AD8605ACB-R2 [ADI]

IC OP-AMP, 750 uV OFFSET-MAX, 10 MHz BAND WIDTH, PBGA5, MICRO, CSP-5, Operational Amplifier;
AD8605ACB-R2
型号: AD8605ACB-R2
厂家: ADI    ADI
描述:

IC OP-AMP, 750 uV OFFSET-MAX, 10 MHz BAND WIDTH, PBGA5, MICRO, CSP-5, Operational Amplifier

放大器
文件: 总16页 (文件大小:404K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Low Noise CMOS Rail-to-Rail  
Input/Output Operational Amplifiers  
AD8605/AD8606/AD8608*  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
Low Offset Voltage: 65 V Max  
Low Input Bias Currents: 1 pA Max  
Low Noise: 8 nV/Hz  
Wide Bandwidth: 10 MHz  
High Open-Loop Gain: 120 dB  
Unity Gain Stable  
5-Lead SOT-23  
(RT Suffix)  
14-Lead TSSOP  
(RU Suffix)  
OUT A  
OUT D  
–IN D  
+IN D  
V–  
+IN C  
–IN C  
OUT C  
1
7
14  
OUT  
V–  
V+  
1
2
5
4
–IN A  
+IN A  
V+  
+IN B  
–IN B  
AD8608  
AD8605  
Single-Supply Operation: 2.7 V to 5.5 V  
–IN  
+IN  
3
MicroCSPTM  
8
OUT B  
APPLICATIONS  
Photodiode Amplification  
Battery-Powered Instrumentation  
Multipole Filters  
Sensors  
Barcode Scanners  
Audio  
14-Lead SOIC  
(R Suffix)  
8-Lead MSOP  
(RM Suffix)  
1
8
OUT A  
V+  
1
2
3
4
5
6
7
14  
OUT D  
OUT A  
–IN A  
+IN A  
V+  
–IN A  
+IN A  
V–  
OUT B  
–IN B  
AD8606  
13 –IN D  
12 +IN D  
+IN B  
4
5
AD8608  
11  
10  
9
V–  
GENERAL DESCRIPTION  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
The AD8605, AD8606, and AD8608 are single, dual, and quad  
rail-to-rail input and output, single-supply amplifiers that feature  
very low offset voltage, low input voltage and current noise,  
and wide signal bandwidth. They use Analog Devicespatented  
DigiTrim® trimming technique, which achieves superior precision  
without laser trimming.  
8-Lead SOIC  
(R Suffix)  
8
OUT A  
–IN A  
V+  
1
2
3
4
8
7
6
5
OUT B  
–IN B  
+IN B  
AD8608  
+IN A  
V–  
5-Bump MicroCSP  
(CB Suffix)  
The combination of low offsets, low noise, very low input bias  
currents, and high speed makes these amplifiers useful in a  
wide variety of applications. Filters, integrators, photodiode  
amplifiers, and high impedance sensors all benefit from the  
combination of performance features. Audio and other ac  
applications benefit from the wide bandwidth and low  
distortion. Applications for these amplifiers include optical  
control loops, portable and loop-powered instrumentation, and  
audio amplification for portable devices.  
TOP VIEW  
(BUMPSIDE DOWN)  
OUT  
1
V+  
5
V–  
2
+IN  
3
؊IN  
4
AD8605 ONLY  
The AD8605, AD8606, and AD8608 are specified over the  
extended industrial (40°C to +125°C) temperature range. The  
AD8605 single is available in the 5-lead SOT-23 and 5-bump  
MicroCSP packages. The 5-bump MicroCSP offers the smallest  
available footprint for any surface-mount operational amplifier.  
The AD8606 dual is available in an 8-lead MSOP package and a  
narrow SOIC surface-mount package. The AD8608 quad is  
available in a 14-lead TSSOP and a narrow 14-lead SOIC  
package. MicroCSP, SOT, MSOP, and TSSOP versions are  
available in tape and reel only.  
*Protected by U.S.Patent No. 5,969,657; other patents pending.  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD8605/AD8606/AD8608–SPECIFICATIONS  
(@ V = 5 V, VCM = VS/2, TA = 25؇C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
S
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
AD8605/AD8606  
AD8608  
VS = 3.5 V, VCM = 3 V  
VS = 3.5 V, VCM = 2.7 V  
VS = 5 V, VCM = 0 V to 5 V  
40°C < TA < +125°C  
20  
20  
80  
65  
75  
300  
750  
1
µV  
µV  
µV  
µV  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
V
Input Bias Current  
AD8605/AD8606  
AD8605/AD8606  
AD8608  
AD8608  
Input Offset Current  
IB  
0.2  
40°C < TA < +85°C  
40°C < TA < +125°C  
40°C < TA < +85°C  
40°C < TA < +125°C  
50  
250  
100  
300  
0.5  
20  
75  
5
IOS  
0.1  
40°C < TA < +85°C  
40°C < TA < +125°C  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
V
CM = 0 V to 5 V  
85  
75  
300  
100  
90  
1,000  
dB  
dB  
V/mV  
40°C < TA < +125°C  
VO = 0.5 V to 4.5 V  
RL = 2 k, VCM = 0 V  
Large Signal Voltage Gain  
Offset Voltage Drift  
AD8605/AD8606  
AD8608  
VOS/T  
VOS/T  
1
1.5  
4.5  
6.0  
µV/°C  
µV/°C  
INPUT CAPACITANCE  
Common-Mode Input Capacitance  
Differential Input Capacitance  
8.8  
2.59  
pF  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
IL = 1 mA  
IL = 10 mA  
4.96  
4.7  
4.98  
4.79  
V
V
40°C < TA < +125°C  
4.6  
V
Output Voltage Low  
VOL  
IL = 1 mA  
20  
170  
40  
210  
