AD8652ARMZ-R2 [ADI]

50 MHz, Precision, Low Distortion, Low Noise CMOS Amplifiers; 50兆赫,高精度,低失真,低噪声CMOS放大器
AD8652ARMZ-R2
型号: AD8652ARMZ-R2
厂家: ADI    ADI
描述:

50 MHz, Precision, Low Distortion, Low Noise CMOS Amplifiers
50兆赫,高精度,低失真,低噪声CMOS放大器

放大器 光电二极管
文件: 总20页 (文件大小:611K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
50 MHz, Precision, Low Distortion,  
Low Noise CMOS Amplifiers  
AD8651/AD8652  
PIN CONFIGURATIONS  
FEATURES  
Bandwidth: 50 MHz @ 5 V  
Hz  
Low Noise: 4.5 nV/√  
Offset voltage: 100 µV typ, specified over  
entire common-mode range  
NC  
–IN  
+IN  
V–  
1
2
3
4
8
7
6
5
NC  
V+  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8651  
AD8652  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
OUT  
NC  
TOP VIEW  
(Not to Scale)  
41 V/µs slew rate  
NC = NO CONNECT  
Rail-to-rail input and output swing  
Input bias current: 1 pA  
Figure 1. 8-Lead MSOP (RM-8)  
Figure 2. 8-Lead MSOP (RM-8)  
Single-supply operation: 2.7 V to 5.5 V  
Space-saving MSOP and SOIC packaging  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
NC  
–IN  
+IN  
V–  
1
2
3
4
8
7
6
5
NC  
V+  
AD8652  
AD8651  
OUT B  
–IN B  
+IN B  
APPLICATIONS  
OUT  
NC  
TOP VIEW  
(Not to Scale)  
TOP VIEW  
(Not to Scale)  
Optical communications  
Laser source drivers/controllers  
Broadband communications  
High speed ADC and DAC  
Microwave link interface  
Cell phone PA control  
Video line driver  
NC = NO CONNECT  
Figure 4. 8-Lead SOIC (R-8)  
Figure 3. 8-Lead SOIC (R-8)  
Audio  
The AD8651 features the newest generation of DigiTrim®  
in-package trimming. This new generation measures and  
corrects the offset over the entire input common-mode range,  
providing less distortion from VOS variation than is typical of  
other rail-to-rail amplifiers. Offset voltage and CMRR are both  
specified and guaranteed over the entire common-mode range  
as well as over the extended industrial temperature range.  
GENERAL DESCRIPTION  
The AD8651 is a high precision, low noise, low distortion, rail-  
to-rail CMOS operational amplifier that runs from a single-  
supply voltage of 2.7 V to 5 V.  
The AD8651 is a rail-to-rail input and output amplifier with a  
gain bandwidth of 50 MHz and a typical voltage offset of  
100 µV across common mode from a 5 V supply. It also features  
The AD8651 is offered in the 8-lead SOIC package and the  
8-lead MSOP package. It is specified over the extended indus-  
trial temperature range (−40°C to +125°C).  
Hz  
low noise—4.5 nV/√  
.
The AD8651 can be used in communications applications, such  
as cell phone transmission power control, fiber optic  
networking, wireless networking, and video line drivers.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD8651/AD8652  
TABLE OF CONTENTS  
Electrical Characteristics................................................................. 3  
Layout, Grounding, and Bypassing considerations............... 15  
Power Supply Bypassing........................................................ 15  
Grounding............................................................................... 15  
Leakage Currents.................................................................... 15  
Input Capacitance .................................................................. 15  
Output Capacitance ............................................................... 16  
Settling Time........................................................................... 16  
THD Readings vs. Common-Mode Voltage ...................... 16  
Driving a 16-Bit ADC............................................................ 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Electrical Characteristics................................................................. 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Applications..................................................................................... 14  
Theory of Operation .................................................................. 14  
Rail-to-Rail Output Stage...................................................... 14  
Rail-to-Rail Input Stage......................................................... 14  
Input Protection ..................................................................... 15  
Overdrive Recovery ............................................................... 15  
REVISION HISTORY  
9/04—Data Sheet Changed from Rev. A to Rev. B  
Added AD8652 ....................................................................Universal  
Change to General Description....................................................... 1  
Changes to Electrical Characteristics ............................................. 3  
Changes to Absolute Maximum Ratings........................................ 5  
Change to Figure 23 .......................................................................... 9  
Change to Figure 26 .......................................................................... 9  
Change to Figure 36 ........................................................................ 11  
Change to Figure 42 ........................................................................ 12  
Change to Figure 49 ........................................................................ 13  
Change to Figure 51 ........................................................................ 13  
Inserted Figure 52............................................................................ 13  
Change to Theory of Operation section....................................... 14  
Change to Input Protection section .............................................. 15  
Changes to Ordering Guide ........................................................... 20  
6/04—Changed from REV. 0 to REV. A  
Change to Figure 18 .............................................................................8  
Change to Figure 21 .............................................................................9  
Change to Figure 29 .............................................................................10  
Change to Figure 30 .............................................................................10  
Change to Figure 43 .............................................................................12  
Change to Figure 44 .............................................................................12  
Change to Figure 47 .............................................................................13  
Change to Figure 57 .............................................................................17  
10/03 Revision 0: Initial Version  
Rev. B | Page 2 of 20  
AD8651/AD8652  
ELECTRICAL CHARACTERISTICS  
Table 1. V+ = 2.7 V, V– = 0 V, VCM = V+/2, TA = 25°C, unless otherwise specified  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
AD8651  
VOS  
0 ≤ VCM ≤ 2.7 V  
100  
350  
1.4  
1.6  
300  
1.3  
μV  
–40°C ≤ TA ≤ +85°C, 0 ≤ VCM ≤ 2.7 V  
–40°C ≤ TA ≤ +125°C, 0 ≤ VCM ≤ 2.7 V  
0 ≤ VCM ≤ 2.7 V  
mV  
mV  
μV  
AD8652  
90  
0.4  
4
–40°C ≤ TA ≤ +125°C, 0 ≤ VCM ≤ 2.7 V  
mV  
μV/°C  
pA  
pA  
pA  
pA  
pA  
V
Offset Voltage Drift  
Input Bias Current  
IB  
1
10  
600  
10  
30  
600  
+2.8  
–40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
1
–40°C ≤ TA ≤ +85°C  
–40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
AD8651  
VCM  
CMRR  
–0.1  
V+ = 2.7 V, –0.1 V < VCM < +2.8 V  
75  
70  
65  
77  
95  
88  
85  
95  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
–40°C ≤ TA ≤ +85°C, –0.1 V < VCM < +2.8 V  
–40°C ≤ TA ≤ +125°C, –0.1 V < VCM < +2.8 V  
V+ = 2.7 V, –0.1 V < VCM < +2.8 V  
–40°C ≤ TA ≤ +125°C, –0.1 V < VCM < +2.8 V  
RL = 1 kΩ, 200 mV < VO < 2.5 V  
AD8652  
73  
90  
Large Signal Voltage Gain  
AVO  
100  
100  
95  
115  
114  
108  
RL = 1 kΩ, 200 mV < VO < 2.5 V, TA = +85°C  
RL = 1 kΩ, 200 mV < VO < 2.5 V, TA = +125°C  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Short Circuit Limit  
VOH  
VOL  
ISC  
IL = 250 μA, –40°C ≤ TA ≤ +125°C  
IL = 250 μA, –40°C ≤ TA ≤ +125°C  
Sourcing  
2.67  
V
30  
mV  
mA  
mA  
mA  
80  
80  
+40  
Sinking  
Output Current  
IO  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 5.5 V, VCM = 0 V  
–40°C ≤ TA ≤ +125°C  
76  
74  
94  
93  
dB  
dB  
Supply Current  
AD8651  
IO = 0  
–40°C ≤ TA ≤ +125°C  
IO = 0  
9
12  
mA  
mA  
mA  
mA  
14.5  
19.5  
22.5  
AD8652  
17.5  
–40°C ≤ TA ≤ +125°C  
INPUT CAPACITANCE  
Differential  
Common-Mode  
CIN  
6
9
pF  
pF  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
GBP  
G = 1, RL = 10 kΩ  
G = 1  
G = 1, 2 V Step  
VIN × G = 1.48 V+  
41  
50  
0.2  
0.1  
V/μs  
MHz  
μs  
μs  
%
Gain Bandwidth Product  
Settling Time, 0.01%  
Overload Recovery Time  
Total Harmonic Distortion + Noise  
NOISE PERFORMANCE  
Voltage Noise Density  
THD + N  
en  
G = 1, RL = 600 Ω, f = 1 kHz, VIN = 2 V p-p  
0.0006  
f = 10 kHz  
f = 100 kHz  
f = 10 kHz  
5
Hz  
nV/√  
4.5  
4
Hz  
nV/√  
Hz  
fA/√  
Current Noise Density  
in  
Rev. B | Page 3 of 20  
 
