VIL = 0.8 V  
VIL = 0 V, VDD = +5 V  
VIH = 2.4 V, VIL = 0.8 V  
VIL = 0 V, VDD = +5 V  
VDD = ±5%  
4
1
20  
5
7
2
35  
10  
mA  
mA  
mW  
mW  
Power Dissipation7  
PDISS  
PSS  
Power Supply Sensitivity  
0.002  
0.004 %/%  
NOT ES  
11 LSB = 1 mV for 0 V to +4.095 V output range.  
2Includes internal voltage reference error.  
3T hese parameters are guaranteed by design and not subject to production testing.  
4Very little sink current is available at the VREF pin. Use external buffer if setting up a virtual ground.  
5Settling time is not guaranteed for the first six codes 0 through 5.  
6All input control signals are specified with tR = tF = 5 ns (10% to 90% of +5 V) and timed from a voltage level of 1.6 V.  
7Power dissipation is a calculated value IDD × 5 V.  
Specifications subject to change without notice.  
REV. 0  
–2–  
AD8582  
P IN D ESCRIP TIO N  
D escription  
ABSO LUTE MAXIMUM RATINGS*  
VDD to DGND & AGND . . . . . . . . . . . . . . . . . . . 0.3 V, +7 V  
Logic Inputs to DGND . . . . . . . . . . . . . . . –0.3 V, VDD + 0.3 V  
VOUT to AGND . . . . . . . . . . . . . . . . . . . . . –0.3 V, VDD + 0.3 V  
VREF to AGND . . . . . . . . . . . . . . . . . . . . . –0.3 V, VDD + 0.3 V  
AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V, VDD  
IOUT Short Circuit to GND . . . . . . . . . . . . . . . . . . . . . . 50 mA  
Package Power Dissipation . . . . . . . . . . . . . . . (T J max–T A)/θJA  
T hermal Resistance, θJA  
24-Pin Plastic DIP Package (N-24) . . . . . . . . . . . . . 62°C/W  
24-Lead SOIC Package (SOL-24) . . . . . . . . . . . . . . 73°C/W  
Maximum Junction T emperature (TJ max) . . . . . . . . . . 150°C  
Operating T emperature Range . . . . . . . . . . . . . –40°C to +85°C  
Storage T emperature Range . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature (Soldering, 10 sec) . . . . . . . . . . . . . +300°C  
P in No. Nam e  
1, 24  
VOUT A  
VOUT B  
Voltage outputs from the DACs. Fixed  
output voltage range of 0 V to 4.095 V  
with 1 mV/LSB. An internal  
temperature stabilized reference  
maintains a fixed full-scale voltage  
independent of time, temperature and  
power supply variations.  
2
AGND Analog Ground. Ground reference for  
the internal bandgap reference voltage,  
the DAC, and the output buffer.  
3
DGND Digital ground for input logic.  
4, 21  
LDA,  
LDB  
Load DAC register strobes. T ransfers  
input register data to the DAC registers.  
Active low inputs, Level sensitive latch.  
May be connected together to double-  
buffer load DAC registers.  
*Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
5
MSB  
Digital Input: High presets DAC  
registers to half scale (800H), Low  
clears DAC registers to zero (000H)  
upon RST assertion.  
tCSW  
CS  
tAH  
tAS  
6
RST  
Active low digital input that clears the  
DAC register to zero, setting the DAC  
to minimum scale when MSB pin = 0,  
or half-scale when MSB pin = 1.  
A/B  
tDH  
tDS  
D0–D11  
tLDW  
tLH  
7–18  
DB0–11 T welve Binary Data Bit Inputs. DB11 is  
the MSB and DB0 is the LSB.  
tLS  
LDA, LDB  
tRSW  
19  
20  
22  
23  
CS  
Chip Select. Active low input.  
RST  
A/B  
VDD  
VREF  
Select DAC A = 0 or DAC B = 1.  
Positive Supply. Nominal value +5 V, ±5%.  
tS  
tS  
± 1LSB  
ERROR BAND  
V
OUT  
Nominal 2.5 V reference output  
voltage. T his node must be buffered if  
required to drive external loads.  
Timing Diagram  
P IN CO NFIGURATIO NS  
N-24  
SO L-24  
O RD ERING INFO RMATIO N*  
24-P in P lastic D IP  
24-P in SO IC  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
24  
1
Model  
V
1
2
3
4
5
6
7
8
9
24  
23  
22  
V
V
V
OUTA  
OUTB  
REF  
DD  
AGND  
DGND  
AD8582AN  
AD8582AR  
–40°C to +85°C 24-Pin Plastic DIP N-24  
–40°C to +85°C 24-Lead SOIC SOL-24  
Die  
AD8582  
TOP VIEW  
(Not to Scale)  
AD8582Chips +25°C  
21 LDB  
LDA  
MSB  
RST  
20  
19  
18  
17  
16  
15  
A/B  
*For die specifications contact your local Analog Devices sales office. T he  
AD8582 contains 1270 transistors.  
AD8582  
TOP VIEW  
(Not to Scale)  
CS  
DB0  
DB1  
DB11  
DB10  
12  
13  
DB2  
DB9  
DB8  
DB3 10  
DB4  
14 DB7  
13  
11  
DB5 12  
DB6  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD8582 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–3–  
AD8582  