290  
mV  
mV  
mV  
mA  
IL = 10 mA  
40°C < TA < +125°C  
Output Current  
Closed-Loop Output Impedance  
IOUT  
ZOUT  
80  
10  
f = 1 MHz, AV = 1  
POWER SUPPLY  
Power Supply Rejection Ratio  
AD8605/AD8606  
AD8608  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
VS = 2.7 V to 5.5 V  
40°C < TA < +125°C  
VO = 0 V  
80  
77  
70  
95  
92  
90  
1
dB  
dB  
dB  
mA  
mA  
Supply Current/Amplifier  
1.2  
1.4  
40°C < TA < +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Full Power Bandwidth  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
BWP  
GBP  
RL = 2 kΩ  
To 0.01%, 0 V to 2 V step  
< 1% Distortion  
5
V/µs  
< 1  
360  
10  
65  
µs  
kHz  
MHz  
Degrees  
O
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
2.3  
8
6.5  
0.01  
3.5  
12  
µV p-p  
nV/Hz  
nV/Hz  
pA/Hz  
in  
f = 1 kHz  
–2–  
REV. C  
AD8605/AD8606/AD8608  
(@ V = 2.7 V, VCM = VS/2, TA = 25؇C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
S
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
AD8605/AD8606  
AD8608  
VS = 3.5 V, VCM = 3 V  
20  
20  
80  
65  
75  
300  
750  
1
µV  
µV  
µV  
µV  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
pA  
V
VS = 3.5 V, VCM = 2.7 V  
VS = 2.7 V, VCM = 0 V to 2.7 V  
40°C < TA < +125°C  
Input Bias Current  
AD8605/AD8606  
AD8605/AD8606  
AD8608  
AD8608  
Input Offset Current  
IB  
0.2  
40°C < TA < +85°C  
40°C < TA < +125°C  
40°C < TA < +85°C  
40°C < TA < +125°C  
50  
250  
100  
300  
0.5  
20  
IOS  
0.1  
40°C < TA < +85°C  
40°C < TA < +125°C  
75  
2.7  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 2.7 V  
40°C < TA < +125°C  
RL = 2 k, VO = 0.5 V to 2.2 V  
80  
70  
110  
95  
85  
350  
dB  
dB  
V/mV  
Large Signal Voltage Gain  
Offset Voltage Drift  
AD8605/AD8606  
AD8608  
VOS/T  
VOS/T  
1
1.5  
4.5  
6.0  
µV/°C  
µV/°C  
INPUT CAPACITANCE  
Common-Mode Input Capacitance  
Differential Input Capacitance  
8.8  
2.59  
pF  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IL = 1 mA  
40°C < TA < +125°C  
IL = 1 mA  
2.6  
2.6  
2.66  
25  
V
V
mV  
mV  
mA  
Output Voltage Low  
40  
50  
40°C < TA < +125°C  
Output Current  
Closed-Loop Output Impedance  
IOUT  
ZOUT  
30  
12  
f = 1 MHz, AV = 1  
POWER SUPPLY  
Power Supply Rejection Ratio  
AD8605/AD8606  
AD8608  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
VS = 2.7 V to 5.5 V  
40°C < TA < +125°C  
VO = 0 V  
80  
77  
70  
95  
92  
90  
1.15  
dB  
dB  
dB  
mA  
mA  
Supply Current/Amplifier  
1.4  
1.5  
40°C < TA < +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
GBP  
RL = 2 kΩ  
To 0.01%, 0 V to 1 V step  
5
V/µs  
< 0.5  
9
50  
µs  
MHz  
Degrees  
O
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
2.3  
8
6.5  
0.01  
3.5  
12  
µV p-p  
nV/Hz  
nV/Hz  
pA/Hz  
in  
f = 1 kHz  
REV. C  
–3–  
AD8605/AD8606/AD8608  
ABSOLUTE MAXIMUM RATINGS*  
Package Type  
*
Unit  
JA  
JC  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND to VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Output Short-Circuit Duration  
to GND . . . . . . . . . . . . . . . . . . . . . Observe Derating Curves  
Storage Temperature Range  
All Packages . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
AD8605/AD8606/AD8608 . . . . . . . . . . . . –40°C to +125°C  
Junction Temperature Range  
5-Bump MicroCSP (CB)  
5-Lead SOT-23 (RT)  
8-Lead MSOP (RM)  
8-Lead SOIC (R)  
14-Lead SOIC (R)  
14-Lead TSSOP (RU)  
220  
230  
210  
158  
120  
180  
220  
92  
45  
43  
36  
35  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
*θJA is specified for worst-case conditions, i.e., θJA is specified for device in socket  
for PDIP packages; θJA is specified for device soldered onto a circuit board for  
surface-mount packages.  
All Packages . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . . 300°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect device reliability.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
Branding  
AD8605ACB-R2*  
AD8605ACB-REEL*  
AD8605ACB-REEL7* –40°C to +125°C 5-Bump MicroCSP CB-5  
–40°C to +125°C 5-Bump MicroCSP CB-5  
–40°C to +125°C 5-Bump MicroCSP CB-5  
B3A  
B3A  
B3A  
B3A  
B3A  
B3A  
B6A  
B6A  
AD8605ART-R2  
AD8605ART-REEL  
AD8605ART-REEL7  
AD8606ARM-R2  
AD8606ARM-REEL  
AD8606AR  
AD8606AR-REEL  
AD8606AR-REEL7  
AD8608AR  
–40°C to +125°C 5-Lead SOT-23  
–40°C to +125°C 5-Lead SOT-23  
–40°C to +125°C 5-Lead SOT-23  
–40°C to +125°C 8-Lead MSOP  
–40°C to +125°C 8-Lead MSOP  
–40°C to +125°C 8-Lead SOIC  