AD8651/AD8652  
ELECTRICAL CHARACTERISTICS  
Table 2. V+ = 5 V, V– = 0 V, VCM = V+/2, TA = 25°C, unless otherwise specified  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
AD8651  
VOS  
0 ≤ VCM ≤ 5 V  
100  
350  
1.4  
1.7  
300  
1.4  
μV  
–40°C ≤ TA ≤ +85°C, 0 ≤ VCM ≤ 5 V  
–40°C ≤ TA ≤ +125°C, 0 ≤ VCM ≤ 5 V  
0 ≤ VCM ≤ 5 V  
mV  
mV  
μV  
AD8652  
90  
0.4  
4
–40°C ≤ TA ≤ +125°C, 0 ≤ VCM ≤ 5 V  
mV  
μV/°C  
pA  
pA  
pA  
pA  
pA  
pA  
V
Offset Voltage Drift  
Input Bias Current  
IB  
1
10  
30  
600  
10  
30  
–40°C ≤ TA ≤ +85°C  
–40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
1
–40°C ≤ TA ≤ +85°C  
–40°C ≤ TA ≤ +125°C  
600  
+5.1  
Input Voltage Range  
Common-Mode Rejection Ratio  
AD8651  
VCM  
CMRR  
–0.1  
0.1 V < VCM < 5.1 V  
80  
75  
70  
84  
76  
100  
98  
95  
95  
94  
90  
100  
95  
115  
114  
111  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
–40°C ≤ TA ≤ +85°C, 0.1 V < VCM < 5.1 V  
–40°C ≤ TA ≤ +125°C, 0.1 V < VCM < 5.1 V  
0.1 V < VCM < 5.1 V  
–40°C ≤ TA ≤ +125°C, 0.1 V < VCM < 5.1 V  
RL = 1 kΩ, 200 mV < VO < 4.8 V  
AD8652  
Large Signal Voltage Gain  
AVO  
RL = 1 kΩ, 200 mV < VO < 4.8 V, TA = +85°C  
RL = 1 kΩ, 200 mV < VO < 4.8 V, TA = +125°C  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Short Circuit Limit  
VOH  
VOL  
ISC  
IL = 250 µA, –40°C ≤ TA ≤ +125°C  
IL = 250 µA, –40°C ≤ TA ≤ +125°C  
Sourcing  
4.97  
V
30  
mV  
mA  
mA  
mA  
80  
80  
+40  
Sinking  
Output Current  
IO  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.7 V to 5.5 V, VCM = 0 V  
–40°C ≤ TA ≤ +125°C  
76  
74  
94  
93  
dB  
dB  
Supply Current  
AD8651  
IO = 0  
–40°C ≤ TA ≤ +125°C  
IO = 0  
9.5  
14.0  
15  
20.0  
23.5  
mA  
mA  
mA  
mA  
AD8652  
17.5  
–40°C ≤ TA ≤ +125°C  
INPUT CAPACITANCE  
Differential  
Common-Mode  
CIN  
6
9
pF  
pF  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
GBP  
G = 1, RL = 10 kΩ  
G = 1  
G = 1, 2 V Step  
VIN × G = 1.2 V+  
41  
50  
0.2  
0.1  
V/µs  
MHz  
μs  
μs  
%
Gain Bandwidth Product  
Settling Time, 0.01%  
Overload Recovery Time  
Total Harmonic Distortion + Noise  
NOISE PERFORMANCE  
Voltage Noise Density  
THD + N  
en  
G = 1, RL = 600 Ω, f = 1 kHz, VIN = 2 V p-p  
0.0006  
f = 10 kHz  
f = 100 kHz  
f = 10 kHz  
5
Hz  
nV/√  
4.5  
4
Hz  
nV/√  
Hz  
fA/√  
Current Noise Density  
In  
Rev. B | Page 4 of 20  
 
