AD8620AR-REEL7 [ADI]

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier; 精密,极低噪声,低输入偏置电流,宽带宽JFET运算放大器
AD8620AR-REEL7
型号: AD8620AR-REEL7
厂家: ADI    ADI
描述:

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier
精密,极低噪声,低输入偏置电流,宽带宽JFET运算放大器

运算放大器 放大器电路 光电二极管
文件: 总20页 (文件大小:400K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, Very Low Noise,  
Low Input Bias Current, Wide Bandwidth  
JFET Operational Amplifier  
AD8610/AD8620  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
Low Noise 6 nV/Hz  
Low Offset Voltage: 100 V Max  
Low Input Bias Current 10 pA Max  
Fast Settling: 600 ns to 0.01%  
Low Distortion  
8-Lead MSOP and SOIC  
(RM-8 and R-8 Suffixes)  
1
8
NULL  
؊IN  
؉IN  
V؊  
NC  
V؉  
OUT  
NULL  
AD8610  
Unity Gain Stable  
4
5
No Phase Reversal  
Dual-Supply Operation: ؎5 V to ؎13 V  
NC = NO CONNECT  
8-Lead SOIC  
(R-8 Suffix)  
APPLICATIONS  
Photodiode Amplifier  
ATE  
1
8
OUTA  
؊INA  
؉INA  
V؊  
V؉  
OUTB  
؊INB  
؉INB  
Instrumentation  
AD8620  
Sensors and Controls  
High Performance Filters  
Fast Precision Integrators  
High Performance Audio  
4
5
GENERAL DESCRIPTION  
AD8610/AD8620 is an ideal amplifier for driving high performance  
A/D inputs and buffering D/A converter outputs.  
The AD8610/AD8620 is a very high precision JFET input amplifier  
featuring ultralow offset voltage and drift, very low input voltage  
and current noise, very low input bias current, and wide bandwidth.  
Unlike many JFET amplifiers, the AD8610/AD8620 input bias  
current is low over the entire operating temperature range. The  
AD8610/AD8620 is stable with capacitive loads of over 1000 pF  
in noninverting unity gain; much larger capacitive loads can be  
driven easily at higher noise gains. The AD8610/AD8620 swings to  
within 1.2 V of the supplies even with a 1 kload, maximizing  
dynamic range even with limited supply voltages. Outputs slew at  
50 V/µs in either inverting or noninverting gain configurations, and  
settle to 0.01% accuracy in less than 600 ns. Combined with the  
high input impedance, great precision, and very high output drive, the  
Applications for the AD8610/AD8620 include electronic instru-  
ments; ATE amplification, buffering, and integrator circuits;  
CAT/MRI/ultrasound medical instrumentation; instrumentation  
quality photodiode amplification; fast precision filters (including  
PLL filters); and high quality audio.  
The AD8610/AD8620 is fully specified over the extended  
industrial (–40°C to +125°C) temperature range. The AD8610  
is available in the narrow 8-lead SOIC and the tiny MSOP8  
surface-mount packages. The AD8620 is available in the narrow  
8-lead SOIC package. MSOP8 packaged devices are available  
only in tape and reel.  
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
(@ V = ؎5.0 V, VCM = 0 V, TA = 25؇C, unless otherwise noted.)  
AD8610/AD8620–SPECIFICATIONS  
S
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage (AD8610B)  
VOS  
VOS  
VOS  
45  
80  
45  
80  
85  
90  
150  
+2  
+130  
+1.5  
+1  
100  
200  
150  
300  
250  
350  
850  
+10  
+250  
+2.5  
+10  
+75  
+150  
+3  
µV  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
µV  
Offset Voltage (AD8620B)  
µV  
µV  
Offset Voltage (AD8610A/AD8620A)  
µV  
+25°C < TA < 125°C  
–40°C < TA < +125°C  
µV  
µV  
Input Bias Current  
Input Offset Current  
IB  
–10  
–250  
–2.5  
–10  
–75  
–150  
–2  
pA  
–40°C < TA < +85°C  
–40°C < TA < +125°C  
pA  
nA  
pA  
pA  
pA  
V
IOS  
–40°C < TA < +85°C  
–40°C < TA < +125°C  
+20  
+40  
Input Voltage Range  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Offset Voltage Drift (AD8610B)  
Offset Voltage Drift (AD8620B)  
Offset Voltage Drift (AD8610A/AD8620A)  
CMRR  
AVO  
VOS/T  
VOS/T  
VOS/T  
VCM = –2.5 V to +1.5 V  
RL = 1 k, VO = –3 V to +3 V  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
90  
100  
95  
dB  
180  
0.5  
0.5  
0.8  
V/mV  
µV/°C  
µV/°C  
µV/°C  
1
1.5  
3.5  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
VOH  
VOL  
IOUT  
RL = 1 k, –40°C < TA < +125°C  
RL = 1 k, –40°C < TA < +125°C  
3.8  
100  
40  
4
–4  
30  
V
V
mA  
–3.8  
Output Current  
VOUT  
>
2 V  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = 5 V to 13 V  
VO = 0 V  
–40°C < TA < +125°C  
110  
2.5  
3.0  
dB  
mA  
mA  
3.0  
3.5  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Settling Time  
SR  
GBP  
tS  
RL = 2 kΩ  
50  
25  
350  
V/µs  
MHz  
ns  
AV = +1, 4 V Step, to 0.01%  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
Input Capacitance  
Differential  
Common-Mode  
Channel Separation  
f = 10 kHz  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
1.8  
6
5
µV p-p  
nV/  
Hz  
fA/  
Hz  
CIN  
8
15  
pF  
pF  
CS  
137  