–40°C to +125°C 8-Lead SOIC  
–40°C to +125°C 8-Lead SOIC  
–40°C to +125°C 14-Lead SOIC  
–40°C to +125°C 14-Lead SOIC  
–40°C to +125°C 14-Lead SOIC  
–40°C to +125°C 14-Lead TSSOP  
–40°C to +125°C 14-Lead TSSOP  
RT-5  
RT-5  
RT-5  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-14  
R-14  
R-14  
RU-14  
RU-14  
AD8608AR-REEL  
AD8608AR-REEL7  
AD8608ARU  
AD8608ARU-REEL  
*Consult factory for availability.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD8605/AD8606/AD8608 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions  
are recommended to avoid performance degradation or loss of functionality.  
–4–  
REV. C  
Typical Performance Characteristics–AD8605/AD8606/AD8608  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
300  
V
T
= 5V  
= 25؇C  
V
T
= 5V  
= 25؇C  
= 0VTO 5V  
S
S
A
A
V
CM  
200  
100  
0
–100  
–200  
–300  
0
–200  
–100  
0
100  
200  
300  
–300  
COMMON-MODEVOLTAGE (V)  
OFFSETVOLTAGE (V)  
TPC 4. Input Offset Voltage vs. Common-Mode  
Voltage (200 Units, 5 Wafer Lots, Including  
Process Skews)  
TPC 1. Input Offset Voltage Distribution  
360  
24  
20  
16  
12  
8
V
S
= 2.5V  
V
T
= 5V  
S
A
320  
280  
240  
200  
160  
120  
80  
= ؊40؇C TO +125؇C  
= 2.5V  
V
CM  
AD8605/AD8606  
AD8608  
4
40  
0
0
0
25  
50  
75  
100  
125  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8  
TEMPERATURE (؇C)  
TCVOS (V/؇C)  
TPC 5. Input Bias Current vs. Temperature  
TPC 2. AD8608 Input Offset Voltage Drift Distribution  
1k  
20  
V
T
= 5V  
S
A
V
T
= 5V  
= 25؇C  
S
A
18  
16  
14  
12  
10  
8
= ؊40؇C TO +125؇C  
= 2.5V  
V
CM  
100  
10  
1
SOURCE  
SINK  
6
4
2
0.1  
0
0.1  
LOAD CURRENT (mA)  
1
0.001  
0.01  
10  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6  
TCVOS (V/؇C)  
TPC 6. Output Voltage to Supply Rail vs. Load Current  
TPC 3. AD8605/AD8606 Input Offset Voltage  
Drift Distribution  
REV. C  
–5–  
AD8605/AD8606/AD8608  
6
5
4
3
2
1
0
5.000  
V
S
= 5V  
V
OH  
@ 1mA LOAD  
4.950  
4.900  
4.850  
4.800  
4.750  
4.700  
V
= 5V  
S
V
= 4.9V p-p  
= 25؇C  
= 2k⍀  
= 1  
IN  
T
A
R
A
L
V
V
@ 10mA LOAD  
OH  
1k  
10k  
100k  
1M  
10M  
5
20  
35  
50  
65  
80  
95 110 125  
؊40 ؊25 ؊10  
FREQUENCY (Hz)  
TEMPERATURE (؇C)  
TPC 10. Closed-Loop Output Voltage Swing  
TPC 7. Output Voltage Swing vs. Temperature  
100  
0.250  
V
= 2.5V  
S
V
= 5V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
S
V
@ 10mA LOAD  
OL  
0.200  
0.150  
0.100  
0.050  
0
A
V
= 100  
A
V
= 10  
A
V
= 1  
V
@ 1mA LOAD  
OL  
1k  
10k  
100k  
1M  
10M  
100M  
5
20  
35  
50  
65  
80  
95 110 125  
؊40 ؊25 ؊10  
FREQUENCY (Hz)  
TEMPERATURE (؇C)  
TPC 11. Output Impedance vs. Frequency  
TPC 8. Output Voltage Swing vs. Temperature  
120  
100  
225  
180  
135  
90  
V
S
= 2.5V  
V
R
C
= 2.5V  
S
110  
100  
90  
80  
60  
= 2k⍀  
= 20pF  
= 64؇  
L
L
M
40  
80  
20  
45  
70  
0
0
60  
–20  
–40  
–60  
–80  
–100  
–45  
–90  
–135  
–180  
–225  
50  
40  
30  
20  
1k  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TPC 12. Common-Mode Rejection Ratio vs. Frequency  
TPC 9. Open-Loop Gain and Phase vs. Frequency  
–6–  
REV. C  
AD8605/AD8606/AD8608  
140  
120  
100  
80  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
S
= 5V  
60  
40  
20  
0
–20  
–40  
–60  
1k  
10k  
100k  
1M  
10M  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (Hz)  
SUPPLYVOLTAGE (V)  
TPC 13. PSRR vs. Frequency  
TPC 16. Supply Current vs. Supply Voltage  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
S
= 5V  
V
R
= 5V  
=
= 25؇C  
= 1  
S
L
T
A
A
V
+OS  
–OS  
0
0
0
0
0
0
0
0
0
0
0
0
0
10  
100  
1k  
TIME (1s/DIV)  
CAPACITANCE (pF)  
TPC 17. 0.1 Hz to 10 Hz Input Voltage Noise  
TPC 14. Small Signal Overshoot vs. Load Capacitance  
0
2.0  
1.5  
V
= 2.5V  
S
R
L
C
L
A
V
= 10k⍀  
= 200pF  
= 1  
0
0
0
0
0
0
0
0
V
S
= 2.7V  
1.0  
0.5  
V
S
= 5V  
0
–0.5  
–1.0  
–1.5  
0
0
0
0
0
0
0
0
0
0
0
5
20  
35  
50  
65  
80  
95 110 125  
؊40 ؊25 ؊10  
TIME (200ns/DIV)  
TEMPERATURE (؇C)  
TPC 18. Small Signal Transient Response  
TPC 15. Supply Current vs. Temperature  
REV. C  
–7–  
AD8605/AD8606/AD8608  
0
36  
32  
28  
24  
20  
16  
12  
8
V
=
2.5V  
V = 2.5V  
S
S
R
L
C
L
A
V
= 10k⍀  
= 200pF  
= 1  
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
TIME (400ns/DIV)  
FREQUENCY (kHz)  
TPC 19. Large Signal Transient Response  
TPC 22. Voltage Noise Density  
0
53.6  
46.9  
40.2  
33.5  
26.8  
20.1  
13.4  
6.7  
V
S
= 2.5V  
V
R
A
=
2.5V  