Table I. Control Logic Truth Table  
CS  
A/B  
LDA  
LDB  
RST  
MSB  
Input Register  
D AC Register  
L
L
L
L
H
H
X
X
H
L
H
L
H
X
X
X
X
X
H
H
L
H
L
^
X
X
X
H
H
H
L
L
^
X
X
X
H
H
H
H
H
H
L
L
^
X
X
X
X
X
X
L
Write to A  
Write to B  
Write to A  
Write to B  
Latched  
Latched  
Reset to Zero Scale  
Reset to Midscale  
Latch Reset Value  
Latched  
Latched  
A T ransparent  
B T ransparent  
A & B T ransparent  
Latched  
Reset to Zero Scale  
Reset to Midscale  
Latch Reset Value  
H
X
^Denotes positive edge triggered.  
O P ERATIO N  
V
2.5V  
VOLTAGE SWITCHED 12-BIT  
R-2R D/A CONVERTER  
REF  
RAIL-TO-RAIL  
OUTPUT  
AMPLIFIER  
BANDGAP  
REFERENCE  
T he AD8582 is a complete, ready-to-use dual 12-bit digital-to-  
analog converter. Only one +5 V power supply is necessary for  
operation. It contains two voltage-switched, 12-bit, laser-  
trimmed digital-to-analog converters, a curvature-corrected  
bandgap reference, rail-to-rail output op amps, input registers,  
and DAC registers. T he parallel data interface consists of twelve  
data bits, DB0–DB11, an address select pin A/B, two load  
strobe pins (LDA, LDB) and an active low CS strobe. In addi-  
tion an asynchronous RST pin will set all DAC register bits to  
zero causing the VOUT to become zero volts, or to midscale for  
trimming applications when the MSB pin is programmed to  
Logic 1. T his function is useful for power on reset or system  
failure recovery to a known state.  
2R  
V
OUT  
R
BUFFER  
R2  
2R  
R1  
R
2R  
AV = 4.095/2.5  
= 1.638V/V  
2R  
SPDT  
N CH FET  
SWITCHES  
2R  
D /A CO NVERTER SECTIO N  
Figure 3. Equivalent Schem atic of Analog Portion  
T he internal DAC is a 12-bit voltage-mode device with an  
output that swings from AGND potential to the 2.5 volt in-  
ternal bandgap voltage. It uses a laser trimmed R-2R  
ladder which is switched by N channel MOSFET s. T he out-  
put voltage of the DAC has a constant resistance independent  
of digital input code. T he DAC output (not available to the  
user) is internally connected to the rail-to-rail output op amp.  
O UTP UT SECTIO N  
T he rail-to-rail output stage of this amplifier has been designed  
to provide precision performance while operating near either  
power supply. Figure 4 shows an equivalent output schematic of  
the rail-to-rail amplifier with its N channel pull-down FET s that  
will pull an output load directly to GND. T he output sourcing  
current is provided by a P channel pull-up device that can sup-  
ply GND terminated loads, especially important at the –5%  
supply tolerance value of 4.75 volts.  
AMP LIFIER SECTIO N  
T he internal DACs output is buffered by a low power con-  
sumption precision amplifier. T his low power amplifier contains  
a differential PNP pair input stage which provides low offset  
voltage and low noise, as well as the ability to amplify the zero-  
scale DAC output voltages. T he rail-to-rail amplifier is config-  
ured in a gain of 1.6384 (= 4.095 V/2.5 V) in order to set the  
4.095 volt full-scale output (1 mV/LSB). See Figure 3 for an  
equivalent circuit schematic of the analog section.  
V
DD  
P-CH  
V
OUT  
N-CH  
T he op amp has a 16 µs typical settling time to 0.01%. T here  
are slight differences in settling time for negative slewing signals  
versus positive. See the oscilloscope photos in the T ypical Per-  
formances section of this data sheet.  
AGND  
Figure 4. Equivalent Analog Output Circuit  
REV. 0  
–4–  
AD8582  
Figures 5 and 6 in the typical performance characteristics sec-  
tion provide information on output swing performance near  
ground and full-scale as a function of load. In addition to resis-  
tive load driving capability, the amplifier has also been carefully  
designed and characterized for up to 500 pF capacitive load  
driving capability.  
One advantage of the rail-to-rail output amplifiers used in the  
AD8582 is the wide range of usable supply voltage. T he part is  
fully specified and tested over temperature for operation from  
+4.75 V to +5.25 V. If reduced linearity and source current  
capability near full scale can be tolerated, operation of the  
AD8582 is possible down to +4.3 volts. T he minimum operat-  
ing supply voltage versus load current plot, in Figure 1, pro-  