120  
dB  
dB  
f = 300 kHz  
Specifications subject to change without notice.  
–2–  
REV. D  
AD8610/AD8620  
ELECTRICAL SPECIFICATIONS (@ VS = ؎13 V, VCM = 0 V, TA = 25؇C, unless otherwise noted.)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage (AD8610B)  
VOS  
VOS  
VOS  
45  
80  
45  
80  
85  
90  
150  
+3  
+130  
100  
200  
150  
300  
250  
350  
850  
+10  
+250  
+3.5  
+10  
+75  
+150  
+10.5  
µV  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
µV  
Offset Voltage (AD8620B)  
µV  
µV  
Offset Voltage (AD8610A/AD8620A)  
µV  
+25°C < TA < 125°C  
–40°C < TA < +125°C  
µV  
µV  
Input Bias Current  
Input Offset Current  
IB  
–10  
pA  
–40°C < TA < +85°C  
–40°C < TA < +125°C  
–250  
–3.5  
–10  
pA  
nA  
pA  
pA  
pA  
V
dB  
V/mV  
µV/°C  
µV/°C  
µV/°C  
IOS  
+1.5  
+20  
+40  
–40°C < TA < +85°C  
–40°C < TA < +125°C  
–75  
–150  
–10.5  
90  
Input Voltage Range  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Offset Voltage Drift (AD8610B)  
Offset Voltage Drift (AD8620B)  
CMRR  
AVO  
VOS/T  
VOS/T  
VCM = –10 V to +10 V  
RL = 1 k, VO = –10 V to +10 V  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
–40°C < TA < +125°C  
110  
200  
0.5  
0.5  
0.8  
100  
1
1.5  
3.5  
Offset Voltage Drift (AD8610A/AD8620A) VOS/T  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Output Current  
VOH  
VOL  
IOUT  
ISC  
RL = 1 k, –40°C < TA < +125°C  
RL = 1 k, –40°C < TA < +125°C  
VOUT > 10 V  
+11.75 +11.84  
V
V
mA  
mA  
–11.84 –11.75  
45  
65  
Short Circuit Current  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = 5 V to 13 V  
VO = 0 V  
–40°C < TA < +125°C  
100  
40  
110  
3.0  
3.5  
dB  
mA  
mA  
3.5  
4.0  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Settling Time  
SR  
GBP  
tS  
RL = 2 kΩ  
60  
25  
600  
V/µs  
MHz  
ns  
AV = 1, 10 V Step, to 0.01%  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
Input Capacitance  
Differential  
Common-Mode  
Channel Separation  
f = 10 kHz  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
1.8  
6
5
µV p-p  
nV/  
Hz  
fA/√  
Hz  
CIN  
8
15  
pF  
pF  
CS  
137  
120  
dB  
dB  
f = 300 kHz  
Specifications subject to change without notice.  
REV. D  
–3–  
AD8610/AD8620  
ABSOLUTE MAXIMUM RATINGS*  
Package Type  
JA*  
Unit  
JC  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27.3 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VS–– to VS+  
Differential Input Voltage . . . . . . . . . . . . . . . Supply Voltage  
Output Short-Circuit Duration to GND . . . . . . . . . . Indefinite  
Storage Temperature Range  
8-Lead MSOP (RM)  
8-Lead SOIC (RN)  
190  
158  
44  
43  
°C/W  
°C/W  
*θJA is specified for worst-case conditions; i.e., θJA is specified for a device  
soldered in circuit board for surface-mount packages.  
R, RM Packages . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating Temperature Range  
AD8610/AD8620 . . . . . . . . . . . . . . . . . . . . –40°C to +125°C  
Junction Temperature Range  
R, RM Packages . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering, 10 sec) . . . . . . . . 300°C  
*Stresses above those listed under Absolute Maximum Ratings may cause permanent  
damage to the device. This is a stress rating only; functional operation of the device  
at these or any other conditions above those listed in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
Branding  
AD8610AR  
–40°C to +125°C 8-Lead SOIC  
–40°C to +125°C 8-Lead SOIC  
–40°C to +125°C 8-Lead SOIC  
RN-8  
RN-8  
RN-8  
AD8610AR-REEL  
AD8610AR-REEL7  
AD8610ARM-REEL  
AD8610ARM-R2  
AD8610ARZ*  
AD8610ARZ-REEL*  
AD8610ARZ-REEL7* –40°C to +125°C 8-Lead SOIC  
AD8610BR  
AD8610BR-REEL  
AD8610BR-REEL7  
AD8610BRZ*  
AD8610BRZ-REEL*  
AD8610BRZ-REEL7* –40°C to +125°C 8-Lead SOIC  
AD8620AR  
–40°C to +125°C 8-Lead MSOP RM-8  
B0A  
B0A  
–40°C to +125°C 8-Lead MSOP RM-8  
–40°C to +125°C 8-Lead SOIC  
–40°C to +125°C 8-Lead SOIC  
RN-8  
RN-8  
RN-8  
RN-8  
RN-8  
RN-8  
RN-8  
RN-8  
RN-8  
RN-8  
RN-8  
RN-8  
RN-8  
RN-8  
RN-8  
–40°C to +125°C 8-Lead SOIC  
–40°C to +125°C 8-Lead SOIC  
–40°C to +125°C 8-Lead SOIC  
–40°C to +125°C 8-Lead SOIC  
–40°C to +125°C 8-Lead SOIC  
–40°C to +125°C 8-Lead SOIC  
–40°C to +125°C 8-Lead SOIC  
–40°C to +125°C 8-Lead SOIC  
–40°C to +125°C 8-Lead SOIC  
–40°C to +125°C 8-Lead SOIC  
–40°C to +125°C 8-Lead SOIC  
AD8620AR-REEL  
AD8620AR-REEL7  
AD8620BR  
AD8620BR-REEL  
AD8620BR-REEL7  
*Pb-free part  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD8610/AD8620 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
–4–  
REV. D  
Typical Performance Characteristics–AD8610/AD8620  
14  
12  
10  
8
600  
18  
16  
14  
12  
10  
8
V
= ؎5V  
S
V
= ؎13V  
V
= ؎13V  
S
S