S
0
0
= 10k⍀  
= 100  
= 50mV  
L
V
+2.5V  
V
IN  
0V0  
0
0V  
0
0
0
0
–50mV  
0
0
0
0
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
8
9
10  
TIME (400ns/DIV)  
FREQUENCY (kHz)  
TPC 20. Negative Overload Recovery  
TPC 23. Voltage Noise Density  
0
0
0
119.2  
104.3  
V
= 2.5V  
S
V
= 2.5V  
S
R
L
A
V
= 10k⍀  
= 100  
V
IN  
= 50mV  
89.4  
–2.5V  
74.5  
0
0V  
0
59.6  
44.7  
29.8  
0V  
0
0
0
0
0
+50mV  
0
14.9  
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
0
0
0
0
0
0
0
0
FREQUENCY (Hz)  
TIME (1s/DIV)  
TPC 24. Voltage Noise Density  
TPC 21. Positive Overload Recovery  
–8–  
REV. C  
AD8605/AD8606/AD8608  
2.680  
2.675  
2.670  
2.665  
2.660  
2.655  
2.650  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
V
T
= 2.7V  
= 25؇C  
= 0VTO 2.7V  
V
S
= 2.7V  
S
A
V
CM  
V
OH  
@ 1mA LOAD  
5
20  
35  
50  
65  
80  
95 110 125  
–200  
–100  
0
100  
200  
300  
؊40 ؊25 ؊10  
–300  
TEMPERATURE (؇C)  
OFFSETVOLTAGE (V)  
TPC 28. Output Voltage Swing vs. Temperature  
TPC 25. Input Offset Voltage Distribution  
0.045  
300  
200  
100  
0
V
S
= 2.7V  
V
T
= 2.7V  
= 25؇C  
S
A
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0
V
OL  
@ 1mA LOAD  
–100  
–200  
–300  
0
0
5
20  
35  
50  
65  
80  
95 110 125  
0
0.9  
1.8  
2.7  
؊40 ؊25 ؊10  
COMMON-MODEVOLTAGE (V)  
TEMPERATURE (؇C)  
TPC 26. Input Offset Voltage vs. Common-Mode  
Voltage (200 Units, 5 Wafer Lots, Including  
Process Skews)  
TPC 29. Output Voltage Swing vs. Temperature  
1k  
100  
80  
225  
180  
135  
90  
V
R
C
= 1.35V  
V
T
= 2.7V  
= 25؇C  
S
S
= 2k  
= 20pF  
= 52.5؇  
L
A
L
60  
M
100  
10  
1
40  
20  
45  
SOURCE  
SINK  
0
0
–20  
–40  
–60  
–80  
–100  
–45  
–90  
–135  
–180  
–225  
0.1  
0.1  
LOAD CURRENT (mA)  
1
0.001  
0.01  
10  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
TPC 27. Output Voltage to Supply Rail vs. Load Current  
TPC 30. Open-Loop Gain and Phase vs. Frequency  
REV. C  
–9–  
AD8605/AD8606/AD8608  
3.0  
V
S
= 2.7V  
2.5  
V
= 2.7V  
= 2.6V p-p  
= 25؇C  
= 2k⍀  
= 1  
S
V
IN  
A
2.0  
1.5  
1.0  
0.5  
0
T
R
A
L
V
0
1k  
10k  
100k  
1M  
10M  
0
0
0
0
0
0
0
0
0
0
0
FREQUENCY (Hz)  
TIME (1s/DIV)  
TPC 31. Closed-Loop Output Voltage Swing vs. Frequency  
TPC 34. 0.1 Hz to 10 Hz Input Voltage Noise  
100  
0
V
S
= 1.35V  
V
= 1.35V  
S
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R
C
A
= 10k⍀  
= 200pF  
= 1  
0
0
0
0
0
0
0
0
L
L
V
A
V
= 100  
A
= 10  
A
= 1  
V
V
1k  
10k  
100k  
1M  
10M  
100M  
0
0
0
0
0
0
0
0
0
0
0
FREQUENCY (Hz)  
TIME (200ns/DIV)  
TPC 32. Output Impedance vs. Frequency  
TPC 35. Small Signal Transient Response  
60  
0
V
= 1.35V  
V
T
A
= 2.7V  
= 25؇C  
= 1  
S
S
R
C
A
= 10k⍀  
= 200pF  
= 1  
0
0
0
0
0
0
0
0
L
L
V
A
50  
40  
30  
20  
10  
0
V
–OS  
+OS  
10  
100  
CAPACITANCE (pF)  
1k  
0
0
0
0
0
0
0
0
0
0
0
TIME (400ns/DIV)  
TPC 33. Small Signal Overshoot vs. Load Capacitance  
TPC 36. Large Signal Transient Response  
–10–  
REV. C  
AD8605/AD8606/AD8608  
Output Phase Reversal  
Input Overvoltage Protection  
Phase reversal is defined as a change in polarity at the output of  
the amplifier when a voltage that exceeds the maximum input  
common-mode voltage drives the input.  
The AD8605 has internal protective circuitry. However, if the  
voltage applied at either input exceeds the supplies by more than  
2.5 V, external resistors should be placed in series with the inputs.  
The resistor values can be determined according to the formula  
Phase reversal can cause permanent damage to the amplifier; it  
may also cause system lockups in feedback loops. The AD8605  
does not exhibit phase reversal even for inputs exceeding the  
supply voltage by more than 2 V.  
V
VS  
(
)
5mA  
IN  
R + 200Ω  
(
)
S
The remarkable low input offset current of the AD8605 (<1 pA)  
allows the use of larger value resistors. With a 10 kresistor at  
the input, the output voltage will have less than 10 nV of error  
voltage. A 10 kresistor has less than 13 nV/Hz of thermal  
noise at room temperature.  
0
V
S
= 2.5V  
V
A
R
= 6V p-p  
= 1  
= 10k⍀  
IN  
0
0
0
0
0
0
0
0
V
OUT  
V
L
THD + Noise  
Total harmonic distortion is the ratio of the input signal in V rms  
to the total harmonics in V rms throughout the spectrum. Har-  
monic distortion adds errors to precision measurements and adds  
unpleasant sonic artifacts to audio systems.  
V
IN  
The AD8605 has a low total harmonic distortion. Figure 3 shows  
that the AD8605 has less than 0.005% or 86 dB of THD + N  