AD8651/AD8652  
ABSOLUTE MAXIMUM RATINGS  
Absolute maximum ratings apply at 25°C, unless otherwise noted.  
Table 3.  
Table 4.  
1
Parameter  
Rating  
Package Type  
8-Lead MSOP (RM)  
8-Lead SOIC (R)  
θJA  
θJC  
45  
43  
Unit  
°C/W  
°C/W  
Supply Voltage  
6.0 V  
210  
158  
Input Voltage  
GND to VS + 0.3 V  
6.0 V  
Indefinite  
4000 V  
Differential Input Voltage  
Output Short-Circuit Duration to GND  
Electrostatic Discharge (HBM)  
Storage Temperature Range  
RM, R Package  
Operating Temperature Range  
Junction Temperature Range  
RM, R Package  
1 θJA is specified for the worst-case conditions, i.e., θJA is specified for device  
soldered in circuit board for surface-mount packages.  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
Lead Temperature (Soldering, 10 s)  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. B | Page 5 of 20  
 
AD8651/AD8652  
TYPICAL PERFORMANCE CHARACTERISTICS  
60  
100  
80  
60  
40  
20  
V
= 5V  
V
V
= ±2.5V  
S
S
= 0V  
CM  
50  
40  
30  
20  
10  
0
0
–20  
0
1
2
3
4
5
6
140  
6
COMMON-MODE VOLTAGE (V)  
V
(µV)  
OS  
Figure 5. Input Offset Voltage Distribution  
Figure 8. Input Offset Voltage vs. Common-Mode Voltage  
500  
400  
300  
200  
100  
0
300  
V
= ±2.5V  
V
V
= ±2.5V  
S
S
= 0V  
CM  
200  
100  
0
–100  
–200  
–300  
0
20  
40  
60  
80  
100  
120  
–50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. Input Bias Current vs. Temperature  
Figure 6. Input Offset Voltage vs. Temperature  
10  
8
60  
50  
40  
30  
20  
V
V
= ±2.5V  
S
= 0V  
CM  
T: –40°C TO 125°C  
6
4
2
10  
0
0
0
1
2
3
4
5
0
1
2
3
4
5
6
7
8
9
10 11  
SUPPLY VOLTAGE (V)  
TCV (µV/°C)  
OS  
Figure 10. Supply Current vs. Supply Voltage  
Figure 7. TCVOS Distribution  
Rev. B | Page 6 of 20  
 