400  
200  
0
6
؊200  
؊400  
6
4
4
2
2
؊600  
0
0
25  
85  
125  
؊40  
؊250 ؊150  
INPUT OFFSETVOLTAGE – V  
؊50  
50  
150  
250  
؊250 ؊150  
؊50  
50  
150  
250  
TEMPERATURE – ؇C  
INPUT OFFSETVOLTAGE – V  
TPC 1. Input Offset Voltage at 13 V  
TPC 2. Input Offset Voltage vs.  
TPC 3. Input Offset Voltage at 5 V  
Temperature at 13 V (300 Amplifiers)  
3.6  
600  
14  
V = ؎13V  
S
V
S
= ؎5V OR ؎13V  
V
= ؎5V  
S
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
12  
10  
8
400  
200  
0
6
–200  
–400  
–600  
4
2
0
–40  
25  
85  
125  
0
5
10  
؊10  
؊5  
COMMON-MODEVOLTAGE V  
0
0.2  
0.6  
1.0  
1.4  
V/؇C  
1.8  
2.2  
2.6  
TEMPERATURE – ؇C  
T V  
C OS  
TPC 4. Input Offset Voltage vs.  
Temperature at 5 V (300 Amplifiers)  
TPC 5. Input Offset Voltage Drift  
TPC 6. Input Bias Current vs.  
Common-Mode Voltage  
3.05  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
V
= ؎13V  
V
= ؎5V  
S
S
2.95  
2.85  
2.75  
2.65  
2.55  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
25  
85  
125  
؊40  
25  
85  
125  
؊40  
SUPPLYVOLTAGE – ؎V  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 8. Supply Current vs.  
Temperature at 13 V  
TPC 7. Supply Current vs.  
Supply Voltage  
TPC 9. Supply Current vs.  
Temperature at 5 V  
REV. D  
–5–  
AD8610/AD8620  
1.8  
4.25  
4.20  
4.15  
4.10  
4.05  
4.00  
3.95  
؊3.95  
؊4.00  
؊4.05  
؊4.10  
؊4.15  
؊4.20  
؊4.25  
؊4.30  
V
R
= ؎5V  
= 1k⍀  
S
V
= ؎13V  
V
R
= ؎5V  
= 1k⍀  
S
S
1.6  
L
L
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
25  
85  
125  
100  
1k  
10k  
100k  
1M  
10M 100M  
؊40  
25  
85  
125  
؊40  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
RESISTANCE LOAD ⍀  
TPC 12. Output Voltage Low vs.  
Temperature at 5 V  
TPC 10. Output Voltage to  
Supply Rail vs. Load  
TPC 11. Output Voltage High vs.  
Temperature at 5 V  
120  
100  
80  
12.05  
12.00  
11.95  
270  
225  
180  
135  
90  
؊11.80  
؊11.85  
؊11.90  
؊11.95  
؊12.00  
؊12.05  
V
R
= ؎13V  
= 1k⍀  
V
R
= ؎13V  
= 1k⍀  
S
S
V
R
= ؎13V  
= 1k⍀  
S
L
L
L
MARKER AT 27MHz  
M
= 69.5  
= 20pF  
C
60  
L
40  
20  
45  
11.90  
0
0
؊20  
؊40  
؊60  
؊80  
؊45  
؊90  
؊135  
؊180  
11.85  
11.80  
25  
85  
125  
؊40  
10  
1
100 200  
25  
85  
125  
؊40  
TEMPERATURE – ؇C  
FREQUENCY – MHz  
TEMPERATURE – ؇C  
TPC 13. Output Voltage High  
vs. Temperature at 13 V  
TPC 15. Open-Loop Gain  
and Phase vs. Frequency  
TPC 14. Output Voltage Low vs.  
Temperature at 13 V  
60  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
260  
V
R
C
= ؎13V  
= 2k⍀  
= 20pF  
S
V
V
R
= ؎13V  
= ؎10V  
= 1k⍀  
S
V
V
R
= ؎5V  
= ؎3V  
= 1k⍀  
S
L
L
240  
220  
O
O
40  
20  
L
L
G = 100  
G = 10  
G = 1  
200  
180  
0
160  
140  
120  
100  
؊20  
؊40  
25  
85  
125  
25  
85  
125  
؊40  
؊40  
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE – ؇C  
FREQUENCY – Hz  
TEMPERATURE – ؇C  
TPC 16. Closed-Loop Gain vs.  
Frequency  
TPC 17. AVO vs. Temperature at 13 V  
TPC 18. AVO vs. Temperature at 5 V  
–6–  
REV. D  
AD8610/AD8620  
160  
140  
120  
160  
140  
122  
121  
V
S
= ؎13V  
V = ؎5V  
S
120  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
+PSRR  
120  
119  
118  
117  
116  
+PSRR  
–PSRR  
–PSRR  
–20  
–40  
–20  
–40  
100  
1k  
10k  
100k  
1M  
10M  
60M  
100  
1k  
10k  
100k  
1M  
10M 60M  
؊40  
125  
25  
85  
FREQUENCY – Hz  
FREQUENCY – Hz  
TEMPERATURE – ؇C  
TPC 19. PSRR vs. Frequency at 13 V  
TPC 21. PSRR vs. Temperature  
TPC 20. PSRR vs. Frequency at 5 V  
140  
V
= ؎13V  
= 300mV p-p  
= ؊100  
= 10k⍀  
= 0pF  
S
V
S
= ؎13V  
V
= ؎13V  
= ؊300mV p-p  
= ؊100  
S
V
IN  
120  
100  
80  
V
IN  
A
R
C
V
L
L
A
R
V
L
= 10k⍀  
V
IN  
0V  
0V  
0V  
0V  
V
60  
IN  
V
OUT  
40  
CH = 5V/DIV  
2
V
OUT  
20  
0
CH = 5V/DIV  
2
10  
100  
1k  
10k 100k 1M 10M 60M  
TIME – 4s/DIV  
TIME – 4s/DIV  
FREQUENCY – Hz  
TPC 22. CMRR vs. Frequency  
TPC 24. Negative Overvoltage  
Recovery  
TPC 23. Positive Overvoltage Recovery  
100  
1,000  
V = ؎13V  
S
V
SY  
= ؎13V  
V
V
= ؎13V  
p-p = 1.8V  
S
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IN  
100  
10  
1
GAIN = 1  
GAIN = 10  
GAIN = 100  
TIME – 1s/DIV  
1
10  
100  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 25. 0.1 Hz to 10 Hz Input Voltage  
Noise  
TPC 26. Input Voltage Noise vs.  
Frequency  
TPC 27. ZOUT vs. Frequency  
REV. D  
–7–  
AD8610/AD8620  
100  
90  
80  
70  
60  
50  
40  
40  
35  
30  
25  
20  
15  
10  
5
3000  
2500  
2000  
1500  
1000  
500  
V
= ؎5V  
V
S
= ؎13V  
S
R
L
= 2k⍀  
V
IN  
= 100mV p-p  
GAIN = 1  
GAIN = 10  
+OS  
؊OS  
30  
20  
10  
0
GAIN = 100  
0
0
0
25  
85  
125  
1
10  
100  
CAPACITANCE – pF  
1k  
10k  
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE – ؇C  