over the entire audio frequency range. The AD8605 is configured  
in positive unity gain, which is the worst case, and with a load  
of 10 k.  
0
0
0
0
0
0
0
0
0
0
0
TIME (4s/DIV)  
Figure 1. No Phase Reversal  
Maximum Power Dissipation  
0.1  
V
A
=
= 1  
2.5V  
SY  
V
Power dissipated in an IC will cause the die temperature to  
increase. This can affect the behavior of the IC and the applica-  
tion circuit performance.  
BW = 22kHz  
0.01  
0.001  
The absolute maximum junction temperature of the AD8605/  
AD8606/AD8608 is 150°C. Exceeding this temperature could  
cause damage or destruction of the device.  
The maximum power dissipation of the amplifier is calculated  
according to the following formula:  
T T  
θJA  
(
)
J
A
PDISS  
=
0.0001  
20  
100  
1k  
10k 20k  
where:  
TJ = junction temperature  
FREQUENCY (Hz)  
TA = ambient temperature  
Figure 3. THD + N  
Total Noise Including Source Resistors  
A = junction-to-ambient thermal resistance  
J
Figure 2 compares the maximum power dissipation with tempera-  
ture for the various packages available for the AD8605 family.  
The low input current noise and input bias current of the  
AD8605 make it the ideal amplifier for circuits with substantial  
input source resistance such as photodiodes. Input offset voltage  
increases by less than 0.5 nV per 1 kof source resistance at  
room temperature and increases to 10 nV at 85°C.  
2.0  
1.8  
SOIC-14  
1.6  
The total noise density of the circuit is  
1.4  
SOIC-8  
2
en2 + i R + 4kTRS  
1.2  
en,TOTAL  
=
(
)
n
S
1.0  
where:  
en is the input voltage noise density of the AD8605  
in is the input current noise density of the AD8605  
RS is the source resistance at the noninverting terminal  
k is Boltzmanns constant (1.38 ϫ 1023 J/K)  
0.8  
SOT-23  
0.6  
TSSOP  
0.4  
MSOP  
T is the ambient temperature in Kelvin (T = 273 + °C)  
0.2  
For example, with RS = 10 k, the total voltage noise density is  
roughly 15 nV/Hz.  
0
0
20  
40  
60  
80  
100  
TEMPERATURE (؇C)  
For RS < 3.9 k, en dominates and en,TOTAL en.  
Figure 2. Maximum Power Dissipation vs. Temperature  
REV. C  
–11–  
AD8605/AD8606/AD8608  
The current noise of the AD8605 is so low that its total density  
0
0
0
0
0
0
0
0
0
V
S
=
2.5V  
does not become a significant term unless RS is greater than 6 M.  
A
V
R
L
C
L
= 1  
= 10k⍀  
= 1,000pF  
The total equivalent rms noise over a specific bandwidth is  
expressed as  
E = e  
BW  
(
)
n
n,TOTAL  
where BW is the bandwidth in hertz.  
Note that the analysis above is valid for frequencies greater than  
100 Hz and assumes relatively flat noise, above 10 kHz. For  
lower frequencies, flicker noise (1/f) must be considered.  
Channel Separation  
Channel separation, or inverse crosstalk, is a measure of the signal  
feed from one amplifier (channel) to the other on the same IC.  
0
0
0
0
0
0
0
0
0
0
0
TIME (10s/DIV)  
The AD8606 has a channel separation of greater than 160 dB  
up to frequencies of 1 MHz, allowing the two amplifiers to  
amplify ac signals independently in most applications.  
Figure 5. Capacitive Load Drive without Snubber  
0
0
V
S
=
2.5V  
A
R
R
C
C
= 1  
= 10k⍀  
= 90⍀  
= 1,000pF  
= 700pF  
V
L
S
L
S
0
0
0
0
0
0
0
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
0
0
0
0
0
0
0
0
0
0
0
100  
1k  
10k  
100k  
1M  
10M  
100M  
TIME (10s/DIV)  
FREQUENCY (Hz)  
Figure 6. Capacitive Load Drive with Snubber  
Figure 4. Channel Separation vs. Frequency  
Capacitive Load Drive  
V–  
The AD8605 is capable of driving large capacitive loads without  
oscillation.  
4
2
Figure 5 shows the output of the AD8606 in response to a 200 mV  
input signal. In this case, the amplifier was configured in positive  
unity gain, worst case for stability, while driving a 1,000 pF load at  
its output. Driving larger capacitive loads in unity gain may require  
the use of additional circuitry.  
200mV  
1
AD8605  
V
IN  
3
R
R
L
C
L
S
8
C
S
V+  
A snubber network, shown in Figure 7, helps reduce the signal  
overshoot to a minimum and maintain stability. Although this  
circuit does not recover the loss of bandwidth induced by large  
capacitive loads, it greatly reduces the overshoot and ringing.  
This method does not reduce the maximum output swing of the  
amplifier.  
Figure 7. Snubber Network Configuration  
Table I. Optimum Values for Capacitive Loads  
CL (pF)  
RS ()  
CS (pF)  
500  
1,000  
2,000  
100  
70  
60  
1,000  
1,000  
800  
