AD9048KQ [ADI]

Monolithic 8-Bit Video A/D Converter; 单片8位视频A / D转换器
AD9048KQ
型号: AD9048KQ
厂家: ADI    ADI
描述:

Monolithic 8-Bit Video A/D Converter
单片8位视频A / D转换器

转换器
文件: 总8页 (文件大小:111K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Monolithic 8-Bit  
a
Video A/D Converter  
AD9048  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
35 MSPS Encode Rate  
16 pF Input Capacitance  
550 mW Power Dissipation  
Industry-Standard Pinouts  
MIL-STD-883 Compliant Versions Available  
12  
28  
23  
18  
NLINV  
NMINV  
AD9048  
V
IN  
1
2
R
T
R
R
1
2
APPLICATIONS  
D1 (MSB)  
D2  
E
N
C
O
D
I
Professional Video Systems  
Special Effects Generators  
Electro-Optics  
Digital Radio  
Electronic Warfare (ECM, ECCM, ESM)  
3
D3  
127  
128  
L
A
T
C
H
4
D3  
R/2  
R/2  
N
G
R
M
27  
13  
14  
15  
16  
D5  
L
O
G
I
D6  
D7  
C
R
R
254  
255  
D8 (LSB)  
GENERAL DESCRIPTION  
26  
17  
R
B
The AD9048 is an 8-bit, 35 MSPS flash converter, made on a  
high speed bipolar process, which is an alternate source for the  
TDC1048 unit, offers enhancements over its predecessor.  
Lower power dissipation makes the AD9048 attractive for a  
variety of system designs.  
CONVERT  
11  
DGND AGND  
6
10  
19 25  
5
8
9
7
V
V
EE  
CC  
Because of its wide bandwidth, it is an ideal choice for real-time  
conversion of video signals. Input bandwidth is flat with no  
missing codes.  
Commercial versions are packaged in 28-lead DIPs; extended  
temperature versions are available in ceramic DIP and ceramic  
LCC packages. Both commercial units and MIL-STD-883 units  
are standard products.  
Clocked latching comparators, encoding logic and output buffer  
registers operating at minimum rates of 35 MSPS preclude a  
need for a sample-and-hold (S/H) or track-and-hold (T/H) in  
most system designs using the AD9048. All digital control in-  
puts and outputs are TTL compatible.  
The AD9048 A/D converter is available in versions compliant  
with MIL-STD-883. Refer to the Analog Devices Military Prod-  
ucts Databook or current AD9048/883B data sheet for detailed  
specifications.  
Devices operating over two ambient temperature ranges and  
with two grades of linearity are available. Linearities of either  
0.5 LSB or 0.75 LSB can be ordered for a commercial range  
of 0°C to +70°C or extended case temperatures of –55°C to  
+125°C.  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
(typical with nominal supplies unless otherwise noted)  
AD9048–SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS1  
Output Short-Circuit Duration . . . . . . . . . . . . . . . . . . 1.0 sec5  
Operating Temperature Range (Ambient)  
VCC to DGND . . . . . . . . . . . . . . . . . . . –0.5 V dc to +7.0 V dc  
AGND to DGND . . . . . . . . . . . . . . . . –0.5 V dc to +0.5 V dc  
VEE to AGND . . . . . . . . . . . . . . . . . . . +0.5 V dc to –7.0 V dc  
VIN, VRT or VRB to AGND . . . . . . . . . . . . . . . . . +0.5 V to VEE  
VRT to VRB . . . . . . . . . . . . . . . . . . . . . . –2.2 V dc to +2.2 V dc  
CONV, NMINV or NLINV to DGND –0.5 V dc to +5.5 V dc  