FREQUENCY – Hz  
TPC 29. Input Bias Current vs.  
Temperature  
TPC 28. ZOUT vs. Frequency  
TPC 30. Small Signal Overshoot vs.  
Load Capacitance  
40  
35  
30  
25  
20  
15  
10  
5
V
= ؎13V  
= ؎14V  
= +1  
S
V
R
= ؎5V  
= 2k⍀  
= 100mV  
S
V
IN  
L
A
V
V
IN  
FREQ = 0.5kHz  
V
IN  
+OS  
؊OS  
V
= ؎13V  
p-p = 20V  
= +1  
= 2k⍀  
= 20pF  
V
OUT  
S
V
IN  
A
R
C
V
L
L
0
TIME – 400s/DIV  
1
10  
100  
CAPACITANCE – pF  
1k  
10k  
TIME – 1s/DIV  
TPC 32. No Phase Reversal  
TPC 33. Large Signal Response at  
G = +1  
TPC 31. Small Signal Overshoot vs.  
Load Capacitance  
V
= ؎13V  
p-p = 20V  
= +1  
= 2k⍀  
= 20pF  
S
V
V
A
R
C
= ؎13V  
p-p = 20V  
= ؊1  
= 2k⍀  
= 20pF  
V
V
A
R
C
= ؎13V  
p-p = 20V  
= +1  
= 2k⍀  
= 20pF  
S
S
V
IN  
IN  
IN  
A
R
C
V
L
L
V
L
L
V
L
L
TIME – 400ns/DIV  
TIME – 400ns/DIV  
TIME – 1s/DIV  
TPC 35. –SR at G = +1  
TPC 34. +SR at G = +1  
TPC 36. Large Signal Response at G = –1  
–8–  
REV. D  
AD8610/AD8620  
V
= ؎13V  
p-p = 20V  
= ؊1  
S
V
IN  
A
V
R
L
= 2k⍀  
SR = 50V/s  
= 20pF  
C
L
V
= ؎13V  
p-p = 20V  
= ؊1  
S
V
IN  
A
V
R
L
= 2k⍀  
SR = 55V/s  
= 20pF  
C
L
TIME – 400ns/DIV  
TIME – 400ns/DIV  
TPC 37. +SR at G = –1  
TPC 38. –SR at G = –1  
CS(dB) = 20 log (V  
3
/10 
؋
 V  
)
IN  
138  
136  
134  
132  
130  
128  
126  
124  
122  
120  
OUT  
R1  
+13V  
20k  
R2  
U1  
V+  
V–  
V+  
+
6
7
V
2k⍀  
IN  
20V p-p  
2
V–  
5
0
0
2k⍀  
2k⍀  
R4  
U2  
0
–13V  
0
0
Figure 1. Channel Separation Test Circuit  
FUNCTIONAL DESCRIPTION  
The AD8610/AD8620 is manufactured on Analog Devices, Inc.’s  
proprietary XFCB (eXtra Fast Complementary Bipolar) process.  
XFCB is fully dielectrically isolated (DI) and used in conjunc-  
tion with N-channel JFET technology and trimmable thin-film  
resistors to create the world’s most precise JFET input amplifier.  
Dielectrically isolated NPN and PNP transistors fabricated on  
XFCB have FT greater than 3 GHz. Low TC thin film resistors  
enable very accurate offset voltage and offset voltage tempco  
trimming. These process breakthroughs allowed Analog Devices’  
world class IC designers to create an amplifier with faster slew  
rate and more than 50% higher bandwidth at half of the current  
consumed by its closest competition. The AD8610 is uncondi-  
tionally stable in all gains, even with capacitive loads well in  
excess of 1 nF. The AD8610B achieves less than 100 µV of offset  
and 1 µV/°C of offset drift, numbers usually associated with very  
high precision bipolar input amplifiers. The AD8610 is offered in  
the tiny 8-lead MSOP as well as narrow 8-lead SOIC surface-  
mount packages and is fully specified with supply voltages from  
5 V to 13 V. The very wide specified temperature range, up to  
125°C, guarantees superior operation in systems with little or no  
active cooling.  
50  
100  
300  
0
150  
200  
250  
350  
FREQUENCY – kHz  
Figure 2. AD8620 Channel Separation Graph  
Power Consumption  
A major advantage of the AD8610/AD8620 in new designs is  
the saving of power. Lower power consumption of the AD8610  
makes it much more attractive for portable instrumentation and  
for high-density systems, simplifying thermal management, and  
reducing power supply performance requirements. Compare the  
power consumption of the AD8610/AD8620 versus the OPA627  
in Figure 3.  
8
7
OPA627  
6
5
4
The unique input architecture of the AD8610 features extremely  
low input bias currents and very low input offset voltage. Low  
power consumption minimizes the die temperature and maintains  
the very low input bias current. Unlike many competitive JFET  
amplifiers, the AD8610/AD8620 input bias currents are low even  
at elevated temperatures. Typical bias currents are less than 200 pA  
at 85°C. The gate current of a JFET doubles every 10°C resulting  
in a similar increase in input bias current over temperature.  
Special care should be given to the PC board layout to minimize  
leakage currents between PCB traces. Improper layout and  
board handling generates leakage current that exceeds the bias  
current of the AD8610/AD8620.  
3
AD8610  
2
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE – ؇C  
Figure 3. Supply Current vs. Temperature  
REV. D  
–9–  
AD8610/AD8620  
Driving Large Capacitive Loads  
The AD8610 has excellent capacitive load driving capability and  
can safely drive up to 10 nF when operating with 5 V supply.  
Figures 4 and 5 compare the AD8610/AD8620 against the OPA627  
in the noninverting gain configuration driving a 10 kresistor and  
10,000 pF capacitor placed in parallel on its output, with a square  
wave input set to a frequency of 200 kHz. The AD8610 has much  
less ringing than the OPA627 with heavy capacitive loads.  
+5V  