Figure 6 shows a scope photograph of the output at the snubber  
circuit. The overshoot is reduced from over 70% to less than 5%,  
and the ringing is eliminated by the snubber. Optimum values for  
RS and CS are determined experimentally. Table I summarizes a  
few starting values.  
LIGHT SENSITIVITY  
The AD8605ACB (MicroCSP package option) is essentially a  
silicon die with additional post fabrication dielectric and inter-  
metallic processing designed to contact solder bumps on the  
active side of the chip. With this package type, the die is exposed  
to ambient light and is subject to photoelectric effects. Light  
sensitivity analysis of the AD8605ACB mounted on standard PCB  
material reveals that only the input bias current (IB) parameter  
An alternate technique is to insert a series resistor inside the  
feedback loop at the output of the amplifier. Typically, the value  
of this resistor is approximately 100 . This method also reduces  
overshoot and ringing but causes a reduction in the maximum  
output swing.  
–12–  
REV. C  
AD8605/AD8606/AD8608  
is impacted when the package is illuminated directly by high  
intensity light. No degradation in electrical performance is  
observed due to illumination by low intensity (0.1 mW/cm2)  
ambient light. Figure 8 shows that IB increases with increasing  
wavelength and intensity of incident light; IB can reach levels as  
high as 4500 pA at a light intensity of 3 mW/cm2 and a wave-  
length of 850 nm. The light intensities shown in Figure 8 will  
not be normal for most applications, i.e., even though direct  
sunlight can have intensities of 50 mW/cm2, office ambient light  
can be as low as 0.1 mW/cm2.  
MicroCSP Assembly Considerations  
For detailed information on MicroCSP PCB assembly and  
reliability, refer to ADI Application Note AN-617 on the ADI  
website www.analog.com.  
I-V CONVERSION APPLICATIONS  
Photodiode Preamplifier Applications  
The low offset voltage and input current of the AD8605 make it  
an excellent choice for photodiode applications. In addition, the  
low voltage and current noise make the amplifier ideal for appli-  
cation circuits with high sensitivity.  
When the MicroCSP package is assembled on the board with the  
bump-side of the die facing the PCB, reflected light from the  
PCB surface is incident on active silicon circuit areas and results  
in the increased IB. No performance degradation will occur due  
to illumination of the backside (substrate) of the AD8605ACB.  
The AD8605ACB is particularly sensitive to incident light with  
wavelengths in the Near Infrared range (NIR, 700 nm to  
1000 nm). Photons in this waveband have a longer wavelength  
and lower energy than photons in the visible (400 nm to 700 nm)  
and Near Ultraviolet (NUV, 200 nm to 400 nm) bands; therefore,  
they can penetrate more deeply into the active silicon. Incident  
light with wavelengths greater than 1100 nm has no photoelectric  
effect on the AD8605ACB since silicon is transparent to wave-  
lengths in this range. The spectral content of conventional light  
sorces varies: sunlight has a broad spectral range, with peak  
intensity in the visible band that falls off in the NUV and NIR  
bands; flourescent lamps have significant peaks in the visible but  
not in the NUV or NIR bands.  
C
10pF  
F
R
F
10M⍀  
PHOTODIODE  
+V  
OS–  
C
50pF  
D
AD8605  
R
D
I
D
V
OUT  
Figure 9. Equivalent Circuit for Photodiode Preamp  
The input bias current of the amplifier contributes an error term  
that is proportional to the value of RF.  
The offset voltage causes a dark current induced by the shunt  
resistance of the diode, RD. These error terms are combined at  
the output of the amplifier and the error voltage is written:  
Efforts have been made at a product level to reduce the effect of  
ambient light; the under bump metal (UBM) has been designed to  
shield the sensitive circuit areas on the active side (bump-side) of  
the die. However, if an application encounters any light sensitivity  
with the AD8605ACB, shielding the bump side of the MicroCSP  
package with opaque material should eliminate this effect. Shielding  
can be accomplished using materials such as silica filled liquid  
epoxies that are used in flip chip underfill techniques.  
RF  
EO =VOS 1+  
+ RF IB  
R
D   
Typically, RF is much smaller than RD, thus RF/RD can be ignored.  
At room temperature, the AD8605 has an input bias current of  
0.2 pA and an offset voltage of 100 µV. Typical values of RD are  