Applied Output Voltage to DGND . . . –0.5 V dc to +5.5 V dc2  
Applied Output Current, Externally Forced  
AD9048JJ/KJ/JQ/KQ . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
AD9048SE/SQ/TE/TQ . . . . . . . . . . . . . . –55°C to +125°C  
Maximum Junction Temperature (Plastic) . . . . . . . . +150°C6  
Maximum Junction Temperature (Hermetic) . . . . . . +175°C6  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . .+300°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . –1.0 mA to +6.0 mA3, 4  
(V = +5.0 V; V = –5.2 V; Differential Reference Voltage = 2.0 V, unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
CC  
EE  
Test  
AD9048JJ/JQ  
AD9048KJ/KQ  
Min Typ Max  
AD9048SE/SQ  
Min Typ Max  
AD9048TE/TQ  
Min Typ Max  
Parameter (Conditions)  
Temp  
Level Min Typ Max  
Units  
RESOLUTION  
8
8
8
8
Bits  
DC ACCURACY  
Differential Nonlinearity  
+25°C  
Full  
+25°C  
Full  
I
VI  
I
VI  
VI  
0.4  
0.6  
0.75  
1.0  
0.75  
1.0  
0.3 0.5  
0.75  
0.4 0.5  
0.75  
0.4  
0.6  
0.75  
1.0  
0.75  
1.0  
0.3 0.5  
0.75  
0.4 0.5  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
No Missing Codes  
0.75  
GUARANTEED  
Full  
GUARANTEED  
GUARANTEED  
GUARANTEED  
INITIAL OFFSET ERROR  
Top of Reference Ladder  
+25°C  
Full  
+25°C  
Full  
I
VI  
I
VI  
V
5
12  
12  
8
5
12  
12  
8
5
12  
12  
8
5
12  
12  
8
mV  
mV  
mV  
mV  
Bottom of Reference Ladder  
Offset Drift Coefficient  
4
4
4
4
8
8
8
8
Full  
20  
20  
20  
20  
µV/°C  
ANALOG INPUT  
Input Voltage Range  
Full  
V
–2.1;  
+0.1  
36  
–2.1;  
+0.1  
36  
–2.1;  
+0.1  
36  
–2.1;  
+0.1  
36  
V
Input Bias Current7  
Input Resistance  
+25°C  
Full  
+25°C  
Full  
+25°C  
+25°C  
I
VI  
I
VI  
IV  
IV  
60  
100  
60  
100  
60  
100  
60  
100  
µA  
µA  
kΩ  
kΩ  
pF  
MHz  
200  
40  
300  
200 300  
200  
40  
300  
200 300  
40  
16  
40  
Input Capacitance  
16  
15  
20  
16  
15  
20  
16  
15  
20  
20  
Full Power Bandwidth8  
10  
10  
10  
10  
15  
REFERENCE INPUT  
Positive Reference Voltage9  
Negative Reference Voltage9  
Differential Reference Voltage  
Reference Ladder Resistance  
Ladder Temperature Coefficient  
Reference Ladder Current  
Reference Input Bandwidth  
Full  
Full  
Full  
Full  
Full  
Full  
+25°C  
V
V
V
VI  
V
VI  
V
0.0  
–2.0  
2.0  
60  
0.22  
23  
0.0  
–2.0  
2.0  
60  
0.22  
23  
0.0  
–2.0  
2.0  
60  
0.22  
23  
0.0  
–2.0  
2.0  
60  
0.22  
23  
V
V
V
/°C  
mA  
MHz  
30  
125  
40  
30  
125  
40  
30  
125  
40  
30  
125  
40  
10  
10  
10  
10  
DYNAMIC PERFORMANCE10  
Conversion Rate  
Aperture Delay  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
I
35  
5
38  
2.4  
25  
13  
8
6
8
35  
5
38  
2.4  
25  
9
8
6
35  
5
38  
2.4  
25  
9
8
6
35  
5
38  
2.4  
25  
9
8
6
MHz  
ns  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
IV  
IV  
I
5
50  
15  
5
50  
15  
5
50  
15  
5
50  
15  
Aperture Uncertainty (Jitter)  
Output Delay (tPD  
)
11  
Output Hold Time (tOH  
)
I
Transient Response12  
IV  
V
I
I
I
20  
20  
20  
20  
Overvoltage Recovery Time13  
Rise Time  