7
3
2
V
IN  
= 50mV  
4
2F  
–5V  
2k⍀  
2k⍀  
Figure 6. Capacitive Load Drive Test Circuit  
V
R
C
= ؎5V  
= 10k⍀  
= 10,000pF  
S
L
L
V
R
C
= ؎5V  
= 10k⍀  
= 2F  
S
L
L
TIME – 2s/DIV  
TIME – 20s/DIV  
Figure 4. OPA627 Driving CL = 10,000 pF  
Figure 7. OPA627 Capacitive Load Drive, AV = +2  
V
R
C
= ؎5V  
S
L
L
V
R
C
= ؎5V  
= 10k⍀  
= 2F  
S
= 10k⍀  
= 10,000pF  
L
L
TIME – 2s/DIV  
TIME – 20s/DIV  
Figure 5. AD8610/AD8620 Driving CL = 10,000 pF  
Figure 8. AD8610/AD8620 Capacitive Load Drive, AV = +2  
The AD8610/AD8620 can drive much larger capacitances without  
any external compensation. Although the AD8610/AD8620 is stable  
with very large capacitive loads, remember that this capacitive  
loading will limit the bandwidth of the amplifier. Heavy capacitive  
loads will also increase the amount of overshoot and ringing at the  
output. Figures 7 and 8 show the AD8610/AD8620 and the OPA627  
in a noninverting gain of +2 driving 2 µF of capacitance load. The  
ringing on the OPA627 is much larger in magnitude and continues  
more than 10 times longer than the AD8610.  
Slew Rate (Unity Gain Inverting vs. Noninverting)  
Amplifiers generally have a faster slew rate in an inverting unity  
gain configuration due to the absence of the differential input  
capacitance. Figures 9 through 12 show the performance of the  
AD8610 configured in a gain of –1 compared to the OPA627.  
The AD8610 slew rate is more symmetrical, and both the positive  
and negative transitions are much cleaner than in the OPA627.  
–10–  
REV. D  
AD8610/AD8620  
V
R
= ؎13V  
= 2k⍀  
V
R
= ؎13V  
= 2k⍀  
S
S
L
L
G = –1  
G = –1  
SR = 56V/s  
SR = 54V/s  
TIME – 400ns/DIV  
TIME – 400ns/DIV  
Figure 12. (–SR) of OPA627 in Unity Gain of –1  
Figure 9. (+SR) of AD8610/AD8620 in Unity Gain of –1  
The AD8610 has a very fast slew rate of 60 V/µs even when config-  
ured in a noninverting gain of +1. This is the toughest condition to  
impose on any amplifier since the input common-mode capacitance  
of the amplifier generally makes its SR appear worse. The slew  
rate of an amplifier varies according to the voltage difference  
between its two inputs. To observe the maximum SR as specified  
in the AD8610 data sheet, a difference voltage of about 2 V between  
the inputs must be ensured. This will be required for virtually any  
JFET op amp so that one side of the op amp input circuit is com-  
pletely off, maximizing the current available to charge and discharge  
the internal compensation capacitance. Lower differential  
drive voltages will produce lower slew rate readings. A JFET-  
input op amp with a slew rate of 60 V/µs at unity gain with  
VIN = 10 V might slew at 20 V/µs if it is operated at a gain of  
+100 with VIN = 100 mV.  
V
R
= ؎13V  
= 2k⍀  
S
L
G = –1  
SR = 42.1V/s  
TIME – 400ns/DIV  
The slew rate of the AD8610/AD8620 is double that of the OPA627  
when configured in a unity gain of +1 (see Figures 13 and 14).  
Figure 10. (+SR) of OPA627 in Unity Gain of –1  
V
R
= ؎13V  
= 2k⍀  
S
V
R
= ؎13V  
= 2k⍀  
L
S
G = –1  
L
G = +1  
SR = 54V/s  
SR = 85V/s  
TIME – 400ns/DIV  
TIME – 400ns/DIV  
Figure 11. (–SR) of AD8610/AD8620 in Unity Gain of –1  
Figure 13. (+SR) of AD8610/AD8620 in Unity Gain of +1  
REV. D  
–11–  
AD8610/AD8620  
diodes greatly interfere with many application circuits such as  
precision rectifiers and comparators. The AD8610 is free from  
these limitations.  
V
R
= ؎13V  
= 2k⍀  
S
L
G = +1  
+13V  
3
7
6
V1  
2
SR = 23V/s  
4
AD8610  
14V  
–13V  
0
Figure 16. Unity Gain Follower  
No Phase Reversal  
Many amplifiers misbehave when one or both of the inputs are  
forced beyond the input common-mode voltage range. Phase  
reversal is typified by the transfer function of the amplifier,  
effectively reversing its transfer polarity. In some cases, this can  
cause lockup and even equipment damage in servo systems, and  
may cause permanent damage or nonrecoverable parameter  
shifts to the amplifier itself. Many amplifiers feature compensation  
circuitry to combat these effects, but some are only effective for  
the inverting input. The AD8610/AD8620 is designed to prevent  
phase reversal when one or both inputs are forced beyond their  
input common-mode voltage range.  
TIME – 400ns/DIV  
Figure 14. (+SR) of OPA627 in Unity Gain of +1  
The slew rate of an amplifier determines the maximum frequency  
at which it can respond to a large signal input. This frequency  
(known as full-power bandwidth, or FPBW) can be calculated  
from the equation:  
SR  
FPBW =  
2π ×V  
(
)
PEAK  
for a given distortion (e.g., 1%).  
V
IN  
CH = 20.8V  
1
p-p  
0V  
CH = 19.4V  
2
p-p  
V
OUT  
0V  
0
TIME – 400s/DIV  
Figure 17. No Phase Reversal  