in the range of 1 G.  
5000  
4500  
4000  
For the circuit shown in Figure 9, the output error voltage is  
approximately 100 µV at room temperature, increasing to about  
1 mV at 85°C.  
2
3mW/cm  
3500  
3000  
2500  
The maximum achievable signal bandwidth is  
ft  
2
2mW/cm  
fMAX  
=
2πRFCT  
2000  
1500  
1000  
where ft is the unity gain frequency of the amplifier.  
Audio and PDA Applications  
2
1mW/cm  
The AD8605s low distortion and wide dynamic range make it a  
great choice for audio and PDA applications, including micro-  
phone amplification and line output buffering.  
500  
0
350  
450  
550  
650  
750  
850  
WAVELENGTH (nm)  
Figure 10 shows a typical application circuit for headphone/line  
out amplification.  
Figure 8. AD8605ACB Input Bias Current Response  
to Direct Illumination of Varying Intensity and  
Wavelength  
R1 and R2 are used to bias the input voltage at half the supply.  
This maximizes the signal bandwidth range. C1 and C2 are  
used to ac couple the input signal. C1 and R2 form a high-pass  
filter whose corner frequency is 1/2πR1C1.  
The high output current of the AD8605 allows it to drive heavy  
resistive loads.  
REV. C  
–13–  
AD8605/AD8606/AD8608  
The circuit of Figure 10 was tested to drive a 16 W headphone.  
The THD + N is maintained at approximately 60 dB throughout  
the audio range.  
D/A Conversion  
The low input bias current and offset voltage of the AD8605  
make it an excellent choice for buffering the output of a current  
output DAC.  
5V  
Figure 12 shows a typical implementation of the AD8605 at the  
output of a 12-bit DAC.  
R1  
C1  
1F  
10k⍀  
8
R
R
R
C3  
100F  
R4  
20⍀  
V
REF  
C
F
3
2
R2  
10k⍀  
1/2  
V1  
500mV  
AD8606  
1
R
F
R3 HEADPHONES  
1k⍀  
R2  
R2  
R2  
4
V–  
V
OS  
AD8605  
5V  
8
C2  
1F  
V+  
C4  
100F  
R6  
20⍀  
5
6
1/2  
V2  
500mV  
Figure 12. Simplified Circuit of the DAC8143 with  
AD8605 Output Buffer  
AD8606  
7
R5  
1k⍀  
The DAC8143 output current is converted to a voltage by the  
feedback resistor. The equivalent resistance at the output of the  
DAC varies with the input code, as does the output capacitance.  
4
Figure 10. Single-Supply Headphone/Speaker Amplifier  
To optimize the performance of the DAC, insert a capacitor in  
the feedback loop of the AD8605 to compensate the amplifier  
from the pole introduced by the output capacitance of the DAC.  
Typical values for CF are in the range of 10 pF to 30 pF; it can be  
adjusted for the best frequency response. The total error at the  
output of the op amp can be computed by the formula:  
Instrumentation Amplifiers  
The low offset voltage and low noise of the AD8605 make it a  
great amplifier for instrumentation applications.  
Difference amplifiers are widely used in high accuracy circuits  
to improve the common-mode rejection ratio.  
RF  
Req  
Figure 10 shows a simple difference amplifier. The CMRR of the  
circuit is plotted versus frequency. Figure 11 shows the common-  
mode rejection for a unity gain configuration and for a gain of 10.  
EO =VOS 1+  
where Req is the equivalent resistance seen at the output of the  
DAC. As mentioned above, Req is code dependant and varies  
with the input. A typical value for Req is 15 k. Choosing a  
feedback resistor of 10 kyields an error of less than 200 µV.  
Making (R4/R3) = (R2/R1) and choosing 0.01% tolerance yields  
a CMRR of 74 dB and minimizes the gain error at the output.  
120  
Figure 13 shows the implementation of a dual-stage buffer at  
the output of a DAC. The first stage is used as a buffer. Capaci-  
tor C1, with Req, creates a low-pass filter and thus provides  
phase lead to compensate for frequency response. The second  
stage of the AD8606 is used to provide voltage gain at the output  
of the buffer.  
V
SY  
= –2.5V  
A
= 10  
= 1  
V
100  
80  
A
V
60  
Grounding the positive input terminals in both stages reduces  
errors due to the common-mode output voltage. Choosing R1,  
R2, and R3 to match within 0.01% yields a CMRR of 74 dB  
and maintains minimum gain error in the circuit.  
40  
20  
0
R
CS  
R3  
15V  
20k  
100  
1k  
10k  
100k  
1M  
10M  
R2  
20k⍀  
FREQUENCY (Hz)  
C1  
33pF  
Figure 11. Difference Amplifier CMRR vs. Frequency  
V
DD  
R
FB  
R1  
10k⍀  
OUT1  
V
OUT  
V
REF  
V
IN  
R
P
AGND  
1/2  
DB11  
AD8606  
1/2  
AD8606  
R4  
AD7545  
5k⍀  
10%  
Figure 13. Bipolar Operation  
–14–  
REV. C  
AD8605/AD8606/AD8608  
OUTLINE DIMENSIONS  