8
8
8
9
14  
7
9
14  
7
9
14  
7
9
14  
7
Fall Time  
Output Time Skew14  
4.5  
4.5  
4.5  
4.5  
ns  
NMINV and NLINV INPUTS  
+0.4 V Input Current  
+2.4 V Input Current  
Full  
Full  
Full  
VI  
VI  
VI  
200  
150  
150  
200  
150  
150  
200  
150  
150  
200  
150  
150  
µA  
µA  
µA  
+5.5 V Input Current  
CONVERT INPUT  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Current  
Logic “0” Current  
Input Capacitance  
Convert Pulsewidth (LOW)  
Convert Pulsewidth (HIGH)  
Full  
Full  
Full  
Full  
+25°C  
+25°C  
+25°C  
VI  
VI  
VI  
VI  
IV  
I
2.0  
2.0  
2.0  
2.0  
V
V
µA  
µA  
pF  
ns  
ns  
0.8  
150  
500  
6
0.8  
150  
500  
6
0.8  
150  
500  
6
0.8  
150  
500  
6
4
4
4
4
18  
10  
18  
10  
18  
10  
18  
10  
I
–2–  
REV. C  
AD9048  
Test  
AD9048JJ/JQ  
AD9048KJ/KQ  
AD9048SE/SQ  
Min Typ Max  
AD9048TE/TQ  
Min Typ Max  
Parameter (Conditions)  
Temp  
Level Min Typ Max Min Typ Max  
Units  
AC LINEARITY  
In-Band Harmonics  
dc to 2.438 MHz15  
+25°C  
+25°C  
I
V
47  
50  
48  
49  
55  
48  
47  
50  
48  
49  
55  
48  
dBc  
dBc  
dc to 9.35 MHz16  
Signal-to-Noise Ratio (SNR)15  
1.248 MHz Input Frequency17  
2.438 MHz Input Frequency17  
1.248 MHz Input Frequency18  
2.438 MHz Input Frequency18  
Signal-to-Noise Ratio (SNR)16  
1.248 MHz Input Frequency17  
9.35 MHz Input Frequency17  
Noise Power Ratio (NPR)19  
Differential Phase 20  
+25°C  
+25°C  
+25°C  
+25°C  
I
I
I
I
43.5 44  
43 44  
52.5 53  
52 53  
45  
44  
54  
53  
46  
46  
55  
55  
43.5 44  
43 44  
52.5 53  
52 53  
45  
44  
54  
53  
46  
46  
55  
55  
dB  
dB  
dB  
dB  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
I
V
IV  
IV  
IV  
43.5 44  
40.5  
36.5 39  
45  
46  
40.5  
43.5 44  
40.5  
36.5 39  
45  
46  
40.5  
dB  
dB  
dB  
Degree  
%
36.5 39  
36.5 39  
1
2
1
2
1
2
1
2
Differential Gain 20  
DIGITAL OUTPUTS  
Logic “1” Voltage  
Full  
Full  
Full  
VI  
VI  
VI  
2.4  
2.4  
2.4  
2.4  
V
V
mA  
Logic “0” Voltage  
0.5  
30  
0.5  
30  
0.5  
30  
0.5  
30  
Short Circuit Current5  
POWER SUPPLY  
Positive Supply Current  
+25°C  
Full  
+25°C  
Full  
+25°C  
+25°C  
I
VI  
I
VI  
V
V
34  
90  
56  
58  
110  
120  
34  
90  
56  
58  
110  
120  
34  
90  
56  
58  
110  
120  
34  
90  
56  
58  
110  
120  
mA  
mA  
mA  
mA  
mW  
mW  
Negative Supply Current  
Nominal Power Dissipation  
Reference Ladder Dissipation  
550  
45  
550  
45  
550  
45  
550  
45  
NOTES  
1Maximum ratings are limiting values to be applied individually, and beyond which  
the serviceability of the device may be impaired. Functional operation under any of  
these conditions is not necessarily implied. Exposure to absolute maximum rating  
conditions for extended periods of time may affect device reliability.  
2Applied voltage must be current-limited to specified range.  
3Forcing voltage must be limited to specified range.  
10Outputs terminated with 40 pF and eight 10 pull-up resistors.  
11Interval from 50% point of leading edge CONVERT pulse to change in output  
data.  