THD Readings vs. Common-Mode Voltage  
Total harmonic distortion of the AD8610/AD8620 is well below  
0.0006% with any load down to 600 . The AD8610/AD8620  
outperforms the OPA627 for distortion, especially at frequen-  
cies above 20 kHz.  
TIME – 400ns/DIV  
Figure 15. AD8610 FPBW  
Input Overvoltage Protection  
When the input of an amplifier is driven below VEE or above VCC  
by more than one VBE, large currents will flow from the substrate  
through the negative supply (V–) or the positive supply (V+),  
respectively, to the input pins, which can destroy the device. If the  
input source can deliver larger currents than the maximum forward  
current of the diode (>5 mA), a series resistor can be added to  
protect the inputs. With its very low input bias and offset current, a  
large series resistor can be placed in front of the AD8610 inputs to  
limit current to below damaging levels. Series resistance of 10 k  
will generate less than 25 µV of offset. This 10 kwill allow input  
voltages more than 5 V beyond either power supply. Thermal noise  
generated by the resistor will add 7.5 nV/Hz to the noise of the  
AD8610. For the AD8610/AD8620, differential voltages equal to  
the supply voltage will not cause any problem (see Figure 15).  
In this context, it should also be noted that the high breakdown  
voltage of the input FETs eliminates the need to include clamp  
diodes between the inputs of the amplifier, a practice that is  
mandatory on many precision op amps. Unfortunately, clamp  
0.1  
V
= ؎13V  
= 5V rms  
SY  
V
IN  
BW = 80kHz  
0.01  
OPA627  
AD8610  
0.001  
0.0001  
10  
100  
1k  
10k  
80k  
FREQUENCY – Hz  
Figure 18. AD8610 vs. OPA627 THD + Noise @ VCM = 0 V  
REV. D  
–12–  
AD8610/AD8620  
0.1  
1.2k  
1.0k  
800  
600  
400  
200  
0
V
R
= ؎13V  
= 600⍀  
SY  
L
2V rms  
0.01  
4V rms  
6V rms  
OPA627  
0.001  
10  
100  
1k  
FREQUENCY – Hz  
10k 20k  
0.001  
0.01  
0.1  
1
10  
ERROR BAND – %  
Figure 21. OPA627 Settling Time vs. Error Band  
Figure 19. THD + Noise vs. Frequency  
The AD8610/AD8620 maintains this fast settling when loaded  
with large capacitive loads as shown in Figure 22.  
Noise vs. Common-Mode Voltage  
AD8610 noise density varies only 10% over the input range as  
shown in Table I.  
3.0  
ERROR BAND ؎0.01%  
Table I. Noise vs. Common-Mode Voltage  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VCM at F = 1 kHz (V)  
Noise Reading (nV/Hz)  
–10  
–5  
0
+5  
+10  
7.21  
6.89  
6.73  
6.41  
7.21  
Settling Time  
The AD8610 has a very fast settling time, even to a very tight error  
band, as can be seen from Figure 20. The AD8610 is configured  
in an inverting gain of +1 with 2 kinput and feedback resistors.  
The output is monitored with a 10 ×, 10 M, 11.2 pF scope probe.  
0
500  
1000  
– pF  
1500  
2000  
C
L
Figure 22. AD8610 Settling Time vs. Load Capacitance  
1.2k  
1.0k  
800  
600  
400  
3.0  
ERROR BAND ؎0.01%  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
200  
0
0.01  
0.1  
1
10  
0.001  
ERROR BAND – %  
0
500  
1000  
– pF  
1500  
2000  
Figure 20. AD8610 Settling Time vs. Error Band  
C
L
Figure 23. OPA627 Settling Time vs. Load Capacitance  
Output Current Capability  
The AD8610 can drive very heavy loads due to its high output  
current. It is capable of sourcing or sinking 45 mA at 10 V output.  
The short circuit current is quite high and the part is capable of  
sinking about 95 mA and sourcing over 60 mA while operating with  
REV. D  
–13–  
AD8610/AD8620  
supplies of 5 V. Figures 24 and 25 compare the load current  
versus output voltage of AD8610/AD8620 and OPA627.  
Programmable Gain Amplifier (PGA)  
The combination of low noise, low input bias current, low input  
offset voltage, and low temperature drift make the AD8610 a  
perfect solution for programmable gain amplifiers. PGAs are often  
used immediately after sensors to increase the dynamic range of  
the measurement circuit. Historically, the large ON resistance of  
switches, combined with the large IB currents of amplifiers,  
created a large dc offset in PGAs. Recent and improved monolithic  
switches and amplifiers completely remove these problems. A PGA  
discrete circuit is shown in Figure 27. In Figure 27, when the 10 pA  
bias current of the AD8610 is dropped across the (<5 ) RON of  
the switch, it results in a negligible offset error.  
10  
1
V
EE  
V
CC  
When high precision resistors are used, as in the circuit of Figure 27,  
the error introduced by the PGA is within the 1/2 LSB requirement  
for a 16-bit system.  
0.1  
0.00001  
+5V  
0.0001  
0.001  
0.01  
0.1  
1
LOAD CURRENT – A  
Figure 24. AD8610 Dropout from 13 V vs. Load Current  
V
IN  
100⍀  
10  
AD8610  
V
OUT  
U10  
5
10k⍀  
V
CC  