vides information for operation below VDD = +4.75 V.  
REFERENCE SECTIO N  
T he internal 2.5 V curvature-corrected bandgap voltage refer-  
ence is laser trimmed for both initial accuracy and low tempera-  
ture coefficient. T he voltage generated by the reference is  
available at the VREF pin. Since VREF is not intended to drive ex-  
ternal loads, it must be buffered. T he equivalent emitter fol-  
lower output circuit of the VREF pin is shown in Figure 3.  
TIMING AND CO NTRO L  
T he input registers are level triggered and acquire data from the  
data bus during the time period when CS is low. T he input reg-  
ister selected is determined by the A/B select pin, see T able I.  
for a complete description. When CS goes high, the data is  
latched into the register and held until CS returns low. T he  
minimum time required for the data to be present on the bus  
before CS returns high is called the data setup time (tDS) as seen  
in T iming Diagram. T he data hold time (tDH) is the amount  
of time that the data has to remain on the bus after CS goes  
high. T he high speed timing offered by the AD8582 provides  
for direct interface with no wait states in all but the fastest  
microprocessors.  
Bypassing the VREF pin will improve noise performance; how-  
ever, bypassing is not required for proper operation. Figure 8  
shows broadband noise performance.  
P O WER SUP P LY  
T he very low power consumption of the AD8582 is a direct re-  
sult of a circuit design optimizing use of the CBCMOS process.  
By using the low power characteristics of the CMOS for the  
logic, and the low noise, tight matching of the complementary  
bipolar transistors good analog accuracy is achieved.  
T he data from the input registers is transferred to the DAC reg-  
isters by the active low LDA and LDB pins. If these inputs are  
tied together, a single logic input can perform a double buffer  
update of the DAC registers, which in turn simultaneously  
changes the analog output voltages to a new value. If the LDA  
and LDB pins are wired low, they become transparent. In this  
mode the input register data will directly control the output  
voltages. Refer to the Control Logic T ruth T able for a com-  
plete description.  
For power-consumption sensitive applications it is important to  
note that the internal power consumption of the AD8582 is  
strongly dependent on the actual logic-input voltage levels  
present on the DB0–DB11, CS, A/B, MSB, LDA, LDB and  
RST pins. Since these inputs are standard CMOS logic struc-  
tures they contribute static power dissipation dependent on the  
actual driving logic VOH and VOL voltage levels. T he graph in  
Figure 9 shows the effect on total AD8582 supply current as a  
function of the actual value of input logic voltage. Conse-  
quently, for optimum dissipation use of CMOS logic versus  
Unipolar O utput O per ation  
T his is the basic mode of operation for the AD8582. T he  
AD8582 has been designed to drive loads as low as 820in par-  
allel with 500 pF. T he code table for this operation is shown in  
T able II.  
T T L provides minimal dissipation in the static state. A VINL  
=
0 V on the DB0–11 pins provides the lowest standby dissipation  
of 1 mA typical with a +5 V power supply.  
As with any analog system, it is recommended that the AD8582  
power supply be bypassed on the same PC card that contains  
the chip. Figure 10 shows the power supply rejection versus fre-  
quency performance. T his should be taken into account when  
using higher frequency switched-mode power supplies with  
ripple frequencies of 100 kHz and higher.  
Table II. Unipolar Code Table  
H exadecim al  
Num ber in D AC  
Register  
D ecim al Num ber  
in D AC Register  
Analog O utput  
Voltage (V)  
FFF  
801  
800  
7FF  
000  
4095  
2049  
2048  
2047  
0
+ 4.095  
+ 2.049  
+ 2.048  
+ 2.047  
0
REV. 0  
–5–  
AD8582–Typical Performance Characteristics  
80  
100  
5
V
= +5V  
= +25°C  
DD  
V
= +5V  
POSITIVE0  
CURRENT0  
LIMIT0  
DD  
T
A
60  
40  
DATA = 000  
H
4
10  
R
TIED TO AGND  
L
DATA = FFF  
H
20  
0
3
2
DATA = 800  
H
1
R
TIED TO +2V  
L
T
= +85°C  
–20  
A
T
= –40°C  
A
–40  
0.1  
R
L
TIED TO +5V  
1
0
NEGATIVE  
CURRENT  
LIMIT  
DATA = 000  
H
–60  
–80  
T
= +25°C  