AD8651/AD8652  
2.50  
2.00  
1.50  
1.00  
12  
11  
10  
9
V
= 5V  
= 250µA  
V
= ±2.5V  
S
S
I
L
8
0.50  
0
7
6
–50  
0
50  
100  
150  
–50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. Output Voltage Swing Low vs. Temperature  
Figure 11. Supply Current vs. Temperature  
100  
80  
500  
400  
300  
200  
V
= ±2.5V  
V
= ±2.5V  
S
S
60  
V
OH  
40  
20  
0
V
OL  
100  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
0
20  
40  
60  
80  
100  
FREQUENCY (Hz)  
CURRENT LOAD (mA)  
Figure 15. CMRR vs. Frequency  
Figure 12. Output Voltage to Supply Rail vs. Load Current  
110  
105  
100  
95  
4.997  
4.996  
4.995  
4.994  
4.993  
V
S
= ±2.5V  
V
= 5V  
= 250µA  
S
I
L
4.992  
4.991  
4.990  
90  
–50  
0
50  
100  
150  
–50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. CMRR vs. Temperature  
Figure 13. Output Voltage Swing High vs. Temperature  
Rev. B | Page 7 of 20  
AD8651/AD8652  
100  
97  
94  
91  
88  
100  
V
= ±2.5V  
S
10  
85  
82  
1
10  
–50  
0
50  
100  
150  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 17. CMRR vs. Temperature  
Figure 20. Voltage Noise Density vs. Frequency  
100  
80  
60  
40  
V
= ±2.5V  
V
= ±2.5V  
S
S
80  
60  
40  
20  
0
+PSRR  
–PSRR  
20  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. PSRR vs. Frequency  
Figure 21. Current Noise Density vs. Frequency  
100  
95  
90  
85  
80  
V
V
= ±2.5V  
S
V
= ±2.5V  
S
= 6.4V  
IN  
V
IN  
V
OUT  
0
–50  
0
50  
100  
150  
TIME (200µs/DIV)  
TEMPERATURE (°C)  
Figure 22. No Phase Reversal  
Figure 19. PSRR vs. Temperature  
Rev. B | Page 8 of 20  
AD8651/AD8652  
140  
120  
0
60  
40  
20  
V
R
C
= ±2.5V  
= 1M  
= 47pF  
V
= ±2.5V  
S
S
L
L
G = 100  
100  
80  
60  
40  
20  
–45  
G = 10  
G = 1  
–90  
0
–20  
–40  
–135  
–180  
0
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
5k  
50k  
500k  
5M  
50M  
300M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 23. Open-Loop Gain and Phase vs. Frequency  
Figure 26. Closed-Loop Gain vs. Frequency  
6
5
4
3
2
117  
116  
115  
114  
V
R
= ±2.5V  
= 1kΩ  
S
L
V
= 5V  
S
V
= 2.7V  
S
113  
112  
1
0
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
–50  
0
50  
100  
150  
TEMPERATURE (°C)  
Figure 27. Maximum Output Swing vs. Frequency  
Figure 24. Open-Loop Gain vs. Temperature  
140  
130  
V
C
A
= ±2.5V  
= 47pF  
= 1  
S
V
= ±2.5V  
S
L
V
I
= 250µA  
L
2.5mA  
120  
110  
100  
90  
4.2mA  
80  
70  
60  
0
50  
100  
150  
200  
250  
TIME (100µs/DIV)  
OUTPUT VOLTAGE SWING FROM THE RAILS (mV)  
Figure 28. Large Signal Response  
Figure 25. Open-Loop Gain vs. Output Voltage Swing  
Rev. B | Page 9 of 20  
AD8651/AD8652  
V
V
A
= ±2.5V  
= 200mV  
= 1  
V
V
= ±2.5V  
= 200mV  
S
S
IN  
IN  
GAIN = –15  
V
0V  
OUTPUT  
–2.5V  
200mV  
0V  
INPUT  
TIME (10µs/DIV)  
TIME (200ns/DIV)  
Figure 29. Small Signal Response  
Figure 32. Positive Overload Recovery Time  
30  
25  
20  
15  
10  
40  
30  
20  
V = ±2.5V  
S
V
V
A
= ±2.5V  
S
= 200mV  
= 1  
IN  
V
–OS  
GAIN = 10  
+OS  
GAIN = 1  
10  
0
5
0
GAIN = 100  
0
10  
20  
30  
40  
50  
60  
70  
10  
100  
1000  
FREQUENCY (Hz)  
10000  
100000  
CAPACITANCE (pF)  
Figure 30. Small Signal Overshoot vs. Load Capacitance  
Figure 33. Output Impedance vs. Frequency  
60  
50  
40  
30  
20  
V
V
= ±2.5V  
S
V
V
= ±1.35V  
S
2.5V  
0V  
= 200mV  
IN  
= 0V  
CM  
GAIN = –15  
0V  
–200mV  
10  
0
TIME (200ns/DIV)  
V
(µV)  
OS  
Figure 34. Input Offset Voltage Distribution  
Figure 31. Negative Overload Recovery Time  
Rev. B | Page 10 of 20  
 