12For full-scale step input, 8-bit accuracy attained in specified time.  
13Recovers to 8-bit accuracy in specified time after –3 V input overvoltage.  
14Output time skew includes high-to-low and low-to-high transitions as well as  
bit-to-bit time skew differences.  
4Current is specified as negative when flowing into the device.  
5Output High; one pin to ground; one second duration.  
15Measured at 20 MHz encode rate with analog input 1 dB below full scale.  
16Measured at 35 MHz encode rate with analog input 1 dB below full scale.  
17RMS signal to rms noise.  
6Typical thermal impedances (no air flow) are as follows:  
Ceramic DIP: θJA = 49°C/W; θJC = 15°C/W LCC: θJA = 69°C/W; θJC = 21°C/W  
JLCC: θJA = 59°C/W; θJC = 19°C/W  
18Peak signal to rms noise.  
To calculate junction temperature (TJ), use power dissipation (PD) and thermal  
impedance: TJ = PD (θJA) + TAMBIENT = PD (θJC) = + TCASE.  
7Measured with VIN = 0 V and CONVERT low (sampling mode).  
8Determined by beat frequency testing for no missing codes.  
9VRT VRB under all circumstances.  
19DC to 8 MHz noise bandwidth with 1.248 MHz slot; four sigma loading;  
20 MHz encode.  
20Clock frequency = 4 × NTSC = 14.32 MHz. Measured with 40-IRE  
modulated ramp.  
Specifications subject to change without notice.  
EXPLANATION OF TEST LEVELS  
Test Level I – 100% production tested.  
Test Level II – 100% production tested at +25°C and  
sample tested at specific temperatures.  
Test Level III – Sample tested only.  
Test Level IV – Parameter is guaranteed by design and  
characterization testing.  
Test Level V – Parameter is a typical value only.  
Test Level VI – All devices are 100% production tested at  
+25°C. 100% production tested at tempera-  
ture extremes for military temperature de-  
vices; sample tested at temperature extremes  
for commercial/industrial devices.  
REV. C  
–3–  
AD9048  
ORDERING GUIDE  
PIN DESIGNATIONS  
DIP (Q Package)  
Package  
Option1  
Model  
Linearity  
Temperature  
(MSB) D1  
D2  
1
2
28 NMINV  
AD9048JJ  
0.75 LSB  
0.5 LSB  
0.75 LSB  
0.5 LSB  
0.75 LSB  
0.5 LSB  
0.75 LSB  
0.5 LSB  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
–55°C to +125°C  
–55°C to +125°C  
–55°C to +125°C  
–55°C to +125°C  
J-28A  
J-28A  
Q-28  
Q-28  
E-28A  
E-28A  
Q-28  
Q-28  
R
27  
26  
25  
24  
23  
22  
21  
20  
M
B
AD9048KJ  
AD9048JQ  
AD9048KQ  
AD9048SE2  
AD9048TE2  
AD9048SQ2  
AD9048TQ2  
D3  
3
R
D4  
4
AGND  
NC  
DGND  
5
AD9048  
TOP VIEW  
(Not to Scale)  
V
6
V
CC  
IN  
V
7
NC  
NC  
NC  
EE  
V
8
EE  
V
9
EE  
V
10  
11  
12  
13  
14  
19 AGND  
18  
NOTES  
CC  
1E = Leadless Ceramic Chip Carrier; J = J-Leaded Ceramic; Q = Cerdip.  
2For temperature designation only. MIL-STD-883 and Standard Military  
Drawing available.  
DGND  
NLINV  
D5  
R
T
17 CONVERT  
16 D8 (LSB)  
D6  
D7  
15  
NC = NO CONNECT  
MECHANICAL INFORMATION  
LCC (E Package)  
Die Dimensions . . . . . . . . . . . . . . . . 140 × 137 × 21 (±2) mils  
Pad Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 × 4 mils  
Metalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gold  
Backing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . None  
Substrate Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VEE  
Passivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nitride  
Die Attach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gold Eutectic  
Bond Wire . . . . . . . . . . . . . . . .1 mil Gold; Gold Ball Bonding  
4
3
1
28 27 26  
2
25 AGND  
NC  
5
6
DGND  
V
24  
23 V  
CC  
V
7
IN  
EE  
AD9048  
TOP VIEW  
(Not to Scale)  
22 NC  
V
8
EE  
V
21 NC  
9
EE  
V
20 NC  
10  
11  
CC  
AGND  
AIN  
AGND  
19 AGND  
DGND  
12  
13 14 15 16 17 18  
RLOW  
RMID  
RTOP  
NC = NO CONNECT  
NMINV  
CONV  
D8  
J-Leaded Ceramic (J Package)  
MSB  
D2  
D7  
D3  
D6  
25 24 23 22 21 20 19  
26  
27  
28  
1
18  
17  
16  
15  
14  
13  
12  
R
R
R
T
B
D4  
D5  
CONVERT  
D8 (LSB)  
D7  
M
NLINV  
DGND  
NMINV  
AD9048  
(MSB) D1  
DGND  
TOP VIEW  
(Not to Scale)  
2
D6  
D2  
D3  
D4  
3
D5  
VCC VCC  
VEE VEE VEE  
VCC VCC DGND  
4
NLINV  
5
6
7
8
9
10 11  
Bonding Diagram  
NC = NO CONNECT  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9048 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. C  
AD9048  
PIN FUNCTION DESCRIPTIONS  
Pin  
Description  
Pin  
Description  
RB  
Most negative reference voltage for internal  
reference ladder.  
D1–D8  
Eight digital outputs. D1 (MSB) is the most  
significant bit of the digital output word;  
D8 (LSB) is the least significant bit.  
RM  
RT  
Midpoint tap on internal reference ladder.  
AGND  
DGND  
One of two analog ground returns. Both  
grounds should be connected together and to  
low impedance ground plane near the AD9048.  
Most positive reference voltage for internal  
reference ladder.  
VIN  
Analog input signal pin.  
One of two digital ground returns. Both  
grounds should be connected together and to  
low impedance ground plane near the AD9048.  
NMINV  
“Not Most Significant Bit Invert.” In normal  
operation, this pin floats high; logic LOW at  
NMINV inverts most significant bit of digital  
output word [D1 (MSB)].  
VCC  
VEE  
Positive supply terminals; nominally +5.0 V.  
Negative supply terminals; nominally –5.2 V.  
NLINV  
“Not Least Significant Bit Invert.” In normal  
operation, this pin floats high; logic LOW at  
NLINV inverts the seven least significant bits  
of the digital output word.  
CONVERT Input for conversion signal; sample of analog  
input signal taken on rising edge of this pulse.  
Burn-In Diagram  
REV. C  
–5–  
AD9048  
THEORY OF OPERATION  
System timing, which provides details on delays through the  
AD9048 as well as the relationships of various timing events, is  
shown in Figure 2.  
Refer to the Functional Block Diagram of the AD9048. The  
AD9048 comprises three functional sections: a comparator  
array, encoding logic and output latches.  
Dynamic performance of the AD9048, i.e., typical signal-to-  
noise ratio, is illustrated in Figures 3 and 4.  
Within the array, the analog input signal to be digitized is com-  
pared with 255 reference voltages. The outputs of all compara-  
tors whose references are below the input signal level will be  
high; outputs whose references are above that level will be low.  
The n-of-255 code that results from this comparison is applied  
to the encoding logic where it is converted into binary coding.  
When it is inverted with dc signals applied to the NLINV and/or  
NMINV pins, it becomes twos complement.  
After encoding, the signal is applied to the output latch circuits  
where it is held constant between updates controlled by the  
application of CONVERT pulses.  
The AD9048 uses strobed latching comparators in which com-  
parator outputs are either high or low, as dictated by the analog  
input level. Data appearing at the output pins have a pipeline  
delay of one encode cycle.  
Input signal levels between the references applied to RT (Pin 18)  
and RB (Pin 26) will appear at the output as binary numbers  
between 0 and 255, inclusive. Signals outside that range will  
show up as either full-scale positive or full-scale negative out-  
puts. No damage will occur to the AD9048 as long as the input  
is within the voltage range of VEE to +0.5 V.  
The significantly reduced input capacitance of the AD9048  
lowers the drive requirements of the input buffer/amplifier and  
also induces much smaller phase shift in the analog input signal.  
Applications that depend on controlled phase shift at the con-  
verter input can benefit from using the AD9048 because of its  
inherently lower phase shift.  
The CONVERT, analog input and digital output circuits are  
shown in Figure 1.  
Figure 1. Input/Output Circuits  
Figure 2. Timing Diagram  
–6–  
REV. C  
AD9048  
Ceramic 0.1 µF decoupling capacitors should be placed as closely  
as possible to the supply pins of the AD9048. For decoupling  
low frequency signals, use 10 µF tantalum capacitors, also con-  
nected as closely as practical to voltage supply pins.  
Within the AD9048, reference currents may vary because of  
coupling between the clock and input signals. As a result, it is  
important that the ends of the reference ladder, RT (Pin 18) and  
RB (Pin 28), be connected to low impedances (as measured  
from ground).  
If the AD9048 is being used in a circuit in which the reference  
is not varied, a bypass capacitor to ground is strongly recom-  
mended. In applications that use varying references, they must  
be driven from a low impedance source.  
Figure 3. Dynamic Performance (20 MHz Encode Rate)  
Figure 4. Dynamic Performance (35 MHz Encode Rate)  
LAYOUT SUGGESTIONS  
Designs that use the AD9048 or any other high speed device  
must follow some basic layout rules to ensure optimum  
performance.  
The first requirement is to have a large, low impedance ground  
plane under and around the converter. If the system uses sepa-  
rate analog and digital grounds, both should be solidly con-  
nected together, and to the ground plane, as closely to the  
AD9048 as practical to avoid ground loop currents.  
Figure 5. Typical Connections  
REV. C  