A
0.01  
1
1
2
3
10  
100  
1000  
100  
1k  
10k  
100k  
10  
OUTPUT SINK CURRENT – µA  
OUTPUT VOLTAGE – Volts  
LOAD RESISTANCE – Ω  
Figure 6. Pull-Down Voltage vs.  
Output Sink Current Capability  
Figure 5. Output Swing vs. Load  
Figure 7. IOUT vs. VOUT  
5
100  
80  
V
T
= +5V ±200mV AC  
DD  
T
= +25°C  
T
= +25°C  
A
A
= +25°C  
A
4
3
2
1
0
NBW = 630kHz  
V
= +4.75V  
DATA = FFF  
H
DD  
V
= +5V  
DD  
60  
40  
20  
0
0
1
2
3
4
5
100  
1k  
FREQUENCY – Hz  
10k  
100k  
TIME = 100µs/DIV  
10  
LOGIC VOLTAGE VALUE – Volts  
Figure 8. Broadband Noise  
Figure 9. Supply Current vs. Logic  
Input Voltage  
Figure 10. Power Supply Rejection  
vs. Frequency  
5
5V  
5
5
100  
90  
0
LDB  
0
0
4
3
2048 TO 2047  
15µs  
10  
10  
V
T
= +5V  
DD  
2.048  
2.038  
2.028  
2.018  
2.008  
= +25  
°C  
A
2
V
T
= +5V  
DD  
A
10  
= +25°C  
1
0
0%  
1V  
20µs  
TIME = 20µs/DIV  
TIME – 500ns/DIV  
TIME – 5µs/DIV  
Figure 13. Output Voltage Rise  
Tim e Detail  
Figure 12. Large Signal Settling Tim e  
Figure 11. Midscale Transition  
Perform ance  
REV. 0  
–6–  
AD8582  
45  
40  
4.115  
4.110  
4.105  
TUE =  
SS = 297 UNITS  
ΣINL+ZS+FS  
V
T
= +5V  
= +25°C  
DD  
V
= +4.75V  
DD  
A
NO LOAD  
SS = 298 UNITS  
5
0
V
T
= +4.75V  
DD  
35  
30  
= +25°C  
A
4.100  
4.095  
σAVG +1σ  
25  
20  
15  
15µs  
4.090  
4.085  
10  
5
AVG  
σAVG –1σ  
4.080  
4.075  
0
–8 –7 –6 –5 –4 –3 –2 –1  
0
1
–50  
–25  
0
25  
50  
75  
100 125  
TIME – 5µs/DIV  
TOTAL UNADJUSTED ERROR – mV  
TEMPERATURE –  
°C  
Figure 14. Output Voltage Fall  
Tim e Detail  
Figure 15. Total Unadjusted Error  
Histogram  
Figure 16. Full-Scale Voltage vs.  
Tem perature  
3
2
1
0
3
100  
V
= +5V  
DD  
V
T
= +5V  
V
= +4.75V  
DD  
DD  
SS = 135 UNITS  
DATA = FFF  
2
1
= +25°C  
NO LOAD  
A
H
DATA = FFF  
H
SS = 298 UNITS  
10  
1.0  
0.1  
σ
AVG +2  
σ
0
AVG  
–1  
–2  
–3  
σ
AVG –2  
σ
–1  
0
100  
200  
300  
400  
500  
600  
–50 –25  
0
25  
50  
75  
100 125  
10  
100  
1k  
FREQUENCY – Hz  
10k  
100k  
TEMPERATURE –  
°C  
HOURS OF OPERATION AT +150°C  
Figure 17. Zero-Scale Voltage vs.  
Tem perature  
Figure 18. Output Voltage Noise  
Density vs. Frequency  
Figure 19. Long-Term Drift  
Accelerated by Burn-In  
8
V
= +2.4V  
DATA  
5V  
5µs  
2V  
7
6
1µs  
NO LOAD  
1
0
CS = HIGH  
100  
90  
100  
90  
V
= +5.25V  
T = +25°C  
A
DD  
V
DD  
5
R
= ∞  
L
V
= +5.00V  
DD  
V
DD  
= +5V  
0V  
4
3
V
REF  
10  
10  
0V  
V
= +4.75V  
DD  
0%  
2
0%  
10mV  
2V  
1
0
TIME – 5µs/DIV  
TIME – 1µs/DIV  
–50 –25  
0
25  
50  
75  
100 125  
TEMPERATURE –  
°C  
Figure 20. Supply Current vs.  
Tem perature  
Figure 21. Reference Startup vs.  
Tim e  
Figure 22. Digital Feedthrough vs.  
Tim e  
REV. 0  
–7–  
AD8582  
0.10  
10  
0.000  
V
= +4.75V  
8
V = +4.75 TO +5.25V  
DD  
DD  
V = +4.75V  
DD  
–0.001  
6
4
0.08  
0.06  
0.04  
0.02  
0.00  
I = 5mA  
L
σAVG +1σ  
AVG  
2
–0.002  
σAVG +1σ  
σAVG +1σ  
0
AVG  
AVG  
–2  
–4  
–0.003  
–0.004  
–6  
–8  
σAVG –1σ  
σAVG – 1σ  
σAVG –1σ  
–10  
–50 –25  
–0.005  
0
25  
50  
75  
100 125  
–50 –25  
0
25  
50  
75  
100 125  
–50  
–25  
0
25  
50  
75  
100 125  
TEMPERATURE –  
°C  
TEMPERATURE –  
°C  
TEMPERATURE –  
°C  
Figure 23. Reference Error vs.  
Tem perature  
Figure 24. Reference Load Regulation  
vs. Tem perature  
Figure 25. Reference Line Regulation  
vs. Tem perature  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
N-24  
24-P in Nar r ow Body P lastic D IP  
13  
24  
1
PIN 1  
0.280 (7.11)  
0.240 (6.10)  
12  
1.275 (32.30)  
1.125 (28.60)  
0.325 (8.25)  
0.300 (7.62)  
0.060 (1.52)  
0.015 (0.38)  
0.210  
(5.33)  
MAX  
0.195 (4.95)  
0.115 (2.93)  
0.150  
(3.81)  
MIN  
0.200 (5.05)  
0.125 (3.18)  
0.015 (0.381)  
0.008 (0.204)  
0.022 (0.558)  
0.014 (0.356)  
0.100 (2.54)  
BSC  
0.070 (1.77)  
0.045 (1.15)  
SEATING  
PLANE  
SO L-24  
24-Lead Wide Body SO IC  
13  
24  
0.2992 (7.60)  
0.2914 (7.40)  
0.4193 (10.65)  
0.3937 (10.00)  
PIN 1  
1
12  
0.1043 (2.65)  
0.6141 (15.60)  
0.5985 (15.20)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
x 45°  
0.0500 (1.27)  
0.0157 (0.40)  
8
0
°
°
0.0118 (0.30)  
0.0040 (0.10)  
0.0500 (1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0125 (0.32)  
0.0091 (0.23)  
REV. 0  
–8–  