 
AD8651/AD8652  
300  
200  
100  
0
500  
400  
300  
200  
V
= ±1.35V  
V
V
= ±1.35V  
S
S
= 0V  
CM  
V
OH  
V
–100  
OL  
100  
0
–200  
–300  
–50  
0
50  
100  
150  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
CURRENT LOAD (mA)  
Figure 35. Input Offset Voltage vs. Temperature  
Figure 38. Output Voltage to Supply Rail vs. Load Current  
80  
60  
40  
20  
2.697  
2.696  
2.695  
V
= 2.7V  
S
V
= 2.7V  
= 250µA  
S
I
L
2.694  
2.693  
2.692  
2.691  
2.690  
0
–20  
0
1
2
3
–50  
0
50  
100  
150  
INPUT COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 36. Input Offset Voltage vs. Common-Mode Voltage  
Figure 39. Output Voltage Swing High vs. Temperature  
3.00  
2.50  
2.00  
1.50  
1.00  
11  
10  
9
V
= 2.7V  
= 250µA  
V
= ±1.35V  
S
S
I
L
8
7
0.50  
0
6
–50  
0
50  
100  
150  
–50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 40. Output Voltage Swing Low vs. Temperature  
Figure 37. Supply Current vs. Temperature  
Rev. B | Page 11 of 20  
AD8651/AD8652  
30  
25  
20  
15  
10  
5
V
A
= ±1.35V  
= 1  
S
V
V
= ±1.35V  
= 200mV  
S
V
IN  
–OS  
+OS  
0
0
10  
20  
30  
40  
50  
60  
70  
TIME (200µs/DIV)  
CAPACITANCE (pF)  
Figure 41. No Phase Reversal  
Figure 44. Small Signal Overshoot vs. Load Capacitance  
V
C
A
= ±1.35V  
= 47pF  
= 1  
V
V
= ±1.35V  
= 200mV  
S
S
L
V
IN  
GAIN = –10  
1.35V  
0V  
0V  
–200mV  
TIME (100µs/DIV)  
TIME (200ns/DIV)  
Figure 42. Large Signal Response  
Figure 45. Negative Overload Recovery Time  
V
V
C
= ±1.35V  
= 200mV  
= 47pF  
= 1  
S
V
V
= ±1.35V  
= 200mV  
S
IN  
IN  
L
V
GAIN = –10  
A
0V  
–1.35V  
200mV  
0V  
TIME (200ns/DIV)  
TIME (10µs/DIV)  
Figure 46. Positive Overload Recovery Time  
Figure 43. Small Signal Response  
Rev. B | Page 12 of 20  
AD8651/AD8652  
100  
80  
60  
40  
20  
0
120  
118  
116  
114  
V
= ±1.35V  
V
R
= ±1.35V  
= 1kΩ  
S
S
L
112  
110  
108  
10  
100  
1k  
10k  
100k  
1M  
10M  
–50  
0
50  
100  
150  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 47. CMRR vs. Frequency  
Figure 50. Open-Loop Gain vs. Temperature  
100  
80  
60  
40  
20  
V
= ±1.35V  
S
V = ±1.35V  
S
R
C
= 1M  
= 47pF  
L
L
G = 100  
G = 10  
G = 1  
+PSRR  
–PSRR  
60  
40  
20  
0
0
–20  
–40  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
5k  
50k  
500k  
5M  
50M  
300M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 48. PSRR vs. Frequency  
Figure 51. Closed-Loop Gain vs. Frequency  
0
–20  
140  
0
R1  
10k  
V
= ±1.35V  
S
+2.5V  
120  
R2  
100Ω  
V+  
V–  
V+  
V
IN  
28mV p-p  
100  
80  
60  
40  
20  
–45  
–40  
V
OUT  
V–  
–60  
–2.5V  
–90  
–80  
–100  
–120  
–140  
–135  
–180  
0
V
= ±2.5V  
S
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 52. Channel Separation  
Figure 49. Open-Loop Gain and Phase vs. Frequency  
Rev. B | Page 13 of 20  
AD8651/AD8652  
APPLICATIONS  
output voltage swing is proportional to the output current, and  
larger currents will limit how close the output voltage can get to  
the proximity of the output voltage to the supply rail. This is a  
characteristic of all rail-to-rail output amplifiers. With 40 mA of  
output current, the output voltage can reach within 5 mV of the  
positive and negative rails. At light loads of >100 kΩ, the output  
swings within ~1 mV of the supplies.  
THEORY OF OPERATION  
The AD8651 amplifier is a voltage feedback, rail-to-rail input  
and output precision CMOS amplifier that operates from 2.7 V  
to 5.0 V of power supply voltage. This amplifier uses Analog  
Devices’ DigiTrim technology to achieve a higher degree of  
precision than is available from most CMOS amplifiers.  
DigiTrim technology, used in a number of ADI amplifiers, is a  
method of trimming the offset voltage of the amplifier after it  
has been assembled. The advantage of post-package trimming is  
that it corrects any offset voltages caused by the mechanical  
stresses of assembly.  
Rail-to-Rail Input Stage  
The input common-mode voltage range of the AD8651 extends  
to both positive and negative supply voltages. This maximizes  
the usable voltage range of the amplifier, an important feature  
for single-supply and low voltage applications. This rail-to-rail  
input range is achieved by using two input differential pairs, one  
NMOS and one PMOS, placed in parallel. The NMOS pair is  
active at the upper end of the common-mode voltage range,  
and the PMOS pair is active at the lower end of the common-  
mode range.  
The AD8651 is available in standard op amp pinout, making  
DigiTrim completely transparent to the user. The input stage of  
the amplifier is a true rail-to-rail architecture, allowing the  
input common-mode voltage range of the op amp to extend to  
both positive and negative supply rails. The open-loop gain of  
the AD8651/AD8652 with a load of 1 kΩ is typically 115 dB.  
The NMOS and PMOS input stages are separately trimmed  
using DigiTrim to minimize the offset voltage in both differen-  
tial pairs. Both NMOS and PMOS input differential pairs are  
active in a 500 mV transition region when the input common-  
mode voltage is approximately 1.5 V below the positive supply  
voltage. A special design technique improves the input offset  
voltage in the transition region that traditionally exhibits a  
slight VOS variation. As a result, the common-mode rejection  
ratio is improved within this transition band. Compared to the  
Burr Brown OPA350 amplifier, shown in Figure 53 (A), the  
AD8651, shown in Figure 53 (B), exhibits much lower offset  
voltage shift across the entire input common-mode range,  
including the transition region.  
The AD8651 can be used in any precision op amp application.  
The amplifier does not exhibit phase reversal for common-  
mode voltages within the power supply. With voltage noise of  
Hz  
4.5 nV/√ and –105 dB distortion for 10 kHz, 2 V p-p signals,  
the AD8651/AD8652 is a great choice for high resolution data  
acquisition systems. Its low noise, sub-pA input bias current,  
precision offset, and high speed make it a superb preamp  
for fast photodiode applications. The speed and output  
drive capability of the AD8651 also make it useful in  
video applications.  
Rail-to-Rail Output Stage  
The voltage swing of the output stage is rail-to-rail and is  
achieved by using an NMOS and PMOS transistor pair con-  
nected in a common source configuration. The maximum  
600  
400  
200  
0
600  
400  
200  
0
–200  
–400  
–600  
–200  
–400  
–600  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
COMMON-MODE VOLTAGE (V)  
COMMON-MODE VOLTAGE (V)  
(A) OPA350 VOS vs. VCM  
(B) AD8651 VOS vs. VCM  
Figure 53. Input Offset Distribution over Common-Mode Voltage  
Rev. B | Page 14 of 20  
 