5pF  
–5V  
V
EE  
+5V +5V  
1
12  
13  
V
L
V
DD  
1k⍀  
S1  
D1  
3
2
G = 1  
1
16  
9
IN1  
IN2  
IN3  
IN4  
10k⍀  
ADG452  
S2 14  
G
Y0  
Y1  
Y2  
Y3  
G = 10  
0.1  
0.00001  
1k⍀  
100⍀  
11⍀  
D2 15  
S3 11  
A
B
0.0001  
0.001  
LOAD CURRENT – A  
0.01  
0.1  
1
A0  
A1  
74HC139  
G = 100  
Figure 25. OPA627 Dropout from 15 V vs. Load Current  
D3 10  
Although operating conditions imposed on the AD8610 ( 13 V)  
are less favorable than the OPA627 ( 15 V), it can be seen that the  
AD8610 has much better drive capability (lower headroom to the  
supply) for a given load current.  
S4  
6
8
G = 1000  
D4  
7
V
SS  
GND  
5
4
Operating with Supplies Greater than 13 V  
–5V  
The AD8610 maximum operating voltage is specified at 13 V.  
When 13 V is not readily available, an inexpensive LDO can  
provide 12 V from a nominal 15 V supply.  
Figure 27. High Precision PGA  
1. Room temperature error calculation due to RON and IB:  
Input Offset Voltage Adjustment  
VOS = IB × RON = 2pA× 5 Ω = 10pV  
Total Offset = AD8610(Offset) + ∆VOS  
Total Offset = AD8610(Offset _Trimmed) + ∆VOS  
Total Offset = 5 µV+10pV 5 µV  
Offset of AD8610 is very small and normally does not require  
additional offset adjustment. However, the offset adjust pins can  
be used as shown in Figure 26 to further reduce the dc offset. By  
using resistors in the range of 50 k, offset trim range is 3.3 mV.  
+V  
S
2. Full temperature error calculation due to RON and IB:  
7
2
3
VOS  
(
@
85°C) = IB (  
@
85°C) × RON  
(@ 85°C) =  
6
V
OUT  
AD8610  
250 pA × 15 Ω = 3.75 nV  
1
3. Temperature coefficient of switch and AD8610/AD8620  
combined is essentially the same as the TCVOS of the AD8610:  
5
R1  
4
VOS /T(total) = ∆VOS /T(AD8610) + ∆VOS /T(IB × RON  
VOS /T(total) = 0.5 µ V/ °C+ 0.06 nV/ °C 0.5 µ V/ °C  
)
–V  
S
Figure 26. Offset Voltage Nulling Circuit  
–14–  
REV. D  
AD8610/AD8620  
In active filter applications using operational amplifiers, the  
dc accuracy of the amplifier is critical to optimal filter performance.  
The amplifier’s offset voltage and bias current contribute to output  
error. Input offset voltage is passed by the filter, and may be  
amplified to produce excessive output offset. For low frequency  
applications requiring large value input resistors, bias and offset  
currents flowing through these resistors will also generate an  
offset voltage.  
High Speed Instrumentation Amplifier (IN AMP)  
The three op amp instrumentation amplifiers shown in Figure 28  
can provide a range of gains from unity up to 1,000 or higher. The  
instrumentation amplifier configuration features high common-  
mode rejection, balanced differential inputs, and stable, accurately  
defined gain. Low input bias currents and fast settling are achieved  
with the JFET input AD8610/AD8620. Most instrumentation  
amplifiers cannot match the high frequency performance of this  
circuit. The circuit bandwidth is 25 MHz at a gain of 1, and close  
to 5 MHz at a gain of 10. Settling time for the entire circuit is  
550 ns to 0.01% for a 10 V step (gain = 10). Note that the resistors  
around the input pins need to be small enough in value so that  
the RC time constant they form in combination with stray circuit  
capacitance does not reduce circuit bandwidth.  
At higher frequencies, an amplifier’s dynamic response must be  
carefully considered. In this case, slew rate, bandwidth, and open-  
loop gain play a major role in amplifier selection. The slew rate  
must be both fast and symmetrical to minimize distortion. The  
amplifier’s bandwidth, in conjunction with the filter’s gain, will  
dictate the frequency response of the filter. The use of a high perfor-  
mance amplifier such as the AD8610/AD8620 will minimize both  
dc and ac errors in all active filter applications.  
V+  
V
IN1  
Second-Order Low-Pass Filter  
Figure 29 shows the AD8610 configured as a second-order  
Butterworth low-pass filter. With the values as shown, the corner  
frequency of the filter will be 1 MHz. The wide bandwidth of  
the AD8610/AD8620 allows a corner frequency up to tens of  
megaHertz. The following equations can be used for component  
selection:  
1/2 AD8620  
U1  
V–  
C5  
10pF  
V+  
R1 = R2 = User Selected Typical Values:10 k100 kΩ  
(
)
R1 1k  
1.414  
C1 =  
C2 =  
V
OUT  
R4 2k⍀  
2π f  
R1  
(
)( CUTOFF )(  
)
C4  
15pF  
R7  
2k⍀  
AD8610  
U2  
0.707  
R6  
2k⍀  
2π  
f
R1  
(
)( CUTOFF )(  
)
RG  
V–  
R8 2k⍀  
where C1 and C2 are in farads.  
R5 2k⍀  
C1  
22pF  
C3  
15pF  
V
IN2  
1/2 AD8620  
+13V  
U
1
V
IN  
R2 1k⍀  
5
V
OUT  
R2  
10k⍀  
R1  
10k⍀  
AD8610  
C2  
10pF  
U1  
C2  
11pF  
Figure 28. High Speed Instrumentation Amplifier  
High Speed Filters  
–13V  