–7–  
AD9048  
Table I. Truth Table  
Binary  
Offset Twos  
Complement  
Step  
Range  
True  
Inverted  
True  
Inverted  
–2.000 V FS  
7.8431 mV Step 8.000 mV Step  
–2.0480 V FS  
NMINV = 1  
NLINV = 1  
0
0
0
1
1
0
000  
001  
0.0000 V  
–0.0078 V  
0.0000 V  
–0.0080 V  
00000000  
00000001  
11111111  
11111110  
10000000  
10000001  
01111111  
01111110  
127  
128  
129  
–0.9961 V  
–1.0039 V  
–1.0118 V  
–1.0160 V  
–1.0240 V  
–1.0320 V  
01111111  
10000000  
10000001  
10000000  
01111111  
01111110  
11111111  
00000000  
00000001  
00000000  
11111111  
11111110  
254  
255  
–1.9921 V  
–2.0000 V  
–2.0320 V  
–2.0400 V  
11111110  
11111111  
00000001  
00000000  
01111110  
01111111  
10000001  
10000000  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
28-Lead Ceramic Side-Brazed DIP  
28-Terminal Leadless Chip Carrier  
0.100 (2.54)1  
0.055 (1.40)  
28  
15  
0.045 (1.14)  
0.064 (1.63)  
0.075 (1.91) REF  
0.610 (15.24)  
0.500 (14.43)  
26  
25  
18  
19  
PIN 1  
0.028 (0.71)  
1
14  
0.12 (3.05)  
0.06 (1.53)  
0.022 (0.56)  
0.458 (11.63)  
28  
0.050 ±0.005  
(1.27 ±0.13)  
1.418 (36.02)  
1.38 (35.06)  
0.442 (11.23)  
SQ  
1
NO 1  
PIN INDEX  
BOTTOM  
VIEW  
0.225 (5.72)  
MAX  
12  
5
4
0.015 (0.305)  
11  
0.175 (4.45)  
0.125 (3.18)  
0.008 (0.203)  
0.020 (0.51) x 45°  
REF 1 PLC  
SEATING  
PLANE  
0.620 (15.4)  
0.040 (1.02) x 45°  
REF 3 PLCS  
0.023 (0.508)  
0.014 (0.381)  
0.065 (1.66)  
0.105 (2.67)  
0.095 (2.42)  
0.590 (14.74)  
0.038 (0.965)  
NOTES  
1
LEAD NO. 1 IDENTIFIED BY DOT OR NOTCH  
THIS DIMENSION CONTROLS THE OVERALL PACKAGE THICKNESS  
2
APPLIES TO ALL FOUR SIDES  
LEADS ARE GOLD PLATED (50 MICROINCHES MIN) KOVAR OR ALLOY 42  
ALL TERMINALS ARE GOLD PLATED  
28-Lead J-Lead Package  
0.171 (4.34)  
MAX  
0.450 ±0.006  
(11.43 ±0.152)  
0.039 ±0.005  
SQ  
(0.991 ±0.127)  
25  
26  
19  
18  
0.028 ±0.002  
(0.711 ±0.051)  
0.050  
(1.27)  
PIN 1  
0.300  
(7.62)  
TYP  
TOP VIEW  
(PINS DOWN)  
0.420 ±0.010  
(10.668 ±0.254)  
BOTTOM VIEW  
BSC  
0.019 ±0.002  
(0.483 ±0.051)  
12  
4
5
11  
0.006 ±0.0006  
(0.152 ±0.015)  
0.488 ±0.010  
(11.43 ±0.254)  
SQ  
0.022 ±0.003  
(0.559 ±0.076)  
0.102 ±0.010  
(1.448 ±0.254)  
–8–  
REV. C  

相关型号:

AD9048SE

Monolithic 8-Bit Video A/D Converter
ADI

AD9048SE/883B

Analog-to-Digital Converter, 8-Bit
ETC

AD9048SQ

Monolithic 8-Bit Video A/D Converter
ADI

AD9048SQ/883B

IC 1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP28, CERDIP-28, Analog to Digital Converter
ADI

AD9048TE

Monolithic 8-Bit Video A/D Converter
ADI

AD9048TE/883B

Analog-to-Digital Converter, 8-Bit
ETC

AD9048TQ

Monolithic 8-Bit Video A/D Converter
ADI

AD9048TQ-883B

Monolithic 8-Bit Video A/D Converter
ADI

AD9048TQ/833B

IC 1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP28, CERAMIC, SIDE BRAZED, DIP-28, Analog to Digital Converter
ADI

AD9048TQ/883B

IC 1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, CDIP28, CERDIP-28, Analog to Digital Converter
ADI

AD9049

9-Bit, 30 MSPS ADC
ADI

AD9049BR

9-Bit, 30 MSPS ADC
ADI