 
AD8651/AD8652  
Input Protection  
(X7R or NPO) are critical and should be as close as possible to  
the amplifier package. The 4.7 µF tantalum capacitor is less  
critical for high frequency bypassing, and, in most cases, only  
one is needed per board at the supply inputs.  
As with any semiconductor device, if a condition could exist for  
the input voltage to exceed the power supply, the device’s input  
overvoltage characteristic must be considered. The inputs of the  
AD8651 are protected with ESD diodes to either power supply.  
Excess input voltage will energize internal PN junctions in the  
AD8651, allowing current to flow from the input to the  
supplies. This results in an input stage with picoamps of input  
current that can withstand up to 4000 V ESD events (human  
body model) with no degradation.  
Grounding  
A ground plane layer is important for densely packed PC  
boards to spread the current-minimizing parasitic inductances.  
However, an understanding of where the current flows in a  
circuit is critical to implementing effective high speed circuit  
design. The length of the current path is directly proportional to  
the magnitude of parasitic inductances and, therefore, the high  
frequency impedance of the path. High speed currents in an  
inductive ground return will create an unwanted voltage noise.  
Excessive power dissipation through the protection devices will  
destroy or degrade the performance of any amplifier. Differen-  
tial voltages greater than 7 V will result in an input current of  
approximately (|VCC – VEE| – 0.7 V)/RI, where RI is the  
resistance in series with the inputs. For input voltages beyond  
the positive supply, the input current will be approximately (VI  
– VCC – 0.7)/RI. For input voltages beyond the negative supply,  
the input current will be about (VI – VEE + 0.7)/RI. If the inputs  
of the amplifier sustain differential voltages greater than 7 V or  
input voltages beyond the amplifier power supply, limit the  
input current to 10 mA by using an appropriately sized input  
resistor (RI), as shown in Figure 54.  
The length of the high frequency bypass capacitor leads is  
critical. A parasitic inductance in the bypass grounding will  
work against the low impedance created by the bypass capacitor.  
Place the ground leads of the bypass capacitors at the same  
physical location. Because load currents also flow from the  
supplies, the ground for the load impedance should be at the  
same physical location as the bypass capacitor grounds. For the  
larger value capacitors, intended to be effective at lower fre-  
quencies, the current return path distance is less critical.  
(V – V – 0.7V)  
(| V – V | – 0.7V)  
I
EE  
CC  
EE  
R >  
Leakage Currents  
R >  
I
I
30mA  
30mA  
Poor PC board layout, contaminants, and the board insulator  
material can create leakage currents that are much larger than  
the input bias current of the AD8651/AD8652. Any voltage  
differential between the inputs and nearby traces will set up  
leakage currents through the PC board insulator, for example,  
1 V/100 G = 10 pA. Similarly, any contaminants on the board  
can create significant leakage (skin oils are a common problem).  
(V – V + 0.7V)  
I
EE  
R >  
FOR LARGE | V – V  
CC  
|
I
EE  
30mA  
+
FOR V BEYOND  
I
SUPPLY VOLTAGES  
AD8651  
+ V  
O
– V +  
I
R
I
Figure 54. Input Protection Method  
To significantly reduce leakages, put a guard ring (shield)  
around the inputs and input leads that are driven to the same  
voltage potential as the inputs. This ensures that there is no  
voltage potential between the inputs and the surrounding area  
to set up any leakage currents. To be effective, the guard ring  
must be driven by a relatively low impedance source and should  
completely surround the input leads on all sides, above and  
below, using a multilayer board.  
Overdrive Recovery  
Overdrive recovery is defined as the time it takes for the output  
of an amplifier to come off the supply rail after an overload  
signal is initiated. This is usually tested by placing the amplifier  
in a closed-loop gain of 15 with an input square wave of  
200 mV p-p while the amplifier is powered from either 5 V or  
3 V. The AD8651 has excellent recovery time from overload  
conditions (see Figure 31 and Figure 32). The output recovers  
from the positive supply rail within 200 ns at all supply voltages.  
Recovery from the negative rail is within 100 ns at 5 V supply.  
Another effect that can cause leakage currents is the charge  
absorption of the insulator material itself. Minimizing the  
amount of material between the input leads and the guard  
ring will help to reduce the absorption. Also, low absorption  
materials, such as Teflon® or ceramic, may be necessary in  
some instances.  
LAYOUT, GROUNDING, AND BYPASSING  
CONSIDERATIONS  
Power Supply Bypassing  
Power supply pins can act as inputs for noise, so care must be  
taken that a noise-free, stable dc voltage is applied. The purpose  
of bypass capacitors is to create low impedances from the supply  
to ground at all frequencies, thereby shunting or filtering most  
of the noise. Bypassing schemes are designed to minimize the  
supply impedance at all frequencies with a parallel combination  
of capacitors of 0.1 µF and 4.7 µF. Chip capacitors of 0.1 µF  
Input Capacitance  
Along with bypassing and ground, high speed amplifiers can be  
sensitive to parasitic capacitance between the inputs and  
ground. A few picofarads of capacitance will reduce the input  
impedance at high frequencies, which in turn increases the  
amplifiers gain, causing peaking in the frequency response or  
Rev. B | Page 15 of 20  
 