相关型号:

AD8582AR-REEL

+5 Volt, Parallel Input Complete Dual 12-Bit DAC
ADI

AD8582AR-REEL

DUAL, PARALLEL, WORD INPUT LOADING, 16 us SETTLING TIME, 12-BIT DAC, PDSO24, SOIC-24
ROCHESTER

AD8582ARZ

5 Volt, Parallel Input Complete Dual 12-Bit DAC
ADI

AD8582ARZ

DUAL, PARALLEL, WORD INPUT LOADING, 16 us SETTLING TIME, 12-BIT DAC, PDSO24, SOIC-24
ROCHESTER

AD8582ARZ-REEL

暂无描述
ADI

AD8582CHIPS

+5 Volt, Parallel Input Complete Dual 12-Bit DAC
ADI

AD8591

CMOS Single Supply Rail-to-Rail Input/Output Operational Amplifiers with Shutdown
ADI

AD8591ART

CMOS Single Supply Rail-to-Rail Input/Output Operational Amplifiers with Shutdown
ADI

AD8591ART-REEL

CMOS Single-Supply, Rail-to-Rail Input/Output Operational Amplifiers with Shutdown
ADI

AD8591ART-REEL

OP-AMP, 30000 uV OFFSET-MAX, 2.2 MHz BAND WIDTH, PDSO6, SOT-23, 6 PIN
ROCHESTER

AD8591ART-REEL7

IC OP-AMP, 30000 uV OFFSET-MAX, 2.2 MHz BAND WIDTH, PDSO6, SOT-23, 6 PIN, Operational Amplifier
ADI

AD8591ART-REEL7

OP-AMP, 30000 uV OFFSET-MAX, 2.2 MHz BAND WIDTH, PDSO6, SOT-23, 6 PIN
ROCHESTER