The four most popular configurations are Butterworth, Elliptical,  
Bessel, and Chebyshev. Each type has a response that is optimized  
for a given characteristic as shown in Table II.  
Figure 29. Second-Order Low-Pass Filter  
Table II. Filter Types  
Type  
Sensitivity  
Overshoot  
Phase  
Nonlinear  
Linear  
Amplitude (Pass Band)  
Butterworth  
Chebyshev  
Elliptical  
Moderate  
Good  
Best  
Good  
Moderate  
Poor  
Max Flat  
Equal Ripple  
Equal Ripple  
Bessel (Thompson)  
Poor  
Best  
REV. D  
–15–  
AD8610/AD8620  
High Speed, Low Noise Differential Driver  
U2  
3
2
The AD8620 is a perfect candidate as a low noise differential  
driver for many popular ADCs. There are also other applications,  
such as balanced lines, that require differential drivers. The circuit  
of Figure 30 is a unique line driver widely used in industrial applica-  
tions. With 13 V supplies, the line driver can deliver a differential  
signal of 23 V p-p into a 1 kload. The high slew rate and wide  
bandwidth of the AD8620 combine to yield a full power bandwidth  
of 145 kHz while the low noise front end produces a referred-to-  
input noise voltage spectral density of 6 nV/Hz. The design is a  
transformerless, balanced transmission system where output  
common-mode rejection of noise is of paramount importance.  
Like the transformer-based design, either output can be shorted  
to ground for unbalanced line driver applications without changing  
the circuit gain of 1. This allows the design to be easily set to  
noninverting, inverting, or differential operation.  
V+  
V–  
V
1
O
1
R4 1k  
R5  
R10  
1k  
50⍀  
R8 1k⍀  
R13  
1k⍀  
1/2 OF AD8620  
3
2
V+  
V–  
6
R6  
10k  
R1  
1k⍀  
R12  
1k⍀  
AD8610  
0
R7  
1k⍀  
R9 1k⍀  
5
V+  
7
R3 1k⍀  
1/2 OF AD8620  
R2  
R11  
50⍀  
V
2
O
V–  
6
U3  
1k⍀  
V
2 – V 1 =V  
O
O
IN  
0
Figure 30. Differential Driver  
–16–  
REV. D  
AD8610/AD8620  
OUTLINE DIMENSIONS  
8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
8-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
3.00  
BSC  
5.00 (0.1968)  
4.80 (0.1890)  
8
5
4
8
1
5
4
4.90  
BSC  
3.00  
BSC  
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1
PIN 1  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
0.65 BSC  
؋
 45؇  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
1.10 MAX  
0.15  
0.00  
8؇  
0.80  
0.60  
0.40  
0.51 (0.0201)  
0.31 (0.0122)  
0؇ 1.27 (0.0500)  
8؇  
0؇  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
0.40 (0.0157)  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
REV. D  
–17–  
AD8610/AD8620  
Revision History  
Location  
Page  
2/04—Data Sheet changed from REV. C to REV. D.  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
10/02—Data Sheet changed from REV. B to REV. C.  
Updated ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edits to Figure 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5/02—Data Sheet changed from REV. A to REV. B.  
Addition of part number AD8620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Addition of 8-Lead SOIC (R-8 Suffix) Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Additions to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Change to ELECTRICAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Additions to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Replace TPC 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Add Channel Separation Test Circuit Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Add Channel Separation Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Changes to Figure 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Addition of High-Speed, Low Noise Differential Driver section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Addition of Figure 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
–18–  
REV. D  
–19–  
–20–  

相关型号:

AD8620ARZ

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier
ADI

AD8620ARZ-REEL

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier
ADI

AD8620ARZ-REEL7

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier
ADI

AD8620B

Operational Amplifiers Selection Guide
ADI

AD8620BR

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier
ADI

AD8620BR-REEL

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier
ADI

AD8620BR-REEL7

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier
ADI

AD8620BRZ

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier
ADI

AD8620BRZ-REEL

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier
ADI

AD8620BRZ-REEL7

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifier
ADI

AD8622

Dual, Low Power, Low Noise, Low Bias Current Precision Rail-to-Rail Output Op Amp
ADI

AD8622ARMZ

Dual, Low Power, Precision Rail-to-Rail Output Op Amp
ADI