 
AD8651/AD8652  
oscillations. With the AD8651, additional input damping is  
required for stability with capacitive loads greater than 47 pF  
with direct input to output feedback (see the next section).  
V
+
+
V
+
V
OUT  
AD8651  
R
C
V–  
S
CL  
Output Capacitance  
RL  
S
When using high speed amplifiers, it is important to consider  
the effects of the capacitive loading on the amplifiers stability.  
Capacitive loading interacts with the output impedance of the  
amplifier, causing reduction of the BW as well as peaking and  
ringing of the frequency response. To reduce the effects of the  
capacitive loading and allow higher capacitive loads, there are  
two commonly used methods:  
V–  
200mV  
Figure 56. Snubber Network  
Settling Time  
The settling time of an amplifier is defined as the time it takes  
for the output to respond to a step change of input and enter  
and remain within a defined error band, as measured relative to  
the 50% point of the input pulse. This parameter is especially  
important in measurements and control circuits where amplifi-  
ers are used to buffer A/D inputs or DAC outputs. The design of  
the AD8651 combines a high slew rate and a wide gain band-  
width product to produce an amplifier with very fast settling  
time. The AD8651 is configured in the noninverting gain of 1  
with a 2 V p-p step applied to its input. The AD8651 has a  
settling time of about 130 ns to 0.01% (2 mV). The output is  
monitored with a 10×, 10 M, 11.2 pF scope probe.  
1) As shown in Figure 55, place a small value resistor (RS) in  
series with the output to isolate the load capacitor from the  
amplifiers output. Heavy capacitive loads can reduce the phase  
margin of an amplifier and cause the amplifier response to peak  
or become unstable. The AD8651 is able to drive up to 47 pF in  
a unity gain buffer configuration without oscillation or external  
compensation. However, if an application will require a higher  
capacitive load drive when the AD8651 is in unity gain, then  
the use of external isolation networks can be used. The effect  
produced by this resistor is to isolate the op amp output from  
the capacitive load. The required amount of series resistance has  
been tabulated in Table 5 for different capacitive load. While  
this technique will improve the overall capacitive load drive for  
the amplifier, its biggest drawback is that it reduces the output  
swing of the overall circuit.  
THD Readings vs. Common-Mode Voltage  
Total harmonic distortion of the AD8651 is well below 0.0004%  
with any load down to 600 Ω. The distortion is a function of the  
circuit configuration, the voltage applied, and the layout, in  
addition to other factors. The AD8651 outperforms its  
competitor for distortion, especially at frequencies below  
20 kHz, as shown in Figure 57.  
V
CC  
U1  
3
2
0.1  
V
+
IN  
V
+
V
V
= +3.5V/–1.5V  
= 2.0V p-p  
R
V
OUT  
SY  
S
0.05  
AD8651  
OUT  
V–  
CL  
RL  
0.02  
0.01  
0
0
0
0.005  
Figure 55. Driving Large Capacitive Loads  
0.002  
0.001  
OPA350  
Table 5. Optimum Values for Driving Large Capacitive Loads  
0.0005  
CL  
RS  
100 pF  
500 pF  
1.0 nF  
50 Ω  
35 Ω  
25 Ω  
AD8651  
0.0002  
0.0001  
20  
50  
100  
500  
1k  
2k  
5k  
20k  
FREQUENCY (Hz)  
Figure 57. Total Harmonic Distortion  
2) Another way to stabilize an op amp driving a large capacitive  
load is to use a snubber network, as shown in Figure 56.  
Because there is not any isolation resistor in the signal path, this  
method has the significant advantage of not reducing the output  
swing. The exact values of RS and CS are derived experimentally.  
In Figure 56, an optimum RS and CS combination for a  
capacitive load drive ranging from 50 pF to 1 nF was chosen.  
For this, RS = 3 Ω and CS = 10 nF were chosen.  
3.5V  
V
OUT  
AD8651  
600  
47pF  
+
–1.5V  
V
IN  
2V p-p  
Figure 58. THD + N Test Circuit  
Rev. B | Page 16 of 20  
 
 
 
 
 
AD8651/AD8652  
5V  
Driving a 16-Bit ADC  
The AD8651 is an excellent choice for driving high speed, high  
precision ADCs. The driver amplifier for this type of  
application needs to have low THD + N as well as quick settling  
time. Figure 60 shows a complete single-supply data acquisition  
solution. The AD8651 drives the AD7685, a 250 kSPS, 16-bit  
data converter.1  
10k  
10kΩ  
U1  
3
2
+
V
V
+
CC  
33Ω  
IN  
AD8651  
1µF  
AD7685  
V–  
2.7nF  
1kΩ  
V
IN  
0V – 5V  
f
= 45kHz  
IN  
1kΩ  
The AD8651 is configured in an inverting gain of 1 with a 5 V  
single supply. Input of 45 kHz is applied, and the ADC samples  
at 250 kSPS. The results of this solution are listed in Table 6.  
The advantage of this circuit is that the amplifier and ADC can  
be powered with the same power supply. For the case of a  
noninverting gain of 1, the input common-mode voltage  
encompasses both supplies.  
Figure 60. AD8651 Driving a 16-Bit ADC  
Table 6. Data Acquisition Solution of Figure 60  
Parameter  
Reading (dB)  
THD + N  
SFDR  
2nd Harmonics  
3rd Harmonics  
105.2  
106.6  
107.7  
113.6  
0
f
f
= 250kSPS  
SAMPLE  
= 45kHz  
IN  
–20  
–40  
–60  
INPUT RANGE = 0 TO 5V  
1 For more information about the AD7685 data converter, go to  
http://www.analog.com/Analog_Root/productPage/productHome/0%2C21  
21%2CAD7685%2C00.html  
–80  
–100  
–120  
–140  
–160  
0
10 20  
30 40 50 60 70 80 90 100 110 120  
FREQUENCY (kHz)  
Figure 59. Frequency Response of AD8651 Driving a 16-Bit ADC  
Rev. B | Page 17 of 20  
 
 
 
 
OUTLINE DIMENSIONS  
3.00  
BSC  
8
5
4
4.90  
BSC  
3.00  
BSC  
PIN 1  
0.65 BSC  
1.10 MAX  
0.15  
0.00  
0.80  
0.60  
0.40  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
Figure 61. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 62. 8-Lead Standard Small Outline Package [SOIC]  
(R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
Package Option  
Branding  
BEA  
BEA  
AD8651ARM-REEL  
AD8651ARM-R2  
AD8651AR  
AD8651AR-REEL  
AD8651AR-REEL7  
AD8652ARMZ-R2*  
AD8652ARMZ-REEL*  
AD8652ARZ*  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
RM-8  
RM-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
A05  
A05  
AD8652ARZ-REEL*  
AD8652ARZ-REEL7*  
* Z = Pb-free part.  
Rev. B | Page 18 of 20  
 
 
 
AD8651/AD8652  
NOTES  
Rev. B | Page 19 of 20  
NOTES  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C03301-0-9/04(B)  
Rev. B | Page 20 of 20  

相关型号:

AD8652ARMZ-R21

50 MHz, Precision, Low Distortion, Low Noise CMOS Amplifiers
ADI

AD8652ARMZ-REEL

50 MHz, Precision, Low Distortion, Low Noise CMOS Amplifiers
ADI

AD8652ARMZ-REEL1

50 MHz, Precision, Low Distortion, Low Noise CMOS Amplifiers
ADI

AD8652ARZ

50 MHz, Precision, Low Distortion, Low Noise CMOS Amplifiers
ADI

AD8652ARZ-REEL

50 MHz, Precision, Low Distortion, Low Noise CMOS Amplifiers
ADI

AD8652ARZ-REEL1

50 MHz, Precision, Low Distortion, Low Noise CMOS Amplifiers
ADI

AD8652ARZ-REEL7

50 MHz, Precision, Low Distortion, Low Noise CMOS Amplifiers
ADI

AD8652ARZ-REEL71

50 MHz, Precision, Low Distortion, Low Noise CMOS Amplifiers
ADI

AD8652ARZ1

50 MHz, Precision, Low Distortion, Low Noise CMOS Amplifiers
ADI

AD8652_15

50 MHz, Precision, Low Distortion
ADI

AD8654AR

IC QUAD OP-AMP, 300 uV OFFSET-MAX, 50 MHz BAND WIDTH, PDSO14, SOIC-14, Operational Amplifier
ADI

AD8654AR-REEL

IC QUAD OP-AMP, 300 uV OFFSET-MAX, 50 MHz BAND WIDTH, PDSO14, SOIC-14, Operational Amplifier
ADI