5-Lead Small Outline Transistor Package [SOT-23]  
(RT-5)  
8-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
2.90 BSC  
5.00 (0.1968)  
4.80 (0.1890)  
5
1
4
3
8
1
5
4
2.80 BSC  
1.60 BSC  
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
2
PIN 1  
0.95 BSC  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
؋
 45؇  
1.75 (0.0688)  
1.35 (0.0532)  
1.90  
BSC  
1.30  
1.15  
0.90  
0.25 (0.0098)  
0.10 (0.0040)  
8؇  
0.51 (0.0201)  
0.31 (0.0122)  
0؇ 1.27 (0.0500)  
1.45 MAX  
0.22  
0.08  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
10؇  
5؇  
0؇  
0.15 MAX  
0.60  
0.45  
0.30  
0.50  
0.35  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
SEATING  
PLANE  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-178AA  
14-Lead Standard Small Outline Package [SOIC]  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
8.75 (0.3445)  
8.55 (0.3366)  
14  
1
8
7
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
1.75 (0.0689)  
1.35 (0.0531)  
؋
 45؇  
0.25 (0.0098)  
0.10 (0.0039)  
1
PIN 1  
8؇  
0؇  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
1.05  
1.00  
0.80  
COPLANARITY  
0.10  
0.65  
BSC  
0.20  
0.09  
1.20  
0.75  
0.60  
0.45  
MAX  
COMPLIANT TO JEDEC STANDARDS MS-012AB  
8؇  
0؇  
0.15  
0.05  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153AB-1  
8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
5-Bump 2 
؋
 1 
؋
 2 Array MicroCSP [WLCSP]  
(CB-5)  
Dimensions shown in millimeters  
Dimensions shown in millimeters  
3.00  
BSC  
0.50 REF  
0.94  
0.90  
0.86  
0.37  
0.36  
0.35  
0.20  
8
5
4
SEATING  
PLANE  
4.90  
BSC  
3.00  
BSC  
1
0.87  
0.23  
PIN 1  
IDENTIFIER  
0.18  
0.14  
1.33  
1.29  
1.25  
PIN 1  
0.50  
0.65 BSC  
0.21  
1.10 MAX  
0.15  
0.00  
0.80  
0.60  
0.40  
8؇  
0؇  
0.17  
0.14  
0.12  
0.38  
0.22  
0.23  
0.08  
TOP VIEW  
(BUMPSIDE DOWN)  
0.50  
BOTTOM VIEW  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
REV. C  
–15–  
AD8605/AD8606/AD8608  
Revision History  
Location  
Page  
7/03Data Sheet changed from REV. B to REV. C.  
Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Change to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Addition to FUNCTIONAL BLOCK DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Addition to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Addition to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Change to equation in Maximum Power Dissipation section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Added LIGHT SENSITIVITY section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Added new Figure 8 and renumbered subsequent figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Added new MicroCSP Assembly Considerations section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Changes to Figure 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Change to equation in Photodiode Preamplifier Applications section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Changes to Figure 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Change to equation in D/A Conversion section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3/03Data Sheet changed from REV. A to REV. B.  
Edits to FUNCTIONAL BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edits to Figure 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
11/02Data Sheet changed from REV. C to REV. A.  
Change to ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Updated ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edit to TPC 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
–16–  
REV. C  

相关型号:

AD8605ACB-REEL

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8605ACB-REEL7

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8605ACBZ-REEL

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers
ADI

AD8605ACBZ-REEL7

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers
ADI

AD8605ART

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8605ART-R2

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8605ART-REEL

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8605ART-REEL7

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8605ARTZ

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers
ADI

AD8605ARTZ-R2

Precision, Low Noise, CMOS, Rail-to-Rail, Input/Output Operational Amplifiers
ADI

AD8605ARTZ-REEL

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8605ARTZ-REEL7

Precision Low noise CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI